
A Parallel-Computing Solution for Optimization of

Polynomials

Matthew M. Peet
1
and Yulia V. Peet

2

Abstract

In this paper, we consider optimization of polynomials
in a parallel computing environment. Algorithms for op-
timization of polynomials can be used to solve NP-hard
control problems such as stability of nonlinear and de-
layed systems. Unfortunately, the high computational
costs of current algorithms such as sum-of-squares has
limited its use to relatively small problems. In this pa-
per we review several results on polynomial representa-
tion which and show that these results can be used to
develop an algorithm for polynomial optimization with a
naturally parallel structure. In particular, we design and
implement a massively parallel algorithm in MPI which
tests positivity of polynomials. Test results confirm that
the implementation has high efficiency with relatively low
overhead.

1 Introduction

Polynomial computing is the manipulation of polynomi-
als by computational algorithms. One aspect of polyno-
mial computing - optimization of polynomials (typically
positive polynomials) - is a rapidly developing field of re-
search. The interest in optimization of polynomials has
been driven primarily by the ability of these algorithms to
effectively handle difficult problems in control of nonlin-
ear, delayed and partial-differential systems [16, 17, 15].
The most serious problem with optimization using poly-
nomials as opposed to matrices is that there is no effi-
cient way of telling when a polynomial is positive. Com-
putationally, the question of polynomial positivity is in-
tractable (NP-hard) [3]. However, there are several clas-
sical alternatives that we can use. The alternative that
has been most popular lately is to consider squared poly-
nomials. This approach is extremely attractive because
there is a one-to-one correspondence between positive
matrices and squared polynomials of a given degree.

The problem with this scenario is that while Moore’s
law says we should expect exponentially increasing speed,
actual commercial CPU speeds have saturated. In fact, a
consensus has developed that it will not be possible to in-
crease the maximum single-core processor speed by more

1M. M. Peet is an Assistant Professor of Aerospace Engi-
neering at the Illinois Institute of Technology, Chicago, IL.
mpeet@iit.edu.

2Y. V. Peet is a Computational Scientist at Argonne National
Laboratory, Argonne, IL peet@mcs.anl.gov.

than an order of magnitude over the next 20-30 years [8].
Instead, manufacturers have embraced the idea of creat-
ing massively multi-core chips, wherein hundreds or thou-
sands of processing centers are contained on a single chip.
Multi-core processing is similar to what is commonly un-
derstood to be shared-memory parallel processing, only
with reduced latency and faster message-passing. Intel
refers to this paradigm as ”cloud on a chip” comput-
ing [11] and has recently rolled out a prototype with
84 cores. It is likely that the number of per-chip cores
will continue to increase at an exponential rate. The
result is that while the newest chips have dramatically
increased operations per second, they have actually de-
creased in per-core clock speed. In addition to recent
changes in the CPU market, distributed computing and
grid computing [7] are computing paradigms which have
developed over the last 20 years or so. These models
describe networks of computational resources connected
by a relatively high-latency network such as the inter-
net. Hundreds of these computational networks exist,
with prominent examples being CONDOR [12] and the
SETI@home project which had the peak resources of 5.2
million users. More recently, GPU computing has already
made TFLOP processing available at desktop computing
prices [13]. In this scenario graphics card companies such
as NVidea have developed large arrays of relatively cheap
processors. Finally we observe that the gold standard
of computational tools have always been cluster com-
puting and supercomputing. These architectures achieve
high computational power by combining large networks
of processors with relatively low latency; e.g. the IBM
roadrunner supercomputer alone has 122,400 cores. To
summarize, we observe that the world has vast reserves of
computational power. The real problem with computing
is not the availability of resources, but rather the lack of
algorithms capable of efficiently utilizing those resources.

If we are to address the optimization of polynomials
in a massively parallel world, the first thing to consider
is the problems of linear programming and semidefinite
programming. Because of their ubiquitous presence in
algorithms for controller design and analysis, an effi-
cient parallel implementation of a linear programming
or semidefinite programming solver would solve most of
the problems in control. Unfortunately, however, it has
been shown that both linear programming and semidefi-
nite programming are inherently sequential problems [9].
These means that there is an irreducibly sequential com-



ponent to these problems which will dominate compu-
tation as the number of processors increases. Naturally,
there do exist parallel versions of semidefinite program-
ming solvers. See [1, 4, 23] for several excellent implemen-
tations. These solvers have been shown to work excep-
tionally well for reasonably large numbers of processors.
As computation becomes increasingly parallel, however,
we expect that Amdahl’s Law of diminishing returns will
dominate these algorithms.

2 Notation and Background

Let Rn denote the n-dimensional real vectors and Rn×m

the n by m real matrices. We denote by R[x] the ring
of real-valued polynomials in variables x. Sn ⊂ Rn×n

is the subspace of symmetric matrices. N is the natural
numbers. For M ∈ S, M ≥ 0 (M > 0) denotes that M is
a positive semidefinite (definite) matrix. For M ∈ Rn×m,
we denote by λmax(M) and λmin(M), the maximum and
minimum eigenvalues of M , and col(M) is the vector
of columns of M . A monomial, m(x) is a polynomial in
x ∈ R

n with a single term and is represented as xα where
α ∈ Nn and xα = Πn

i=1x
αi

i .

2.1 Polya’s Theorem and Variations

The results covered in this section have appeared in mul-
tiple sources. In particular, we refer the reader to the
survey [19].

2.1.1 Sum-of-Squares Polynomials

The question of determining positivity of a polynomial
has a long history, only parts of which will be recounted
here. By far the most commonly used method for prov-
ing positivity of a polynomial is to construct a represen-
tation of the polynomial using sums of squares. Since it
is known that any squared, real-valued function is posi-
tive, a function which is composed of squares is naturally
positive. While it is known that there exist positive poly-
nomials that are not sum-of-squares, it is also known that
for an arbitrary positive homogeneous polynomial p (x),
there exists a d > 0 such that

(

∑

i

x2
i

)d

p (x)

is a sum-of-squares polynomial. For polynomials which
are positive on a subset of the real numbers there are
alternative representations. For example, it is obvious
that a polynomial p (x) which is positive for all x such
that g (x) ≥ 0 will have a representation as

p (x) = s0 (x) + g (x)s1 (x)

for positive functions s0 and s1. Under certain conditions
on g, we know that s0 and s1 can be themselves sum-
of-squares polynomials. Results of this type are called
Positivstellensatz results and some important examples
include [22, 21, 18].

Although the method of sum-of-squares is well-
developed, it has the disadvantage that the structure of
the problem does not admit an easily distributed compu-
tational solution. For this reason, we examine a different
approach to the question of polynomial positivity.

2.1.2 Polya’s Theorem

Polya’s Theorem is an alternative to existing sum-of-
squares algorithms for polynomial optimization. Un-
changed since 1928, the original version of Polya’s theo-
rem states

Theorem 1. The homogeneous polynomial f(x) > 0 for

all xi ≥ 0, x 6= 0 if and only if for all p sufficiently large,

g(x) :=

(

n
∑

i=1

xi

)p

f(x)

has all positive coefficients.

Modern versions consider the unit simplex ∆ := {x :
x ≥ 0,

∑

i xi = 1} and use matrix-valued polynomi-
als [20]. It is important to note that for matrix-valued
polynomials, positivity requires that all coefficients of g
must be positive definite (in the symmetric matrix sense).
Polya himself noted the algorithmic nature of the result
in [10], wherein it is stated:

“The theorem gives a systematic process for de-
ciding whether a given form F is strictly posi-
tive for positive x. We multiply repeatedly by
∑

x, and, if the form is positive, we shall sooner
or later obtain a form with positive coefficients.”

This comment describes a sequential relaxation algo-
rithm, wherein we have a sequence of sufficient tractable
conditions which are shown to be necessary as the se-
quence goes to infinity. Furthermore, recent research has
shown that we often have an upper bound for the number
of iterations. Such a bound on the exponent p is referred
to as the Polya exponent. This bound has been devel-
oped in a number of sources including, recently, in [6, 5].
A matrix version of this bound is used in [20].

Theorem 2. If p > U(f)
L(f) , then (

∑

xi)
pF (x) has all pos-

itive definite coefficients, where

U(F ) = max
x∈∆

λmax(F (x)) and L(F ) = min
x∈∆

λmin(F (x))

Note that computing these bounds is itself intractable.

In the paper [14], a practical centralized implementa-
tion of Polya’s algorithm for polynomial optimization is
given and a number of numerical tests are conducted to
demonstrate the efficacy of the approach.

2.2 Complexity in Parallel Machines

Complexity theory for parallel computation has been
studied in some depth. Although the notions of complex-
ity are not as uniform as for sequential computing, there



is a well-established notion of P -completeness, which
states that a problem is in NC if there exist integers
c and d such that a problem can be solved in O(log(n)c)
time on O(nd) processors [9]. In rough terms, the per-
core complexity does not depend strongly on the problem
size and the number of processors grows in a polynomial
manner. The class of P -complete problems is the class of
problems which are all equivalent up to anNC reduction.
A problem which is at least as hard as any P -complete
problem is P -hard. It is generally believed that NC 6= P .
That is, it is thought that NC is the set of parallelizable
problems and P -complete is the class of inherently se-
quential problems. The most important conclusion for
the purposes of this paper is that linear programming is
P -complete [9], which implies that semidefinite program-
ming is P -hard; i.e. general-purpose semidefinite pro-
gramming can never be efficiently parallelized. Another
notion of complexity is PAR, defined to be the class of
problems which can be solved in polynomial time using
an exponentially-bounded number of processors. Clearly
the complexity class PAR contains P . Further, it has
been shown that the class PAR contains NP [3]. Addi-
tionally, polynomial positivity is in PAR [3]. Thus we
have a reasonable expectation that massively parallel al-
gorithms are capable of solving polynomial computing in
polynomial time.

3 An Algorithm for Positivity

Based on Polya’s theorem, we introduce the following
idealized algorithm. For brevity, we only include the case
of a homogeneous polynomial with symmetric matrix-
valued coefficients. However, the algorithm also applies
to scalar-valued homogeneous polynomials and can be
easily modified to accept arbitrary polynomials.

A critical aspect of this algorithm is the choice of d.
This is both the degree of the refutation and the num-
ber of steps in the algorithm. Although there are upper
bounds for this degree (e.g. Theorem 2) computing these
bounds is itself intractable. However, given a desired
level of accuracy, ε, we can use the following lemma.

Lemma 3. Let d > U(f)/ε where U(f) is as in Theo-

rem 2. If (
∑

i xi)
df(x) does not have all positive coeffi-

cients, then there exists some x ∈ ∆ such that f(x) ≤ ε.
Conversely, if (

∑

i xi)
df(x) has all positive coefficients,

then f(x) ≥ 0 for all x ∈ ∆.

Complexity Analysis In a perfectly distributed im-
plementation, the number of processors required at each
iteration is given by the number of monomials in Z(x).
For a homogeneous polynomial, this is

Nd = f(n, d) =

{

0 for n = 0
(d+n−1) !
d !(n−1) ! for n > 0,

(1)

where n is the number of variables and d is the degree
of the polynomial. Thus the number of processors grows

in a non-polynomial manner in n and d jointly (although
more slowly in n or d individually.). However, the per-

core complexity is simply O(dm3) where the coefficients
are in Rm×m. If m is relatively large, the positivity test
can be parallelized [2] to yield a per-core complexity of
O(d log2 m) with the gain in the number of processors re-
quired being O(m3.5). The per-core communication com-
plexity is also simply 2×n×d. Thus both per-core com-
munication and computational complexity is low, while
the number of processors required is high. This makes
the algorithm ideally suited for distributed computation.

4 An Implementation using MPI

The simple algorithm proposed in the previous section
is difficult to implement in practice for several reasons.
In the first place, in a decentralized environment, the
communication pathways change at every iteration de-
pending on the distribution of monomials to processors.
Thus, in order to perform the required calculations, there
must exist a method for determining where to send data
without consulting or searching a centralized list. In the
second place, an unbounded number of processors needed
for implementation of Algorithm 1 might not be readily
available for users utilizing finite resources.

In this section we describe a practical implementation
of Polya’s algorithm and detail the solution to several
technical difficulties which were encountered. In partic-
ular, we describe an efficient method for computation
in the presence of a fixed number of processors with no
centralized memory storage. In addition, we present a
method for indexing calculations and determining com-
munication pathways in a distributed computing envi-
ronment.

4.1 Overview

In most parallel protocols, even those running on the
largest massively-parallel computers, one needs to spec-
ify the number of required processors during the initial
job submission, and this number, although it can be very
large, is nonetheless fixed. Protocols which can dynami-
cally delete or add processors to the resources allocated
to a specific job are not readily available. In order to fully
realize the potential of a finite number of processors, we
describe a parallel algorithm designed specifically for a
fixed (relatively small) number of processors.

In this section, we assume that we are given a bound,
dmax on maximum degree of the refutation. This corre-
sponds to dmax−d iterations, where d is the degree of the
given polynomial. The input is given by a homogeneous
polynomial h(x) of degree d in n variables and is speci-
fied in the form h(x) = cTZ(x), where Z(x) is the vector
of all possible monomials of degree d in variables x, in
lexicographical order, and c = (c1, c2, . . . cn) is the array
of the corresponding coefficients. For a given degree, d,
and number of variables, n, we denote by Nd the num-
ber of all possible monomials of degree d in n variables,



Input: A homogeneous matrix-valued polynomial in the form h(x) = cTZ(x), where Z(x) is the vector of all
monomials with appropriate degree, in lexicographical order; The number of desired iterations, d.

foreach Processor i do
Associate the processor i with monomial Zi(x) and initialize C(i) = ci.
Let Ii be the indices of the monomials obtained by multiplying Zi(x) by

∑

j xj .
Let Ji be the indices of the monomials obtained by dividing Zi(x) by any xj .

end

for k = 1 to d do

foreach Processor i do
Processor i sends C(i) to each element of Ii.
Processor i receives C(j) from each element j ∈ Ji and updates C(i) =

∑

j∈Ji
C(j).

end

end

if C(i) ≥ 0 for all i then
h is positive

end

Algorithm 1: A parallel algorithm for determining polynomial positivity.

given by Eq. (1). We denote the number of processors by
Np. In the algorithm, we represent Z(x) using the matrix
ZNd×n. Note that the matrix Z is entirely different from
the vector-valued function Z(x). Here the element Zi,j

is the degree in variable j of the ith monomial of degree
d in lexicographical ordering. Thus the ith row of Z is
α(i) ∈ Nn where xα(i) is the ith monomial of degree d in
lexicographical ordering.

4.2 Processor Assignment and Load Balancing

In order to implement the algorithm on Np processors,
one needs to distribute the coefficient vector c and mono-
mial matrix Z among those processors. At each iteration
step a new polynomial h̃(x) = h(x) ·

∑n

j=1 xj is formed,
with the new set of coefficients c̃ containing more entries
Nd+1 = (d+n)/(d+1)·Nd. Thus, the new coefficients and
the corresponding monomials have to be redistributed
among the processors at every iteration step.

One of the basic technical requirements for a working
parallel implementation is an efficient, decentralized way
to determine at each iteration step the set of processors
P(I) ⊂ {0, . . . , Np − 1}, which, for each I ∈ {1, . . . , Nd},
will receive the coefficient cI . In the present algorithm,
we establish a simple correspondence between the lexico-
graphical index I of the coefficient cI (as given by its asso-
ciated monomial) and the index p (I) ∈ {0, . . . , Np−1} of
the processor containing it, p (I) = floor(I/Nc), where
Nc = ceil(Nd/Np)

In order to determine the set of processors P(I), one
needs to compute the corresponding set J(I) of lexico-
graphical indices of the new monomials which are created
by multiplication of xα(I) with the term

∑n

j=1 xj . At
each iteration step, the set J(I) will contain n members,
corresponding to n new monomials which can be con-
structed. P(I) is then defined as P(I) = {floor(j/Nc) :
j ∈ J(I)}.

4.3 Monomial Ordering

A critical element of the parallel algorithm is the ability
to determine the lexicographic index, I, given the mono-
mial, xα(I). The following closed-form formula allows us
to do this in a distributed manner without excess com-
putation.

I =

n−1
∑

j=1

αj(I)
∑

i=1

f

(

n− j, d+ 1−

j−1
∑

k=1

αk(I)− i

)

+ 1, (2)

where the function f(n, b) is the total number of mono-
mials of degree b in n variables, given by Eq. (1), and
d =

∑n

j=1 αj is the degree of the monomial. The useful-
ness of this formula can be further extended by calculat-
ing the change in the monomial index ∆I when αj(I) is
incremented by one, corresponding to the multiplication
of monomial xα(I) by xj Expanding Eq. (2), we can write

∆I|αj→αj+1 =

j−1
∑

m=1

[f(n−m, d+ 1−

m−1
∑

k=1

αk(I))

−f(n−m, d+ 1−

m
∑

k=1

αk(I))]

+f(n− j, d+ 1−

j−1
∑

k=1

αk(I)). (3)

Eq. (3) is ideally suited for calculating the index of each
new monomial Ĩ = I +∆I(j) in a parallel environment.
∆I(j) can be calculated recursively, thus eliminating the

need for recomputing the sums
∑j−1

k=1 αk(I). This proce-
dure requires only O(n) operations to find all new mono-
mials created from xα(I) at each iteration step.

4.4 Efficient Parallel Implementation

One still needs to find the best way for evaluating
f(n− j, d+1−

∑j−1
k=1 αk) for each monomial index I and



1 10
Np

0.01

0.1

1

T
im

e
, 
s

Matrices 20 x 20
Matrices 15 x 15
Matrices 10 x 10
Matrices 5 x 5
Matrices 1 x 1
Scalar polynomials

(a) n = 32 variables

1 10
Np

0.1

1

T
im

e
, 
s

Matrices 20 x 20
Matrices 15 x 15
Matrices 10 x 10
Matrices 5 x 5
Matrices 1 x 1
Scalar polynomials

(b) n = 64 variables

Figure 1: Computational time versus the number of processors. Maximum number of monomials is 5× 104.

each j ∈ {1, . . . , n} at each iteration. It is clearly not
efficient to use Eq. (1) which requires a factorial num-
ber of operations to evaluate function f(j, k) for each
j and k. Alternatively, one could store all the func-
tions f(j, k) for k ≤ d, and use the recursive relation
f(j, d + 1) = (d + j)/(d + 1) · f(j, d), which only re-
quires one multiplication per variable j. For a paral-
lel algorithm, performance can be further improved by
distributing f(j, k) among the processors. In the cur-
rent algorithm, each processor p contains all the func-
tions f(j, k), k ≤ d for a certain range of variables
j ∈ Nv(p). The number of variables per processor is
given by Nv = ceil(n/Np).

To evaluate the increment ∆I(j), each processor re-
quires values of f for all variables j ∈ {1, . . . , n} which
are not necessarily contained in the same processor. We
have addressed this problem by using the cyclic tech-
nique: once sums in the right-hand side of Eq. (3) are
evaluated for all f(j, k), j ∈ Nv(p) contained by the cur-
rent processor p, the functions f(j, k) are sent to the left
and new functions f(j, k), j ∈ Nv(p+1) are received from
the right etc.

4.5 Matrix-Valued Coefficients

In the preceding paragraphs, we did not specify whether
the polynomial coefficients are scalars or matrices. The
general structure of the algorithm will not change
whether scalar-valued or matrix-valued coefficients are
considered. The practical difference will be that in
a scalar case the entries of a coefficient array c =
(c1, c2, . . . cn) will be scalars, and in the matrix case they
will be vectors. Since we are concerned only with sym-
metric matrices, each entry of the coefficient array ci is a
vector of a size m(m+ 1)/2 containing upper triangular
entries of a symmetric matrix m ×m. Therefore, in the
scalar case, the positivity test consists of simply evalu-
ating the sign of a scalar ci, whereas in the matrix case
it consists of determining whether the given symmetric

matrix ci is positive-definite, i.e. evaluating the sign of
its m eigenvalues. In the present algorithm, the serial
version of the linear algebra package LAPACK was used
for computing eigenvalues of a symmetric m×m matrix
using QR factorization.

4.6 Computational Complexity

In the present algorithm, each processor has Nd/Np num-
ber of coefficients at each iteration, with Nd given by
Eq. (1). For scalar-valued coefficients, the positivity test
requires evaluating the sign of each coefficient and takes
Nd/Np operations per core. Determining the indices of
new monomials requires ∼ nNd/Np operations per core,
since each monomial produces n new monomials. Com-
munication complexity is determined by nNd/Np opera-
tions per core with the length of each transmitted mes-
sage n+ 2. For matrix-valued coefficients of size m×m,
the computational complexity of the positivity test with
QR-factorization is ∼ 4/3m3 per coefficient, making it
∼ m3 Nd/Np total. The process of constructing new co-
efficients still requires ∼ nNd/Np operations. The pos-
sibility of parallelizing the positivity test itself in m can
be explored. The number of communication operations
does not change with the addition of matrix-valued coeffi-
cients, but the size of the transmitted messages increases
to n + 1 + m. Both computation and communication
complexities in scalar and matrix versions of the algo-
rithm are proportional to 1/Np, thus indicating that the
proposed algorithm should achieve perfect scalability in
an ideal parallel environment (where the time per com-
munication operation does not depend on the number of
processors, and the idle time is zero).

4.7 Scalability

Scalability tests were performed on a parallel IBM Linux
cluster Cosmea at ANL. Computational time versus the
number of processors is plotted as a log-log plot in Fig. 1
for 32 and 64 variables, for the maximum number of
monomials equal to 5 × 104. Matrix-valued polynomi-



als with the matrix size up to 20 × 20 are evaluated as
well as scalar-valued polynomials. It is seen that the per-
formance of the matrix algorithm with 1 × 1 matrices is
very similar to the scalar algorithm, as expected. Slight
differences are due to the different implementation of the
positivity test: simple check of the coefficient signs in a
scalar case, and a separate call to an eigenvalues solve
(QR algorithm) in a matrix case. Since the parallel en-
vironment is not ideal, the overhead of parallelization
exceeds than the savings when the number of variables
handled by each processor is too small. In addition, load
balancing becomes more difficult. Thus, the efficiency
of parallel algorithms reduces greatly when the number
of variables per processor becomes too small (as indi-
cated by the increase in running time as CPU grows in
Fig. 1(a) for cases with small matrix sizes). It is seen
that the scalability improves with the matrix size and
with the number of variables, since the number of op-
erations per processor increases. Scalability is observed
at approximately 80% of optimal in the 20× 20 case. It
is anticipated that for very large problem sizes the per-
fect scalability (time ∼ 1/Np) could be approximately
achieved.

5 Conclusion

In this paper, we have proposed a parallel implemen-
tation of a well-known polynomial positivity test. We
have also addressed several technical issues related to a
distributed memory environment. In addition, we have
implemented the algorithm using MPI in a distributed
memory environment. Future work in this area will
lean toward the development of parallel algorithms for
optimization of positive polynomials. In particular, as
noted in previous literature, Polya’s Lemma gives rise to
a semidefinite programming test for stability of robust
and nonlinear systems. An open question is whether this
semidefinite programming approach can be extended to
a highly scalable parallel implementation.

References

[1] S. J. Benson and Y. Ye, “DSDP5: Software for semidefi-
nite programming,” Argonne National Laboratory, Tech.
Rep. ANL/MCS-P1289-0905, 2005.

[2] S. J. Berkowitz, “On computing the determinant in small
parallel time using a small number of processors,” In-

form. Process. Lett., vol. 18, no. 3, pp. 147–150, 1984.

[3] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity

and Real Computation. Springer, 1998.

[4] B. Borchers and J. G. Young, “Implementation of a
primaldual method for SDP on a shared memory parallel
architecture,” Computational Optimization and Applica-

tions, vol. 37, no. 3, pp. 355–369, 2007.

[5] M. Castle, V. Powers, and B. Reznick, “A quantitative
pólya’s theorem with zeros,” Effective Methods in Alge-

braic Geometry, vol. 44, no. 9, pp. 1285–1290, 2009.

[6] J. A. de Loera and F. Santos, “An effective version of
polya’s theorem on positive definite forms,” J. Pure and

Appl. Algebra, vol. 108, no. 3, 1996.

[7] I. Foster, C. Kesselman, and S. Tuecke, “The anatomy of
the grid: Enabling scalable virtual organizations,” The

International Journal of High Performance Computing

Applications, vol. 15, no. 3, 2001.

[8] S. Furber, “The future of computer technology and its
implications for the computer industry,” The Computer

Journal, vol. 51, no. 6, 2008.

[9] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to

Parallel Computation: P-Completeness Theory. Oxford
University Press, 1995.

[10] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequali-
ties. Cambridge University Press, 1952.

[11] J. Held, J. Bautista, and S. Koehl, “From a few cores to
many: a tera-scale computing research overview,” Intel
Research, White Paper, 2006.

[12] M. Litzkow, M. Livny, and M. W. Mutka, “Condor -
a hunter of idle workstations,” in Proceedings of the 8th

International Conference on Distributed Computing Sys-

tems, 1988.

[13] M. Macedonia, “The GPU enters computing’s main-
stream,” Computer, vol. 36, no. 10, 2003.

[14] R. C. L. F. Oliveira and P. D. Peres, “Parameter-
dependent LMIs in robust analysis: Charachterization
of homogeneous polynomially parameter-dependent so-
lutions via lmi relaxations,” IEEE T. Automat. Control,
vol. 52, no. 7, 2007.

[15] A. Papachristodoulou and M. M. Peet, “On the analy-
sis of systems described by classes of partial differential
equations,” in Proceedings IEEE Conference on Decision

and Control, 2006, pp. 747–752.

[16] P. Parrilo and S. Lall, “Semidefinite programming re-
laxations and algebraic optimization in control,” Eur. J.

Control, vol. 9, no. 2-3, pp. 307–321, 2003.

[17] M. M. Peet, A. Papachristodoulou, and S. Lall, “Positive
forms and stability of linear time-delay systems,” SIAM

J. Control Optim., vol. 47, no. 6, 2008.

[18] M. Putinar, “Positive polynomials on compact semi-
algebraic sets,” Indiana Univ. Math. J., vol. 42, no. 3,
1993.

[19] B. Reznick, “Some concrete aspects of Hilbert’s 17th
problem,” Contemp. Math., vol. 253, pp. 251–272, 2000.

[20] C. W. Scherer and C. W. J. Hol, “Matrix sum-of-square
relaxations for robust semi-definite programs,” Math.

Program. Ser. B, vol. 107, pp. 189–211, 2006.

[21] C. Schmüdgen, “The K-moment problem for compact
semi-algebraic sets,” Math. Ann., vol. 289, no. 2, 1991.

[22] G. Stengle, “A nullstellensatz and a positivstellensatz in
semialgebraic geometry,” Math. Ann., vol. 207, 1973.

[23] M. Yamashita, K. Fujisawa, and M. Kojima, “SDPARA
: SemiDefinite Programming Algorithm paRAllel ver-
sion,” Parallel Comput., vol. 29, pp. 1053–1067, 2003.


