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Abstract— The purpose of this paper is to present a model system, such as determination of self/nonself and switchin
of immune control based on recently discovered regulatory \We also focus on the decentralized control problem of how

properties of the immune system. The immune system is a cq|i5 with limited knowledge and authority can collectivel
control system which self optimizes over time to eliminate decide and act in the face of a threat

disease while avoiding harm to the host. The controller acts

without centralized authority. Recent research has reveald new We concentrate on two key decentralized control problems.

T-cell populations involved in regulating the immune respaoise. « How can the control system determine self from non-

We show how interactions of these populations at the celluta self without central memory?

level can give rise to population dynamics which mimic a il f cell ) di ith

PID controller with on/off switching. We study these nonlinear « How can millions of cells coordinate a response wit

dynamics and show stability using Lyapunov analysis. We ats no central authority?

include the results of simulation. We use models of biological interaction to show that
l. INTRODUCTION simple responses of individual cells, when scaled to a

Th fthi is to i derstandi opulation-level interaction, result in a behavior simita
€ pUrpose ot Ihis paper s 1o Improve our understand biological circuit with PID control and on/off switching.

of the immune system by understanding how it acts 3Fhe paper is organized as follows. In Section Il, we present

a decentralized control system. The immune system is Bisics of the immune system. In Section IIl, we present a

cohl!eﬁtmn tOfI |rltheral1)ct|(lj‘19, biological tan_dfcetl_lularv\;:)rocesgd simplistic model of proportional response. In Section I\ w
which contro’s the body's response 1o Infection. We Comside osent a more complex model with differential response.

Fhe adaptive immune response Which’ in contrast to theenn h section V, we present an even more complicated model
IMMUNE response, can vary depend_mg on the threat. One Which includes switching. Finally, in Section VI, we give
plication of this research is harnessing the immune regpong - J4el which includes integral response. Next, we use

for the trheatr?er;t oftcancter.f In recenrt] years, |mmunothe;a mputational tools to define the region of convergence of
approacnes 1o treatment of cancer have been propose model and use simulation to illustrate the dynamics.

works has been poor. This paper leverages recent experimen-
18I research to shed light on this important question.

Il. BACKGROUND

To understand why cancer immunotherapy fails, we need
better understand the immune system.

Modeling the immune response to cancer and other types
of disease is typically based on experimental observatioA. Immune Functions
Observation can be at either the cellular or population In this section, we review some of the elements of the im-
level. At the cellular level, we observe the mechanics ofune response. The immune system is complex. We include
reproduction and interaction, and scale these mechanicsaoly those elements used in defining our model. Additionally
deduce population-level dynamics. At the population levethere is uncertainty and overlap in many immune functions.
we observe the evolution of populations of cells and induckor the purpose of of clarity, we make simplifications in
empirical laws governing the growth of these populationg:ategorizing these immune functions.
In this paper, we observe that the immune system eliminatese An Antigen is any molecule with the potential for
infectious disease while avoiding harmful interactionshwi recognition by the immune system.
the host - an effect. We deduce that the immune systeme Antigen-Presenting Cells (APCs) such as dendritic
must have an internal control system with mechanisms cells and macrophages process antigens throughout the
for detection, discrimination and elimination. We look for ~ body and present them to T-cells for potential targeting.
cellular interactions which produce this effect when state T-Cells: We model T-cells as controlling the decision-making
population-level dynamics. This idea is similar to the agptc  @spect of immune system. They determine whether a target
of self-organized criticality [3]. is a threat or not and regulate the response. While it is

There are several existing models of the immune respongown that B-cells and dendritic cells also have a role in
to infection, e.g. [4], [5]. Control of cancer has been teeiat this process, we do not model these populations separately.
in numerous works, e.g. [6] and recently [7], [8], [9]. The « A NaiveT-Cellis a T-cell which has not been activated.
contribution of this paper is a focus on using new experi- « A Cytotoxic T-Cell (T, CD8+) is a cell which, once it
mental research to describe control aspects of the immune has been activated, is capable of targeting cells which



express a specific antigeif cells are not involved in helper cell population we use. The rate of response will vary

decision-making per se, but rather in actuation. depending on the subspecies of helper cell.
« Helper T-Cells amplify immune response. Some exam-  b) Actuation: In this section, we describe how the
ples includeTy;, T, and CD4+Foxp3- T cells. activation of CD8+ T-Cells by helper cells on an individual

« Regulatory T-Cells suppress immune response. Untilcellular level gives rise to a population of cytotoxic Tisel
recently their existence was controversial. Several diproportional to the concentration of helper cells.
tinct types ofTreg Cells have been identified. e.Gyeg, We use the antigen-specific cytotoxic T-cell concentration
CD4+Foxp3+Treg, Tr1. Te, as the measure of actuator response. As was the case

Our models of control do not include the effectddemory ~ for helper cells, there is a stabilized pool Ofana'l'VG CD8+
T-Cells, which provide future immunity after an infection 1-Cells. The equilibrium concentration Nc = 5, where
has been cleared, and act on longer time-scales. dc is the death rate of naive T-cells asdc is the rate
Signalling: Cells of the immune system communicate in twcdt which they are replenished. Naive T-cells are activated

ways; Either through direct interaction or through theaste PY contact with certain helper cells, or through signalling
of and binding with signalling molecules. compounds. Helper cells recrdit cells at rate proportional

« Cytokines are signalling molecules. Some of theseto concentratiork (t)Ne. The T cell dynamics are

cause cell activation and division. elg. — 2 Te(t) = recE(t)Ne — dy, Te(t).

b II. HA‘ BAsic B'%‘-Og'CA'—,bC'RCE'T he i wheredr, is the death and deactivation rate of activaled
We begin this section by describing how the immung.gq Tpe population dynamics are stable and linear for any

system detegts .the concentratlon of qntlgens. ) dr,. The T, population will track the helper population with
a) Sensing: As mentioned previously, antigens aresteady-state valug, — rEccli\chE-

present throughou? the body. Antigen-Presenting CeI_I_s c) Proportional Responseln experimental immunol-
(APCs) process antigens and present them regularly tmna'efgy, detailed time-series data is not available. Althoughs

T'CE"SI;’V'(T a frequEncyﬁrolportlor}al to their _cong_entvas o planning for higher resolution data is in the works, at pnése
in the body [10]. Thus the laws of mass-action dictate thah s pest human data will give three or four measurements
the rate of creation of antigen-specific activated T-Cdlls iof E and a over the course of several months. Due to
rea@(t)N(t), wherea(t) is the antigen concentratiof(t) the granularity of measurement, model validation requires

IS t?fg_na’fveT—CelI con;:ent;\atlon alnd_Ea '? ﬁ rggctlllgn simplified framework. Therefore, we summarize the Sensor-
coe icient. We assume that the popu a_t|0n ot all NAIVETISCe actyation model presented in this section as a proportional
is always far greater than any population of ant'gen'Sch'ffeedback with gain

T-cells and is replenished quickly. A basic population mMode Ne Neg
for naive T-cells can be found in, e.g. [11]. K= rECrEad_TCE
N(t) = sy —duN(t) As a system, the APC-CD4+-CD8+ interactions predict a

where dy is the death rate andy is the rate at which proportional response to antigen concentration. Thisipred
the cells are replenished. Note that nominal estimates f§Pn can be readily tested experimentally. Experiences tell
all parameters are listed in Table VIII.1. Naturally, theYS: however, that such a simple response is not possible.

dynamics are stable for any positive valuessqfand dy. Taking our model at face value, the logical implication wbul
The equilibrium value isNeq = dm' In this initial model € that there would be a larger response to internal antigen
N

of sensing, we assume that the dynamics occur on a Shg%{gets than to_e_xternal ones, resqlting in deadly autoimamu
time-scale and concentrations are small. If an infection idiséase. Specifically, the proportional response modes doe

intense and extended, then activation of naive T-cells meﬂ?t admit a mechanism for self-tolerance. In the next sectio
cause depletion of the equilibrium population. However, w¥/€ Show how the behavioral difference between self-antigen

discount this effect. This assumption can also be found {And non-self-antigens can be distinguished using diffexen
the models of [12], [13], [14]. feedback. We also show how maturation delay in regulatory

The population dynamics for helper cell concentrationce”S can create a circuit for this differential feedback.
" IV. THREAT DETECTION: DERIVATIVE RESPONSE

E(t), become The problem we address in this section is how to dif-
E(t) = reaa(t)Neq— deE(t), ferentiate a 'friendly’ target from a ’hostile’ target witht
wherede is the death or deactivation rate of heldeCells. centralized coordination. Individual cells, when present
For a fixed reservoir of naive T-cells, the helper cell dyitam with an antigen, can choose to ignore the antigen or to
are stable. Moreover, using the stated parameter values, #tivate. Once activated, the cell can recruit CD8+ cells or
helper cell population will track the antigen concentratio release cytokines to increase immune response. Howeeer, th
with rise time (time to 90%)T, = 2.2/dr = 9days for  cell must make the determination of friend or foe without any
CDA4+ helper cells. The equilibrium valuelgq= rEgﬂ‘a(t). knowledge of the biological difference between a friendly o
Thus the helper cell populatiok is proportionaﬁ to the hostile antigen [15].
concentration of antigena(t), yet amplified by a factor =~ The answer to this dilemma lies in the existence of
of = 324. Simple mechanics of interaction give rise to ahe recently-discovered species of cell called regulairy
proportional response. Note that we do not specify whichells [16]. Regulatory T-cells, once activated, reduce imm



response either through direct interaction with helpesaa As mentioned, the existence of a proportional response
indirectly via cytokine signalling. The negative influenge is not realistic. Thus we expecks = Kge. In this case
regulatory cells balance the positive action of helperscell there is no steady-state respon$gg cells suppress auto-
The only recognizable difference between a threat andimmune disease (response to persistent self-antigen$® whi
friendly antigen is that friendly antigens already exist inpermitting a response to fast-acting infections. For slow-
abundance, while threats start small and quickly build igrowing diseases such as cancer, this model predicts the
qguantity. This behavioral difference can be detected asimmune response will be mild.
deviation from equilibrium. The balance created by equal We conclude that although individual cells do not have
and opposing populations of helper and regulatory celthe capacity to determine self from non-self, at a poputatio
is disrupted when helper cells respond more quickly thalevel, the cells create a circuit which is able to make such a
regulatory cells. This deviation is the trigger for the immeu distinction.
system. This means that the immune system responds not V- AN ON/OFF SWITCH FROM IL-2 SIGNALING

to antigen concentration, but the rate of change of antigen 1N€ collective decision-making power of regulatory T-
concentration. cells was discussed in the previous section. However, it is

The mechanism for creation and action T cells is well-known that differential response alone is not capaible

hotly debated. For our purposes, we suppose that the metrgininating a threat. This is because there is no mechanism
of creation/activation of regulatory cells is similar toath fOr €liminating steady-state error. Steady-state errqies

for helper cells. There is a stabilized reservoir of nalg ~ Persistent (chronic) infection. Furthermore, it has beewva
cells. Antigen-specifidreq cells, denotedR(t), are recruited "M several studies [17], [18], [19], [20], [21], [22], thatte
from this reservoir by direct contact with antigen. The ratStréngth of immune response does not vary substantially wit
of recruitment isrra(t), whererg is a reaction rate which is the initial concentration, as would be predicted from a fyure
proportional to the naiviey population. As was the case for differential model of response. The differential response

helper cells, regulatory cells in this model experiencelsta therefore, is only a trigger to recognize the threat andaign
linear growth. a much larger immune reaction.

R(t) — rra(t) — drE(t) To understand how the immune system creates a large-
scale response, we turn to the phenomenon of cytokine

tal It istentlv show that th lat signalling. Cytokines such as IL_—2 are known to be both
menal resutis consistently SROW that the reguiatory © 8creted and bound by several different cells. In helpéds,cel

is delayed with respect to the helper response. This may ) : . ;
due to slower dynamics or a maturation delay. In either cas |’nd|ng of IL-2 triggers clonal expansion which causes the

we model a delays, in evaluating the steady-state responsge” to divide into two activated helper cells which, in turn
of the regulatory pé)pulatioR(t) _ Q—Ra(t—t). This yields a secrete more of the compound. When present in sufficient

population of regulatory cells which mirrors the populatio numbers, this blnd_|ng and secretl_on can Cr?ate a positive
of helper cells, but with delay. At the population level, dew feedback loop leading to exponential growth in the immune

regulation of helper cells occurs at raig=R(t)E(t), where response. In pathological cases, the positive feedbagk loo

rre is a reaction coefficient. The combined Regulatory,[esuns ina saturat|0n.of various cytokines, such as seen
; in septic shock. In this paper, we use an amalgamated
Helper dynamics become . " )
population of positive cytokines represented fy). These
cytokines are both produced by and bind to the helper cell

population. They are secreted by all activated helper cells

Although the mechanism 0leq creation is unclear, experi-

E(t) = reaa(t)E(t) — rreR(E(t)

= (reaa(t) — Krea(t — 1)) E(t) at raterpE(t). Upon binding, they stimulate growth at rate

whereKge 1= rre 2. This expression can be put in the form'e pP(t)E(t). The dynamics of the helper cell population are
of a first-order difference equation: now E(t) = —deE(t) + rep(t)E(t) + u(t)

E(t) = (rea—Kre)a(E() whereu(t) is an input which represents the effect of antigen

(alt) —alt—1) E(t) (V.1) stimulation, as modeled in Equation 1V.1. The cytokine-
T ' ' helper relationship is illustrated in Figure V.1.
Because derivatives are impossible to detect directlys& fir ~ Production of signalling compound is described by

+ 1KRE

order hold is a standard method used for approximating the p(t) = rpE(t) — dpp(t).
derivative in a PD controller. where rp is the production rate and, is the loss rate.
at) = M Becausep is absorbed by many different actors, we assume

Note that if there were no éelay, the response would gihat the loss due to reabsorption Byis negligible. Because
simply proportional: the signalling molecules are produced significantly faster

E(t) = (rea— Kre) a(t) E(t). than cell activation, we can make the quasi-steady-state

Since proportional response can be achieved by growth %Pproxmanon p(t) = rpE(t)
=q,

the helper cell population alone, we conclude that one of
the reasons for the existence of regulatory cells is to ereat By including the expression fop(t) in the helper-cell
derivative feedback. dynamics, we obtain




proliferation consumption Naturally, unregulated exponential growth is not a reialist

TEP]F/—\ model of response. Once a threat has been eliminated, the
u(t) response must contract. This question is addressed in the
secretion @ following section.
supply r.E VI. INTEGRAL FEEDBACK: CONTRACTION FROM

L REGULATORY GROWTH
dgE|death dyp|decay The problem with the positive feedback model of switch-
ing, as presented in the previous section is that once trig-
gered, we have indefinite increase in immune response even
] if antigen stimulation is absent. While this is reasonabie o
. _ signals ~ short term time scales, eventually the response must atntra
ggdt\)/é:([:.k IcI)?OeFIJease and self-absorption of growth signalstesea positive if the infectious ager_1t has been eliminated. -
To account for this effect, we look at a different class
E(t) _ —dEE(t)+rEE(t) p +u( ) of regulatoryT—chIs callediTreg cells. ActivatediTreg cells
dp are thought to arise from the helper cell population [23]. We
model theséT,eq cells as being activated by or differentiating
from the population of helper cells acting under the inflleenc
of positive growth cytokines. Thus the growth rate of these
cells isvrp(t)E(t) wherevr is a reaction coefficient. The

Effector T cells  Positive growth

For small values olu(t), the system has two equilibrium

2 '
thresmldi population dynamics oifTreq cells are
1 Ri(t) =Vrp(t)E(t) — driRi(t).
dE . unstable W(rt1)erfdiiés(tt)hewtleﬁ:lvltejeactivation rate. Using the expression
dt : P =g, =1 ;
4 : R(t) :de—pE(t)z—dRiRi(t).
| p
' The constantsg, dri are both small as the creation rate of
*20 001 002 0'03 these cells is less than the helper rate, yet they are longer-
' E ' lived. iTieg deactivate helper cells at ratgeRi (t)E(t) using
Fig. V.2. Positive feedback with antigen stimulation cesastable and reaction coefficientrre. The combined helper-regulatory
unstable equilibria dynamics are
points. The lesser equilibrium point is always stable, @hil E(t) = —rerR (OE([) — deE(t) + reE(t 2"p ult
the greater equilibrium is always unstable. Thus, absent pe ®) ReRI(UE() —deB(1) +reE(t) dp +u(t)
turbation, the helper cell population will remain contadree : p 2
; t) =vr--E(t) —driRi(1).
some low level. Now suppos€t) is nonzero. The equilibria Rt Rd E() RIRI(0)
are Eeq— dp <dEi /dé—4rEer(t)> u(t) represents the antigen stimulation. The effect of the
Iole dp iTreg cells is to ensure contraction of the helper response. In

Because the term under the square root decreasesuwiththe following section, we obtain a proof of this contractive
for some value ofu the equilibria no longer exist, leading property. However, a rough explanation for the stabilizing
to exponential growth. Note that evenift) later returns to  effect of theiTyeq cells is that if one ignores the relatively
zero, helper cell growth will continue as the populationl wil low death rate of these cells, then
have surpassed the greater equilibrium point. This sdnati / Rl pE 12ds
is illustrated in Figure V.2. The dynamics mimic the effects
of a switch between stable and unstable growth whgte This is a form of mtegral feedback. Integral feedback is
acts as a switch with a trigger value of necessary to balance the unbounded growth of the helper

Urrigger = déi cells. Once the helpe_r_ce_ll population has become suffiyient
4rpre small, the lesser equilibrium becomes stable and the immune
When u(t) exceeds this value, unregulated exponentiaesponse ceases.
growth ensues. VII. STABILITY ANALYSIS USING SUM-OF-SQUARES

To summarize, by the secretion of positive cytokines, In this section, we show that th&eg population modeled
individual helper cells contribute to the overall decisioh Previously is capable of controlling the helper cell pojioia
the immune system as to the level of response. Similarlii] the absence of antigen stimulation. Recall that we have
through the binding of signalling molecules, helper celldhe following dynamics folE(t) andRi(t).
take into acgqunt the collective knowledge of pther cells. E(t) - —rRiER;(t)E(t)—dEE(t)—i—rEE(t)Z;—p
Once a sufficient number of helper cells decide that an p
antigen constitutes a threat, the dynamics of the helpér celr, (t) = vg-> o E(t)2—driRi (t) = f2(E,R)
population responds with unregulated exponential growth. dp

= f1(E,R)
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Fig. VII.3. Lyapunov Level Sets and Vector Field: Helper Regulatory
Cell Concentration

Sum-of-Squares optimization is a computational method
for solving optimization problems with polynomial vari- Fig- Vil.4. Stability forvg vs. rrie. Generated from SeDuMi on a grid. 1
ables [24]. If we consider a Lyapunov function to be Amplies stability. 1 means indeterminate

polynomial variable, then this method can be used to analy
stability of nonlinear systems [25]. In this paper, we us
Sum-of-Squares optimization to search for a polynomi

Lyapunov functionV(E,R;) such that the following holds ®
forall E,R > 0.

V(0.0=0, V(ER)>eE*+R) V(ER)<O.
Let Z(x) be the vectors of monomials of degree 6 or less. V
parameteriz&/ using a vector of coefficientsasV (E,R;) =

cTZ(E,R;). We search for a vectoc and sum-of-squares
polynomialss;, sy, s3 ands, such that

c"Z(E,R) —¢(E24+R) =3

f1(E,R)
T T | (B,
c' UZ(E,R +E P
(E,R) |:f2(E,Rj) $+Rs3 S
This ensures that the stability conditions are met. The _ _ ‘ - . -
constraints were implemented in SOSTOOLS [26] and Sg_lg-d\_/_lll.& Simulation results using antigen stimulatiamd zero initial
m t
DuMi [27]. For the nominal parameters listed in Table VI|I.1 condrions

the SOS program was feasible. The level sets of the Lyghis differential goes away as the pulse amplitude is consta
punov function can be seen in Figure VII.3, along with theyver the period of delayr(= 1). We continue to see increase
vector field. in helper response, but this is balanced by a growing integra
Because parameters involviiifregs are speculative, we response. At time day 3, the antigen stimulation disappears
estimated the parameter region of stability by testing mpara resulting in an imbalance Ofreg Cells due to the negative
eter values on a grid. For, and rgg, the stable regions differential. This causes a rapid decline in response until
of the parameter space are shown in Figure VIl.4. Theay 4 when the Helper-Regulator balance is restored. At this

results are obtained from SeDuMi. The z-axis is feasibilty point integral feedb%?k Eliminates the remaining helpésce
feasibility of 1 implies the existence of a Lyapunov funatio : - LONCLUSION . .

1y | plies e yap : In this paper, we have shown how the local interaction
A feasibility of —1 implies that a Lyapunov function of '

. N 0{ individual cells with limited information and authority
degree 6 or less does not exist. The plot indicates tha ield intelli | th Th
a combination ofvg and rgjg contribute to stability. An can yield intelligent response to an external threat. The
approximate condition for stélbilit which which is coﬁeist population dynamics are delayed and nonlinear, with sévera

bp A DIty interacting populations. However, we have shown that the
with the data in Figure VII.4 is ; : :
effect of these population dynamics can be interpreted as a
biological circuit. This circuit contains a differentiatssor,
VIIl. SIMULATION on/off switching and integral feedback. We have shown
We summarize the paper with a Simulink demonstratiorthat the dynamics of response are stable for regions of the

We use the parameter values indicated in Table VIlil.parameter space using sum-of-squares optimization.
without any steady-state assumptions. A square antiger inp The work presented in this paper is still preliminary in

is used with helper response shown in FigureVIIl.5. Note ththat there are many aspects of the immune response that
three different response regimes. From day 0 to 1, there ase not well modeled or understood. Additionally, there is
a sharp differential in antigen concentration, which tdgg no experimental validation using detailed time-seriesadat
the switch and causes exponential increase. Attiméday, We hope to conduct such experiments in the future. An

time(days

VR IRig > 12



[ Parameter| Description | Estimate |
SN Supply rate of naive CD4+ T cells 0.0024k{uL day T
de Helper CD4+ cell death rate 0.23/day
dn Naive CD4+ cell death rate 0.03/day
a(t), ap Antigen stimulation rate, steady state value ap = 4%l/day
dr, Effector CD8+ cell death rate 0.35/day
SNec Supply rate of naive CD8+ T cells 0.0016k{L day !
dne Naive CD8+ cell death rate .03/day
re Helper CD4+ growth rate upon interacting with positive gtiowsignal | 0.33(k/L) 1 day !
p Positive signal secretion rate by helper CD4+ cells 100/day

p Positive growth signal decay rate 5.5/day
dr Treg death rate 0.23/day
IR Relative stimulation rate ofieq cells to antigen 1
rRE Suppression rate of helper cells Byg cells 20 interactions
rRE Suppression rate of helper cells Byeq cells 40 interactions
fEa Clonal expansion rate of stimulated helper cells .35/day
rec Clonal expansion rate of recruited cytotoxicT cells 1/day
VR Differentiation rate ofiTreq cells 0.3(kfiL) "1 day?
dri Death rate 0fiTreqg cells .03/day
T Treg maturation delay 1 day

TABLE VIII.1

PARAMETERS FOR THE COMBINED MODEL[11]. CONCENTRATIONS ARE IN UNITS OF KL, AND TIME IS MEASURED IN DAYS.

important unresolved question is the mechanics of T cefi3]
memory. We would like to create a model of how the immune

system responds to a previously identified threat withOLﬂ4]
triggering a full immune response. For answer, we will look

at the dynamics of other known helper and regulatory ;[15]
cells. Another area of research is to deduce values of thée
system parameters based by considering the optimal contftd]
of simple models of infection. Since the immune system (ifﬂ]
highly optimized by an evolutionary process, these values

of the parameters should correspond with the ones found in
nature. (18]
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