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Analysis of Polynomial Systems With Time Delays
via the Sum of Squares Decomposition

Antonis Papachristodoulou, Matthew M. Peet, and Sanjay Lall

Abstract—We present a methodology for analyzing robust indepen-
dent-of-delay and delay-dependent stability of equilibria of systems
described by nonlinear Delay Differential Equations by algorithmically
constructing appropriate Lyapunov-Krasovskii functionals using the sum
of squares decomposition of multivariate polynomials and semidefinite
programming. We illustrate the methodology using an example from
population dynamics.

Index Terms—Linear matrix inequality (LMI), Lyapunov-Krasovskii,
sum of squares (SOS), time delay.

I. INTRODUCTION

Delay Differential Equations (DDEs) are used to model systems that
involve transport and propagation of data; examples include networked
systems [1] and modeling maturation and growth in population dy-
namics [2]. The analysis and control of such systems is important [3],
[4], as the presence of delays may induce performance degradation or
even instabilities.

DDEs fall in the category of Functional Differential Equations
(FDEs), which differ from Ordinary Differential Equations (ODEs)
because the system state belongs to an infinite dimensional space.
Assuming local existence and uniqueness of solutions, appropriate
Lyapunov functions can be used for stability analysis. However, while
for the case of ODEs these are functions, in the case of DDEs they are
functionals as the state belongs in a function space itself.

For linear DDEs, the form of these functionals that is necessary
and sufficient for Delay-Dependent (DD) and strong Independent-Of-
Delay (IOD) stability is known [5]–[7], but these conditions are diffi-
cult to test algorithmically. Under restrictions on their structure, convex
optimization was used to construct them with conservative results on
the delay interval guaranteeing stability [8], [9]. This is because con-
structing the functional that is necessary and sufficient for stability
amounts to parameterizing the set of positive operators on an infinite-
dimensional space. Lyapunov functionals with piecewise-linear kernels
can be constructed by solving a set of LMIs whose size depends on the
discretization level [10], and as the discretization level is decreased,
delay values closer to the boundary of stability can be tested. In [11] a
new approach was proposed which uses an explicit parametrization of
positive operators and uses the Sum of Squares (SOS) decomposition
and semidefinite programming for computation.

As far as nonlinear time delay systems are concerned, the only
methodologies centre on the construction of simple Lyapunov certifi-
cates for systems of low dimension through a judicious choice for a
candidate Lyapunov function [2]. This is the case even for systems
described by ODEs, where constructing Lyapunov functions is usually
based on system structure and its properties (Volterra, gradient systems
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etc.). Recently, however, a computational methodology based on the
SOS decomposition has been proposed [12]–[14].

In this technical note we present an algorithmic methodology for
constructing L-K functionals to assess IOD and DD stability for poly-
nomial time delay systems. Preliminary results have been presented in
[15], [16]. The present technical note offers significant improvements
on the way these functionals can be constructed. Applications of this
approach to Internet congestion control problems have appeared in [17]
and preliminary results on state feedback stabilization have appeared
in [18]. The methodology unifies local and robust DD and IOD sta-
bility, but only the single-delay case is presented in this technical note
in order to simplify the exposition: the case of multiple, incommensu-
rate delays can be treated in a unified way.

Section II outlines the proposed methodology and Section III shows
how this can be used for the nominal, robust and local IOD and DD sta-
bility analysis of polynomial delayed systems, followed by an example
from population dynamics.

A. Notation

denotes the reals and � the �-dimensional Euclidean space. For
� � �, ��� is the ring of polynomials in � with real coefficients and
����� the vector of monomials in � of degree � or less. ������ ��� ��
is the Banach space of continuous functions mapping the interval [�� ,
0] into � with the topology of uniform convergence. The norm on �

is ��� � ��	������ ���	�� where � � � is the infinity norm. Suppose

 � , � � � and � � ���
 � �� 
 
 ��� ��; then for any � �
�
� 

 ��, define �� � � by ���	� � ���
 	�, 	 � ���� ��. Symbolic
independent variables will reference state and delayed state variables:
��
���
�

will reference ���� � �� where  � ��    � � and ��� will denote
the row vector of ��

���
�

’s, � � ��    � �. Also, ��
���
�

will be used for
���� 
 	 � ��, ��

���
�

for ���� 
 � � �� and vectors ��� and ��� are
similarly defined. Finally, we will use ��� � ����� ����    � ���� and
��� � ����� ����    � ����.

II. THE PROPOSED METHODOLOGY

Background theory on stability and Lyapunov theory for DDEs can
be found in [19]. Consider a polynomial time delay system with a single
delay of the form

����� � � ������ ���� � �� (1)

where � � � � � � � with ���� �� � � is such that a unique
solution exists from an appropriate initial condition close to 0. The
Lyapunov functional
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�� ������ ��	�� 	� �� �	�� (2)

can be used to verify the DD stability of the zero steady-state; its deriva-
tive takes the form

�� ��� �
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���
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where the map ��, �� to �� will be presented in later sections.
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Positivity of �� in (2) can be characterized using Theorem 1, the
proof of which can be found in the Appendix.

Theorem 1: Consider a continuous function ���� ����� �� that sat-
isfies the conditions of Lemma 14. Then

�

��

� ��� ����� ���� � � ��� ��� � � � �	
 � � � (4)

if and only if there exists a continuous function 	��� �� such that for all
� � �� 
 � �

���� 
� �� � 	��� �� � � �� � ���� ��

�

��

	��� ���� � �� (5)

Non-negativity of �� can be guaranteed as follows:
Proposition 2: Given a continuous function ���� 
� �� � suppose

there exists a continuous vector-valued function � � ��� �� �� � for
some � so that ���� 
� �� � � ����� ���� ��
� �. Then we have
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��

�

��

������ ����� �� ���� � ��

Proof: Suppose that there exists such a decomposition for �. Then
we have
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Therefore the result follows.
Theorem 1 and Proposition 2 can reformulate the problem of testing

positivity of an integral form to testing certain conditions on its kernel.
However, even if we are given a function ��, it may be hard to en-
sure that condition (5) is satisfied, let alone construct it. To allow the
algorithmic construction of these functions, we make the following as-
sumption:

Assumption 3: We assume that �� and �� in (2) are polynomials in
their arguments, and in particular that for some positive integer �

������� ���� �� ��
�
� ����� ���� ���������� ����

������� �
�� �� � ��
�
� ����� ������
�� 

where � ��� is a polynomial matrix and � is a matrix of appropriate
dimensions. We also assume that the vector field � � ����� ��� as well
as that 	����� �� � ����� �.

Even though the above assumption may seem restrictive, especially
the restriction that the vector field be polynomial, it is true that in
many cases polynomial vector fields arise in modeling of physical pro-
cesses (e.g., using Volterra-type equations). In some other cases, one
can employ a non-polynomial transformation to render a non-polyno-
mial vector field polynomial. See [20], [21] for more details.

Under Assumption 3, all conditions in Theorem 1 and Proposition 2
are polynomial non-negativity conditions, which are in general difficult
to test. In fact, it is known that testing non-negativity of polynomials of
high degree (more than 4) is NP-hard. A sufficient condition for poly-
nomial non-negativity which is worst-case polynomial-time verifiable
by solving a Semidefinite Programme (SDP) is the existence of a sum
of squares (SOS) decomposition. More details on positive polynomials
and the SOS decomposition can be found in [12], [22]–[25]. Here, we

denote by � the SOS cone and by �� the subset of � of polynomials
of degree � of less.

If � � �� is an SOS, then it is globally nonnegative. In order to
ensure that it is positive definite and radially unbounded we can use a
polynomial ‘shaping’ function ����:

Proposition 4: Given a polynomial ���� of degree ��, let

���� �

�

���

�

���

����
��
� �

�

���

��� � � � � � �� � � � � � (6)

with � a positive number, and ��� � � for all � and �. Then the condition
���� � ���� � � guarantees the positive definiteness of ����, i.e.,
���� � �, � �� �. Moreover, ���� is radially unbounded.

Proof: The function ���� is positive definite if ��� ’s satisfy the
above; ��������� being SOS implies that ���� � ����, and therefore
���� is positive definite. Moreover it is radially unbounded since � is
radially unbounded—it is the positive sum of monomials in only one
variable squared.

Testing non-negativity of a polynomial over a bounded domain in-
stead of globally, (e.g., Condition (5) in Theorem 1, where polynomial
non-negativity is required only for � � ���� �) is common. We will
see similar conditions in the sequel: when studying local stability the
non-negativity conditions will be required to hold only in some region
of the state-space; when studying robust stability, these conditions will
be required to hold for parameters inside a parameter set, etc. These
conditional satisfiability conditions can be tested using a generalization
to the S-procedure, which is based on Putinar’s representation [26] in
Real Algebraic Geometry.

Given � � ��, suppose we want to ensure that ���� � � on the set
� � 	� � � � ����� 
 �� � � �� � � � � ���. Then one can search for
Lagrange-type multipliers  � � �� so that ����� 	

���  ��������� �
�. Searching for  ���� of a fixed degree ! so that the above expression
is SOS is a semidefinite programme. Note that if � and �� are quadratic
forms and  � are constants, the above test is indeed the S-procedure,
which can fail if � � �. However, it has been shown in [26] that if � is
compact and another mild condition holds on the �����, then there is a
! for which the above test will succeed—it is indeed a necessary and
sufficient condition. Other tests can also be formulated [27].

A polynomial ���� � ����� �"� � 

���  �"������ is SOS if

and only if the LMI "� � �  


���"� � � holds for some deci-

sion variables  �. Here ���� is a vector of monomials and "�, � �
�� � � � �# are symmetric matrices so that �����"����� � ���� and
�����"����� � � for � � �� � � � �# . The size of the LMI (i.e., the
length of ����) is �����

���
if ���� is in � variables and of degree less

than or equal to$, where $ is even. However, the number of variables
 � can be large.

III. ANALYSIS OF POLYNOMIAL TIME DELAY SYSTEMS

Testing whether a linear system with multiple delays is stable in-
dependent of the delay or stable for all �� � ��� � �� with � � � �,
� � �� � � � � % given, is known to be NP-Hard [28]. Although obtaining
an exact answer to these questions would probably be computation-
ally intractable, sufficient stability tests that are algorithmically verifi-
able can still be formulated which may answer the stability question
for some problem instances. In this case it is convenient to provide a
nested family of such tests, each of which is at least as powerful as the
previous one, but comes with an increased computational cost. This is
the approach we follow here.

A. Independent-of-Delay (IOD) Stability

A steady-state of a time delay system is IOD stable if it is stable
for all fixed values of the delay. IOD stability conditions are used in
controller synthesis when the size of the delay is unknown [29]. Given
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a linear time delay system of the form �� � ������ � ����� � � �,
“strong IOD stability” is equivalent to ������� ��� � ���� �� 	 for
all � � �	, and � in the closed unit disk [6]. This property is stronger
than the standard notion of IOD stability, for which only ������� �
�� � 
������ �� 	 for all � � �	 and � � 	 is required. The
property is, however, robust to perturbations in �� and ��. In [6] the
class of Lyapunov functionals necessary and sufficient for strong IOD
stability of linear systems has been characterized. The system �� �
�������������� � is strongly IOD stable if and only if it possesses,
for a certain � � , a Lyapunov functional of the form

� �� � �� ��	�� ����� 
 
 
 � ������

�

�

��

�� ����� �� � � �� 
 
 
 � �� � ������ (7)

where �� and �� are quadratic polynomials. For general nonlinear time
delay systems the appropriate structure of a Lyapunov functional is
not known, and therefore here we generalize the above structure for
polynomial time delay systems. This is the improvement from the re-
sults that appeared in [15], which used � � �. We will assume that
� � ���� ���, that solutions exist at least in [0, �� ] and for the time
being that 0 is the only steady-state of the system. We have the fol-
lowing conditions for IOD stability:

Proposition 5: Consider the system described by (1). For a positive
integer �, suppose there exist polynomials ��� �� � ������ � ,
a positive definite, radially unbounded polynomial � � ������ �

and a non-negative polynomial � � ������ � such that the
following hold for all ��� �� �

������, and ���� �
�:

1) ��� ��� � �� ��� � 	,
2) ��� ��� � 	,
3) �

������ ��� ���
� ����� ����� � ������ 
 
 
 � ��� �

������ 
 
 
 � ����� � �� ��� � 	.
Then the 0 steady-state is globally IOD stable. If moreover� is positive
definite, then the 0 steady-state is globally asymptotically IOD stable.

Proof: Consider the functional

� �������	�� 
 
 
 ������� �

�
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������� 
 
 
 �����������

The first two constraints impose that � �� is positive definite and ra-
dially unbounded. The derivative of � along the trajectories of system
(1) is

�� �� �
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Under the third condition the above derivative is non-positive.
Therefore if all three conditions are satisfied, then by the Lya-
punov-Krasovskii Theorem [19] the steady-state of the system given
by (1) is globally stable; since the delay size does not appear explicitly
in the above conditions, then the zero steady-state is globally stable
independent of delay. Moreover if � � 	, then the zero steady-state is
globally asymptotically stable independent of delay.

If (1) were linear, we would recover the conditions given in [6] as
the functional � is the functional given by (7) but we used it to analyze
stability of polynomial systems. Compared to the Lyapunov functional
given by (2) that was investigated in the previous section, only the first
term of that expression is used, and the kernel ����	�� ���� �� is only
a function of �	� and ��� with no cross-terms. These restrictions en-
sure that the delay, � , does not appear explicitly either in the Lyapunov
positivity or the derivative non-positivity conditions.

Making use of Assumption 3, the conditions in the above Proposition
can be tested algorithmically using the SOS decomposition and SOS-
TOOLS [30]. The functions � and � can be constructed as per (6). For
illustration, the following is a simple example.

Example 6: Consider the system

������ � ������ � �
�
���� � �� ������ � ������

The equilibrium of this system is IOD stable. Consider a L-K functional
� ����with �� and �� polynomials of bounded degree. When �� and ��
are constrained to be second order polynomials, no certificate is found.
However, when we search for fourth order polynomials, we obtain
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�
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We now concentrate on local and robust IOD stability analysis.
1) Local Stability: Nonlinear systems may have more than one

equilibria, or the stability properties of a steady-state may not be global.
In order to obtain a local result, we have to restrict our attention to a
region � 	 � around the equilibrium of interest. In the sequel, we
will be using the following form for the region �; other descriptions
can also be accommodated:

� � �	 � � � 
�	
 � ���
���
��

����� ��� � � �

Related to this is the semi-algebraic set �� � � ���� �� ��������
�� � 	, which we will use to describe the set �.

Proposition 7: Let 0 be a steady-state of system (1) and given �, let
���� � ��� ����� ��. For an integer � � 	, let there exist functions
��� �� � ������ � , a positive definite function � � ������ �

, non-negative functions �� ���� � ������ � , � � �� 
 
 
 �  ,
� � 	� 
 
 
 � � and non-negative functions �!�� � ������ � for
� � �� 
 
 
 �  , � � 	� 
 
 
 � � � � such that the following hold for all
��� �� �

������, and ���� �
�:

1) ��� ���� �� ��� �
�

���
�

��� ����� ������
���
� � � 	;

2) ��� ��� � 	;
3) �

������ ��� ���
� ����� ����� � ������ 
 
 
 � ��� �

������ 
 
 
 � �������� ����
���
���

�

��� �!��� ��������
���
� � �

	;
where ���� � ���� ��� 
 
 
 � �����. Then 0 is (locally) IOD stable. If
moreover �� ��� � 	, then 0 is (locally) IOD asymptotically stable.

Proof: Consider the functional

� �� � �� ��	�� ����� 
 
 
 � ������

�

�

��

�� ����� �� � � �� 
 
 
 � �� � �������

When ��������� � 	 and ������	�� ����� 
 
 
 � ������ � 	 for
� � �� 
 
 
 �  and � � 	� 
 
 
 � �, we have from the first two conditions

� ����

�

���

�

���

���� ��	�� ����� 
 
 
 � ������� ��������

�� ��	�� ����� 
 
 
 � ������ � 	

and so the first Lyapunov condition is satisfied, i.e., � � 	 on �. The
same is true for the derivative condition, given constraint (3) above, and
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so the zero steady-state of system (1) is locally IOD stable. If � � �,
then �������� � � on � and so asymptotic stability independent of
delay is concluded.

The conditions in the above Proposition can be tested algorithmi-
cally if we assume a polynomial structure of ��� ����, ��� �	��, �
��� ����
for � � �� 	 	 	 � , � � �� 	 	 	 � � and ����� ������ for � � �� 	 	 	 � ,
� � �� 	 	 	 � � 
 �; construct �� ���� and possibly �� ���� using (6);
and replace non-negativity conditions by the existence of an SOS de-
composition for them. SOSTOOLS can then be used to construct these
polynomial functions algorithmically.

At this point we should note that having obtained a Lyapunov func-
tion that is valid locally and proves asymptotic stability, the domain of
attraction of the steady-state can be estimated as the maximal level set
of � that is contained in ��. This can also be formulated as an SOS
programme, but it is beyond the scope of this technical note.

2) Robust Stability: Another important issue is robust stability
under parametric uncertainty, which can be treated in a unified way as
we will see in the sequel. Consider a time delay system of the form (1)
with an uncertain parameter 


������ � �� ������� ����� � �� 
� (8)

where 
 � � , where � is a semi-algebraic set defined by

� � �
 � �����
� � �� � � �� 	 	 	 � �� (9)

where �� � 
�. Define a new variable ���� �� ������ ���, where ���

is a steady-state of (8), satisfying ������� ���� 
� � �, and may change
as the parameters 
 � � vary. Then we have

����� � ������� 
 ���� ���� � � 
 ���� 
�

� � ������ ���� � �� 
� ���� (10)

� � ������� ���� 
� (11)

The transformed system has a steady-state at the origin. We assume
for simplicity that there is a single steady-state for any given values
of the parameters. Then the stability of this steady-state can be tested
by constructing a Parameter-Dependent Lyapunov functional. See the
remark at the end of this section for systems with multiple equilibria.
The following Proposition constructs a Lyapunov functional which is
only parameterized by 
, even though the Lyapunov functional could
also be parameterized by ���.

Proposition 8: Consider the system given by (10), where 
 � �
as defined by (9). For a positive integer �, suppose that there exist
functions ��� �� � ������ � � � , a positive definite radially
unbounded function � � ������ � , non-negative functions � �
������ � � ��� � ������ � � � � ��� � ������� � �
� ��� � ������ � � � , � � �� 	 	 	 � � such that the following

conditions hold for all ���� �	� �
������ and ����� �

�

1) ��� ���� 
�� �� ���� 

�

��� ���� ���� 
����
� 	 �;
2) ��� �	�� 
� 
 �

��� ����
�	�� 
����
� 	 �

3) �

���
�� ��� ���� 
�	 ������ ������ 
� ���� 
 ������� 	 	 	 � ���� 
� �

������� 	 	 	 � ������ 
� 
 �

��� ����
������ 
����
� 
 �� ���� � �,

when (11) is satisfied.
Then the steady-state 0 of the system given by (10), (11) is robustly
globally IOD stable for all 
 � � . Moreover, if ������ � �, 0 is IOD
robustly globally asymptotically stable for all 
 � � .

The proof is based on the fact that the following functional:

� ��� � �� ������ ������ 	 	 	 � ������� 
�




�

�


�� ������ ��� � � �� 	 	 	 � ��� � ���� 
��� (12)

is a L-K functional, and is omitted for brevity. Polynomial multipliers
can be used to adjoin condition (11) to the third constraint.

Remark 9: Many times there are multiple steady-states in (8) that
move as 
 is allowed to vary in � ; in this case we seek a local result,
and the parameter set � should be extended to include the ‘motion’ of
the steady-state ��� and the region � has to be sufficiently small so that
no other equilibria cross into � as the parameters change within � . See
Section IV.

B. Delay-Dependent (DD) Stability

When the stability properties of the steady-state change as the delay
size, seen as a static parameter, changes, the stability is termed delay-
dependent. In this case, a different type of Lyapunov functional has to
be used to allow for the delay size to appear explicitly in the Lyapunov
conditions. The structure of the L-K functional we will be considering
will take the form (2). This functional reduces to the complete Lya-
punov functional used for linear time delay systems when �� and ��
are quadratic in � [7]. We have the following result:

Proposition 10: Let 0 be a steady-state for the system given by (1)
with a polynomial vector field. Given ������ ��, let � � � be of ap-
propriate dimensions and define

������� ���� �� �� � ������ ��	������� �� (13)

Suppose also that there exists a function �� � � � � � � , a
radially unbounded positive definite function � � � � , as well as
a non-negative function � � � � , and functions �� � �� �
and �� � �� �� � , all polynomials, that satisfy the following
conditions for all ���� ���� ���� ��� �

�:
1) ������� ���� �� 
 ������� ��� ������ 	 �, for � � ��� ��;
2) 
�� ������� ���� ��	 ������ ���� � �!������� ���� ���!�� 


������������ ���� �� � ������������ ������� 

�������� ���� �� ����������� ���� �����
������� ���� ��
������ �
� for � � ��� ��;

3) �

�

������� ���� � �;

4) �

�

������� ���� ���� � �.

5) There exists an " � � so that �!���!������� ���� �� �� 

�!���!������� ���� �� �� ������� ��	"������ ��.

Then the steady-state 0 of the system given by (1) is globally stable for
delay size � . Moreover, if ������ � �, then 0 is globally asymptotically
stable for delay size � .

Proof: Consider (2) where �� is given by (13). The first term is
positive definite owing to conditions 1) and 3) in the above Proposition,
and the fact that ������� � �. The second term is positive semidefinite
by construction, as � � �. Therefore the first Lyapunov condition is
satisfied.

The time derivative of � ��� is given by (14)

�� ����

�

�



������������ ����� ��	 ������� ������

�
!��
!�

������ ����� ��

�

�
�������� �������

�
�

�
�������� ���������
�������������� �� ��

���������� ������ ��������

�

�

�


�

�


!��
!�

������ ����� �� ��



!��
!�

������ ����� �� �� ���� (14)

This derivative condition has a form similar to (3). Conditions 2) and 4)
in the Proposition guarantee that the first term of �� is non-positive for
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� � ���� ��. Condition 5) guarantees that the second term in �� is non-
positive. So (2) is a L-K functional, and the zero steady-state is stable.
Since � is radially unbounded, the result holds globally. Moreover if
� � �, then the steady-state is globally asymptotically stable for delay
� .

Different L-K structures may be considered which may have better
properties and similar conditions can be derived, e.g., �� may not be a
function of � (see the example in Section IV). For the case in which ��
is a function of �, a significant improvement from the result in [15] is
the introduction of the functions 	�.

Example 11: The delayed logistic (Hutchinson’s) equation �
��� �
�
�� � ���� 	 
���� models single species growth with delay. The
stability condition �  �
���� for ���

������ �
����� � �� was
obtained using the solution properties of the DDE [2]. The Proposi-
tion above can be used to construct algorithmically a L-K functional to
verify the (local) asymptotic stability of the zero equilibrium. For ex-
ample, for �
��  ��� and ��� �� of order 2 we get a stability condition
for � � ���
, while if we set 	� � � then we can only ensure stability
for � � ����. This shows the improvement of using the functions 	�.

An important issue unique to the case of DD stability, is to ensure that
the stability properties hold for a delay interval rather than for a spe-
cific value of the delay. For this, one can consider � in the conditions in
Proposition 10 as a static parameter, itself being allowed to vary within
the interval. One can then view this as a robustness problem and con-
struct a (possibly parameterized) L-K functional that guarantees DD
stability for the whole interval. Similar arguments allow the construc-
tion of L-K functionals for local DD stability and robust DD stability
under parameter variations.

C. Computational Considerations

The largest LMI constraint in the SDP corresponding to the above
Propositions is the one related to the derivative condition, which has
lower order 2. Let the vector field be of order � and the candidate ��’s
of order �.

In the derivative condition of Proposition 5 there are ���	 �� vari-
ables and the highest degree is � 	 ��� ��. Therefore the size of the
LMI is ��������������	�

�������	�
� ��� 	 �� � �, to account for mono-

mials of degree 0 and 1. For example, if � � �, � � 
 and � � 
and � �  this gives an LMI of size 156. If � is increased to 6, this
gives 442, while if � is increased to 6 this gives an LMI of size 486.
All these are sizes that current semidefinite programming solvers can
handle well if the number of variables is not large.

For the case of delay-dependent stability (Proposition 10), in the
derivative condition there are 
�	� variables and the largest degree is
�	�� �. Therefore the size of the LMI is ������������	�

�������	�
� 
�.

If � � 
 and � � , then a Lyapunov function of order 4 already gives
an LMI of size 548. Hence one can see that the delay-dependent con-
ditions are more computationally expensive to test.

The simplest Lyapunov functional structures should be considered
first, before increasing the order of the functional or using more com-
plicated structures. Also, the above considerations do not take into ac-
count sparsity, which could reduce the LMI size considerably, or even
symmetry reduction which would result in better conditioned semidef-
inite programmes.

IV. EXAMPLE: A POPULATION DYNAMICS MODEL

A realistic predator-prey model which takes into account maturation
of the predator population takes the form [31]

�
��� �
��� ��� �
���� ������� � (15)

����� � � ����� 	 ��
��� � ����� � � (16)

where ��
���� limits the growth of the prey, and � � � is a constant
capturing the average period between death of prey and birth of a sub-
sequent number of predators. Here 
 and � are the prey and predator
populations, � is the rate of increase of prey, �� and �� are the coeffi-
cients of the effect of predation on 
 and � and � is the death rate of �.
We assume that �� �� ��� �� and � are positive. The equilibria �
�� ���
of the above system are �
�� ��� � ��� ��� �
�� ��� � ����� �� and

�
�� ��� �
�

��
�
��� � ��

����
(17)

the last of which is the equilibrium of interest. We further assume that
���� � ��� � � which ensures that (17) is in the first quadrant. Lin-
earization of the system about this equilibrium and subsequent analysis
gives the following result, which is proven in [15]:

Proposition 12: Consider the linearization of system (15), (16)
about the equilibrium point (17). Then if ���� � 
���  � the zero
equilibrium is stable independent of the delay. If ����� 
��� � � the
zero equilibrium is stable if the delay satisfies �  �� and is unstable
otherwise, where �� is given by

���
�

�
���� �

���� � ������� � ����� � ������� 	 ��

�������� 	 �� 	 ���� � �������� � �����

and� solves��	�����������
�	�����������������
������� � �.

Consider now (15), (16) with parameters � � ��, � � �, �� � �,
and �� � 
. Denote 
� � 
 � 
� and 
� � � � ��.

1) Delay-Independent Stability Analysis: The system (15), (16) has
many equilibria, and so we need to define a region around the steady-
state of interest to obtain a stability condition. We let

�
� � � ��

�� �
� � � ���

� (18)

where the steady-state �
�� ��� is given by (17). We consider � to be
a parameter in the problem. From Proposition 12, the linear version
of this system is delay-independent stable when �������  � 
�
������. For the given values of �, � and ��, the system is delay-in-
dependent stable for ���
  �  ��. For the purpose of calcu-
lating �
�� ��� we use a value of � � ���
. The steady-state �
�� ���
of system (15), (16) does not move as � changes, however the other
two equilibria cross through the region defined by (18). If we choose
�� � �� � ���, then no other steady-state enters this region for
���
  �  ��.

We consider the following Lyapunov structure:

� �
����� �
����� 
����� �� 	

�

��

�� �
���	��� 
���	 ��� �����

We use Proposition 8 to obtain parameter regions for which robust
delay-independent stability of the origin can be proven. When �� is
second order and �� is 4th order, we can construct � �
�� for ��� �
� � ����. When they are 4th and 6th order, respectively, then this re-
gion becomes 
��� � � � ����, which is essentially the full interval.
The total size of the LMI in the former case is 173, while in the latter
it is 662.

2) Delay-Dependent Stability Analysis: We now use the same pa-
rameters as before and fix � � ��, which gives �� � �����. The
system has several equilibria and so we use the same constraints on 
�
and 
� on the state-space given by (18) with �� � �� � ���. We can
construct the Lyapunov functional � �
�� given by (2) with �� zeroth
order with respect to � and 2nd order with respect to the rest of the
variables for � � ���. When �� is quartic with respect to all variables
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but � (which is kept at 0 order) then we can construct this � ���� for
� � �����. Here instead of the term �� in (2) we use

�� �

�

��

�

���

�� ������	�	��

Terms like these were used in [8] and are useful when �� is zeroth order
in �. The corresponding SDP is bigger as the functional is more com-
plicated, but we can see that values of the delay closer to the stability
boundary can be tested. We have also tested the case 
 � ����, for
which �� � ����� and found that the above functional can show sta-
bility for � � ��	
	, which is again very close to the stability boundary.

Functionals of the form (2) can also be used at an increased compu-
tational cost; however the simple functional shown above can be used
to test stability close to the largest delay bound, emphasizing the fact
that an appropriate choice of Lyapunov functional structure can lead to
a successful stability test at a lower computational cost.

APPENDIX

First, we develop a lemma that will be used in the proof of Theorem
1.

Definition 13: We say that a function ���� has a unique global min-
imum, if there exists a �� such that for any  � �, there exists a � � �
such that ���� � ����� � � for all � such that ��� �� � .

Lemma 14: Suppose there exists � � � such that ����� � ���� ��,
where ���� �� is continuous in � and piecewise continuous in �. Sup-
pose � has a unique global minimum for every � � ���� �. Then there
exists a piecewise continuous function �, such that ���� ���� �� �
���� ����� for all � � ���� �.

Proof: Let ���� � �������� ���� ��. We now demonstrate
that � is piecewise continuous. Suppose ���� �� is continuous on a
closed interval � � � . We first show that ���� is bounded on � . Choose
an arbitrary �� �

� and let � � ������ ���� ���. � is finite because
� is continuous in � on the compact interval � . Now choose � � ���.
Then if ������� � � for some �� � � , we have that

� ���� ������ � � ������� � �

while ����� ��� � �, which contradicts the definition of �����. Thus
we have that ���� � � for all � � � .

Suppose we are given some arbitrary  � � and a point � in the
interior of � . To show that � is continuous at �, we must find a � � �
such that �� � �� � � implies ����� � ����� � . Since ���� is the
unique global minimizer of � at �, there exists a � � � such that

� ��� ����� � ���� ��� � ��� ��� � ���� ���� �� � ����� � �

By continuity of � at �, there exists a � � � such that for any � � �
with ����� � �, we have ����� ������� ��� � ����� for all ��� � �.
Now choose � � � such that � � � for all �� � �� � �. Suppose there
exists an �, with ��� �� � � and ������ ����� � . Then

� ��� ����� � � ��� ������ ��� � � ��� ����� � � � ���

� � ��� ����� � � � ��	 � � ��� ����� � ��	�

This contradicts the definition of ���� as being the minimizer of � at
�. Therefore, ����� � ����� �  for all �� � �� � �, as desired and
� is continuous at �. Since ���� �� is piecewise continuous in �, if � is
continuous at a point �, then it is continuous in an open neighborhood
of �. Since we have shown that this implies � is also continuous at point
�, we have that � is continuous at every point for which ���� �� is con-
tinuous. Since � is piecewise continuous, � is piecewise continuous.

Recall also the following Theorem from [32].
Theorem 15: Suppose � � ���� � � � � is continuous on

���� �� � and suppose there exists a bounded function � � ���� ��
, continuous on [�� , 0], such that for all � � ���� �, ���� ����� �

���� ���� ��. Further suppose that for each bounded set � 	 � the
set 
���� ���� � �� � � ���� �� is bounded. Then the following are
equivalent:

i) For all � � ����� �, �

��
���� �����	� � �.

ii) There exists � � ���� �� which is piecewise continuous and
satisfies

���� �� � ���� � � ��� ��� �� ��

�

��

����	� � ��

Proof: (Of Theorem 1) That (5) implies (4) follows from a simple
integration argument. The converse follows by combining the results in
Theorem 15 and Lemma 14.
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