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Abstract: This article proposes a new approach to stability analysis of linear systems with sampled-
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solved using the sum of squares methodology with little or no conservatism in both the case of
synchronous and asynchronous sampling. Numerical examples are included to show convergence.
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1. INTRODUCTION

In recent years, much attention has been paid to Networked
Control Systems (NCS) (see Hespanha et al. [2007], Zampieri
[2008]). These systems contain several distributed plants which
are connected through a communication network. In such appli-
cations, a heavy temporary load of computation on a processor
can corrupt the sampling period of a controller. On the other
side, the sampling period can be included in the design in order
to avoid this load. In both cases, the variations of the sampling
period will affect the stability properties of the system. Another
phenomenon, which has been widely investigated concerns sta-
bility under packet losses. In wireless networks, a transmission
of data packets is not always guaranteed. The objective is to
guarantee stability even if some packets are lost in the commu-
nication. It is thus an important issue to develop robust stability
conditions with respect to the variations of sampling period.

Sampled-data systems have extensively been studied in the lit-
erature Chen and Francis [1995], Fridman et al. [2004], Fujioka
[2009], Zhang and Branicky [2001], Zhang et al. [2001] and the
references therein. It is now reasonable to design controllers
which guarantee the robustness of the solutions of the closed-
loop system under periodic samplings. However in the case of
asynchronous sampling, there are still several open problems.
For example, the practical situation where the difference be-
tween two successive sampling instants is not constant but time-
varying. Recently, several articles have addressed the problem
of time-varying periods based on a discrete-time approach, Suh
[2008], Oishi and Fujioka [2009], Hetel et al. [2006]. Recent
papers have considered the modeling of continuous-time sys-
tems with sampled-data control in the form of continuous-time
systems with delayed control input. In Fridman et al. [2004], a
Lyapunov-Krasovskii approach was introduced. Improvements
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were provided in Fujioka [2009], Mirkin [2007], using the
small gain theorem, and in Naghshtabrizi et al. [2008], based
on the analysis of impulsive systems. These approaches dealt
with time-varying sampling periods as well as with uncertain
systems (see Fridman et al. [2004] and Naghshtabrizi et al.
[2008]). Nevertheless, these sufficient conditions are still con-
servative. This means that the sufficient conditions obtained by
continuous time approaches are not able to guarantee asymp-
totic stability whereas the system is stable. Recently several
authors Fridman [2010], Liu and Fridman [2009], Seuret [2009]
refined those approaches and obtained tighter conditions.

The key insight of this paper is that once we have developed the
discrete-continuous Lyapunov conditions sufficient for stabil-
ity, then these conditions can be verified computationally using
recently developed algorithms for the optimization of polyno-
mial functions. In particular, we use the machinery developed
in Peet et al. [2009] to reformulate the stability question as a
convex optimization problem with polynomial variables. We
then use the software package SOSTOOLS Prajna et al. [2002]
to solve the optimization problem. As can be seen in the nu-
merical examples, the result is a sequence of stability tests of
increasing accuracy. Furthermore, in the numerical examples,
the accuracy of the stability test approaches the analytical limit
exponentially fast as a complexity of the algorithm increases.

This article is based on a Lyapunov approach introduced
in Seuret [2011]. This result is based on the discrete-time
Lyapunov theorem and expressed with the continuous-time
model of sampled-data systems. More precisely, this article
analyzes the link between the discrete-time Lyapunov theo-
rem employed, for instance in Suh [2008], Oishi and Fujioka
[2009], Hetel et al. [2006], and the continuous-time approach
proposed in Fridman et al. [2004], Naghshtabrizi et al. [2008],
Fridman [2010], Seuret [2009]. Asymptotic stability criteria are
provided for both synchronous and asynchronous samplings.
Those criteria were expressed in terms of linear matrix inequal-
ities. The main contribution of this paper is the use of sum of
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squares tools to provide larger upper-bounds of the maximum
allowable sampling period than the existing ones (based on the
continuous-time modeling).

This article is organized as follows. The next section formulates
the problem. Section 3 presents a result on asymptotic stability
of sampled-data systems. Section 4 presents several theorems
on asymptotic stability of sampled-data systems expressed in
terms of sum of squares. Some examples and simulations are
provided in Section 6 and show the efficiency of the method.

Notation : Throughout the article, the sets N, R+, Rn, Rn×n

and Sn denote respectively the set of positive integers, positive
scalars, the set of n-dimensional vectors, the set of n×n matri-
ces and the set of symmetric matrices of Rn×n. The superscript
’T ’ stands for the matrix transposition. The notation P > 0 for
P ∈ Sn means that P is positive definite. The symbols I and
0 represent the identity and the zero matrices of appropriate
dimension.

2. PROBLEM FORMULATION

Consider the linear system with a sampled-data input
ẋ(t) = Ax(t)+Bu(t), (1)

where x ∈ Rn and u ∈ Rm represent the state variable and
the input vector. The matrices A and B are of appropriate
dimension. They are assumed to be constant and known. The
proposed control law for this system is a piecewise-constant
state feedback of the form u(t) = ud(tk), tk ≤ t < tk+1, where
ud is a discrete-time control signal and 0 = t0 < t1 < ... < tk < ...
are the sampling instants. Note that tk tends to infinity as k tends
to infinity. The objective is to ensure the stability of the system
together with a state-feedback controller of the form

u(t) = Kx(tk), tk ≤ t < tk+1. (2)
where the gain K in Rn×m is given. Assume that there exists a
positive scalar T such that the difference between two succes-
sive sampling instants Tk = tk+1− tk satisfies

∀k ≥ 0, 0 < Tk ≤ T. (3)
Several authors investigated stability analysis of such systems.
In Fridman et al. [2004], a continuous-time approach to model-
ing sampled-data systems was developed. This paper accounts
for sampling effects by using a time-varying delay of the form
τ(t) = t − tk, for t ∈ [tk, tk+1], k = 1, . . .. From (3), it follows
that τ(t)≤ T since τ(t)≤ tk+1− tk. In this approach, the differ-
ential equation (1) with the control law (2) is integrated over a
sampling period. Then for t ∈ [tk, tk+1], we have the following
discrete-time system

xk+1 = Γ(Tk)xk, (4)
where we define the function

Γ(s) =
[

eAs +
∫ s

0
eA(s−θ)dθBK

]
.

The continuous solution between sampling points is given by
x(t) = Γ(t− tk)xk for t ∈ [tk, tk+1].

Notation: Taking a cue from time-delay systems theory, we
denote the segment of solution on t ∈ [tk, tk+1] by xT k, so that

xT k(s) = Γ(s)x(tk) for s ∈ [0,Tk].

We use K n to denote the space of continuous maps from
[0, T ]→ Rn, where recall T is the upper-bound of the Tk’s.

If the matrices A and BK and sampling period are constant,
the discrete dynamics become xk+1 = Γ(T )xk, where T is the

sampling period. A simple method to check the stability of
the system is to ensure that Γ(T ) has all eigenvalues inside
the unit circle. If the sampling period is time-varying, then we
must verify that Γ(Tk) has eigenvalues inside the unit circle
for all Tk ∈ [0 T ] which corresponds to an infinite dimensional
problem. This is obviously complicated and even more so
when the system is uncertain or nonlinear. Several authors
have investigated this approach Hetel [2007], Oishi and Fujioka
[2009], Suh [2008].

Based on the fact that sampled-data systems with uncertain
sampling period can be seen as an infinite dimensional system,
a time-delay approach to represent the sampled-data systems
appears to be well-suited. Sufficient conditions for stability of
sampled-data systems based were indeed designed in Fridman
et al. [2004] by analyzing stability of a class of systems with
time-varying delay. However, these results were somewhat con-
servative in that they did not account for the unique struc-
ture of the delay in a sampled-data system. In Naghshtabrizi
et al. [2008], the authors introduce a new type of Lyapunov-
Krasovskii functional which depends more explicitly on the
delay function. In particular, they use the fact the τ̇ = 1 in their
formulation. This led to improvement in the accuracy of the
stability conditions. In the present article , we take a different
approach which does not model the hold as a delay, but rather
uses a new type of sampled-data Lyapunov Theorem introduced
in Seuret [2011] and inspired by Peet et al. [2009]. The condi-
tions are enforced using sum-of-squares optimization.

3. ASYMPTOTIC STABILITY OF SAMPLED-DATA
SYSTEMS

3.1 Main theorem

In this section we introduce a new Lyapunov theorem which ap-
plies to general nonlinear sampled-data systems. This theorem
accounts for the interaction between continuous and discrete
element of a sampled-data system. A version of this result was
introduced in Seuret [2011] and was partially inspired by the
concept of spacing functions introduced in Peet et al. [2009].
Essentially, the theorem says that if there exists a Lyapunov
function which has a net decrease over every sampling inter-
val, then there exists a storage function which is continuously
decreasing for all time. Consider the following system.

ẋ(t) = f (x(t),x(tk)), t ∈ [tk, tk+1], k = 1, . . . ,∞. (5)
We assume global existence and continuity of solutions.
Theorem 1. Seuret [2011] Suppose V : Rn → R+ satisfies the
following for µ1 > µ2 > 0 and p > 0

µ1|x|p ≤V (x)≤ µ2|x|p, for all x ∈ Rn. (6)
The two following statements are equivalent.

(i) If x is a solution of Equation (5), then
V (x(tk+1))−V (x(tk)) < 0, for all k ≥ 0.

(ii) There exist continuous functions Qk : R×K → R, differ-
entiable over [tk tk+1[ which satisfy the following

Qk(Tk,z) = Qk(0,z), for all k ≥ 0 and z ∈K , (7)
and such that if x is a solution of Equation (5), then

d
dt

[V (x(t))+Qk(t− tk,xT k)] < 0, for all t ∈ [tk, tk+1].
(8)

Moreover, if either of these statements is satisfied, then solu-
tions of system (5) are asymptotically stable.
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Proof.

Assume (ii) is satisfied. Define the storage function
W (t) = [V (x(t))+Qk(t− tk,xT k)] .

Then d
dt W (t) < 0 for t ∈ [tk, tk+1] and

V (x(tk+1))−V (x(tk)) =
∫ tk+1

tk

d
ds

V (x(s))ds

=
∫ tk+1

tk

d
ds

V (x(s))ds+Qk(Tk,xT k)−Qk(0,xT k)

=
∫ tk+1

tk

d
ds

V (x(s))ds+
∫ tk+1

tk

d
ds

Qk(s− tk,xT k)ds

=
∫ tk+1

tk

d
ds

(V (x(s))+Qk(s− tk,xT k))ds

=
∫ tk+1

tk

d
ds

W (s)ds < 0.

Hence (i) is satisfied.

Now assume (i) is satisfied. Define, for all functions z ∈K ,

Qk(s,z) :=−V (z(s))+
s
Tk

(V (z(Tk))−V (z(0))) .

Then
Qk(0,z) =−V (z(0)),

Qk(Tk,z) =−V (z(Tk))+(V (z(Tk))−V (z(0)))
=−V (z(0)).

Consequently, this leads to Qk(Tk,z) = Qk(0,z) which ensures
that condition (7) is satisfied. Furthermore, by considering s =
t− tk and z = xT k,

d
dt

[V (x(t))+Qk(t− tk,xT k)]

=
d
dt

[
V (x(t))−V (xT k(t− tk))

+
t− tk

Tk
(V (xT k(Tk))−V (xT k(0)))

]

=
d
dt

[
V (x(t))−V (x(t))+

t− tk
Tk

(V (x(tk+1))−V (x(tk)))
]

=
d
dt

[
t− tk

Tk
(V (x(tk+1))−V (x(tk)))

]

=
1
Tk

(V (x(tk+1))−V (x(tk))) < 0.

This proves the equivalence between (i) and (ii).

Now, from the discrete-time Lyapunov theorem, we have
limk→∞ x(tk) = 0. To show limt→∞ x(t), we note that by assump-
tion of the existence and continuity of solutions, the solution
map is continuous and thus bounded on the interval [0,T ]. Thus
limk→∞‖xT k‖∞ → 0 where ‖·‖∞ is the supremum norm. We
conclude that limt→∞ x(t).

A graphical depiction of the proof of Theorem 1 is shown in
Figure 1. The main contribution of the theorem is the introduc-
tion of a new kind of Lyapunov functional for sampled-data
systems.

There are several articles in the literature which use related ap-
proaches (see for instance Naghshtabrizi et al. [2008], Fridman
[2010]). Typically, however, these results are expressed as pos-
itivity of a Lyapunov-Krasovskii functional which is positive
definite. In the above result, positivity is relaxed through the
use of the spacing function Q.

Fig. 1. Illustration of the proof of Theorem 1

The following sections show how the conditions of Theorem 1
can be enforced using sum-of-squares optimization in both
the synchronous and asynchronous case. This is similar to the
approach taken in Peet et al. [2009].

3.2 Stability under synchronous sampling

Recall the sampled-data system.
ẋ(t) = Ax(t)+BKx(tk), for t ∈ [tk, tk +Tk], k ≥ 0. (9)

The following theorem gives conditions for stability. The con-
ditions of the theorem can be enforced using sum-of-squares,
as will be described shortly.
Theorem 2. Consider system (9) with Tk = T for some given
T > 0. If there exist P ∈ Sn, positive definite and a polynomial
matrix, of degree N, M : [0, T ]→ S2n such that

P > 0, (10)
[

In
In

]T

M(0)
[

In
In

]
= 0, (11)

M(T ) = 0, (12)
and such that for all τ ∈ [0, T ], the following inequality holds

Ψ(τ) =
[

0
In

]
P [BK A]+

[
KT BT

AT

]
P [0 In]

+Ṁ(τ)+M(τ)
[

0 0
BK A

]T

+
[

0 0
BK A

]T

M(τ) < 0.

(13)

Then closed loop system is asymptotically stable for the con-
stant sampling period T .

Proof. Consider the classical quadratic Lyapunov function for
linear continuous-time systems. Define V : Rn → R+ as

V (x) = xT Px,
where P > 0 is in S. This function V satisfies condition (6) from
Theorem 2. Now define the functional for all s ∈ [0, T ] and all
functions z ∈K

Q(s,z) =
[

z(0)
z(s)

]T

M(s)
[

z(0)
z(s)

]
.

First, from (12), we note that
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Q(0,z) =
[

z(0)
z(0)

]T

M(0)
[

z(0)
z(0)

]

= z(0)T
[

In
In

]T

M(0)
[

In
In

]
z(0) = 0.

Furthermore,

Q(T,z) =
[

z(0)
z(T )

]T

M(T )
[

z(0)
z(T )

]
= 0.

Therefore, we have Q(T,z) = Q(0,z) = 0 and hence condition
(7) is satisfied.

Computing the derivative term (8), we get
d
dt

[V (x(t))+Q(t− tk,xT k)]

=
d
dt

[
x(t)T Px(t)+

[
xT k(0)

xT k(t− tk)

]T

M(t− tk)
[

xT k(0)
xT k(t− tk)

]]

=
d
dt

[
x(t)T Px(t)+

[
x(tk)
x(t)

]T

M(t− tk)
[

x(tk)
x(t)

]]

= xT (t)Pẋ(t)+ ẋT (t)Px(t)+
[

0
ẋ(t)

]T

M(t− tk)
[

x(tk)
x(t)

]

+
[

x(tk)
x(t)

]T d
dt

M(t− tk)
[

x(tk)
x(t)

]
+

[
x(tk)
x(t)

]T

M(t− tk)
[

0
ẋ(t)

]
.

Recalling that ẋ(t) = Ax(t)+BKx(tk), we get
d
dt

[V (x(t))+Q(t− tk,xT k)]

=
[

x(tk)
x(t)

]T
([

0
In

]T

P [BK A]+
[

KT BT

AT

]
P [0 In]

)[
x(tk)
x(t)

]

+
[

x(tk)
x(t)

]T [
0 0

BK A

]T

M(t− tk)
[

x(tk)
x(t)

]

+
[

x(tk)
x(t)

]T

Ṁ(t− tk)
[

x(tk)
x(t)

]

+
[

x(tk)
x(t)

]T

M(t− tk)
[

0 0
BK A

][
x(tk)
x(t)

]

=
[

x(tk)
x(t)

]T

Ψ(t− tk)
[

x(tk)
x(t)

]
,

for all t ∈ [tk, tk +T ]. Thus if there exists a solution of inequality
(13), and by virtue of Theorem 1, the closed loop system is
asymptotically stable for the constant sampling period T .

It is important to highlight that Theorem 2 only guarantees the
stability of the solutions of system (9) for a given sampling
period T . By virtue of Theorem 1, the previous theorem only
ensures that:

ΓT (T )PΓ(T )−P < 0.
for a given T . As it was mentioned in the introduction, the
stability of sampled-data systems with a constant sampling
period can be dealt by checking if the eigenvalues of the matrix
Γ(T ) are included in the unit circle. This is only possible if the
matrices (A,B) which characterize the system are known. Thus,
in the case of uncertain systems where the matrices (A,B) lies
in a polytope, it is not easy to derived the eigenvalues of the
matrix Γ(T ). Noting that, in Theorem 2, the stability condition
linearly depends on the matrices A and B, it is possible to extend
the previous results to the case of systems with a polytopic type
of uncertainties. This correspond to the main improvement of
this paper.

3.3 Asynchronous sampling

The case of asynchronous sampling, where Tk is unknown
but bounded in some range, is clearly more realistic than the
synchronous case in a networked control scenario. However,
the stability conditions for this case are not significantly more
complex than for the synchronous case. We simply allow the
function M to vary with the sampling period, Tk.
Theorem 3. Consider system (5). For given 0≤ T1 < T2 < ∞, if
there exist P ∈ Sn, positive definite and a bi-polynomial matrix
M̄ : [0, T2]× [T1, T2]→ S2n such that for all T ∈ [T1, T2],

P > 0, (14)
[

In
In

]T

M̄(0,T )
[

In
In

]
= 0, (15)

M̄(T,T ) = 0, (16)
and such that for all s ∈ [0, T ], the following inequality holds

Ψ̄(τ,T ) =
[

0
In

]
P [BK A]+

[
KT BT

AT

]
P [0 In]+

d
ds

M̄(s,T )

+M̄(s,T )
[

0 0
BK A

]
+

[
0 0

BK A

]T

M̄(s,T ) < 0.

(17)
Then if Tk ∈ [T1, T2] for all k ≥ 0, the closed loop system is
asymptotically stable.

Proof. The proof is a trivial extension of Theorem 2.

By virtue of Theorem 1, if the conditions of Theorem 3 are
satisfied, then V (x) = xT Px is decreasing across every time
interval Tk. That is

∀T ∈ [T1, T2], ΓT (T )PΓ(T )−P < 0.

Another important remark concerns the functional Q introduced
in Theorem 2. In Fridman [2010] or Seuret [2011], an integral
term of the form

Q̃(t− tk,xKT ) = (tk+1− t)
∫ t

tk
ẋT (s)Rẋ(s)ds,

is employed. This term has an important role in reducing the
conservatism of the stability conditions. However it unavoid-
ably leads to the use of the Jensen inequality to compute an
upper bound of the derivative of V + Q + Q̃. This inequality
unavoidably introduces conservatism in the stability criteria. In
the present paper, an exact expression of the derivative of V +Q
is provided since the following equality is obtained

d
dt

[V (x(t))+Q(t− tk,xT k)] =
[

x(tk)
x(t)

]T

Ψ̄(t− tk,Tk)
[

x(tk)
x(t)

]

Then the stability criterion from Theorem 3 is less conservative
then the ones from Fridman [2010] or Seuret [2011].

4. SUM OF SQUARES AS ALGORITHMIC TOOL

4.1 General presentation of SOS

The methodology we use to implement the conditions of The-
orems 2 and 3 is based on the sum-of-squares decomposition
of positive polynomials. When applying this methodology we
assume that all matrix functions are polynomial, can be approx-
imated by polynomials, or there is a change of coordinates that
renders them polynomial.

Denote by R[y] the ring of polynomials in y = (y1, . . . ,yn) with
real coefficients. Denote by Σs the cone of polynomials that
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admits a SOS decomposition, i.e., those p ∈ R[y] for which
there exist hi ∈ R[y], i = 1, . . . ,M so that

p(y) =
M

∑
i=1

h2
i (y).

If p(y) ∈ Σs, then clearly p(y) ≥ 0 for all y. The converse is
not always true, although the converse does hold for univariate
matrix-valued polynomials. The advantage of SOS is that the
problem of testing if p(y)≥ 0 is known to be NP-hard, whereas
testing if p(y)∈ Σs is equivalent to an SDP( Parrilo [2000]), and
hence is worst-case polynomial-time verifiable. SOS results ap-
ply to matrix-valued polynomials as well as scalars, although in
this case the inequality means positive semidefinite. The SDPs
related to SOS can be formulated efficiently and the solution
can be retrieved using SOSTOOLS( Prajna et al. [2002]), which
interfaces with semidefinite solvers such as SeDuMi( Sturm
[1999]).

Consider now the conditions in Theorem 2 which take the form.
L(s)≤ 0, s ∈S , (18)

where L(s) ∈ Rn× n and S is a semialgebraic set described by
polynomial inequalities:

S = {s ∈ R | gi(s)≥ 0, i = 1, . . . ,M},
where gi(s) are polynomial functions. In order to test condition
(18), we can apply Positivstellensatz results such as Putinar
[1993] which allow us to test positivity on a semialgebraic set
using SOS. Specifically, Condition (18) holds if there exists
SOS polynomials Pi(s,y), such that

L(s)+
M

∑
i=1

gi(s)Pi(s,y) = P0(s).

Intuitively, the above condition guarantees that when s∈S , we
have L(s)≤−∑M

i=1 gi(s)pi(s,y)≤ 0 since gi ≥ 0 and pi ≥ 0, and
therefore L(s)≤ 0 for those s.

4.2 Application to the stability theorem

In this brief subsection, we identify the functions gi’s corre-
sponding to sets [0,T ] and [T1, T2] used in theorems 2 and 3.
The function for Theroem 2 is

g1(s) =−(T − s)s,
which represents s ∈ [0,T ] and for Theorem 3, we use

g1(s,T ) =−(T − s)s and g2(T ) =−(T2−T )(T −T1).
where g2 represents T ∈ [T1, T2].

5. EXAMPLES

Consider system (1) with several matrix definitions

• Example 1 from Fridman et al. [2004], Naghshtabrizi et al.
[2008]:

A =
[

0 1
0 −0.1

]
,BK =

[
0 0

−0.375 −1.15

]
,

• Example 2 from Fridman [2010]:

A =
[
−2 0
0 −0.9

]
,BK =

[
−1 0
−1 −1

]
,

• and Example 3 from Gu et al. [2003], Michiels et al.
[2004]:

A =
[

0 1
−2 0.1

]
,BK =

[
0 0
1 0

]
.

Theorems T2 for Ex.1 T2 for Ex.2

Fridman et al. [2004] 0.869 0.99
Naghshtabrizi et al. [2008] 1.113 1.99

Fridman [2010] 1.695 2.03
Liu and Fridman [2009] 1.695 2.53

Seuret [2011] 1.723 2.62

Th.2 N = 1 0.702 2.319
Th.2 N = 3 1.729 3.219
Th.2 N = 5 1.729 3.269

Th.3 N = 1 0.701 2.310
Th.3 N = 3 1.729 3.218
Th.3 N = 5 1.729 3.269

Table 1. Maximum allowable sampling period T2
for examples 1, 2, with T1 = 0.

Theorems for Ex.3

Seuret [2011] [0.201, 1.623]
Th.2 N = 1 ∅
Th.2 N = 3 [0.2007, 2.016]

⋃
[2.606, 3.055]

Th.2 N = 5 [0.2007, 2.020]
⋃

[2.470, 3.694]

Seuret [2011] [0.400, 1.251]
Th.3 N = 1 ∅
Th.3 N = 3 [0.4, 1.820] or [2.680, 3.005]
Th.3 N = 5 [0.4, 1.828] or [2.520, 3.550]

Table 2. Interval of allowable asynchronous sam-
plings of the form [T1, T2] for example 3.

Tables 1 and 2 summarize the results obtained in the literature
and using the theorems provided in the present paper for ex-
amples 1,2 and 3. One can see that the obtained results are
less conservative then existing ones. More precisely, for each
example, Theorem 3 allows guaranteeing the stability of the
solutions of the sampled-data systems with the same Lyapunov
matrix P.

Another important remark deals with Example 3. This system
is well known in the time-delay literature because the delay has
a stabilizing effect. This means that its solutions are not stable
for sufficiently small delay but become stable for sufficiently
large delay. The method proposed in this article is able to take
into account this phenomena and is also able to isolate several
intervals of possible values for the length of the sampling
interval where the system is stable. Note that Theorem 3 (with
N = 5) guarantees the stability for all asynchronous sampling
lying in [0.4, 1.828] or [2.520, 3.550]. However no guarantee
of stability can be provided if the sampling interval switched
from one interval to the other. This recalls the classical behavior
of switched systems. A resulting system of a switched systems
defined by two stable systems is not necessary stable. In the
present situation this comes from the fact that the Lyapunov
matrices obtained for each interval are different.

6. CONCLUSION

In this article, a novel analysis of continuous linear systems
under asynchronous sampling is provided. This approach is
based on the discrete-time Lyapunov Theorem applied to the
continuous-time model of the sampled-data systems. Numerical
results compare favorably with result in the literature. Perhaps
the most important feature of the method presented in this paper
is that it is expressed using the sum-of-squares framework and
is thus easily extended to nonlinear systems and systems with
parametric uncertainty.
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