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Nuclear Fusion
A Renewable Energy Source

Fusion energy is the potential energy difference
between particles in free state and particles bound
together by the strong nuclear force.

• ∆E from the strong nuclear force for the 2H +
3H to 4He + 1n reaction is −3.5 MeV/nucleon.

• ∆E from the Coulomb Barrier for the 2H + 3H
to 4He + 1n reaction is +.01MeV/nucleon

• Nuclear Fission of U235 only releases −.85
MeV/nucleon

• Unfortunately .01MeV/nucleon means a
temperature of 120 · 106K.

◮ Temperature at center of sun is 15.7 · 106K.
◮ From Maxwell-Boltzmann distribution, we

only need ∼= 106K for a statistically significant
reaction rate

Figure 1: Nuclear Binding Energy of Particles.
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Tokamaks
Magnetic Confinement of Plasma

Magnetic Confinement

• At high temperature, atoms ionize.
◮ Hydrogen → 2H ion + electron.

• Charged particles oscillate in a uniform
magnetic field.

◮ But a uniform field must eventually end.
◮ Particles will eventually escape.

• Tokamaks loop the field back on itself.
◮ Particles rotate indefinitely.

Inertial Confinement

• Compress the fuel quickly

• Plasma does not have time to expand
spatially before creating additional
reactions.

◮ Similar to a hydrogen bomb.
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Magnetic Confinement of Plasma in Tokamaks
Poloidal and Toroidal Fields

The plasma is contained through the combined action of toroidal and solenoid
field coils.

• The toroidal coils produce a magnetic field, Bφ.
◮ Field lines are orthogonal to the Z-axis.

• The solenoid produces a plasma current which produces a poloidal
magnetic field, Bθ.

◮ Field lines in the R − Z plane.
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The Safety-Factor and Safety-Factor Profile
A Useful Heuristic

The Safety Factor, q is the number toroidal field rotations for every poloidal
rotation.

• Triggers internal transport barriers which increase energy confinement

• The higher the safety-factor, the better the plasma is contained.

The Safety-Factor Profile is the distribution of the safety-factor along an
idealized radius.

q(x, t) =
∂φ(x, t)/∂x

∂ψ(x, t)/∂x
=

−Bφ0a
2x

∂ψ(x, t)/∂x
,

where x = normalized radius

Bφ0 = toroidal magnetic field at the plasma center

a = radius of the last closed magnetic surface (LCMS)

φ = magnetic flux of the toroidal field

ψ = magnetic field of the poloidal field

To control q(x, t), we control ψx(x, t) = ∂ψ(x, t)/∂x.
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The Dynamics of the Poloidal Flux Gradient

To Control the Safety-Factor Profile, we regulate ψx(x, t) =
∂
∂x
ψ(x, t).

∂ψx(x, t)

∂t
=

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xψx(x, t))

)

+R0

∂

∂x

(

η‖(x, t)jni(x, t)
)

.

where R0 = magnetic center location

µ0 = permeability of free space

η‖(x, t) = plasma resistivity

jni(x, t) = non-inductive current density

with the boundary conditions

ψx(0, t) = 0 and ψx(1, t) = 0. (1)

The dynamics are coupled to electron temperature via Plasma Resistivity, η‖.

• Depends on dynamics of temperature, density, etc.

• Nonlinear coupling

• Assume a separation of time-scales
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Dynamical System Representation

Lets represent this PDE as an abstract differential system

ẋ(t) = Ax(t) +Bu(t)

where A and B are the operators

(Aψ) (x) :=
1

µ0a2
∂

∂x

(

η‖(x)
∂

∂x
(xψ(x))

)

(Bjni) (x) :=
∂

∂x

(

η‖(x)jeni(x)
)

We ignore the bootstrap current.

This System generates a strongly continuous semigroup on X = L2[0, 1] with
domain

x ∈ DA = {y ∈ L2[0, 1] : y, yx, yxx ∈ L2[0, 1], y(0) = y(1) = 0}.
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Linear Operator Inequalities
The Lyapunov Inequality

For linear dynamical systems, we have the following characterization of stability.
Suppose the operator A generates a strongly continuous semigroup on Hilbert
space X with domain DA.

Theorem 1.

The system

ẋ(t) = Ax(t)

is stable if and only if there exist a positive operator P ∈ L(DA → DA) such
that

〈x, (A∗P + PA)x〉X < ‖x‖2X

for all x ∈ DA.

Stability is equivalent to a feasibility problem with

• operator-valued variables

• linear inequality constraints
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Linear Operator Inequalities
Controlling Linear PDEs

The Variable Substitution Trick:

Theorem 2.

The system

ẋ(t) = Ax(t) +Bu(t)

is stabilizable via full-state feedback if and only if there exist operators P > 0
and Z such that

PA∗ +AP +BZ + Z∗B < 0

Then K = ZP−1.

Here the inequality PA∗ +AP +BZ + Z∗B < 0 means

〈x, (PA∗ +AP +BZ + Z∗B)x〉X

for all x = P−1y, y ∈ DA.

• If P : DA → DA, then this is no harder than the Lyapunov inequality.
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Tractable or Intractable?
Convex Optimization

Problem:

max bx

subject to Ax ∈ C

The problem is convex optimization if

• C is a convex cone.

• b and A are affine.

Computational Tractability: Convex Optimization over C is, in general,
tractable if

• The set membership test for y ∈ C is in P.

• x is finite dimensional.
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The Stabilization Problem is Convex

Optimization Problem: Find P ∈ L(Z) and Z ∈ L(DA) such that

PA∗ +AP +BZ + Z∗B < 0

P > 0

Inequality represents the convex cone of positive operators on DA with inner
product X .

• Composition and adjoint are linear operations.

• Convex combinations of positive operators are positive.

Problems

• The space of operators is infinite-dimensional.

• Verifying positivity of an operator is hard.
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Solving Linear Operator Inequalities
A Finite-Dimensional Subspace

Question: How to parameterize the set of operators?

• Later, we will enforce positivity.

Classes of Operators: x ∈ R× C[−τ, 0]

(Ax)(s) =M(s)x(s) +

∫ 1

0

N(s, t)x(t)dt

• M(s) is the multiplier of a Multiplier Operator.

• N(s, t) is the kernel of an Integral Operator.

Question: How to parameterize multiplier and integral operators

• We consider polynomial multipliers and kernels

M(s) = cTD(s)

◮ D(s) is a monomial basis
◮ c is a vector of decision variables.
◮ For a finite basis, the set of operators is finite-dimensional

Now, how do we enforce positivity on DA?
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Optimization of Polynomials

Problem:

max b
T
x

subject to A0(y) +
n∑

i=1

xiAi(y) � 0 ∀y

The Ai are matrices of polynomials in y. e.g. Using multi-index notation,

Ai(y) =
∑

α

Ai,α y
α

Computationally Intractable

The problem: “Is p(x) ≥ 0 for all x ∈ R
n?” (i.e. “p ∈ R

+[x]?”) is NP-hard.
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Sum-of-Squares (SOS) Programming

Problem:

max bTx

subject to A0(y) +

n
∑

i=1

xiAi(y) ∈ Σs

Definition 3.

Σs ⊂ R
+[x] is the cone of sum-of-squares matrices. If S ∈ Σs, then for some

Gi ∈ R[x],

S(y) =

r
∑

i=1

Gi(y)
TGi(y)

Computationally Tractable: S ∈ Σs is an SDP constraint.
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SOS Programming:
Why is M ∈ Σs an SDP?

Let Zn
d (x) be the vector of monomial bases in dimension n of degree d or less.

e.g., if x ∈ R
2, then

Z1
2 (x)

T =
[

1 x1 x2 x1x2 x21 x22
]

and

Z2
1(x)

T =

[

1 x1 x2
1 x1 x2

]

=

[

Z1
1 (x)

Z1
1 (x)

]

Feasibility Test:

Lemma 4.

Suppose M is polynomial of degree 2d. M ∈ Σs iff there exists some Q � 0
such that

M(x) = Zd(x)
TQZd(x).
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Problem: Optimizing Locally Positive Functions
Solution: Positivstellensatz Results

Let

X :=

{

x :
pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}

Theorem 5 (Putinar).

Suppose X is “compact+” and v(x) ≥ 1 for x ∈ X . Then there exist si ∈ Σs

and ti ∈ R[x] such that

v(x) −

k
∑

i=1

si(x)pi(x) +

m
∑

i=1

ti(x)qi(x)− s0 = 0
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Control of Tokamaks
Choosing Our Operators

Recall that for the Tokamak problem, we have

(Aψ) (x) :=
1

µ0a2
∂

∂x

(

η‖(x)
∂

∂x
(xψ(x))

)

(Bjni) (x) :=
∂

∂x

(

η‖(x)jeni(x)
)

and X = L2[0, 1] with domain

DA = {y ∈ L2[0, 1] : y, yx, yxx ∈ L2[0, 1], y(0) = y(1) = 0}.

We parameterize our operator P simply using a multiplier as

(Px)(s) =M(s)x(s)

An important choice is that of the controller: K : DA → X

(Kψ) (x) = K1(x)ψ(x) +
d

dx
(Z2(x)ψ(x))

The structure of K and P imposes a structure on Z = KP :

(Zψ) (x) = (KPψ) (x) = Z1(x)ψ(x) +
d

dx
(Z2(x)ψ(x))
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Control of Tokamaks
Enforcing Positivity

First Constraint: Enforcing positivity of P is easy.

〈x, Px〉 =

∫ 1

0

x(s)M(s)x(s)ds ≥ 0

if and only if
M(s) ≥ 0 for alls ∈ [0, 1]

Second Constraint: Enforcing negativity of PA∗ +AP +BZ + Z∗B can be
reformulated as

〈x, (PA∗+AP+BZ+Z∗B)x〉 =

∫ 1

0

x(s)R1(s)x(s)ds+

∫ 1

0

ẋ(s)R2(s)ẋ(s)ds ≤ 0

where R1 and R2 are linear in variables Z1, Z2, and M (Next Slide). We

require both

R1(s) ≤ 0 and R2(s) ≤ 0 for all s ∈ [0, 1].
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Enforcing Positivity

As promised:

R1(s) :=
1

µ0a2
b1

(

x,
d

dx

)

M(x) + b2

(

x,
d

dx

)

Z1(x) + b3

(

x,
d

dx

)

Z2(x)

R2(s) :=
1

µ0a2
c1(x)M(x) + c2(x)Z2(x).

where

b1

(

x,
d

dx

)

= f(x)
(η‖,x

x
−
η‖

x2

)

+ f ′(x)
(

−
η‖

x
+ η‖,x

)

+ f ′′(x)η‖ +
f(x)η‖

x

d

dx
+
(

f(x)η‖ + f(x)η‖,x
) d2

dx2
,

b2

(

x,
d

dx

)

= −f ′(x) + f(x)
d

dx
,

b3

(

x,
d

dx

)

= η‖,xf
′(x) + η‖f

′′(x) + η‖,xf(x)
d

dx
+ η‖f(x)

d2

dx2
,

c1(x) = −η‖f(x), c2(x) = −2η‖f(x) and f(x) = x2(1− x).
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Simulation
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Figure: Time evolution of the q-profile
Error, q(x, t)− qref (x). Here x is the
normalized spatial variable.
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Simulation

Note: Although not discussed, we also constraint jni ≤ 3MA

• We use finite difference methods to obtain the numerical solution of the
closed loop system.

• To simulate the controller under realistic scenarios we use the plasma
resistivity η‖(x, t) data from the Tore Supra Tokamak.

• The other data used from the Tore Supra Tokamak are:

Ip(plasma current) = 0.6MA

Bφ0(toroidal magnetic field at the plasma center) = 1.9T

a(Radius of the last closed magnetic surface) = .72m

R0(magnetic center location) = 2.38m.

• From this data the boundary conditions for ψx(x, t) are calculated to be

ψx(0, t) = 0 and ψx(1, t) = −0.2851.
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Simulation
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Figure: Time evolution of ψx-profile.
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Simulation
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Figure: External non-inductive current deposit, jeni(x, t).
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Ongoing Work
The Non-Inductive Source Term

We can improve our model of actuator control

R0

∂

∂x

(

η‖(x, t)jni(x, t)
)

The control is via the Non-Inductive Source Term, jni.

• Spatially-distributed

• A sum of Gaussians

jni(x, t) = a1e
(x−b1)2

c1 + a2e
(x−b2)2

c2 + a3e
(x−b3)2

c3

We can parameterize a Gaussian as

a1e
(x−b1)2

c1 = apa(x)+bpb(x)+cpc(x) =
[

pa(x) pb(x) pc(x)
]





a
b
c



 = P (x)Tu

We can look for a controller as

u =

∫ 1

0

K(x)ψx(x) +
d

dx
(K2(x)ψ(x)) dx
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Ongoing Work: Observing PDE systems
Heat Equation Example

Problem: Feedback requires a knowledge of the heat distribution.

• Sensors can only measure heat at a single point.

Consider the dynamics of heat flux.

wt(x, t) = wxx(x, t)

Suppose we only observe at a single point,

y(t) = w(1, t)

and control the gradient at the same point:

wz(1, t) = u(t)

To know the state, we want Luenberger Observer, L:

˙̂z(t) = (A+ LC +BF )ẑ(t)− Ly(y)

with both A+ LC and A+BF stable. Then ẑ(s, t) → z(s, t).
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Ongoing Work: Observer-Based Controller
The Heat Equation
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Ongoing Work: Observer-Based Controller
The Heat Equation
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Concluding Remarks: Research Directions

Directions:

• Theory of Linear Operator
Inequalities

◮ Duality
◮ Optimal H∞ Control

• Parallel Algorithms for SOS/Polya
◮ GPU Computing
◮ Analysis/Synthesis

Other Research:

• Immunology/Cancer
◮ Identify Feedback Mechanisms
◮ Decentralized Control

• Tokamaks
◮ Observers
◮ Temperature/Density Coupling
◮ RF-Heating

Some algorithms are available for download at:

http://mmae.iit.edu/~mpeet

Thanks for Listening
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