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Reducing the Complexity of the Sum-of-Squares
Test for Stability of Delayed Linear Systems

Yashun Zhang, Matthew Peet, and Keqin Gu

Abstract—This paper considers the problem of reducing the com-
putational complexity associated with the Sum-of-Squares approach to
stability analysis of time-delay systems. Specifically, this paper considers
systems with a large state-space but where delays affect only certain
parts of the system. This yields a coefficient matrix of the delayed
state with low rank— a common scenario in practice. The paper uses
the general framework of coupled differential-difference equations with
delays in feedback channels. This framework includes systems of both
the neutral and retarded-type. The Sum-of-Squares method is used to
search a Lyapunov-Krasovskii functional which is necessary and sufficient
for stability of this class of systems. This paper shows how exploiting
the structure of the new functional can yield dramatic improvements in
computational complexity. Numerical examples are given to illustrate this
improvement.

Index Terms—Lyapunov-Krasovskii functional, time delay, semidefinite
programming, sum-of-squares, complexity.

I. INTRODUCTION

In this paper we consider stability of linear time-delay systems with
fixed delays. The existence of a monotonically decreasing quadratic
Lyapunov function is necessary and sufficient for stability of these
systems [6], [9], [15]. As is customary, we refer to these Lyapunov
functions as Lyapunov-Krasovskii functionals as the state-space is
infinite dimensional. The problem of finding such a functional is
considered computationally intractable. An obvious solution is to use
simplified versions of the functional. Naturally, however, stability
conditions derived in such a manner will be conservative [6]. A solu-
tion to this dilemma was proposed in [4] which used a “discretized”
version of the Lyapunov-Krasovskii functional. The product was a
series of sufficient conditions which appears to converge to necessity
as the level of discretization is increased. The significance of this
work is that it gives a quantifiable tradeoff between computational
complexity and accuracy of the stability test. See Fig. 1 in the
numerical example. In [20] and [21], the problem was approached
using polynomials instead of discretized functionals. We refer to
this result as the Sum-of-Squares (SOS) method. The advantage
of the Sum-of-Squares approach is that it is easily generalized to
nonlinear and uncertain systems [17]. It should be pointed out that it
is possible to asymptotically approach the analytical limit of stability
without the complete quadratic Lyapunov-Krasovskii functional. An
interesting method that accomplishes this is the delay partitioning
method described in [3]. In all of the above cases, the conditions
are expressed using semidefinite programming (SDP) [14], [18]. A
problem with both the discretized functional method and the Sum-
of-Squares method is that the computational cost increases quickly
for large systems with multiple delays.

In most practical systems, although the number of state variables
is rather large, there are relatively few delayed elements and these
delayed elements enter through low-rank coefficient matrices. Ex-
amples include a nuclear reactor model described in Equation (3.1)
of Chapter 2 of [10]; chemostat models in microbiology described in
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Equation (5.4) in Chapter 2 of [10]; or any system with delayed feed-
back. However, this feature is not typically leveraged when deriving
stability conditions. In this paper, we reformulate the standard model
of time-delayed equations by using coupled differential-difference
equations with a single delay in each feedback channel. The idea is
that if the dimension of the feedback channel is substantially smaller
than the number of states, then this formulation allows us to exploit
this low-dimensional structure to potentially reduce the computational
cost of stability analysis [7]. In addition, using coupled differential-
difference equations allows us to address a larger class of systems
that includes time delay systems of both retarded and neutral type.

Coupled differential-difference equations have been studied for
some time. See references [2], [22] and [25]. Asymptotic stability
analysis based on the input-to-state stability of the difference equa-
tions was given in [23]. This result was strengthened to uniform
asymptotic stability and extended to the general coupled differential-
functional equations in [8], which also considered the possibility
of reducing the complexity of the discretized Lyapunov-Krasovskii
functional method. A reformulation of coupled differential-difference
equations with single independent delay in each channel was pro-
posed in [7] with a discretized Lyapunov implementation in [11]. It
is interesting to notice that this special form of coupled differential-
difference equations has been known as the “Roesser’s model”, and
studied earlier using frequency domain approaches [1], [12].

The purpose of this paper is to adapt the Sum-of-Squares ap-
proach to coupled differential-difference equations and a structured
Lyapunov-Krasovskii functional. The goal is to realize a complexity
reduction of several orders of magnitude in systems with low-
dimensional delay channels. The paper is structured as follows. We
begin by introducing the coupled formulation. This is accompanied by
a necessary and sufficient quadratic Lyapunov result and some basics
on Sum-of-Squares. In Section III, we adapt the Sum-of-Squares ap-
proach to positivity of the Lyapunov-Krasovskii functional introduced
previously. In Section IV, we give the derivative of the Lyapunov-
Krasovskii functional and apply our results to enforce negativity. In
Section V, we combine our results to give an asymptotically exact,
semidefinite-programming-based approach to stability of linear time-
delay systems. Finally, we discuss computational complexity and
use numerical examples to illustrate the advantages of the current
approach.

A. Notation

Z denotes the set of positive integers. Rn denotes the n-
dimensional Euclidean space, and Rp×q denotes the set of all p× q
real matrices. Sn denotes all the n × n symmetric real matrices.
For X ∈ Sn, the notation X ≥ 0 (X > 0) means that X is
positive semidefinite (definite). I denotes the identity matrix with
appropriate dimension. For n ∈ Z and a given positive real number
r, we use PC(r, n) to denote the vector space of bounded functions
f : [−r, 0) → Rn which are right continuous everywhere, and
continuous everywhere except possibly at a finite number of points
in the interval. Unless otherwise stated, ∥f∥ denotes either the 2-
norm if f ∈ Rn or the L2-norm if f is a square-integrable function.
Sometimes we use the notation ∥f∥L2 for additional clarity. For a
given function y , if y is defined on [t − r, t], we will use yr,t to
denote the segment of y on this interval, but translated to the origin.
Specifically, yr,t(s) = y(t+s), for s ∈ [−r, 0). Through some abuse
of notation, we will occasionally use ϕ = (ϕ1, ϕ2, . . . , ϕK) ∈ PC
to denote ϕi ∈ PC(ri,mi), i = 1, 2, . . . ,K, where ri and mi will
be clear from context.
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II. PRELIMINARIES

A. Coupled Differential-Difference Equations

Consider a linear time-delay system described by the coupled
differential-difference equation

ẋ(t) = Ax(t) +

K∑
j=1

Bjyj(t− rj), (1)

yi(t) = Cix(t) +
K∑
j=1

Dijyj(t− rj), i = 1, 2, . . .K, (2)

where x(t) ∈ Rn, yi(t) ∈ Rmi , and K is the number of delay
“channels”. Without loss of generality, we assume the delays are in
ascending order 0 < r1 < · · · < rK . The initial conditions are given
by x(0) = ψ ∈ Rn, and yiri,0 = ϕi ∈ PC(ri,mi). For the sake
of brevity, we use the notation yt := (y1r1,t, · · · , yKrK ,t), so the
state of the system at time t is (x(t), yt).

B. Quadratic Lyapunov-Krasovskii Functionals

The following is a necessary and sufficient condition for stability
of a system defined by the coupled equations (1) and (2).

Theorem 1 ([7]): Suppose there exist Li ∈ Smi , Li > 0, i =
1, 2, . . .K such that the following linear matrix inequality (LMI) is
satisfied.

DT U D − U < 0, (3)

where U = diag(L1, L2, . . . , LK) and D = [Dij ]K×K is the matrix
formed by using the matrices Dij as sub-blocks. Then the system
described by (1) and (2) is uniformly asymptotically stable if and
only if there exist an ε > 0, a matrix P ∈ Sn, and matrix functions
Qi(s) ∈ Rn×mi , Rij(s, η) = RTji(η, s) ∈ Rmi×mj , and Si(s) ∈
Smi such that for any ψ ∈ Rn and ϕ = (ϕ1, ϕ2, . . . , ϕK) ∈ PC, we
have that V (ψ, ϕ) ≥ εψTψ and V̇ (ψ, ϕ) ≤ −εψTψ, where

V (ψ, ϕ) = ψTP ψ +

K∑
i=1

∫ 0

−ri
ϕTi (s)Si(s)ϕi(s) ds

+

K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
ϕTi (s)Rij(s, η)ϕj(η) dη ds

+ 2ψT
K∑
i=1

∫ 0

−ri
Qi(s)ϕi(s) ds, (4)

V̇ (ψ, ϕ) =
d

dt
V (x(t), yt)|x(t)=ψ,yt=ϕ

= lim sup
h→0+

1

h
(V (x(t+ h), yt+h)− V (ψ, ϕ)) .

C. Sum-of-Squares

Sum-of-Squares is a branch of polynomial computing which
considers the positivity of polynomials. Although the question of
polynomial positivity is NP-hard, testing whether a polynomial can be
represented as the sum of squares of polynomials is computationally
tractable. In this paper, we use the following notation. For a given
nonnegative integer d, let Zd be the vector of monomials

Zd(s) :=
[
1 s s2 · · · sd

]T
.

Let Zn,d : R → Rn(d+1)×n be defined as

Zn,d(s) = In×n ⊗ Zd(s),

where ⊗ denotes the Kronecker product. A n × n symmetric
polynomial matrix G(s) is sum-of-squares if and only if it can
be represented as G(s) = ZTn,d(s) J Zn,d(s) for some positive

semidefinite matrix J . This is a convex constraint on the coefficients
of G. We will denote the sum-of-squares constraint on the coefficients
of a polynomial by

G ∈ Σn,d := {G : R → Sn|G(s) = ZTn,d(s) J Zn,d(s), J ≥ 0}.

That a polynomial be sum-of-squares is sufficient for positivity. How-
ever, it is necessary only in special cases. Furthermore, positivity over
compact semialgebraic subsets can be tested through a combination
of sum-of-squares and Positivstellensatz results in a manner akin to
the S-procedure. See [19] for details. Some early work on matrix
sum-of-squares can be found in [26]. Through considerable abuse of
notation, for a semialgebraic set H , we will allow “G(s) ∈ Σn,d
for s ∈ H” to denote conditions derived using a Positivstellensatz.
Because of the variety and complexity of Positivstellensatz results,
we do not list the conditions explicitly.

III. POSITIVITY CONDITIONS

The purpose of this paper is to use polynomial computing to
construct a matrix P and continuous matrix-valued functions Qi(s),
Si(s), and Rij (s, η) such that the conditions of Theorem 1 hold.

Now we consider the quadratic Lyapunov-Krasovskii functional
given by Equation (4). In order to apply polynomial computing
to positivity of this functional, we need to convert the functional
positivity condition to conditions which can be enforced using SDP.
To this end, we would like to apply Theorems 5 and 7 of [21].
Unfortunately, however, these theorems cannot be directly applied
because the structure of the Lyapunov-Krasovskii functional given by
Equation (4) is different from the structure of the functional in [21].
The first main technical result of this paper shows how Theorem 5
of [21] can be modified to take into account the structure of the
functional (4).

Proposition 2: Suppose we are given a matrix P ∈ Sn and
continuous matrix-valued functions Qi : [−ri, 0] → Rn×mi and
Si : [−ri, 0] → Smi , i = 1, 2, . . . ,K. Then the following two
statements are equivalent.

1) There exists an ε > 0 such that

ψTP ψ + 2ψT
K∑
i=1

∫ 0

−ri
Qi(s)ϕi(s) ds

+

K∑
i=1

∫ 0

−ri
ϕTi (s)Si(s)ϕi(s) ds ≥ ε

(
∥ψ∥2 + ∥ϕ∥2L2

)
for all ψ ∈ Rn and continuous ϕ = (ϕ1, ϕ2, . . . , ϕK).

2) There exist continuous functions Ti : [−ri, 0] → Sn and an
ϵ > 0 such that 1∑K

i=1 ri
P Qi(s)

QTi (s) Si(s)

+

[
Ti(s) 0

0 0

]
≥ ϵI

for all s ∈ [−ri, 0], i = 1, 2, . . . ,K,
K∑
i=1

∫ 0

−ri
Ti(s) ds = 0.

Proof: We begin by introducing the changes of variables ηi =
s/ri. Then the left-hand side of the inequality of 1) is given by

V1(ψ, ϕ) :=

∫ 0

−1

ΦT (η)M (η) Φ(η) dη,

where we relabeled all the ηi → η and have defined

Φ(η) : =
[
ψT ϕT1 (r1η) · · · ϕTK(rKη)

]T
,

M(η) : =

[
P Q̄(η)

Q̄T (η) S̄(η)

]
,
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Q̄(η) : =
[
r1Q1(r1η) r2Q2(r2η) · · · rKQK(rKη)

]
,

S̄(η) : = diag
(
r1S1(r1η) r2S2(r2η) · · · rKSK(rKη)

)
.

By Theorem 5 of [21], V1(ψ, ϕ) ≥ ε(∥ψ∥2+∥ϕ∥2L2
) is equivalent to

the existence of an ϵ > 0 and continuous function Z(s) : [−1, 0] →
Sn such that

M(η) +

[
Z(η) 0
0 0

]
≥ ϵI for η ∈ [−1, 0]

where
∫ 0

−1

Z(η) dη = 0. Now, by applying Proposition 2 of [5]

inductively, positivity of M(η) +

[
Z(η) 0
0 0

]
is equivalent to the

existence of an ϵ > 0 and some continuous functions Li such that r1∑K
i=1 ri

P + Z(η)−
∑K
i=2 Li(η) r1Q1(r1η)

r1Q
T
1 (r1η) r1S1(r1η)

 ≥ ϵI

and  ri∑K
i=1 ri

P + Li(η) riQi(riη)

riQ
T
i (riη) riSi(riη)

 ≥ ϵI

for η ∈ [−1, 0] and i = 2, . . . ,K . Now, if we define Ti(η) =
1
ri
Li(η/ri) for i = 2, . . . ,K and

T1(η) =
1

r1

(
Z(η/r1)−

K∑
i=2

Li(η/r1)

)
,

then by changing variables back to si = η/ri

K∑
i=1

∫ 0

−ri
Ti(η) dη =

∫ 0

−1

(
Z(s1)−

K∑
i=2

Li(s1)

)
ds1

+
K∑
i=2

∫ 0

−1

Li(si) dsi = 0.

Furthermore, by the same change of variables, the inequalities be-
come

ri

 1∑K
i=1 ri

P + Ti(si) Qi(si)

QTi (si) Si(si)

 > 0,

for si ∈ [−ri, 0] and i = 1, 2, . . . ,K,

which is equivalent to Statement 2) of the proposition. Thus we have
that 1) ⇒ 2). Furthermore, if we start by letting Li = riTi(riη),
then all steps can be reversed to show 2) ⇒ 1).

To represent the conditions of Proposition 2 using SDP, we can
require our functions to be polynomial and strengthen the positivity
conditions “> 0” by using the Sum-of-Squares condition “∈ Σm,d”
for some m, d > 0. Such conditions may be conservative due to the
choice of d, but can be enforced using SDP - the critical point. We
now present the second significant result of this paper, which shows
how the concepts in Theorem 7 of [21] can be applied to our new
Lyapunov-Krasovskii functional.

Proposition 3: Let m =
∑K
j=1mj . Suppose Rij : [−ri, 0] ×

[−rj , 0] → Rmi×mj are polynomial matrices of degree d and
Rij(s, η) = RTji(η, s) for i, j = 1, 2, . . . ,K. Then

V2(ϕ) :=

K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
ϕTi (s)Rij(s, η)ϕj(η) dη ds ≥ 0

for all ϕ = (ϕ1, ϕ2, . . . , ϕK) ∈ PC if and only if R ∈ Γm,d, where

R(s, η) =

 R11(r1s, r1η) · · · R1K(r1s, rKη)
...

. . .
...

RK1(rKs, r1η) · · · RKK(rKs, rKη)

 ,
and

Γm,d =
{
ZTm,d(s)LZm,d(η)

∣∣∣ L ∈ Sm(d+1), L ≥ 0
}
.

Proof: Introduce the following new variables: s = riωi, η =
rjθj , i, j = 1, 2, . . . ,K. Then, V2(ϕ) may be expressed as

V2(ϕ) =

K∑
i=1

K∑
j=1

rirj

∫ 0

−1

∫ 0

−1

ϕTi (riωi)Rij(riωi, rjθj)

× ϕj(rjθj) dωi dθj

=

∫ 0

−1

∫ 0

−1

ΦT (s)R(s, η)Φ(η) dη ds,

where we have unified the variables and where

Φ(s) =
[
r1ϕ

T
1 (r1s) r2ϕ

T
2 (r2s) · · · rKϕ

T
K(rKs)

]T
.

Now Theorem 7 of [21] states that since R is a polynomial of degree
d, positivity of V2 is equivalent to R ∈ Γm,d.

Note that the conditions of Proposition 3 are SDP constraints on the
coefficients of the polynomials Rij . Therefore, in combination with
Proposition 2, this result forms the basis of a Sum-of-Squares/SDP
approach to optimization of Lyapunov-Krasovskii functionals of the
form given by Equation (4). This is expanded upon in the following
two sections.

IV. THE LYAPUNOV-KRASOVSKII DERIVATIVE CONDITION

In this section, we obtain a condition for negativity of the derivative
of the Lyapunov-Krasovskii functional presented as (4). Through
some manipulation, it can be shown that this derivative may be
expressed as follows.

V̇ (ψ, ϕ) =
K∑
i=1

∫ 0

−ri
zTi (s)Fi(s) zi(s) ds

+

K∑
i=1

K∑
j=1

∫ 0

−ri

∫ 0

−rj
ϕTi (s)Eij(s, η)ϕj(η)dηds,(5)

where

zi(s) =
[
ψT ϕT1 (−r1) · · · ϕTK(−rK) ϕTi (s)

]T
,

and

Fi(s) =


1∑K

j=1 rj
F11

1∑K
j=1 rj

F12 F13i(s)

∗T 1∑K
j=1 rj

F22 F23i(s)

∗T ∗T (s) F33i(s)

 ,
Eij(s, η) = −∂Rij(s, η)

∂s
− ∂Rij(s, η)

∂η
,

F11 =

K∑
j=1

[
Qj(0)Cj + CTj Q

T
j (0) + CTj Sj(0)Cj

]
+ PA+ATP,

F12 =
[
G1 · · · GK

]
,

Gj =

K∑
k=1

[Qk(0)Dkj + CTk Sk(0)Dkj ] + PBj −Qj(−rj)

for j = 1, 2, . . . ,K,
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F22 =

K∑
i=1


DT
i1 Si(0)Di1 · · · DT

i1 Si(0)DiK

...
. . .

...

DT
iK Si(0)Di1 · · · DT

iK Si(0)DiK


− diag

(
S1(−r1) S2(−r2) · · · SK(−rK)

)
,

F13i(s) = ATQi(s) +

K∑
j=1

CTj R
T
ij(s, 0)−

dQi(s)

ds
,

F23i(s) =
[
HT
i1(s) · · · HT

iK(s)
]T
,

Hij(s) = BTj Qi(s) +

K∑
k=1

DT
kj R

T
ik(s, 0)−RTij(s,−rj)

for j = 1, 2, . . . ,K,

F33i(s) = −dSi(s)
ds

.

Notice that V̇ has the same form as V . Therefore, Propositions 2
and 3 may be used to obtain conditions for negativity of V̇ that
are suitable for implementation via polynomial optimization. This is
summarized in the following proposition.

Proposition 4: V̇ (ψ, ϕ) ≤ −ϵ∥ψ∥2 for some ϵ > 0 if there exist
matrix functions Wi : [−ri, 0] → Sn+m, i = 1, 2, . . . ,K, with
m =

∑K
j=1mj , such that

−Fi(s) +
[
Wi(s) 0

0 0

]
∈ Σn+m+mi,d

for s ∈ [−ri, 0] and for i = 1, 2, . . . ,K,
K∑
i=1

∫ 0

−ri
Wi(s) ds = 0,

and −E ∈ Γm,d, where

E(s, η) =

 E11(r1s, r1η) · · · E1K(r1s, rKη)
...

. . .
...

EK1(rKs, r1η) · · · EKK(rKs, rKη)

 .
Proof: The negativity condition may be written as

−V̇ (ψ, ϕ) = −Vd1(ψ, ϕ)− Vd2(ψ, ϕ) ≥ ϵ∥ψ∥2,

where Vd1 and Vd2 are the first and second parts of Equation (5).
If the conditions of the proposition are satisfied, then Proposition 2
implies that there exists some ϵ > 0 such that −Vd1(ψ, ϕ) ≥ ϵ∥ψ∥2.
Likewise, Proposition 3 may be used to show that −Vd2(ψ, ϕ) ≥ 0.
Thus the negativity condition is satisfied.

Note that if Qi, Si, and Rij are polynomials, then the map from
the coefficients of these polynomials to those of Eij and Fi will be
linear, easily represented using packages such as SOSTOOLS [24].

V. STABILITY CONDITIONS

In this section, we summarize the results of this paper by giving
conditions for stability in a form which can be implemented using a
combination of Sum-of-Squares and SDP.

Theorem 5: Let m =
∑K
j=1mj . The coupled delay-differential

system described by Equations (1) and (2) is asymptotically stable
if there exist a matrix P ∈ Sn, and polynomial matrices Qi :
[−ri, 0] → Rn×mi , Si : [−ri, 0] → Smi , Ti : [−ri, 0] → Sn,
Rij : [−ri, 0] × [−rj , 0] → Rmi×mj , Wi : [−ri, 0] → Sn+m,
i, j = 1, 2, . . . ,K such that 1∑K

i=1 ri
P Qi(s)

QTi (s) Si(s)

+

[
Ti(s) 0
0 0

]
∈ Σn+mi,d

for s ∈ [−ri, 0] and i = 1, 2, . . . ,K,

−Fi (s) +
[
Wi(s) 0

0 0

]
∈ Σn+m+mi,d

for s ∈ [−ri, 0] and i = 1, 2, . . . ,K,
K∑
i=1

∫ 0

−ri
Ti(s) ds = 0,

K∑
i=1

∫ 0

−ri
Wi(s) ds = 0,

R ∈ Γm,d,

−E ∈ Γm,d,

where R and E are the composite matrix functions defined by the
blocks Rij and Eij , respectively and where the functions Fi and Eij
are as defined in the previous section.

Proof: We first show that the conditions of the theorem imply
that the system satisfies the regularity conditions of the Lyapunov
theorem. That is, the condition (3) is satisfied. Observe that the second
inequality and the definition of F implies that −F33i(s) =

∂Si(s)
∂s

>
0, which in turn implies that Si(0) ≥ Si(−ri) for all i = 1, 2, . . . ,K.
Now define Li = Si(0), as per the condition (3). Then we have that
the corresponding U = diag

(
S1(0) S2(0) · · · SK(0)

)
. Now, it

can be shown that the conditions of the theorem imply that F22 < 0.
Therefore by definition

U −DT U D ≥ diag
(
S1(−r1) S2(−r2) · · · SK(−rK)

)
−DT U D

= −F22 > 0,

where the first inequality holds because Si(0) ≥ Si(−ri). Finally,
since the first inequality condition of the theorem implies Si(s) > 0
for all s, we have that U > 0, which means that condition (3) is sa-
tisfied. Therefore, the technical conditions of Theorem 1 are satisfied
and stability can be established by positivity of the relevant Lyapunov
function and negativity of its derivative. As discussed previously,
positivity of the functional is established via Propositions 2 and 3.
Negativity of the derivative is established in the same manner.

The result in Theorem 5 can be extended to uncertain systems and
time-varying delay systems. In particular the uncertain parameters in
the uncertain system matrices or time-varying delays can be included
in the variables of polynomial matrices of polynomial Lyapunov-
Krasovskii functionals, as given in [16].

VI. DISCUSSIONS AND EXAMPLES

A. Complexity Discussion

We first compare the computational complexity of the conditions
associated with Theorem 5 and the computational complexity of the
conditions associated with Theorem 11 of [21]. Consider the case of a
single delay. The number of decision variables in the SDP associated
with Theorem 5 is of the order O(n,m, d) = (n + md)2, where
n is the dimension of x(t), d is the degree of the polynomials, and
m is the dimension of y(t). For the SDP problem associated with
the previous formulation described in [21], the number of decision
variables is of the order (n(d + 1))2. For a large d, it can be
estimated that the new method offers a reduction in the number
of decision variables of order O

(
m
n

)2. For example, when n = 6
and m = 1, the number of decision variables is reduced by 97.3%.
Since the worst-case complexity of SDP is roughly proportional to
q3 for Cholesky factorization, where q is the number of decision
variables, for the case of n = 6 and m = 1, we have a complexity
reduction of approximately 10−5 or five orders of magnitude. Note
that as lim m

n
→ 0, the complexity of the SDP test approached

the complexity of solving the Lyapunov inequality for an undelayed
system.
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B. Examples

In this section, we give two numerical examples. All calculation
has been implemented by using MATLAB 7 with SOSTOOLS and
LMI Lab on a laptop PC with Intel Duo Core Processor T2250
(1.73GHz) and 1.5 GB RAM.

1) Example 1: We first consider the case of the system with
delayed state feedback of the form

ẋ(t) =



0 .5 0 0 0 0
−.5 −.5 0 0 0 0
0 1 .1 1 0 0
0 0 −2 .2 0 0
0 0 0 1 −2 0
0 0 0 0 0 −.9

x(t)

+



0
−.5
0
1
0
0

u1(t−
r√
2
) +



0 0
0 0
0 0
0 0
−2 0
−1 −1.45

u2(t− r)

where the state-feedback controller is

u1(t) =
[
0 1 1 0 0 0

]
x(t),

u2(t) =

[
−.2 0 0 0 1 0
0 0 −1 0 0 1

]
x(t).

The closed-loop system has 6 states and two delay channels with a
combined dimension of 3. It can be verified by calculating imaginary
poles that the system is asymptotically stable for r ∈ [rmin, rmax],
where rmin = 0.64963 and rmax = 1.75515. In Fig. 1, we use
a log-log plot to illustrate the accuracy of the stability test for this
example vs. the computation time required to run the algorithm using
SeDuMi for several different values of the degree. The computational
time only includes the time taken to run the SDP. Time taken to
define the SDP is not included. The largest stable delay r̂M for a
given degree is calculated using a bisection method and compared
to the analytical value. This value is defined as the accuracy of the
algorithm. The results are compared to another asymptotically exact
test - the discretized functional method [11] - which was also adapted
to the new coupled differential-difference formulation to reduce
computational cost. Also included is the previous version of the SOS
test [21]. Ideally, many other stability results would be included in this
plot. However, because tests by other authors in the literature did not
use the same experimental regime as our tests (different equipment,
etc.), it would not be appropriate to include them. However, if it
were possible, some interesting points of comparison would include
[3] and [13].

The numerical results of Fig. 1 indicate an approximately 2 orders
of magnitude reduction in computational complexity compared to
the old SOS formulation. This is roughly in-line with the theoretical
complexity analysis. Perhaps the most interesting feature of Fig. 1 is
that both asymptotically exact methods using the coupled differential-
difference formulation have roughly the same convergence rate.

2) Example 2: For the second example, we consider the system

ẋ(t) =

[
0 1

− 305
256

− 7
8

]
x(t) +

[
0
1
5

]
y1(t− r1)

+

[
0
− 4

5

]
y2(t− r2),

y1(t) =
[
1 0

]
x(t),

y2(t) =
[
1 0

]
x(t),

which is equivalent to the system discussed in the example of [13],
where a stability test based on pseudo-delay substitution and positive
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Discretized method in [11]
SOS method in [21]

Fig. 1. Log-Log plot of accuracy vs. computation time: From left, the ‘◦’-
points denote the cases of monomial degree d = 1, 2, 3; the ‘⋆’-points denote
the cases with gridding N = [1, 1], [1, 2], [2, 2], [2, 3], [3, 3], [4, 4], [5, 5];
the ‘⋄’-points denote the cases with monomial degree d = 1, 2.

polynomials was used. For different ratios 2 and 1/3 of r2/r1, the
analytical solutions r2max of the maximum allowable r2 are 7.5278
and 1.3213, respectively. The estimate of r2max is denoted as r̂2M .
A bisection process is used and an initial interval containing r̂2M of
length 2 is subdivided 16 times. Our algorithm is also compared to
the methods in [11] and [13]. The results are listed in Table I.

TABLE I
COMPARISON OF DIFFERENT STABILITY CONDITIONS FOR EXAMPLE 2

r2/r1 Methods r̂2M/r2max [%] Time [s]

2 Theorem 5 (d = 2) 98.82 143.6

[11] (N = [2, 2]) 97.66 248.2

[13] (LP) 27.83 315.0

[13] (SOS) 26.07 915.9

1/3 Theorem 5 (d = 2) 99.29 130.2

[11] (N = [3, 1]) 99.82 134.7

[13] (LP) 52.86 315.0

[13] (SOS) 49.51 915.9

In the table, d is the monomial degree, N is the gridding of dis-
cretized Lyapunov functional method, and LP is linear programming.
The computation time includes the time taken to define the problem
associated with SOS and LMI.

VII. CONCLUSION

In this paper, it was shown that the complexity of the Sum-of-
Squares/SDP conditions for stability analysis of linear time-delay
systems can be reduced by several orders of magnitude using a cou-
pled differential-difference formulation. The reduction of complexity
is particularly large in the case where the delayed system is high-
dimensional with relatively few delays in relatively few channels—
a situation which arises commonly in practice.
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