
Decentralized Computation for Robust Stability of Large-scale Systems
with Parameters on the Hypercube

Reza Kamyar and Matthew M. Peet

Abstract— In this paper, we propose a parallel algorithm to
solve the problem of robust stability of systems with large state-
space and with large number of uncertain parameters. The
dependence of the system on the parameters is polynomial and
the parameters are assumed to lie in a hypercube. Although the
parameters are assumed to be static, the method can also be
applied to systems with time-varying parameters. The algorithm
relies on a variant of Polya’s theorem which is applicable
to polynomials with variables inside a multi-simplex. The
algorithm is divided into formulation and solution subroutines.
In the formulation phase, we construct a large-scale semidefinite
programming problem with structured elements. In the solution
phase we use a structured primal-dual approach to solve
the structured semidefinite programming problem. In both
subroutines, computation, memory and communication is effi-
ciently distributed over hundreds and potentially thousands of
processors. Numerical tests confirm the accuracy and scalability
of the proposed algorithm.

I. INTRODUCTION
Models often contain uncertainty. Uncertainties come from

many sources including linearization, model reduction or
unknown operating conditions. In this paper, we address the
robust stability problem of large-scale systems with polyno-
mial dependence on several unknown parameters which lie
on the hypercube. The problem of robust analysis and control
of uncertain systems has thoroughly studied in references
such as [1], [2], [3] in both the frequency domain [4] and
the time domain [5], [6].

In this paper, we consider parameter-dependent systems of
the form ẋ(t) = A(α)x(t)+B(α)u(t). Neglecting the input,
A(α) is stable for all α ∈ ∆ if and only if there exists a
function P(α) such the Lyapunov inequality

A(α)T P(α)+P(α)A(α)< 0

for all α ∈ ∆. Several recent results have considered ways
of using Linear Matrix Inequalities (LMIs) to construct
functions P which satisfy this Lyapunov inequality [7], [8],
[9], [10]. For example, it was shown in [11] that if A is
polynomial, then we can assume that P is also polynomial.
Unfortunately, however, this only helps us slightly, as the
problem of verifying that a polynomial is positive is known
to be NP-hard [12].

To find polynomial functions P which satisfy the Lya-
punov inequality, researchers [13] have recently turned to

Reza Kamyar is a Ph.D student with the Cybernetic Systems and
Control Lab (CSCL), Department of Mechanical, Material and Aerospace
Engineering, Illinois Institute of Technology, Chicago, IL, 60616 USA,
rkamyar@hawk.iit.edu

Matthew M. Peet is an assistant professor with the department of Mechan-
ical, Material and Aerospace Engineering, Illinois Institute of Technology,
Chicago, IL, 60616 USA, mpeet@iit.edu

Sum-of-Squares methods [14], [15] and Positivstellensatz re-
sults [16] to construct increasingly accurate and increasingly
complex LMI-based tests for stability. Unfortunately, due to
the inherent intractability of the problem of polynomial opti-
mization, Sum-of-Squares (SOS) based algorithms typically
run out of memory for even relatively small-sized problems.
This fact makes it difficult to solve SOS-based algorithms
on current desktop machines.

In this paper, we consider the problem of finding a
polynomial solution to the Lyapunov inequality using high-
performance computing resources including cluster comput-
ers and supercomputers. Similar to desktop computers, super-
computers have relatively slow per-core clock speed. Unlike
desktop computers, however, supercomputers have hundreds
of thousands of processors. This means that if all processors
can be used simultaneously, the speedup from desktop to
supercomputer can be large, resulting in an improved ability
to solve problems with high dimension or several uncertain
variables. Unfortunately, in order to simultaneously utilize
hundreds of thousands of processors, our algorithms must
be very carefully structured.

Unfortunately, although a great deal of effort has gone into
creating parallel SDP solvers [17], optimization of positive
matrices is known to be an inherently sequential prob-
lem [18], which means that on a massively parallel machine,
certain centralized computations will increasingly dominate
the run-time, resulting in logarithmic speedup curves in a
phenomenon known as Amdahl’s law [19].

In this paper, we avoid Amdahl’s law by creating algo-
rithms with decentralized structure. Unfortunately, although
SOS is a very powerful tool for optimization of polynomials,
the LMI conditions associated with this methodology do not
have a readily exploitable structure. For this reason, we ex-
plore an alternative approach to optimization of polynomials
based on Polya’s theorem [20], [21].

The use of Polya’s theorem to create an SDP-based test for
robust stability is not new, and has been explored in e.g. [22],
[23] for both the simplex and the hypercube. In previous
work it has been shown that the computational complexity of
the robust stability test based on Polya’s algorithm is roughly
equivalent to that using the SOS framework.

In this paper, our approach is to show how to use parallel
computing to set up and solve polynomial optimization
problems based on Polya’s lemma. This work is an extension
of the work in [24], [25], wherein we considered the problem
of robust stability on a simplex: {x : ∑xi = 1, xi ≥ 0}. In
this previous work, we were able to achieve scalability on
hundreds of processors and solve robust analysis problems

in systems with 100 states. Unfortunately, the simplex is
a rather restrictive form of uncertainty set - it does not
allow for parameters which take values on the interval or
on a polytope. Additionally, we hope to eventually extend
our algorithms to the problem of nonlinear stability, which
required that the polynomial be defined over a set which
include the origin - which the simplex does not.

Our approach is to use a recent extension of Polya’s algo-
rithm to the multi-simplex [23] to create a parallel algorithm
for optimization of polynomials with variables defined on
the multi-simplex. When we say variables lie on the multi-
simplex, we mean that different subsets of the variables lie
on different simplexes. We show how parallel machines can
be used with this new version of Polya’s algorithm to define
a block-structure LMI problem of a form which is similar
to the case of a single simplex - at the cost of an increased
number of variables. We then apply the structured primal-
dual approach of [25] to solve this structured LMI.

The result is an algorithm with almost no centralized
computation, memory or communication - creating near-
ideal speed-up. Specifically, we show that the communication
operations per processor is proportional to 1

Nc
, where Nc

is the number of processors used by the algorithm. This
implies that by increasing the number of processors, we
actually decrease the communication overhead per processor
and improve the speed-up. Naturally, there exists an upper-
bound for the number of processors which can be used by the
algorithm, beyond which, no speed-up is gained. This upper-
bound is proportional to the number of uncertain parameters
in the system and for practical problems will be far larger
than the number of available processers.

This paper is arranged as follows. In Section II, we de-
scribe the notation. In Section III we show how to represent
the given uncertain system matrix in the form of a class of
homogeneous polynomials with uncertain parameters inside
the unit multi-simplex - the form required for input to the
algorithm. In Section IV, we explain Polya’s algorithm, the
stability conditions and the SDP problem associated with this
algorithm. The parallel setup algorithm and its complexity
analysis are addressed in Section V. Finally, the speed-up and
accuracy of the algorithm are demonstrated by two examples
in Section VI.

II. NOTATION

We denote a monomial by αγ = ∏l
i=1 αγi

i , where α ∈
Rl is the vector of variables and γ ∈ Nl is the vector of
exponents. For a given number of variables, l, define the
set Wd :=

{
γ ∈ Nl : ∑l

i=1 γi = d
}

which represents the set
of monomials of degree d in l variables. We represent the
homogeneous matrix-valued polynomial P(α) of degree dp
as

P(α) = ∑
h∈Wdp

Phαh,

where Ph ∈ Rn×n are the coefficients of the monomials and
Wdp is the set of the exponents of the monomials in P(α).
Consider the case where α = (α1, · · · ,αN) with αi ∈Rli , and

h = (h1, · · · ,hN), where hi ∈Wdpi
. Then we represent a class

of homogeneous polynomials of degree dp = ∑N
i=1 dpi as

P(α) = ∑
h1∈Wdp1

· · · ∑
hN∈WdpN

P{h1,··· ,hN}αh1
1 · · ·αhN

N .

We define Dp = (dp1 , · · · ,dpN) as the vector of the degrees
of the variables α1, · · · ,αN . We often use the lexicograph-
ical ordering of monomials, wherein αh1 · · ·αhN precedes
αh′1 · · ·αh′N , if the left-most non-zero entry of h−h′ = (h1 −
h′1, · · · ,hN −h′N) is positive. We denote the l-dimensional unit
simplex by ∆l as

∆l :=

{
α ∈ Rl ,

l

∑
i=1

αi = 1,αi > 0

}
.

The unit multi-simplex ∆̃{l1,··· ,lN} is the Cartesian product
of N unit simplexes; i.e., ∆̃{l1,··· ,lN} := ∆l1 × ·· · ×∆lN . The
subspace of symmetric matrices and cone of positive definite
symmetric matrices in Rn×n are denoted by Sn and S+n , re-
spectively. diag(X1, · · · ,Xm) denotes a block-diagonal matrix
in Rmn×mn whose diagonal blocks are X1, · · · ,Xm ∈ Rn×n. In
and 0n are the identity and zero matrices of dimension n. We
will use a standard basis for Sn, which is defined as

[Ek]i j =

{
1 i = j = k
0 otherwise

, for k ≤ n

and [Ek]i j = [Ak]i j +[Ak]
T
i j, for k > n, where

[Ak]i j =

{
1 i = j−1 = k−n
0 otherwise.

The canonical basis for Rn is denoted by ei for i = 1, · · · ,n,
where

ei = [0 ...0 1︸︷︷︸
ith

0 ...0].

1n ∈ Nn is the vector with all elements equal to 1.

III. PRELIMINARIES

In this paper, we address the stability of the uncertain
linear systems of the form

ẋ(t) = A(α)x(t), (1)

where A(α) ∈ Rn×n is a homogeneous matrix-valued poly-
nomial of degree da and can be represented as

A(α) = ∑
h1∈Wda1

· · · ∑
hN∈WdaN

A{h1,··· ,hN}αh1
1 · · ·αhN

N , (2)

with variables in the multi-simplex α ∈ ∆̃{l1,··· ,lN}.

A. Representing A(α) in homogeneous form with α ∈
∆̃{l1,··· ,lN}

In this section, we show how to transform non-
homogeneous polynomials with parameters on the hypercube
into homogeneous polynomials on the multi-simplex, as
introduced in II.

Case 1: Non-homogeneous A(α), α ∈ ∆̃{l1,··· ,lN}
Suppose the polynomial A(α) with Na monomials and

α ∈ ∆̃{l1,··· ,lN} is not homogeneous. Define Da,k =
(da1,k , · · · ,daN,k) ∈ NN for k = 1, · · · ,Na, where dai,k is the
total degree of the variables inside ∆li , in the kth monomial of
A(α) according to lexicographical ordering. To evaluate the
stability of the system ẋ(t) = A(α)x(t) for all α ∈ ∆̃{l1,··· ,lN},
we evaluate the stability of ẋ(t) = B(α)x(t), where B(α) =
A(α) for all α ∈ ∆̃{l1,··· ,lN} and where B(α) is obtained as
follows.

1) Initialize B = A.
2) For k = 1, · · · ,Na, multiply the kth monomial of

B(α), according to lexicographical ordering, by

∏N
i=1

(
∑li

j=1 α
(dai−dai,k)

i, j

)
, where

dai = max
k=1,··· ,Na

dai,k for i = 1, · · · ,N. (3)

As an example, consider the non-homogeneous polyno-
mial

A(α) = A1(α1,1 +α12)α2,1 +A2α2
1,2 +A3α2,2,

where N = 2,Na = 4,(α1,1,α1,2),(α2,1,α2,2)∈ ∆2 and Da,1 =
(1,1),Da,2 = (1,1), Da,3 = (2,0),Da,4 = (0,1). The homoge-
neous form of A(α) is

A(α) = A1(α1,1 +α12)
2α2,1 +A2α2

1,2(α2,1 +α2,2)

+A3(α1,1 +α1,2)
2α2,2

= A{(2,0),(1,0)}α2
1,1α2,1 +A{(2,0),(0,1)}α2

1,1α2,2

+A{(1,1),(1,0)}α1,1α1,2α2,1 +A{(1,1),(0,1)}α1,1α1,2α2,2

+A{(0,2),(1,0)}α2
1,2α2,1 +A{(0,2),(0,1)}α2

1,2α2,2,

where
A{(2,0),(1,0)} = A1, A{(2,0),(0,1)} = A3, A{(1,1),(1,0)} = 2A1

A{(1,1),(0,1)} = 2A3, A{(0,2),(1,0)} = A1 +A2,

A{(0,2),(0,1)} = A2 +A3.

Case 2: A(α) with α inside the hypercube ΦN
Define hypercube ΦN ⊂ RN as follows.

ΦN := {α ∈ RN : |αi| ≤ ri, for i = 1, · · · ,N}.

Suppose α = (α1,1, · · · ,αN,1) ∈ ΦN . To evaluate the stability
of the system ẋ(t) = A(α)x(t) for all α ∈ ΦN , we evaluate
the stability of ẋ(t) = B(α)x(t) for all α ∈ ∆̃{l1,··· ,lN}, where
{A(α) : α ∈ ΦN}= {B(α) : α ∈ ∆{l1,··· ,lN}} and where B(α)
is obtained as follows.

1) Initialize B = A.
2) Define new variables α ′

i,1 = αi+ri
2ri

∈ [0,1], for i =
1, · · · ,N and substitute α ′ for α in B(α).

3) Define a new set of variables β1, · · · ,βN ∈ [0,1] such
that (α ′

i,1,βi) ∈ ∆2 for i = 1, · · · ,N.
4) Recalling that Da,k = (da1,k , · · · ,daN,k) is the vector of

degrees of kth monomial in A(α ′), for k = 1, · · · ,Na,
multiply the kth monomial in B(α ′), according to lexi-
cographical ordering, by ∏N

i=1(α ′
i,1+βi)

dai−dai,k , where
dai is the same as in (3).

IV. PROBLEM SETUP

In this section, we derive a set of stability conditions for
systems with uncertainties on the multi-simplex. We apply
Polya’s theorem [20] to a Lyapunov inequality to construct
a set of stability conditions that are independent of the
uncertainty parameters. The following is a Lyapunov stability
condition [22].

Theorem 1: The linear system (1) is stable if and only if
there exists a polynomial matrix P(α) such that P(α) > 0
and

AT (α)P(α)+P(α)A(α)< 0 (4)

for all α ∈ ∆̃{l1,··· ,lN}.

The stability condition in Theorem 1 is intractable [12]. To
construct a sequence of tractable conditions we use a variant
of Polya’s theorem [20] for polynomials with variables inside
the unit multi-simplex. This result can be implied from the
work in [23].

Theorem 2: (Polya’s Theorem) The homogeneous polyno-
mial F(α) > 0 for all α ∈ ∆̃{l1,··· ,lN} if and only if for all
sufficiently large d,

N

∏
i=1

(
li

∑
j=1

αi, j

)d

F(α) (5)

has all positive definite coefficients.
In the following subsection we derive the parameter-
independent stability conditions associated with Polya’s the-
orem.

A. Polya’s algorithm and its associated stability conditions

In order to verify the robust stability of system (1) we look
for a P(α) ∈ S+n that satisfies (4). According to [26], we can
assume that P is homogeneous. If we let P be homogeneous
and of degree dp = ∑N

i=1 dpi then we can represent P as

P(α) = ∑
hN∈WdpN

· · · ∑
h1∈Wdp1

P{h1,··· ,hN}αh1
1 · · ·αhN

N (6)

where we are trying to find the matrices P{h1,··· ,hN} ∈ Rn×n.
Using Polya’s theorem, the constraints of Theorem 1 can be
written as follows:

N

∏
i=1

(
li

∑
j=1

αi, j

)d

P(α) and

−
N

∏
i=1

(
li

∑
j=1

αi, j

)d

(AT (α)P(α)+P(α)A(α))

have all positive definite coefficients.
By substituting for A(α) and P(α) from (2) and (6) in
the above conditions and calculating the coefficients of
monomials, there exist βh,γ and Hh,γ such that the conditions
can be expressed as

∑
h1∈Wd1

· · · ∑
hN∈WdN

β{h1,··· ,hN},{γ1,··· ,γN}P{h1,··· ,hN} > 0 (7)

for γ1 ∈Wdp1+d , · · · ,γN ∈WdpN +d , and

∑
h1∈Wd1

· · · ∑
hN∈WdN

(
HT
{h1,··· ,hN},{γ1,··· ,γN}P{h1,··· ,hN}

+P{h1,··· ,hN}H{h1,··· ,hN},{γ1,··· ,γN}

)
< 0 (8)

for γ1 ∈Wdp1+da1+d , · · · ,γN ∈WdpN +daN +d .

Calculating β :
To calculate the {β{h1,··· ,hN},{γ1,··· ,γN}} coefficients and
{H{h1,··· ,hN},{γ1,··· ,γN}} we provide the following recursive
formulas. These formulas are the generalized form of the
recursive formulas which were provided in [27] for the case
of a single simplex. First for γ1 ∈ Wdp1

, · · · ,γN ∈ WdpN
, and

h1 ∈Wdp1
, · · · ,hN ∈WdpN

set

β (0)
{h1,··· ,hN},{γ1,··· ,γN} =

{
1 h1 = γ1, · · · ,hN = γN

0 otherwise.

Then for i = 1, · · · ,d, γ1 ∈ Wdp1
+ i, · · · ,γN ∈ WdpN

+ i and
h1 ∈Wdp1

, · · · ,hN ∈WdpN
we have

β (i)
{h1,··· ,hN},{γ1,··· ,γN}= ∑

λN∈WdpN +i−1

λN=γN−e j
j=1...lN

· · · ∑
λ1∈Wdp1+i−1

λ1=γ1−e j
j=1...l1

β (i−1)
{h1,··· ,hN},{λ1,··· ,λN}.

Finally, set β{h1,··· ,hN},{γ1,··· ,γN} = β (d)
{h1,··· ,hN},{γ1,··· ,γN}, where

γ ∈Wdp+d .

Calculating H:
To calculate {H{h1,··· ,hN},{γ1,··· ,γN}} coefficients, first for γ1 ∈
Wdp1+da1

, · · · ,γN ∈ WdpN +daN
and h1 ∈ Wdp1

, · · · ,hN ∈ WdpN
let

H(0)
{h1,··· ,hN},{γ1,··· ,γN} = ∑

δN∈WdaN
δN+hN=γN

· · · ∑
δ1∈Wda1

δ1+h1=γ1

A{δ1,··· ,δN}.

Then, for i = 1, . . . ,d, γ1 ∈ Wdp1+da1+i, · · · ,γ1 ∈ WdpN +daN +i
and h1 ∈Wdp1

, · · · ,hN ∈WdpN
we have

H(i)
{h1,··· ,hN},{γ1,··· ,γN} =

∑
λN∈WdpN +daN +i−1

λN=γN−e j
j=1...lN

· · · ∑
λ1∈Wdp1+da1+i−1

λ1=γ1−e j
j=1...l1

H i−1
{h1,··· ,hN},{λ1,··· ,λN}.

Finally, set H{h1,··· ,hN},{γ1,··· ,γN} = Hd
{h1,··· ,hN},{γ1,··· ,γN}, where

γ1 ∈Wdp1+da1+d , · · · ,γN ∈WdpN +daN +d .
To solve the LMI conditions in (7) and (8), we express

them in the form of a dual Semi-Definite Programming
(SDP) problem with a block-diagonal structure that is suit-
able for decentralized computation. The following section
defines the dual SDP problem.

B. The SDP problem elements

Semidefinite programming is the optimization of a linear
objective function over the cone of positive definite matrices

and subject to linear matrix equality and/or inequality con-
straints. Given the SDP elements C ∈ Sm, a∈Rk and Bi ∈ Sm,
we define the dual formulation of SDP as

min
y,Z

aT y

subject to
K

∑
i=1

yiBi −C = Z

Z ≽ 0 , y ∈ RK

where Z ∈ Sm and y ∈ RK are the dual variables. We define
the SDP elements associated with the conditions (7) and (8)
as follows. The element C is

C = diag(C1, · · ·CL,CL+1, · · ·CL+M), (9)

where for a given d and N−dimensional multi-simplex,

L =
N

∏
i=1

(dpi +d + li −1)!
(dpi +d)!(li −1)!

(10)

is the number of monomials in ∏N
i=1

(
∑li

j=1 αi, j

)d
P(α) and

M =
N

∏
i=1

(dpi +dai +d + li −1)!
(dpi +dai +d)!(li −1)!

(11)

is the number of monomials in

N

∏
i=1

(
li

∑
j=1

αi, j

)d

(AT (α)P(α)+P(α)A(α)),

and for j = 1, · · · ,L+M,

C j =

{
εInζ j, 1 ≤ j ≤ L
0n, L+1 ≤ j ≤ L+M,

(12)

where ζ ∈ NL is calculated as follows. First let

ζ (0) =

[
(dpN +d)!

∏lN
i=1 hN(i,1)!

, · · · ,
(dpN +d)!

∏lN
i=1 hN(i, f (lN ,dPN

+d))!

]
,

where hN ∈ ∆lN , and the scalar hN(i, j) denotes the exponent
of the ith variable in the jth element of WdPN

according to
lexicographical ordering and where

f (l,g) =
(l +g−1)!
g!(l −1)!

is the number of monomials in a polynomial of degree g
with l variables. Then for k = 1, · · · ,N, set

ζ (k) = ζ (k−1)⊗ (dpr(k) +d)!

∏
lr(k)
i=1 hr(k)(i,1)!

, · · · ,
(dpr(k) +d)!

∏
lr(k)
i=1 hr(k)(i, f (lr(k),dpr(k)+d))

!

 ,
where r(k) = N − k + 1 and hN−k+1 ∈ ∆N−k+1. Finally, set
ζ = ζ (N).
For i = 1, · · · ,K, the elements Bi are defined as

Bi = diag(Bi,1, · · · ,Bi,L,Bi,L+1, · · · ,Bi,L+M), (13)

where

K =
n(n+1)

2

N

∏
i=1

(dpi + li −1)!
dpi !(li −1)!

, (14)

is the number of dual variables of SDP problem that is
equal to the total number of upper-triangular elements in
the coefficients of P(α) and where

Bi, j =

∑hN∈WdpN
· · ·∑h1∈Wdp1

β{h1,··· ,hN},{λ1 j ,··· ,λNj }
P{h1,··· ,hN}(ei),

for 1 ≤ j ≤ L

−∑hN∈WdpN
· · ·∑h1∈Wdp1

HT
{h1,··· ,hN},{γ1 j−L ,··· ,γNj−L}

P{h1,··· ,hN}(ei)

+P{h1,··· ,hN}(ei)H{h1,··· ,hN},{γ1 j−L ,··· ,γNj−L}
,

for L+1 ≤ j ≤ L+M,

(15)

where λi j is the jth element of Wdpi+dai
using lexicographical

ordering and γi j−L is the (j−L)th element of Wdpi+dai+d using
lexicographical ordering and

P{h1,··· ,hN}(x) =
Ñ

∑
k=1

Ek xk+N(I{h1,··· ,hN}−1),

where Ek is the basis of Sn from Section II, Ih is the
lexicographical index of h, Ñ = n(n+1)

2 and n is the dimension
of system (1). Finally, by setting

a = 1⃗ ∈ RK ,

the SDP problem associated with Polya’s algorithm is de-
fined. In the following section, we propose a parallel setup
algorithm to calculate the SDP elements defined in this
section.

V. PARALLEL SETUP ALGORITHM

In this section we propose a parallel setup algorithm that
represents the stability conditions in (7) and (8) in the form
of an SDP problem with elements in (9) and (13). A brief
description of the algorithm is presented below, wherein we
suppose the algorithm is run on Nc processors.

A. Algorithm description

Inputs:
The dimension of the hypercube (or multi-simplex) N, the
dimensions of the simplexes l1, · · · , lN , the vector of degrees
of variables in A(α) and P(α) that are Da = (da1 , · · · ,daN)
and Dp = (dp1 , · · · ,dpN), The dimension of the state-space
n, the coefficients of A(α) and the Polya’s exponent dmax.

Step 1: Initialization

For i = 1, · · · ,Nc, processor i
1) Receives the input variables from the user and sets

d = 0.
2) Calculates the number of monomials in P(α) and A(α)

denoted by Np0 and Na using (10).
3) Sets b = ∑N

k=1 lk.

4) Creates the set of exponents of the monomials in P(α)
denoted by Zi

p0
= {pi

01
, · · · , pi

0N′p
}, where pi

0 j
∈ Nb.

Step2: Constructing the sets of exponents for A(α) and P(α)

For i = 1, · · · ,Nc, processor i
1) Sets Np = Np0 .
2) Creates the set of exponents of the monomials in P(α)

with lexicographical indices (i−1)N′
p to iN′

p denoted
by Zi

p = {pi
1, · · · , pi

N′
p
}, where pi

j ∈ Nb and

N′
p = floor

(
Np

Nc

)
. (16)

3) Receives the coefficients of the monomials in A(α)
with lexicographical indices (i−1)N′

a to iN′
a, from the

user, where

N′
a = floor

(
Na

Nc

)
.

4) Creates the set of exponents of the monomials in
A(α) with lexicographical indices (i − 1)N′

a to iN′
a

denoted by Zi
a = {ai

1, · · · ,ai
N′

a
}, where ai

j ∈ Nb.

Step 3: Constructing the set of exponents for P(α)A(α)

For i = 1, · · · ,Nc, processor i
1) Calculates the number of monomials in P(α)A(α)

denoted by Npa and using (11).
2) Creates the set of exponents of the monomials in

P(α)A(α) with lexicographical indices (i− 1)N′
pa to

iN′
pa denoted by Zi

pa = {pai
1, · · · , pai

N′
pa
}, where pai

j ∈
N∑N

k=1(lk), where

N′
pa = floor

(
Npa

Nc

)
. (17)

3) For j = 1, · · · ,Np0 and k = 1, · · · ,N′
a, if ai

k + pi
0 j

/∈ Zi
pa,

then sends the coefficient of the monomial in A(α)
with the exponent ai

k to the processors with index r,
such that ai

k + pi
0 j
∈ Zr

pa.
4) For j = 1, · · · ,N′

pa and k = 1, · · · ,N′
p, if pai

j − pi
k /∈ Zi

a,
then receives the coefficient of the monomial in A(α)
with the exponent pai

j − pi
k, from the processors with

index r, such that pai
j − pi

k ∈ Zr
a.

Step 4: Initializing β and H coefficients

For i = 1, · · · ,Nc, processor i
1) For j = 1, · · · ,Np0 and k = 1, · · · ,N′

p0
sets

β i
j,k =

{
1 j = (i−1)N′

p0
+ k

0 otherwise.

2) For j = 1, · · · ,Np0 and k = 1, · · · ,N′
pa, sets H i

j,k = 0n.
3) For j = 1, · · · ,Np0 and k = 1, · · · ,N′

a, sets
H i

j,I = H i
j,I +A(i−1)N′

a+k, where I is the lexicographical
index of the monomial with exponent ai

k + pi
0 j

in Zi
pa and where A(i−1)N′

a+k is the coefficient of

the monomial in A(α) with lexicographical index
(i−1)N′

a + k.

Step 5: Updating the set of exponents of P(α) and P(α)A(α)

For i = 1, · · · ,Nc, processor i
1) Sets d = d +1.
2) For j = 1, · · · ,N, sets dp j = dp j +1 and da j = da j +1.
3) Calculates Np2 using (10) and Npa2 using (11), N′

p2
using (16) and N′

pa2
using (17).

4) Calculates the set of exponents of
∏N

i=1(∑
li
j=1 αi, j)

dP(α) denoted by Zi
p2

and the
set of exponents of ∏N

i=1(∑
li
j=1 αi, j)

dP(α)A(α)

denoted by Zi
pa2

.

Step 6: Updating β and H coefficients

1) For i= 1, · · · ,Nc and for j = 1, · · · ,N′
p, if the monomial

with exponent pi
j + 1b ∈ Zi

p2
, then processor i sets

β i
k, j = β i

k, j + β i
k,I for k = 1, · · · ,N′

p0
, where I is the

lexicographical index of pi
j+1b. If pi

j+1b ∈ Zr
p2

where
r ̸= i, then processor r sends β i

k,I to processor i, and
processor i sets β i

k, j = β i
k, j +β i

k,I for k = 1, · · · ,N′
p0

.

2) For i = 1, · · · ,Nc and for j = 1, · · · ,N′
pa, if the

monomial with exponent pai
j + 1b ∈ Zi

pa2
, then

processor i sets H i
k, j = H i

k, j +H i
k,I for k = 1, · · · ,N′

p0
,

where I is the lexicographical index of pai
j + 1b. If

pai
j+1b ∈ Zr

pa2
where r ̸= i, then processor r sends Hr

k,I
to processor i, and processor i sets H i

k, j = H i
k, j +Hr

k,I
for k = 1, · · · ,N′

p0
.

Step 7: Updating parameters

For i = 1, · · · ,Nc, processor i
1) Sets Np = Np2 , Npa = Npa2 , N′

p = N′
p2

and N′
pa = N′

pa2
.

2) Sets Zi
p = Zi

p2
and Zi

pa = Zi
pa2

.
3) If d < dmax, go to Step 5.

Step 8: Calculating the SDP elements

For i = 1, · · · ,Nc, processor i
1) Calculates C j for j = (i − 1)N′

pa + 1, · · · , iN′
pa us-

ing (12).
2) Calculates B j,k for j = 1, · · · ,K and k = (i− 1)N′

pa +
1, · · · , iN′

pa using (15), where K is defined in (14).
Outputs:
The SDP elements C and Bi for i = 1, · · · ,K.

B. Complexity analysis

In this section, the algorithm performance in terms
of speed-up, computation cost, communication cost and
memory requirement is discussed.

Computation cost:
The most computationally expensive part of the algorithm

is the calculation of Bi, j elements for i = 1, · · · ,K and
j = 1, · · · ,L + M. It can be shown that, if the number of

processors is equal to L, then the number of operations per
processor at each iteration is

∼ K ·L0 ·floor(
L+M

Nc
) ·n5 ∼ n5

N

∏
i=1

l
2dpi+dai+d
i ,

where L0 =∏N
i=1

(dpi + li −1)!
(dpi)!(li −1)!

. Recall that Nc is the number

of processors, dpi is the degree of the variable αi ∈ ∆li in the
polynomial P(α), dai is the degree of the variable αi ∈ ∆li
in the polynomial A(α) and d is the Polya’s exponent. In
case of systems with uncertain parameters inside a single-
simplex, this confirms that the number of operations scales
as l2dp+da+dn5 as reported in [25]. The number of operations
versus the dimension of hypercube N is plotted in Fig. 1
for different Polya’s exponents d. The figure shows that
for the case of hypercube, the number of operations grows
exponentially with the dimension of the hypercube; whereas
for the case of simplex the number of operations grows
polynomially. This means that the algorithms developed in
this paper can handle fewer uncertain variables than was
possible for a single simplex [27].

1 2 3 4 5 6 7 8 9 10
10

5

10
10

10
15

10
20

10
25

Dimension of hypercube and simplex N

N
u

m
b

er
 o

f
o

p
er

at
io

n
s

d=0, (H)
d=0, (S)
d=1, (H)
d=1, (S)
d=2, (H)
d=2, (S)
d=3, (H)
d=3, (S)

Fig. 1. The number of operations versus the dimension of the hypercube N,
for different Polya’s exponents d. (H) stands for hypercube and (S) stands
for simplex.

Communication cost:
In the worst scenario, where every processor sends all its

{H} coefficients to all the other processors, it can be shown
that the communication cost per processor at each iteration
is

∼
(
floor(

L
Nc

)+floor(
M
Nc

)

)
n2 ·

N

∏
i=1

li ∼
n2

Nc

N

∏
i=1

l
dpi+dai+d+1
i

where Nc ≤ L. Therefore, by increasing the number of
processors, the communication cost per processor decreases
and the scalability of the algorithm is improved. In case
of the systems with uncertain parameters inside a single-
simplex, the number of communication operations

∼
n2

Nc
ldp+da+d+1

which is the same result as reported in [25]. Again, it can be
shown that the communication cost increases exponentially

with the dimension of the hypercube; whereas in the case
of simplex the communication cost increases polynomially.

Speed-up:
In the proposed setup algorithm, the calculation of {β}

and {H} coefficients is distributed among the processors.
The calculation is performed with no centralized (sequential)
operation. As a result the algorithm can achieve near-ideal
speed-up, i.e.

SPN =
N

D+NS
=

N
1+0

= N,

Where D = 1 is the ratio of the operations performed by
all processors simultaneously to total operations performed
simultaneously and sequentially. S = 0 is the ratio of
the operations performed sequentially to total operations
performed simultaneously and sequentially.

Memory requirement:
The amount of memory for storing the SDP elements ver-

sus the number of uncertain parameters in the unit hypercube
and unit simplex, for different dimensions of the state-space
n and Polya’s exponents d is shown in Fig. 2. In all cases
of the hypercube we use dpi = dai = 1 for i = 1, · · · ,N.
The figure shows that for the case of hypercubes, the
required memory increases exponentially with the number
of uncertain parameters, whereas for the case of the simplex
the required memory increases polynomially.

1 2 3 4 5 6 7 8
10

−5

10
0

10
5

10
10

No. of uncertain parameters

R
eq

ui
re

d
m

em
or

y
(G

ig
ab

yt
e)

n=10,d=2 (H)

n=10,d=5 (H)

n=40,d=2 (H)

n=40,d=5 (H)

n=100,d=2 (H)

n=100,d=5 (H)

n=10,d=2 (S)

n=10,d=5 (S)

n=40,d=2 (S)

n=40,d=5 (S)

n=100,d=2 (S)

n=100,d=5 (S)

Fig. 2. Required memory for the calculation of SDP elements versus the
number of uncertain parameters in the unit hypercube and unit simplex, for
different state-space dimensions n and Polya’s exponents d. (H) stands for
hypercube and (S) stands for simplex.

VI. EXAMPLES

In this section, we evaluate the accuracy and the scalability
of the proposed algorithm in the following examples.

Example 1: Accuracy
To illustrate accuracy, we first consider a simple system
where the system matrix is a linear function of the uncertain
parameters [13].

ẋ(t) =

(
A0 +

4

∑
i=1

αiAi

)
x(t),

where αi ∈ [−b,b] for i = 1, · · · ,4 and

A0 =

 −3 0 −1.7 3
−0.2 −2.9 −1.7 −2.6
0.6 2.6 −5.8 −2.6
−0.6 2.9 −3.3 −2.4

 A1 =

 1.1 −2.7 −0.4 −1.1
2.2 0.7 −1.5 0.4
−1.2 −1.1 0.7 3
−1.2 −2.2 −3.2 −1.4



A2 =

 1.6 2.7 0.1 0.6
−3.6 0.4 −0.1 2.3
−1.1 2 −0.7 −1.8
−2.6 −1.5 −1 0.8

 A3 =

−0.6 1.5 0.5 −1.6
0.2 −0.1 0.2 0.3
−0.1 −0.2 −0.2 1.2
−0.5 −1.2 1.7 −0.1



A4 =

−0.4 −0.1 −0.3 0.1
0.1 0.3 0.2 0
0 0.2 −0.3 0.1

0.1 −0.2 −0.2 0


The goal is to find the maximum b such that the system is

stable for all αi ∈ [−b,b]. Using the procedure in section III-
A, we first represent the system in the homogeneous form
with uncertain parameters inside the unit hypercube; i.e,

ẋ(t) =

(
A′

0b
+

4

∑
i=1

α ′
i A

′
ib

)
x(t), α ′ ∈ Φ4, (18)

where Φ is the unit hypercube. Then we solve the problem

max b

s.t. system (18) is stable for all α ∈ Φ4

using a bisection search, where at each iteration of the
bisection search we use the proposed setup algorithm to
construct the SDP problem and use the parallel SDP solver
in [27] to solve the SDP. The resulting optimal values
for b are shown in Fig. 3 for different degrees of P(α)
and Polya’s exponents d. The maximum value for b is
found to be 0.8739 which matches the value obtained in [13].

0 1 2
0.4

0.5

0.6

0.7

0.8

0.9

Polya’s exponent d

M
ax

 b

D
p
=(0,0,0,0)

D
p
=(0,1,0,1)

D
p
=(1,0,1,0)

D
p
=(1,1,1,1)

D
p
=(2,2,2,2)

Fig. 3. Maximum bound on uncertain parameters for stability versus
Polya’s exponent for different degrees Dp of P(α)

Example 2: Scalability
A parallel algorithm is scalable, if by using Nc processors
it can solve a problem Nc times faster than solving the
same problem using one processor. Thus, the speed-up of
the ideal scalable algorithm is linear. To test the scalability
of our algorithm, we run the algorithm using two random
uncertain systems with state-spaces of dimension n = 5 and

10. The tests are implemented on a linux-based Karlin cluster
computer at Illinois Institute of Technology. In all the runs,
Dp = (2,2,2,2),Da = (1,1,1,1) and α ∈ Φ4. Fig. 4 shows
the computation time of the algorithm versus the number
of processors, for two different state-space sizes and two
different number of iterations (Polya’s exponents d). We
claim that the linearity of the curves in all cases implies
near-perfect scalability of the algorithm.

1 4 8 16 32 64 100

0.05

1

5

10

20

40

Number of processors

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
)

n=5, d=2
n=5, d=5
n=10, d=2
n=10, d=5

Fig. 4. Computation time of the algorithm versus the number of processors,
for different state-space dimensions n and Polya’s exponents d

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have designed a scalable parallel algo-
rithm to construct a set of structured LMI conditions for
solving optimization problems with constraints in the form
of polynomial positivity over the hypercube. This algorithm
can be used to perform robust analysis and control of systems
with uncertainties which lie within the hypercube. This
approach can be readily extended to positivity on polytopes
through vector scaling and the addition of redundant con-
straints. The algorithm was tested on large cluster computers
and the complexity compared to the case of stability on a
single simplex [25]. Near-perfect scalability of algorithm was
demonstrated for large numbers of processors. Ongoing work
involves extending our algorithm to the problem of nonlinear
stability and implementation of our algorithm on GPU-based
supercomputers.

ACKNOWLEDGMENTS

The authors would like to gratefully acknowledge funding
from NSF Grant # CMMI-1100376.

REFERENCES

[1] K. Zhou and J. Doyle, Essentials of Robust Control. Prentice Hall,
1998.

[2] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design:
State-Space and Lyapunov Techniques. Modern Birkhauser Classics,
2008.

[3] G. E. Dullerud and F. Paganini, A course in Robust Control Theory,
A Convex Approach. Springer, 2005.

[4] V. L. Kharitonov, “Asymptotic stability of an equilibrium position of
a family of systems of linear differential equations,” ifferentsialnye
Uravneniya, vol. 14, no. 2, pp. 2086–2088, 1978.

[5] J. Shamma, “Robust stability with time-varying structured uncer-
tainty,” Automatic Control, IEEE Transactions on, vol. 39, no. 4,
pp. 714–724, 1994.

[6] A. Packard and J. Doyle, “Quadratic stability with real and complex
perturbations,” Automatic Control, IEEE Transactions on, vol. 35,
no. 2, pp. 198–201, 1990.

[7] P. Gahinet, P. Apkarian, and M. Chilali, “Affine parameter-dependent
lyapunov functions and real parametric uncertainty,” IEEE Transac-
tions on Automatic Control, vol. 41, pp. 436–442, Mar 1996.

[8] R. C. L. F. Oliveira and P. L. D. Peres, “Stability of polytopes of
matrices via affine parameter-dependent Lyapunov functions: Asymp-
totically exact LMI conditions,” Linear Algebra Appl., vol. 405,
pp. 209–228, Aug 2005.

[9] P. A. Bliman, “A convex approach to robust stability for linear systems
with uncertain scalar parameters,” SIAM J. Control Optim, vol. 42,
no. 3-4, pp. 2016–2042, 2004.

[10] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Polynomially parameter-
dependent lyapunov functions for robust stability of polytopic systems:
an LMI approach,” IEEE Transactions on Automatic Control, vol. 50,
pp. 365–370, Mar 2005.

[11] P. A. Bliman, “An existence result for polynomial solutions of
parameter-dependent LMIs,” Syst. Control Lett., vol. 51, pp. 165–169,
Mar 2004.

[12] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Math.
Operat. Res., vol. 23, no. 4, pp. 769–805, 1998.

[13] G. Chesi, “Establishing stability and instability of matrix hypercubes,”
Systems & control letters, vol. 54, no. 4, pp. 381–388, 2005.

[14] P. Parrilo, Structured Semidefinite Programs and Semialgebraic Geom-
etry Methods in Robustness and Optimization. PhD thesis, California
Institute of Technology, 2009.

[15] P. Rajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOS-
TOOLS: a general purpose sum of squares programming solver,” in
Proceedings of IEEE Conference on Decision and Control, 2002.

[16] G. Stengle, “A nullstellensatz and a positivstellensatz in semialgebraic
geometry,” Mathematische Annalen, vol. 207, no. 2, pp. 87–97, 1973.

[17] M. Yamashita, K. Fujisawa, and M. Kojima, “SDPARA: Semidefinite
programming algorithm parallel version,” Parallel Computing, vol. 29,
pp. 1053–1067, 2003.

[18] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Limits to Parallel
Computation: P-Completeness Theory. Oxford University Press, 1995.

[19] G. M. Amdahl, “Validity of the single processor approach to achieving
large-scale computing capabilities,” No. 30, pp. 483–485, AFIPS
Conference Proceedings, 1967.

[20] G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge
University Press, 1934.

[21] C. W. Scherer, “Relaxations for robust linear matrix inequality prob-
lems with verifications for exactness,” SIAM Journal on Optimization,
vol. 27, no. 2, pp. 365–395, 2005.

[22] R. C. L. F. Oliveira and P. L. D. Peres, “Parameter-dependent LMIs
in robust analysis: Characterization of homogeneous polynomially
parameter-dependent solutions via LMI relaxations,” IEEE Transac-
tions on Automatic Control, vol. 52, pp. 1334–1340, Jul 2007.

[23] R. C. L. F. Oliveira, P.-A. Bliman, and P. L. D. Peres, “Robust
LMIs with parameters in multi-simplex: Existence of solutions and
applications,” pp. 2226–2231, Proceedings of IEEE Conference on
Decision and Control, 2008.

[24] M. M. Peet and Y. V. Peet, “A parallel-computing solution for
optimization of polynomials,” Proceedings of the American Control
Conference, Jun-Jul 2010.

[25] R. Kamyar, M. M. Peet, and Y. Peet, “Solving large-scale robust sta-
bility problems by exploiting the parallel structure of polyas theorem,”
Submmited to IEEE Transactions on Automatic Control, 2012.

[26] P. Bliman, R. C. L. F. Oliveira, V. F. Montagner, and P. L. D.
Peres, “Existence of homogeneous polynomial solutions for parameter-
dependent linear matrix inequalities with parameters in the simplex,”
in Proceedings of the 45nd IEEE Conference on Decision and Control,
Dec 2006.

[27] R. Kamyar and M. M. Peet, “Decentralized computation for robust
stability analysis of large state-space systems using polyas theorem,”
in Proceedings of the American Control Conference, Jun-Jul 2012.

