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Abstract— The purpose of this paper is to present a model
of immune control based on recently discovered regulatory
properties of the immune system. The immune system is a
control system which self optimizes over time to eliminate
disease while avoiding harm to the host. The controller acts
without centralized authority. Recent research has revealed new
T-cell populations involved in regulating the immune response.
We show how interactions of these populations at the cellular
level can give rise to population dynamics which mimic a
PID controller with on/off switching. We study these nonlinear
dynamics and show stability using Lyapunov analysis. We also
include the results of simulation.

I. I NTRODUCTION

The purpose of this paper is to improve our understanding
of the immune system by understanding how it acts as
a decentralized control system. The immune system is a
collection of interacting biological and cellular processes
which controls the body’s response to infection. We consider
the adaptive immune response which, in contrast to the innate
immune response, can vary depending on the threat. One ap-
plication of this research is harnessing the immune response
for the treatment of cancer. In recent years, immunotherapy
approaches to treatment of cancer have been proposed [1].
These approaches are based on an ability of the immune
system to identify and destroy cancerous cells [2]. However,
cancer immunotherapy efforts thus far have had little success.
To understand why cancer immunotherapy fails, we need to
better understand the immune system.

Modeling the immune response to cancer and other types
of disease is typically based on experimental observation.
Observation can be at either the cellular or population
level. At the cellular level, we observe the mechanics of
reproduction and interaction, and scale these mechanics to
deduce population-level dynamics. At the population level,
we observe the evolution of populations of cells and induce
empirical laws governing the growth of these populations.
In this paper, we observe that the immune system eliminates
infectious disease while avoiding harmful interactions with
the host - an effect. We deduce that the immune system
must have an internal control system with mechanisms
for detection, discrimination and elimination. We look for
cellular interactions which produce this effect when scaled to
population-level dynamics. This idea is similar to the concept
of self-organized criticality [3].

There are several existing models of the immune response
to infection, e.g. [4], [5]. Control of cancer has been treated
in numerous works, e.g. [6] and recently [7], [8], [9]. The
contribution of this paper is a focus on using new experi-
mental research to describe control aspects of the immune

system, such as determination of self/nonself and switching.
We also focus on the decentralized control problem of how
cells with limited knowledge and authority can collectively
decide and act in the face of a threat.

We concentrate on two key decentralized control problems.

• How can the control system determine self from non-
self without central memory?

• How can millions of cells coordinate a response with
no central authority?

We use models of biological interaction to show that
simple responses of individual cells, when scaled to a
population-level interaction, result in a behavior similar to
a biological circuit with PID control and on/off switching.
The paper is organized as follows. In Section II, we present
basics of the immune system. In Section III, we present a
simplistic model of proportional response. In Section IV, we
present a more complex model with differential response.
In Section V, we present an even more complicated model
which includes switching. Finally, in Section VI, we give
a model which includes integral response. Next, we use
computational tools to define the region of convergence of
the model and use simulation to illustrate the dynamics.

The immune system is a robust, well designed control
system. In the past, understanding of how this control system
works has been poor. This paper leverages recent experimen-
tal research to shed light on this important question.

II. BACKGROUND

A. Immune Functions
In this section, we review some of the elements of the im-

mune response. The immune system is complex. We include
only those elements used in defining our model. Additionally,
there is uncertainty and overlap in many immune functions.
For the purpose of of clarity, we make simplifications in
categorizing these immune functions.

• An Antigen is any molecule with the potential for
recognition by the immune system.

• Antigen-Presenting Cells (APCs) such as dendritic
cells and macrophages process antigens throughout the
body and present them to T-cells for potential targeting.

T-Cells: We model T-cells as controlling the decision-making
aspect of immune system. They determine whether a target
is a threat or not and regulate the response. While it is
known that B-cells and dendritic cells also have a role in
this process, we do not model these populations separately.

• A Naı̈veT-Cell is a T-cell which has not been activated.
• A Cytotoxic T-Cell (Tc, CD8+) is a cell which, once it

has been activated, is capable of targeting cells which



express a specific antigen.Tc cells are not involved in
decision-making per se, but rather in actuation.

• Helper T-Cells amplify immune response. Some exam-
ples includeTh1, Th2 and CD4+Foxp3- T cells.

• Regulatory T-Cells suppress immune response. Until
recently their existence was controversial. Several dis-
tinct types ofTreg cells have been identified. e.g.iTreg,
CD4+Foxp3+Treg, Tr1.

Our models of control do not include the effect ofMemory
T-Cells, which provide future immunity after an infection
has been cleared, and act on longer time-scales.
Signalling: Cells of the immune system communicate in two
ways; Either through direct interaction or through the release
of and binding with signalling molecules.

• Cytokines are signalling molecules. Some of these
cause cell activation and division. e.g.IL −2

III. A B ASIC BIOLOGICAL CIRCUIT
We begin this section by describing how the immune

system detects the concentration of antigens.
a) Sensing: As mentioned previously, antigens are

present throughout the body. Antigen-Presenting Cells
(APCs) process antigens and present them regularly to naı̈ve
T-cells with a frequency proportional to their concentrations
in the body [10]. Thus the laws of mass-action dictate that
the rate of creation of antigen-specific activated T-Cells is
rEaa(t)N(t), wherea(t) is the antigen concentration,N(t)
is the naı̈veT-Cell concentration andrEa is a reaction
coefficient. We assume that the population of all naı̈ve T-cells
is always far greater than any population of antigen-specific
T-cells and is replenished quickly. A basic population model
for naı̈ve T-cells can be found in, e.g. [11].

Ṅ(t) = sN −dNN(t)
where dN is the death rate andsN is the rate at which
the cells are replenished. Note that nominal estimates for
all parameters are listed in Table VIII.1. Naturally, the
dynamics are stable for any positive values ofsN and dN.
The equilibrium value isNeq =

sN
dN

. In this initial model
of sensing, we assume that the dynamics occur on a short
time-scale and concentrations are small. If an infection is
intense and extended, then activation of naı̈ve T-cells may
cause depletion of the equilibrium population. However, we
discount this effect. This assumption can also be found in
the models of [12], [13], [14].

The population dynamics for helper cell concentration,
E(t), become

Ė(t) = rEaa(t)Neq−dEE(t),
wheredE is the death or deactivation rate of helperT-Cells.
For a fixed reservoir of naı̈ve T-cells, the helper cell dynamics
are stable. Moreover, using the stated parameter values, the
helper cell population will track the antigen concentration
with rise time (time to 90%)Tr = 2.2/dR

∼= 9days for
CD4+ helper cells. The equilibrium value isEeq=

rEaNeq
dE

a(t).
Thus the helper cell populationE is proportional to the
concentration of antigen,a(t), yet amplified by a factor
of ∼= 324. Simple mechanics of interaction give rise to a
proportional response. Note that we do not specify which

helper cell population we use. The rate of response will vary
depending on the subspecies of helper cell.

b) Actuation: In this section, we describe how the
activation of CD8+ T-Cells by helper cells on an individual
cellular level gives rise to a population of cytotoxic T-cells
proportional to the concentration of helper cells.

We use the antigen-specific cytotoxic T-cell concentration,
Tc, as the measure of actuator response. As was the case
for helper cells, there is a stabilized pool of naı̈ve CD8+
T-cells. The equilibrium concentration isNc =

sNc
dNc

, where
dNc is the death rate of naı̈ve T-cells andsNc is the rate
at which they are replenished. Naı̈ve T-cells are activated
by contact with certain helper cells, or through signalling
compounds. Helper cells recruitTc cells at rate proportional
to concentrationE(t)Nc. The Tc cell dynamics are

Ṫc(t) = rEcE(t)Nc−dTcTc(t).

wheredTc is the death and deactivation rate of activatedTc-
Cells. The population dynamics are stable and linear for any
dTc. TheTc population will track the helper population with
steady-state valueTc = rEc

Nc
dTc

E.
c) Proportional Response:In experimental immunol-

ogy, detailed time-series data is not available. Although some
planning for higher resolution data is in the works, at present
the best human data will give three or four measurements
of E and a over the course of several months. Due to
the granularity of measurement, model validation requiresa
simplified framework. Therefore, we summarize the Sensor-
Actuation model presented in this section as a proportional
feedback with gain

K = rEcrEa
Nc

dTc

Neq

dE
As a system, the APC-CD4+-CD8+ interactions predict a

proportional response to antigen concentration. This predic-
tion can be readily tested experimentally. Experience tells
us, however, that such a simple response is not possible.
Taking our model at face value, the logical implication would
be that there would be a larger response to internal antigen
targets than to external ones, resulting in deadly autoimmune
disease. Specifically, the proportional response model does
not admit a mechanism for self-tolerance. In the next section,
we show how the behavioral difference between self-antigens
and non-self-antigens can be distinguished using differential
feedback. We also show how maturation delay in regulatory
cells can create a circuit for this differential feedback.

IV. T HREAT DETECTION: DERIVATIVE RESPONSE
The problem we address in this section is how to dif-

ferentiate a ’friendly’ target from a ’hostile’ target without
centralized coordination. Individual cells, when presented
with an antigen, can choose to ignore the antigen or to
activate. Once activated, the cell can recruit CD8+ cells or
release cytokines to increase immune response. However, the
cell must make the determination of friend or foe without any
knowledge of the biological difference between a friendly or
hostile antigen [15].

The answer to this dilemma lies in the existence of
the recently-discovered species of cell called regulatoryT-
cells [16]. Regulatory T-cells, once activated, reduce immune



response either through direct interaction with helper cells or
indirectly via cytokine signalling. The negative influenceof
regulatory cells balance the positive action of helper cells.

The only recognizable difference between a threat and a
friendly antigen is that friendly antigens already exist in
abundance, while threats start small and quickly build in
quantity. This behavioral difference can be detected as a
deviation from equilibrium. The balance created by equal
and opposing populations of helper and regulatory cells
is disrupted when helper cells respond more quickly than
regulatory cells. This deviation is the trigger for the immune
system. This means that the immune system responds not
to antigen concentration, but the rate of change of antigen
concentration.

The mechanism for creation and action ofTreg cells is
hotly debated. For our purposes, we suppose that the method
of creation/activation of regulatory cells is similar to that
for helper cells. There is a stabilized reservoir of naı̈veTreg

cells. Antigen-specificTreg cells, denotedR(t), are recruited
from this reservoir by direct contact with antigen. The rate
of recruitment isrRa(t), whererR is a reaction rate which is
proportional to the naı̈veTreg population. As was the case for
helper cells, regulatory cells in this model experience stable
linear growth.

Ṙ(t) = rRa(t)−dRE(t)
Although the mechanism ofTreg creation is unclear, experi-
mental results consistently show that the regulatory response
is delayed with respect to the helper response. This may be
due to slower dynamics or a maturation delay. In either case,
we model a delay,τ, in evaluating the steady-state response
of the regulatory populationR(t) = rR

dR
a(t− τ). This yields a

population of regulatory cells which mirrors the population
of helper cells, but with delay. At the population level, down-
regulation of helper cells occurs at raterRER(t)E(t), where
rRE is a reaction coefficient. The combined Regulatory-
Helper dynamics become

Ė(t) = rEaa(t)E(t)− rRER(t)E(t)

= (rEaa(t)−KREa(t − τ))E(t)

whereKRE := rRE
rR
dR

. This expression can be put in the form
of a first-order difference equation:

Ė(t) = (rEa−KRE)a(t)E(t)

+ τKRE
(a(t)−a(t− τ))

τ
E(t). (IV.1)

Because derivatives are impossible to detect directly, a first-
order hold is a standard method used for approximating the
derivative in a PD controller.

ȧ(t)∼=
a(t)−a(t− τ)

τ
Note that if there were no delay, the response would be

simply proportional:
Ė(t)∼= (rEa−KRE)a(t)E(t).

Since proportional response can be achieved by growth of
the helper cell population alone, we conclude that one of
the reasons for the existence of regulatory cells is to create
derivative feedback.

As mentioned, the existence of a proportional response
is not realistic. Thus we expectrEa

∼= KRE. In this case
there is no steady-state response.Treg cells suppress auto-
immune disease (response to persistent self-antigens) while
permitting a response to fast-acting infections. For slow-
growing diseases such as cancer, this model predicts the
immune response will be mild.

We conclude that although individual cells do not have
the capacity to determine self from non-self, at a population
level, the cells create a circuit which is able to make such a
distinction.

V. A N ON/OFF SWITCH FROM IL-2 SIGNALING

The collective decision-making power of regulatory T-
cells was discussed in the previous section. However, it is
well-known that differential response alone is not capableof
eliminating a threat. This is because there is no mechanism
for eliminating steady-state error. Steady-state error implies
persistent (chronic) infection. Furthermore, it has been shown
in several studies [17], [18], [19], [20], [21], [22], that the
strength of immune response does not vary substantially with
the initial concentration, as would be predicted from a purely
differential model of response. The differential response,
therefore, is only a trigger to recognize the threat and signal
a much larger immune reaction.

To understand how the immune system creates a large-
scale response, we turn to the phenomenon of cytokine
signalling. Cytokines such as IL-2 are known to be both
secreted and bound by several different cells. In helper cells,
binding of IL-2 triggers clonal expansion which causes the
cell to divide into two activated helper cells which, in turn
secrete more of the compound. When present in sufficient
numbers, this binding and secretion can create a positive
feedback loop leading to exponential growth in the immune
response. In pathological cases, the positive feedback loop
results in a saturation of various cytokines, such as seen
in septic shock. In this paper, we use an amalgamated
population of positive cytokines represented byp(t). These
cytokines are both produced by and bind to the helper cell
population. They are secreted by all activated helper cells
at raterpE(t). Upon binding, they stimulate growth at rate
rE p(t)E(t). The dynamics of the helper cell population are
now

Ė(t) =−dEE(t)+ rEp(t)E(t)+u(t),
whereu(t) is an input which represents the effect of antigen
stimulation, as modeled in Equation IV.1. The cytokine-
helper relationship is illustrated in Figure V.1.

Production of signalling compound is described by
ṗ(t) = rpE(t)−dpp(t).

where rp is the production rate anddp is the loss rate.
Becausep is absorbed by many different actors, we assume
that the loss due to reabsorption byE is negligible. Because
the signalling molecules are produced significantly faster
than cell activation, we can make the quasi-steady-state
approximation

p(t) =
rpE(t)

dp
.

By including the expression forp(t) in the helper-cell
dynamics, we obtain
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Fig. V.1. Release and self-absorption of growth signals creates a positive
feedback loop

Ė(t) =−dEE(t)+ rEE(t)2 rp
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Fig. V.2. Positive feedback with antigen stimulation creates stable and
unstable equilibria

points. The lesser equilibrium point is always stable, while
the greater equilibrium is always unstable. Thus, absent per-
turbation, the helper cell population will remain contained at
some low level. Now supposeu(t) is nonzero. The equilibria
are

Eeq=
dp

rprE

(

dE ±

√

d2
E −4

rErp

dp
u(t)

)

Because the term under the square root decreases withu,
for some value ofu the equilibria no longer exist, leading
to exponential growth. Note that even ifu(t) later returns to
zero, helper cell growth will continue as the population will
have surpassed the greater equilibrium point. This situation
is illustrated in Figure V.2. The dynamics mimic the effects
of a switch between stable and unstable growth whereu(t)
acts as a switch with a trigger value of

utrigger = d2
E

dp

4rprE

When u(t) exceeds this value, unregulated exponential
growth ensues.

To summarize, by the secretion of positive cytokines,
individual helper cells contribute to the overall decisionof
the immune system as to the level of response. Similarly,
through the binding of signalling molecules, helper cells
take into account the collective knowledge of other cells.
Once a sufficient number of helper cells decide that an
antigen constitutes a threat, the dynamics of the helper cell
population responds with unregulated exponential growth.

Naturally, unregulated exponential growth is not a realistic
model of response. Once a threat has been eliminated, the
response must contract. This question is addressed in the
following section.

VI. I NTEGRAL FEEDBACK: CONTRACTION FROM

REGULATORY GROWTH

The problem with the positive feedback model of switch-
ing, as presented in the previous section is that once trig-
gered, we have indefinite increase in immune response even
if antigen stimulation is absent. While this is reasonable on
short term time scales, eventually the response must contract
if the infectious agent has been eliminated.

To account for this effect, we look at a different class
of regulatoryT-cells callediTreg cells. ActivatediTreg cells
are thought to arise from the helper cell population [23]. We
model theseiTreg cells as being activated by or differentiating
from the population of helper cells acting under the influence
of positive growth cytokines. Thus the growth rate of these
cells is νRp(t)E(t) whereνR is a reaction coefficient. The
population dynamics ofiTreg cells are

Ṙi(t) = νRp(t)E(t)−dRiRi(t).

wheredRi is the death/deactivation rate. Using the expression
p(t) = rp

dp
E(t), we have

Ṙi(t) = νR
rp

dp
E(t)2

−dRiRi(t).

The constantsνR, dRi are both small as the creation rate of
these cells is less than the helper rate, yet they are longer-
lived. iTreg deactivate helper cells at raterRiERi(t)E(t) using
reaction coefficientrRiE. The combined helper-regulatory
dynamics are

Ė(t) =−rRiERi(t)E(t)−dEE(t)+ rEE(t)2 rp

dp
+u(t)

Ṙi(t) = νR
rp

dp
E(t)2

−dRiRi(t).

u(t) represents the antigen stimulation. The effect of the
iTreg cells is to ensure contraction of the helper response. In
the following section, we obtain a proof of this contractive
property. However, a rough explanation for the stabilizing
effect of the iTreg cells is that if one ignores the relatively
low death rate of these cells, then

Ri(t)∼=
∫ t

0

νRrp

dp
E(s)2ds.

This is a form of integral feedback. Integral feedback is
necessary to balance the unbounded growth of the helper
cells. Once the helper cell population has become sufficiently
small, the lesser equilibrium becomes stable and the immune
response ceases.

VII. STABILITY ANALYSIS USING SUM-OF-SQUARES

In this section, we show that theiTreg population modeled
previously is capable of controlling the helper cell population
in the absence of antigen stimulation. Recall that we have
the following dynamics forE(t) andRi(t).

Ė(t) =−rRiERi(t)E(t)−dEE(t)+ rEE(t)2 rp

dp
= f1(E,Ri)

Ṙi(t) = νR
rp

dp
E(t)2

−dRiRi(t) = f2(E,Ri)
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Fig. VII.3. Lyapunov Level Sets and Vector Field: Helper vs.Regulatory
Cell Concentration

Sum-of-Squares optimization is a computational method
for solving optimization problems with polynomial vari-
ables [24]. If we consider a Lyapunov function to be a
polynomial variable, then this method can be used to analyze
stability of nonlinear systems [25]. In this paper, we use
Sum-of-Squares optimization to search for a polynomial
Lyapunov function,V(E,Ri) such that the following holds
for all E,Ri > 0.
V(0,0) = 0, V(E,Ri)≥ ε(E2+R2

i ) V̇(E,Ri)≤ 0.
Let Z(x) be the vectors of monomials of degree 6 or less. We
parameterizeV using a vector of coefficientsc asV(E,Ri) =
cTZ(E,Ri). We search for a vectorc and sum-of-squares
polynomialss1,s2,s3 ands4 such that

cTZ(E,Ri)− ε(E2+R2
i ) = s1

cT∇Z(E,Ri)
T
[

f1(E,Ri)
f2(E,Ri)

]

+Es2+Ris3 =−s4.

This ensures that the stability conditions are met. The
constraints were implemented in SOSTOOLS [26] and Se-
DuMi [27]. For the nominal parameters listed in Table VIII.1,
the SOS program was feasible. The level sets of the Lya-
punov function can be seen in Figure VII.3, along with the
vector field.

Because parameters involvingiTregs are speculative, we
estimated the parameter region of stability by testing param-
eter values on a grid. Forνr and rRE, the stable regions
of the parameter space are shown in Figure VII.4. The
results are obtained from SeDuMi. The z-axis is feasibility. A
feasibility of 1 implies the existence of a Lyapunov function.
A feasibility of −1 implies that a Lyapunov function of
degree 6 or less does not exist. The plot indicates that
a combination ofνR and rRiE contribute to stability. An
approximate condition for stability which which is consistent
with the data in Figure VII.4 is

νR · rRiE > 12.

VIII. S IMULATION

We summarize the paper with a Simulink demonstration.
We use the parameter values indicated in Table VIII.1
without any steady-state assumptions. A square antigen input
is used with helper response shown in FigureVIII.5. Note the
three different response regimes. From day 0 to 1, there is
a sharp differential in antigen concentration, which triggers
the switch and causes exponential increase. At timet = 1day,

Fig. VII.4. Stability for νR vs. rRiE. Generated from SeDuMi on a grid. 1
implies stability.−1 means indeterminate
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Fig. VIII.5. Simulation results using antigen stimulationand zero initial
conditions

this differential goes away as the pulse amplitude is constant
over the period of delay (τ= 1). We continue to see increase
in helper response, but this is balanced by a growing integral
response. At time day 3, the antigen stimulation disappears,
resulting in an imbalance ofTreg cells due to the negative
differential. This causes a rapid decline in response until
day 4 when the Helper-Regulator balance is restored. At this
point integral feedback eliminates the remaining helper cells.

IX. CONCLUSION
In this paper, we have shown how the local interaction

of individual cells with limited information and authority
can yield intelligent response to an external threat. The
population dynamics are delayed and nonlinear, with several
interacting populations. However, we have shown that the
effect of these population dynamics can be interpreted as a
biological circuit. This circuit contains a differential sensor,
on/off switching and integral feedback. We have shown
that the dynamics of response are stable for regions of the
parameter space using sum-of-squares optimization.

The work presented in this paper is still preliminary in
that there are many aspects of the immune response that
are not well modeled or understood. Additionally, there is
no experimental validation using detailed time-series data.
We hope to conduct such experiments in the future. An



Parameter Description Estimate

sN Supply rate of naı̈ve CD4+ T cells 0.0024k/µL day−1

dE Helper CD4+ cell death rate 0.23/day
dN Naı̈ve CD4+ cell death rate 0.03/day
a(t), a0 Antigen stimulation rate, steady state value a0 = 4%/day
dTc Effector CD8+ cell death rate 0.35/day
sNc Supply rate of naı̈ve CD8+ T cells 0.0016k/µL day−1

dNc Naı̈ve CD8+ cell death rate .03/day
rE Helper CD4+ growth rate upon interacting with positive growth signal 0.33(k/µL)−1 day−1

rp Positive signal secretion rate by helper CD4+ cells 100/day
dp Positive growth signal decay rate 5.5/day
dR Treg death rate 0.23/day
rR Relative stimulation rate ofTreg cells to antigen 1
rRE Suppression rate of helper cells byTreg cells 20 interactions
rRi E Suppression rate of helper cells byiTreg cells 40 interactions
rEa Clonal expansion rate of stimulated helper cells .35/day
rEc Clonal expansion rate of recruited cytotoxicT cells 1/day
νR Differentiation rate ofiTreg cells 0.3(k/µL)−1 day−1

dRi Death rate ofiTreg cells .03/day
τ Treg maturation delay 1 day

TABLE VIII.1

PARAMETERS FOR THE COMBINED MODEL[11]. CONCENTRATIONS ARE IN UNITS OF K/µL, AND TIME IS MEASURED IN DAYS.

important unresolved question is the mechanics of T cell
memory. We would like to create a model of how the immune
system responds to a previously identified threat without
triggering a full immune response. For answer, we will look
at the dynamics of other known helper and regulatory T
cells. Another area of research is to deduce values of the
system parameters based by considering the optimal control
of simple models of infection. Since the immune system is
highly optimized by an evolutionary process, these values
of the parameters should correspond with the ones found in
nature.
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