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Abstract: This article aims at accelerating the convergence of Lyapunov-Krasovskii stability
analysis of coupled differential-difference equations using sum-of-square formulation. Under the
assumption that the single integral and double integral terms are both positive definite, a
necessary and sufficient condition for the quadratic integral expression is obtained. This result
is applied to the Lyapunov-Krasovskii functional and derivative conditions. The method is less
conservative than the previous method with identical order of polynomials. The effectiveness of
this method is illustrated by numerical examples.
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NOTATION

R denotes the set of reals. Rn and Rp×q denote the sets of
n-vectors and p×q matrices with real elements. Sn denotes
the set of the n× n symmetric real matrices. For X ∈ Sn,
the notation X ≥ 0 (X > 0) means that X is positive
semidefinite (definite). I denotes the identity matrix. For
a given constant r > 0 and positive integer n, PC(r, n)
denotes the set of bounded functions f : [−r, 0) → Rn

that are right continuous everywhere with possibly a finite
number of discontinuous points. For a given function y
defined in an interval I ⊃ [t−r, t), yr,t is a function defined
on [−r, 0) by the relation yr,t(s) = y(t + s). The short-
hand notation φ = (φ1, φ2, . . . , φK) ∈ PC is used to denote
φi ∈ PC(ri,mi), i = 1, 2, . . . ,K.

1. INTRODUCTION

Stability analysis of linear time-delay systems has been an
active area of research. A point of interest is to construct
polynomial-time algorithms for the stability analysis based
on complete quadratic Lyapunov-Krasovskii functionals.
A numerically implementable and asymptotically accurate
Lyapunov-Krasovskii functional method, known as the
discretized Lyapunov functional approach, was presented
in proposed in Gu (2001). In this method, the matrix
functions are restricted to be piecewise linear, and the re-
sulting stability conditions are in the form of linear matrix
inequalities (LMI). An alternative asymptotically accurate
numerical method was the Sum-of-Square (SOS) method
presented in Peet and Papachristodoulou (2006), wherein
the parameters of the quadratic Lyapunov-Krasovskii
functional are restricted to be polynomials by using SOS

decomposition together with semidefinite programming
(SDP).

While most state-space formulation of time-delay systems
have been in the form of differential-difference equations,
substantial attention has been paid to the research on
coupled differential-difference equations. See, e.g. Fridman
(2002), Pepe and Verriest (2003), Rasvan and Niculescu
(2002), and Rasvan (2006). This formulation includes as
special cases the traditional differential-difference equa-
tions of both retarded and neutral type, as well as some
singular systems with time delays.

The stability analysis of coupled differential-difference
equations based on the assumption of input-to-state sta-
bility of the difference equation was presented in Pepe,
Jiang and Fridman (2007). The condition was strength-
ened to uniform asymptotic stability and extended to the
general coupled differential-functional equations in Gu and
Liu (2009), where the possibility of drastic reduction of
computational time for the single delay case was illustrated
for discretized Lyapunov-Krasovskii functional method. A
standard form of coupled differential-difference equations
with one independent delay in each channel was proposed
in Gu (2010) to model practical systems with multiple
delays through a process of “pulling out delays”. It was
shown that systems with multiple delays in some channels
can be easily transformed to such a standard form. In view
of the fact that delay elements in most practical systems
are low-dimensional, the computational cost of Lyapunov-
Krasovskii functional based stability analysis may be dras-
tically reduced. Indeed, several orders of magnitude of
reduction of computational cost was observed for both



discretized Lyapunov-Krasovskii functional method pre-
sented in Li and Gu (2010) and the SOS method presented
in Zhang, Peet and Gu (2010) that uses recent results in
Peet and Papachristodoulou (2009).

In this article, a necessary and sufficient condition for pos-
itivity of quadratic integral expression is obtained under
the assumption that the single integral and double integral
terms are both positive definite. This result is applied to
the Lyapunov-Krasovskii functional and derivative condi-
tions. On the basis of the result, the SOS formulation for
stability analysis of coupled differential-difference equa-
tions with multiple delays are derived, and the conditions
are less conservative than the previous method when the
order of polynomials is low. Some numerical examples are
presented to illustrate the effectiveness of the method.

2. PRELIMINARIES

Consider a linear time-delay system described by the
following coupled differential-difference equations

ẋ(t) =Ax(t) +

K∑
j=1

Bjyj(t− rj), (1)

yi(t) =Cix(t) +

K∑
j=1

Dijyj(t− rj), i = 1, 2, . . .K, (2)

where x(t) ∈ Rn, yi(t) ∈ Rmi , and K is the number of
delay channels. The initial conditions are given by

x(0) = ψ ∈ Rn, and yiri,0 = φi ∈ PC(ri,mi).

The state of the system at time t is (x(t), yt), where
yt := (y1r1,t, y2r2,t, · · · , yKrK ,t) ∈ PC. It is also convenient
to write

m =

K∑
i=1

mi. (3)

A necessary and sufficient condition for the stability of
the system in the form of quadratic Lyapunov-Krasovskii
functional is given in Gu (2010), and is presented below
with appropriate adaptation of notation.

Theorem 1. Suppose there exist Ui ∈ Smi , Ui > 0, i =
1, 2, . . .K such that

DTUD − U < 0, (4)

where

U = diag(U1, U2, . . . , UK), (5)

and

D =


D11 D12 · · · D1K

D21 D22 · · · D2K

...
...

. . .
...

DK1 DK2 · · · DKK

 . (6)

Then the system described by (1) and (2) is exponentially
stable if and only if there exist a P ∈ Sn, and absolutely
continuous matrix functions Qi(s) ∈ Rn×mi , Rij(s, η) =
RT

ji(η, s) ∈ Rmi×mj , and Si(s) ∈ Smi , such that the
following functional

V (ψ, φ) = ψTPψ + 2ψT
K∑
i=1

∫ 0

−ri
Qi(s)φi(s)ds

+

K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
φTi (s)Rij(s, η)φj(η)dsdη

+

K∑
i=1

∫ 0

−ri
φTi (s)Si(s)φi(s)ds, (7)

satisfies

V (ψ, φ)≥ εψTψ, (8)

V̇ (ψ, φ)≤−εψTψ, (9)

for all ψ ∈ Rn, φ = (φ1, φ2, . . . , φK) ∈ PC and some ε > 0.

In Theorem 1, V̇ is the derivative of V along the system
trajectory, and can be expressed as

V̇ (ψ, φ) =

K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
φTi (s)Eij(s, η)φj(η)dηds

+

K∑
i=1

∫ 0

−ri
zTi (s)Fi(s)zi(s)ds, (10)

where

zi(s) =
[
ψT φT1 (−r1) · · · φTK(−rK) φTi (s)

]T
,

and

Eij(s, η) = −∂Rij(s, η)

∂s
− ∂Rij(s, η)

∂η
,

Fi(s) =



1∑K
j=1 rj

F11
1∑K

j=1 rj
F12 F13i(s)

1∑K
j=1 rj

FT
12

1∑K
j=1 rj

F22 F23i(s)

FT
13i(s) FT

23i(s) F33i(s)

 ,

F11 = PA+ATP

+

K∑
j=1

[
Qj(0)Cj + CT

j Q
T
j (0) + CT

j Sj(0)Cj

]
,

F12 = [G1 G2 · · · GK ] ,

Gj =

K∑
k=1

[Qk(0)Dkj + CT
k Sk(0)Dkj ] + PBj −Qj(−rj),

F22 = DT Ŝ0D − Ŝr,

Ŝ0 = diag ( S1(0) S2(0) · · · SK(0) ) ,

Ŝr = diag ( S1(−r1) S2(−r2) · · · SK(−rK) ) ,

F13i(s) = ATQi(s) +

K∑
j=1

CT
j R

T
ij(s, 0)− dQi(s)

ds
,

F23i(s) =
[
HT

i1(s) HT
i2(s) · · · HT

iK(s)
]T
,

Hij(s) = BT
j Qi(s) +

K∑
k=1

DT
kj R

T
ik(s, 0)−RT

ij(s,−rj),

F33i(s) = −dSi(s)

ds
.



3. JOINT POSITIVITY

This section presents a necessary and sufficient condition
for positivity of the Lyapunov-Krasovskii functional under
the assumption that the single integral and double integral
terms are both positive definite. Unlike the previous results
in Peet and Papachristodoulou (2009) and Zhang, Peet
and Gu (2010), wherein positivity is enforced on the two
individual parts of the quadratic functional, we enforce
joint positivity on the entire quadratic functional by in-
troducing some new variables. Some concepts from the
elementary linear operator theory is needed. The readers
are referred to Kato (1966) and Kolmogorov and Fomin
(1975) for background in such theory.

Let X and Y be Banach spaces over R. Let 〈·, ·〉 denotes
the inner product on both X and Y. However, they may
not necessarily be Hilbert spaces as the norms may not
necessarily be defined by the inner products. The set of
all bounded linear operators from X to Y is denoted as
L(X,Y). Let A ∈ L(X,X) and B ∈ L(X,Y). Then,

(1) The adjoint operator B∗ of B is defined as B∗ ∈
L(Y,X) that satisfies 〈B∗y, x〉 = 〈y,Bx〉 for all x ∈ X
and y ∈ Y. When Y = X, then B is said to be self-
adjoint if B∗ = B.

(2) If A ∈ L(X,X), and A is self-adjoint, then A is
positive if 〈x,Ax〉 ≥ 0 for all x ∈ X. It is coercive
if there exists an ε > 0 such that 〈x,Ax〉 ≥ ε 〈x, x〉
for all x ∈ X. If A is coercive, then A−1 exists, is
bounded, self-adjoint, and coercive.

(3) B is bounded if there exists a constant M > 0 such
that ‖Px‖ ≤M ‖x‖ for all x ∈ X.

The main idea of this paper is based on the following
theorem.

Theorem 2. Let X and Y be Banach spaces over R, with in-
ner product 〈·, ·〉 defined on both X and Y. Let P ∈L(Y,Y),
Q ∈L(X,Y), S ∈L(X,X), and R ∈L(X,X). Suppose P, R
and S are self-adjoint, R is positive, and S is coercive.
Then there exist Q1 ∈ L(X,Y) and P1 = P1∗ ∈ L(Y,Y),
such that〈

u, (P − P1)u
〉

+ 2
〈
u,
(
Q−Q1

)
φ
〉

+ 〈φ,Sφ〉 ≥ 0,(11)〈
u′,P1u′

〉
+ 2

〈
u′,Q1φ′

〉
+ 〈φ′,Rφ′〉 ≥ 0,(12)

are satisfied for all u, u′ ∈ Y and φ, φ′ ∈ X if and only if

〈u,Pu〉+ 2 〈u,Qφ〉+ 〈φ, (S +R)φ〉 ≥ 0, (13)

for arbitrary u ∈ Y and φ ∈ X. The result is still valid if
we restrict Q1 ∈ Q ⊂ L(X,Y), as long as Q contains the

element Q (S +R)
−1R.

Proof. This is a consequence of Lemmas 7 and 8. �

Let X = PC, Y = Rn. For ψ, χ ∈ Rn and φ, ω ∈ PC, define

〈ψ, χ〉= ψTχ, |ψ| =
√
〈ψ,ψ〉,

‖φ‖= max
1≤i≤K

sup
s∈[−ri,0)

|φi(s)| ,

〈φ, ω〉=
K∑
i=1

∫ 0

−ri
φTi (s)ωi(s)ds.

Note that we have followed the convention that the norms
in finite-dimensional spaces are denoted by |·|. Notice also

that the norm on PC is not from the inner product. The
following proposition is a consequence of Theorem 2.

Proposition 3. Given matrix P ∈ Sn, and absolutely
continuous matrix functions Qi : [−ri, 0]→ Rn×mi , Si :
[−ri, 0)→ Smi , and Rij : [−ri, 0)×[−rj , 0)→ Rmi×mj ,
Rij(s, η) = RT

ji(η, s). Let Si and Rij satisfy

Si(s) > εI for some ε > 0 and all s ∈ [−ri, 0), (14)

and
K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
φTi (s)Rij(s, η)φj(η)dsdη ≥ 0, (15)

for all φ ∈ PC. Then, there exists an ε > 0 such that
the functional V (ψ, φ) defined in (7) satisfies (8) for all
ψ ∈ Rn, φ ∈ PC if and only if there exist an ε > 0,
a matrix P 1 ∈ Sn, and absolutely continuous matrix
functions Q1

i : [−ri, 0]→ Rn×mi , i = 1, 2, . . . ,K, such that

ψT (P − P 1)ψ + 2ψT
K∑
i=1

∫ 0

−ri

[
Qi(s)−Q1

i (s)
]
φi(s)ds

+

K∑
i=1

∫ 0

−ri
φTi (s)Si(s)φi(s)ds ≥ εψTψ, (16)

and

ψTP 1ψ + 2ψT
K∑
i=1

∫ 0

−ri
Q1

i (s)φi(s)ds

+

K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
φTi (s)Rij(s, η)φj(η)dsdη ≥ 0, (17)

are satisfied for all ψ ∈ Rn and φ ∈ PC.

Proof. Define the bounded linear operators

Pψ = (P − εI)ψ, (18)

Qφ=

K∑
j=1

∫ 0

−rj
Qj(s)φj(s)ds, (19)

(Sφ) (s) =


S1(s)φ1(s)
S2(s)φ2(s)

...
SK(s)φK(s)

 , Rφ =


R1φ
R2φ

...
RKφ

 , (20)

(Riφ)(s) =

K∑
j=1

∫ 0

−rj
Rij(s, η)φj(η)dη. (21)

Then, the condition (8) may be expressed as (13). Theorem
2 indicates that this is equivalent to (11) and (12). The
operator P1 ∈ L(Rn,Rn) has the explicit expression

P1ψ = P 1ψ. (22)

By Riesz Representation Theorem (Kolmogorov and
Fomin, 1975), Q1 ∈ L(PC,Rn) may be expressed as

Q1φ =

K∑
j=1

∫ 0

−rj
d[Tj(s)]φj(s), (23)

where Tj is left continuous and of bounded variation in
[−rj , 0). The proof will be complete if we can show that

Q1 = Q (S +R)
−1R (24)



may be expressed in the form of

Q1φ =

K∑
j=1

∫ 0

−rj
Q1

j (s)φj(s)ds, (25)

where Q1
j (s) is absolutely continuous, because then Q may

be defined as the set of linear operators that have the form
of expression (25), and therefore (11) and (12) may be
expressed as (16) and (17).

The equation (24) may be written as

Q1 = QS−1R−Q1S−1R. (26)

Using (20), (21) and (23), after exchanging the order of
integration and summation, we may write

Q1S−1Rφ =

K∑
i=1

∫ 0

−ri
Wi(η)φi(η)dη, (27)

where

Wi(η) =

K∑
j=1

∫ 0

−rj
d[T (s)]S−1j (s)Rji(s, η)

are absolutely continuous. A similar procedure applied to
QS−1R allows us to conclude that Q1 may indeed be
expressed in the form of (25) in view of (26). �

Similarly, we may conclude the following proposition.

Proposition 4. Let the matrix and matrix functions be
defined as in Proposition 3. Let

−F33i(s) > εI, for some ε > 0 and all s ∈ [−ri, 0), (28)

and

−
K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
φTi (s)Eij(s, η)φj(η)dsdη ≥ 0 (29)

be satisfied for all φ ∈ PC. Then, there exists an ε > 0
such that V̇ (ψ, φ) expressed in (10) satisfies (9) for all
ψ ∈ Rn, φ ∈ PC if and only if there exist an ε > 0, matrix
F̄aa ∈ Sn+m, and absolutely continuous matrix functions

F̄abi : [−ri, 0]→ R(n+m)×mi , i = 1, 2, . . . ,K, such that

−
K∑
i=1

∫ 0

−ri
zTi (s)

[
Fi(s)− F̄i(s)

]
zi(s)ds ≥ εψTψ, (30)

−
K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
φTi (s)Eij(s, η)φj(η)dsdη

−
K∑
i=1

∫ 0

−ri
zTi (s)F̄i(s)zi(s)ds ≥ 0, (31)

are satisfied for all ψ ∈ Rn and φ ∈ PC, where

zi(s) =
[
ψT φT1 (−r1) · · · φTK(−rK) φTi (s)

]T
, (32)

F̄i(s) =

 1∑K
j=1 rj

F̄aa F̄abi(s)

F̄T
abi(s) 0

 . (33)

In Zhang, Peet and Gu (2010), the special case of P 1 = 0
and Q1

i (s) = 0 were used to enforce (8). The inclusion
of arbitrary parameters P 1 and Q1

i makes stability con-
ditions less restrictive and therefore reduces conservatism.
Similarly, the condition for (9) here is also less restrictive
than the counterpart in Zhang, Peet and Gu (2010).

4. SOS STABILITY CONDITIONS

For a given integer d > 0, let

Zd(s) :=
[

1 s s2 · · · sd
]T
,

and

Zn,d(s) = In×n ⊗ Zd(s),

where ⊗ denotes the Kronecker product. In the SOS
formulation, a polynomial symmetric matrix of single
variable G(s) with order not exceeding 2d is expressed as
a quadratic form of Zn,d(s),

G(s) = ZT
n,d(s) J Zn,d(s), J = JT . (34)

A bivariate polynomial matrix Π (s, η) = ΠT (η, s) with
the order of each variable not exceeding d is expressed as
a bilinear form of Zn,d(s),

Π (s, η) = ZT
n,d(s)LZn,d(η), L = LT . (35)

For single variable polynomial matrices, it is useful to
define

Σn,d,I =

{
G : R→ Sn

∣∣∣∣ G(s) = ZT
n,d(s) J Zn,d(s)

J = JT , G(s) ≥ 0 for s ∈ I

}
,

(36)
where I is an interval of R. For bivariate polynomial
matrices, it is useful to define

Γn,d =
{
ZT
n,d(s)LZn,d(η) | L ∈ Sn(d+1), L ≥ 0

}
. (37)

Given the polynomial matrices that depend linearly on
some parameters, the software package SOSTOOLS (Pra-
jna, Papachristodoulou and Parrilo, 2002) is available to
carry out searches among the parameters for the satisfac-
tion of conditions in the form of G ∈ Σn,d,I and Π ∈ Γn,d,
as well as some other convex constraints.

By restricting the matrix functions to polynomials, the
stability conditions can be rendered in a SOS format as
stated in the following theorem.

Theorem 5. The system described by (1) and (2) is ex-
ponentially stable if there exist matrices P, P 1 ∈ Rn×n,
F̄aa ∈ Sn+m, polynomial matrices Qi(s), Q

1
i (s) ∈ Rn×mi ,

Si(s) ∈ Smi , Ti(s) ∈ Sn, F̄abi(s)∈ R(n+m)×mi , Wi(s) ∈
Sn+m, i = 1, 2, . . . ,K, and bivariate polynomial matrices
Rij(ξ, η) = RT

ji(η, ξ) ∈ Rmi×mj , i, j = 1, 2, . . . ,K, such
that the following conditions are satisfied,[

P 1 Q1(s)
Q1T (s) R(s, η)

]
∈ Γn+m,d, (38) −1∑K

j=1 rj
F̄aa −F̄ab(s)

−F̄T
ab(s) −E(s, η)

 ∈ Γn+2m,d, (39)

 P − P 1∑k
i=1 ri

Qi(s)−Q1
i (s)

QT
i (s)−Q1T

i (s) Si(s)

+

[
Ti(s) 0

0 0

]
∈Σn+mi,d,[−ri,0), i = 1, 2, . . . ,K, (40)

K∑
i=1

∫ 0

−ri
Ti(s)ds = 0; (41)



−Fi(s) + F̄i(s) +

[
Wi(s) 0

0 0

]
∈Σn+m+mi,d,[−ri,0), i = 1, 2, . . . ,K, (42)

K∑
i=1

∫ 0

−ri
Wi(s)ds = 0, (43)

where F̄i(s) is defined in (33) and

Q1(s) =
[
Q1

1(r1s) · · · Q1
K(rKs)

]
,

R(s, η) =

 R11(r1s, r1η) · · · R1K(r1s, rKη)
...

. . .
...

RK1(rKs, r1η) · · · RKK(rKs, rKη)

 ,
F̄ab(s) =

[
F̄ab1(s) · · · F̄abK(s)

]
,

E(s, η) =

 E11(r1s, r1η) · · · E1K(r1s, rKη)
...

. . .
...

EK1(rKs, r1η) · · · EKK(rKs, rKη)

 .
Proof. From Theorem 1, Propositions 3 and 4, it is suffi-
cient to show that (4), (14), (15), (16), (17), (28), (29), (30)
and (31) are satisfied. Obviously, (14) is implied by (40).
Using a similar proof to that of Proposition 6 in Zhang,
Peet and Gu (2010), it can be shown that (16) is implied
by (40). Similar to the proof of Proposition 7 in Zhang,
Peet and Gu (2010), we may show that (38) implies (17)
by introducing a integral variable transformation and an
application of Theorem 7 of Peet and Papachristodoulou
(2009). The inequality (15) is implied by (17).

The proofs of (28), (30), (31) and (29) are similar to those
of (14), (16), (17) and (15).

It remains to be shown that (4) is satisfied. Notice that
(42) implies

−F33i =
∂Si(s)

ds
> 0, (44)

and (42) and (43) together imply

F22 < 0. (45)

As was shown in the first part of the proof of Theorem 9
in Zhang, Peet and Gu (2010), (44) and (45) imply (4). �

5. NUMERICAL EXAMPLE AND OBSERVATION

The following numerical example is presented to illustrate
the effectiveness of the method.

Example 6. Consider the system

ẋ(t) =

[
−1 −1
0.1 −0.2

]
x(t) +

[
0 1
1 0

]
y (t− r) ,

y(t) =

[
1 0
0 1

]
x(t).

It can be easily calculated (for example, by using a fre-
quency domain method) that the system is exponentially
stable for r ∈ [0, rmax), where rmax = 1.69413. The value
of rmax is estimated numerically using Theorem 5 (referred
to as “joint positivity”) and Theorem 9 of Zhang, Peet and
Gu (2010) (referred to as individual positivity) through a
bisection process. The estimated results corresponding to
each method and different order of monomial d are listed

in the following table. It is clear that the joint positivity
accelerated convergence to the analytical stability limit.

Order of monomial d 0 1 2
Joint positivity 1.6887 1.6934 1.6938

Individual positivity 1.6674 1.6863 1.6869

It is interesting to note that such a quick convergence to
analytical stability limit is much more difficult to achieve
for systems of neutral type (corresponding to a nonzero D
matrix) according to our numerical experiments. Indeed,
according to Gu (2010), the theoretical value of Rij

may be nonsmooth everywhere in [−ri, 0), although it is
absolutely continuous. It was reported in Li and Gu (2010)
that a quick convergence is still possible for discretized
Lyapunov-Krasovskii functional method for some systems
of neutral type when the theoretical value of Rij contains
only a finite number of nonsmooth points.

6. CONCLUSION

In this paper, it was shown that the convergence of sum-of-
square stability analysis of coupled differential-difference
equations can be accelerated through enforcing joint pos-
itivity on the entire Lyapunov-Krasovskii functional. The
method is less conservative than the previous method with
identical order of polynomials.

APPENDIX

This appendix provides two lemmas that are instrumental
to the proof of Theorem 2.

Lemma 7. Let X and Y Banach spaces with inner prod-
ucts, and P ∈ L(Y,Y), Q1,Q2 ∈ L(X,Y), S,R ∈ L(X,X).
Suppose P and R are self-adjoint, and S is self-adjoint and
coercive. Then there exist a P1 = P1∗ ∈ L(Y,Y) such that〈

u1, (P − P1)u1
〉

+ 2
〈
u1,Q2φS

〉
+ 〈φS ,SφS〉 ≥ 0, (46)〈

u2,P1u2
〉

+ 2
〈
u2,Q1φR

〉
+ 〈φR,RφR〉 ≥ 0 (47)

are satisfied for all u1, u2 ∈ Y and φS , φR ∈ X, if and only
if

〈u,Pu〉+ 2
〈
u,Q2φ′S

〉
+ 〈φ′S ,Sφ′S〉

+2
〈
u,Q1φ′R

〉
+ 〈φ′R,Rφ′R〉 ≥ 0 (48)

is satisfied for all u ∈ Y and φ′S , φ
′
R ∈ X.

Proof. Necessity is obvious because the left hand side of
(48) may be obtained by adding up the left hand side of
(46) and (47) and constraining u1 = u2.

For sufficiency, suppose that (48) is satisfied for all u ∈ Y
and φ′S , φ

′
R ∈ X. Then let

P1 = P −Q2S−1Q2∗. (49)

Because S is coercive, P1 is well-defined, self-adjoint and
bounded. We will show that both (46) and (47) are
satisfied with this P1. The inequality (46) can be easily
verified by observing



Left hand side of (46)

=
〈(
φS + S−1Q2∗u1

)
,S
(
φS + S−1Q2∗u1

)〉
,

which is nonnegative. To show (47), we notice

Left hand side of (47)

= 〈u2,Pu2〉+ 2
〈
u2,Q2

(
−S−1Q2∗u2

)〉
+
〈(
−S−1Q2∗u2

)
,S
(
−S−1Q2∗u2

)〉
+2
〈
u2,Q1φR

〉
+ 〈φR,RφR〉 , (50)

which again is nonnegative according to (48). �
Lemma 8. Let P ∈ L(Y,Y), Q ∈ L(X,Y), S,R ∈ L(X,X).
Suppose S is coercive, and R is positive. Then there exists
a Q1 ∈ L(X,Y) such that

〈u,Pu〉+ 2
〈
u,
(
Q−Q1

)
φS
〉

+ 〈φS ,SφS〉
+2
〈
u,Q1φR

〉
+ 〈φR,RφR〉 ≥ 0 (51)

is satisfied for all u ∈ Y and φS , φR ∈ X, if and only if

〈u′,Pu′〉+ 2 〈u′,Qφ〉+ 〈φ, (S +R)φ〉 ≥ 0. (52)

is satisfied for all u′ ∈ Y and φ ∈ X. The result is still valid
if we restrict Q1 ∈ Q ⊂ L(X,Y), as long as Q contains the

element Q (S +R)
−1R.

Proof. Necessity is obvious because (52) may be obtained
from (51) with the constraint

φS = φR.

To show sufficiency, let (52) be satisfied for all u′ ∈ Y and
φ ∈ X. It is sufficient to show that (51) is satisfied for

Q1 = Q (S +R)
−1R, (53)

which is well defined and bounded because S +R is
coercive. For this purpose, it is helpful to define

T = R(S +R)
−1S. (54)

It can also be easily shown that

S − S(S +R)
−1S = T , (55)

R−R(S +R)
−1R= T . (56)

With Q1 defined in (53), direct calculation gives

Left hand side of (51)

= 〈u,Pu〉+ 2
〈
u,Q (S +R)

−1 SφS
〉

+ 〈φS ,SφS〉

+2
〈
u,Q (S +R)

−1RφR
〉

+ 〈φR,RφR〉

= I1 + I2, (57)

where,

I1 = 〈u,Pu〉+ 2 〈u,Qφ〉+ 〈φ, (S +R)φ〉 , (58)

φ = (S +R)
−1

(SφS +RφR),

I2 = 〈φS , T φS〉 − 2 〈φR, T φS〉+ 〈φR, T φR〉 . (59)

In arriving at (57), the equations (54), (55) and (56) have
been used. I1 is nonnegative in view of (52). Also, from
the definition, T can be shown as a positive operator as
follows,

T = S(S +R)
−1
[
(S +R)S−1R

]
(S +R)

−1S

= S(S +R)
−1

(R+RS−1R)(S +R)
−1S.

Therefore,

I2 = 〈(φS − φR), T (φS − φR)〉 ≥ 0.

Thus (51) is satisfied. �
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