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Abstract— In this paper, we introduce an algorithm to decen-
tralize the computation associated with the stability analysis
of systems of nonlinear differential equations with a large
number of states. The algorithm applies to dynamical systems
with polynomial vector fields and checks the local asymptotic
stability on hypercubes. We perform the analysis in three
steps. First, by applying a multi-simplex version of Polya’s
theorem to some Lyapunov inequalities, we derive a sequence
of stability conditions of increasing accuracy in the form of
structured linear matrix inequalities. Then, we design a set-up
algorithm to decentralize the computation of the coefficients of
the LMIs, among the processing units of a parallel environment.
Finally, we use a parallel primal-dual central path algorithm,
specifically designed to solve the structured LMIs given by the
set-up algorithm. For a sufficiently large number of available
processors, the per-core computational complexity of the re-
sulting algorithm is fixed with the accuracy. The algorithm
demonstrates a near-linear speed-up in numerical experiments.

I. INTRODUCTION
Since most systems in the real world are inherently

nonlinear, using linear models to describe them may not
provide the accuracy required for certain applications. This
is the case when the deviation of the system variables
from their operating points is large. In addition, common
discontinuous nonlinearities in the physical systems such as
relay, backlash and hysteresis cannot be locally approximated
by linear models. Thus, accurate study and control of real
world systems necessitates improvements in the subject of
the stability and control of nonlinear models. In this paper,
we address the problem of stability of large-scale nonlinear
models described by differential equations and defined on
hypercubic domains.

The stability of nonlinear systems has been studied thor-
oughly both in the frequency domain and the time domain.
Perhaps the most significant method for the stability anal-
ysis of nonlinear systems in time domain is the Lyapunov
approach [1]. The Lyapunov-based methods [2] and [3] con-
stitute a comprehensive framework for performing stability
analysis and providing stability certificates for closed-loop
nonlinear control systems.

In this paper, we seek a systematic method to generate
Lyapunov functions. There exist several classical methods for
generating Lyapunov functions, e.g., Zubov’s method [4], [5]
Popov’s method [6] and generalized integral methods [7];
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all of which address certain mathematical forms for the
nonlinear system and the Lyapunov function. In this context,
modern methods such as Sum-of-Squares (SOS) [8], [9]
and moments [10] use polynomial computing techniques
to generate increasingly accurate Lyapunov functions. By
augmenting the SOS method with the Positivstellensatz
results [11], local stability analysis can be performed on
complex geometries such as semi-algebraic sets. In [12], it
is shown that exponential stability on bounded sets implies
the existence of SOS Lyapunov polynomials with a degree
bound. The application of the SOS method in robust stability
analysis of nonlinear uncertain systems can be found in [13]
and [14].

The SOS method represents the Lyapunov stability con-
ditions in the form of Semi-Definite programming (SDP)
relaxations. The conservatism of the stability analysis can be
reduced by increasing the degree of the Lyapunov candidate
polynomials. However, this results in an exponential increase
in the size of the associated SDPs. Also, the size of the SDPs
depend polynomially on the state-space dimension. Thus,
increasing the accuracy of the analysis of large-scale systems
requires high computational complexity and a large amount
of memory (typically in the order of terabytes). This makes
it impractical to solve large analysis problems with high
accuracy using the SOS algorithm on desktop computers.

Parallel computing techniques can be used to perform
highly intensive computations on cluster-computers and
super-computers. In this technique, chunks of data and com-
putation are distributed among a large number of processors
that can communicate through a certain communication
architecture. To take the full advantage of the excellent
computational capabilities provided by the cluster computers,
decentralized algorithms must be developed to distribute
the tasks and data among the processors such that syn-
chronization and load balance in the network of processors
are maintained. Unfortunately, the SDPs associated with the
SOS algorithm do not have a readily distributable structure.
In fact, it is proved that Semi-definite programming is P-
complete, also known as the class of inherently sequential
problems. This means that Semi-definite programs cannot be
fully distributed among the processors. For this reason, none
of the available parallel SDP solvers [15], [16] can attain
perfect speed-up (Amdahl’s law).

To avoid Amdahl’s law, in this paper we develop a
decentralized polynomial computing algorithm based on
Polya’s theorem [17]. Polya’s theorem proves the positivity
of homogeneous polynomials on the positive orthant (equiv-
alently on a simplex) by giving a sum of even-powered



monomials representation with a uniform denominator. A
variant of Polya’s theorem for positivity on a multi-simplex
is provided by [18] and its decentralized version applied
to robust stability problems with uncertain parameters on
the hypercube is proposed in [19]. Several upper-bounds on
the number of iterations of Polya’s algorithm can be found
in [20], [21]. There exist different extensions to Polya’s
algorithm for positivity on the entire real domain [21] and
non-negativity of polynomials with zeros on the vertices [22]
and edges [23] of the simplex.

Similar to the SOS algorithm, the accuracy of Polya’s
algorithm improves with the number and degree of the
monomial bases, with cost of an increase in the compu-
tational complexity and memory requirements. Unlike the
SDPs associated with the SOS algorithm, in this paper we
show that the SDPs associated with Polya’s algorithm are
highly structured and can be mapped to a parallel computing
environment [24] with no centralized computation. First, we
derive a set of stability conditions in the form of Linear
Matrix Inequalities (LMIs) by applying the multi-simplex
version of Polya’s theorem to the Lyapunov inequalities.
Next we develop a fully decentralized asynchronous set-up
algorithm that maps the SDP formulation of the LMIs to a
set of processors. Finally, we use our primal-dual parallel
SDP solver in [25], [24], specifically designed to solve
SDPs with block-diagonal structure, to provide the Lyapunov
function in the case of stability. Numerical examples show
that the proposed algorithm achieves a near-linear speed-up,
in particular for the case of systems with large state-space
dimension.

II. NOTATION

We represent a monomial by xγ = ∏l
i=1 xγi

i , where x is the
vector of variables in Rl and γ is the vector of exponents
in Nl . We define Wd :=

{
γ ∈ Nl : ∑l

i=1 γi = d
}

as the set of
exponents of all of the l−variate monomials of degree d. We
represent homogeneous polynomials of degree dp as P(x) =
∑h∈Wdp

Phxh, where Ph ∈ Rn×n are the matrix coefficients of
the monomials of P(x). We denote the n-dimensional unit
simplex as

∆l :=

{
x ∈ Rl ,

l

∑
i=1

xi = 1,xi ≥ 0

}
and the multi-simplex as ∆̃{l1,··· ,lN} := ∆l1 × ·· · × ∆lN . We
will frequently use the following representation for the class
of multi-homogeneous polynomials defined on the multi-
simplex:

P(x, x̃) = ∑
h1∈Wdp1

· · · ∑
hN∈WdpN

P{h1,··· ,hN}x
h1,1
1 x̃

h1,2
1 · · ·xhN,1

N x̃
hN,2
N ,

where dp := [dp1 , · · · ,dpN ]∈NN is the degree vector, (xi, x̃i)∈
∆2 for i = 1, · · · ,N and hi ∈Wdpi

, where hi, j denotes the jth

component f the ith element in Wdpi
according to lexicograph-

ical ordering. According to the lexicographical ordering, the
monomial xh1 · · ·xhN precedes the monomial xh′1 · · ·xh′N , if the
left-most non-zero entry of h−h′ = (h1−h′1, · · · ,hN −h′N) is

positive. For brevity, we denote the coefficients P{h1,··· ,hN} by
PhN . We define n−dimensional hypercubes as

Φn,r := {x ∈ Rn : |xi| ≤ ri, i = 1, · · · ,n}.

In [19], for any polynomial R(x), x ∈ Φn,r, we constructed
the homogenized polynomial denoted by H (R)(x, x̃), (x, x̃)∈
∆̃{l1,··· ,lN}, where

{R(x), x ∈ Φn,r}= {H (R)(x, x̃), (x, x̃) ∈ ∆̃{l1,··· ,lN}}.

The subspace of symmetric matrices in Rn×n is denoted
by Sn and the cone of positive definite symmetric matrices
is denoted by S+n . We define the standard basis for Sn as
follows.

[Ek]i, j =

{
1 i = j = k
0 otherwise

, for k ≤ n

and [Ek]i, j = [Ak]i, j +[Ak]
T
i, j, for k > n, where

[Ak]i, j =

{
1 i = j−1 = k−n
0 otherwise.

The canonical basis for Rn is shown as ei for i = 1, · · · ,n,
where ei = [0 ... 0 1︸︷︷︸

ith

0 ... 0]. A block-diagonal matrix in

Rmn×mn with diagonal blocks X1, · · · ,Xm ∈ Rn×n is denoted
by diag(X1, · · · ,Xm). Finally,

−→
1n ∈ Nn is the vector with all

elements equal to 1 and 0n is the zero matrix in Rn×n.

III. BACKGROUND AND PROBLEM SET-UP

In this paper, we address the local stability of nonlinear
systems of the form

ẋ(t) = A(x)x(t), (1)

where A(x)∈Rn×n is a matrix-valued polynomial and A(0) 6=
0 (see Remark 3). Consider the following well-known Lya-
punov result.

Theorem 1: If there exists a continuously differentiable
function V : Rn → R, such that for some r ∈ Rn and contin-
uous positive definite functions W1,W2,W3,

W1(x)≤V (x)≤W2(x) for all x ∈ Φn,r and

∇V T f (x)≤−W3(x) for all x ∈ Φn,r,

then system (1) is asymptotically stable on {x : {y : V (y) ≤
V (x)} ⊂ Φn,r}.

We would like to find the largest ri, i = 1, · · · ,n for the
hypercube Φn,r and a Lyapunov function V (x), such that
system (1) is asymptotically stable on the largest level-set
of V (x) contained in Φn,r. To avoid intractability, we restrict
V (x) to be a polynomial and apply Polya’s Theorem [17]
to the homogenized form of the Lyapunov inequalities in
Theorem (1). This constructs a set of tractable, yet relaxed
stability conditions in the form of linear matrix inequalities
whose feasibility implies the feasibility of the Lyapunov
inequalities. We discuss Polya’s Theorem and its associated
stability conditions in the following subsection.



A. Polya’s Theorem and its associated stability conditions

For every strictly positive homogeneous polynomial de-
fined on the positive orthant, Polya’s theorem [17] constructs
a rational sum of squared monomials representation with the
uniform denominator (∑n

i=1 x2
i )

d for some d ∈ N+, hence a
certificate for positivity. We use a multi-simplex version of
Polya’s Theorem as in [18], [19].

Theorem 2: (Polya’s Theorem - muti-simplex version)
The multi-homogeneous polynomial F(x)> 0 on ∆̃{l1,··· ,lN} if
and only if for some sufficiently large d (Polya’s exponent),

N

∏
i=1

(
li

∑
j=1

xi, j

)d

F(x) (2)

has all positive definite coefficients.
The following is the main result that provides the sufficient

conditions for stability of system (1).
Theorem 3: Suppose for some d ≥ 0, there exists a matrix-

valued polynomial P(x)� 0 for all x ∈ Φn,r, such that

−
n

∏
i=1

(
Xi + X̃i

)d ((
H (P̂)(X , X̃)

+
1
2


H ( f T )(X , X̃)H ( ∂ P̂

∂X1
)(X , X̃)

...
H ( f T )(X , X̃)H ( ∂ P̂

∂Xn
)(X , X̃)


T
H (Â)(X , X̃)

+H (Â)T (X , X̃)
(
H (P̂)(X , X̃)

+
1
2


H ( f T )(X , X̃)H ( ∂ P̂

∂X1
)(X , X̃)

...
H ( f T )(X , X̃)H ( ∂ P̂

∂Xn
)(X , X̃)



 (3)

has all positive definite coefficients, where

P̂(X) := P( f (X)) Â(X) := A( f (X)), (4)

where X = f−1(x) where,

f : {[0 , 1]× ·· · × [0 , 1]} ⊂ Rn → Φn,r,

f (X) := [ f1(X1), · · · , fn(Xn)]
T , fi(Xi) := 2riXi − ri, (5)

and where (X1, X̃1) × ·· · × (Xn, X̃n) ∈ ∆̃{2, · · · ,2︸ ︷︷ ︸
n times

}. Then,

there exists a polynomial V (x) : Φn,r → R+ such that
∇V (x)T A(x)x < 0 for all x ∈ Φn,r.

Proof: Choose V (x) = xT P(x)x > 0 on Φn,r. Then,

∇V (x)T A(x)x =

xT

2P(x)A(x)+


xT ∂P(x)

∂x1
...

xT ∂P(x)
∂xn


T

A(x)

x.

∇V (x)T A(x)x < 0 for all x ∈ Φn,r if and only if

J(x) = AT (x)P(x)+P(x)A(x)

+
1
2

AT (x)


xT ∂P(x)

∂x1
...

xT ∂P(x)
∂xn

+


xT ∂P(x)
∂x1
...

xT ∂P(x)
∂xn


T

A(x)

≺ 0 (6)

for all x ∈ Φn,r. Thus, it is enough to show that (6) holds.
By utilizing the map (5) and definitions (4) and (5), we have

Ĵ(X) = ÂT (X)P̂(X)+ P̂(X)Â(X)

+
1
2

ÂT (x)


f T (X) ∂ P̂(X)

∂X1
...

f T (X) ∂ P̂(X)
∂Xn

+


f T (X) ∂ P̂(X)
∂X1

...
f T (X) ∂ P̂(X)

∂Xn


T

Â(X)

 ,

where X ∈ {[0 , 1]× ·· · × [0 , 1]} ⊂ Rn. Then, the homoge-
nized J(X) is

H (Ĵ)(X , X̃) =
H (P̂)(X , X̃)+

1
2


H ( f T )(X , X̃)H ( ∂ P̂

∂X1
)(X , X̃)

...
H ( f T )(X , X̃)H ( ∂ P̂

∂Xn
)(X , X̃)


TH (Â)(X , X̃)

+H (Â)T(X , X̃)

H (P̂)(X , X̃)+
1
2


H ( f T )(X , X̃)H ( ∂ P̂

∂X1
)(X , X̃)

...
H ( f T )(X , X̃)H ( ∂ P̂

∂Xn
)(X , X̃)





(7)

where (X1, X̃1)× ·· · × (Xn, X̃n) ∈ ∆̃{2,··· ,2}. From the The-
orem assumption, there exists an exponent d ≥ 0 such
that −∏n

i=1
(
Xi + X̃i

)d
H (Ĵ)(X , X̃) has all positive-definite

coefficients. Thus, by using Theorem 2 (necessity)

H (Ĵ)(X , X̃)≺ 0.

Since

{J(x), x ∈ Φn,r}= {H (Ĵ)(X , X̃), (X1, X̃1)×
·· ·× (Xn, X̃n) ∈ ∆̃{2,··· ,2}},

we conclude that J(x) ≺ 0 for all x ∈ Φn,r. Thus
∇V (x)T A(x)x < 0 for all x ∈ Φn,r.

Remark 3: Suppose A(0) = 0. Then from (4), Â(X) will
have a zero at X = 1

2
−→
1n . Then, H (Â)(X , X̃) will have a zero

in int(∆̃{2,··· ,2}). Then, according to (7), H (Ĵ)(X , X̃) will
have a zero in int(∆̃{2,··· ,2}). Because for any homogeneous
polynomial with zeros in the interior of the simplex, there
exists no Polya’s exponent [22], it concludes that there exists
no d ≥ 0 such that −∏n

i=1
(
Xi + X̃i

)d
H (Ĵ)(X , X̃) has all

positive-definite coefficients.

B. LMI formulation of the stability conditions
In order to verify the stability of system (1), we search

for P(x) ∈ Sn
+ that satisfy the assumptions of Theorem (3),

restated as follows.
n

∏
i=1

(
Xi + X̃i

)d1
(
H (P̂)(X , X̃)

)
and (8)



−
n

∏
i=1

(
Xi + X̃i

)d2

((
H (P̂)(X , X̃)+

1
2

MT (X , X̂)

)
H (Â)(X , X̃)

+H (Â)T (X , X̃)

(
H (P̂)(X , X̃)+

1
2

M(X , X̂)

))
(9)

have positive-definite coefficients, where for brevity we used

M(X , X̃) :=


H ( f T )(X , X̃)H ( ∂ P̂

∂X1
)(X , X̃)

...
H ( f T )(X , X̃)H ( ∂ P̂

∂Xn
)(X , X̃)

 ∈ Rn×n.

Let P(x),x ∈ Φn,r be of degree vector dp ∈ NN , with Np
monomials with unknown coefficients P1, · · · ,PNp ∈ S+n in
lexicographical ordering. Using the homogenization proce-
dure in [19], M(X , X̃) can be represented in the standard
multi-homogeneous format defined Section II as

M(X , X̃) = ∑
h1∈WdM1

· · · ∑
hN∈WdMN

MhN X
h1,1
1 X̃

h1,2
1 · · ·XhN,1

N X̃
hN,2
N ,

(10)
where for brevity we denote MhN (P1, · · · ,PNp) by MhN and
where (X1, X̃1)×·· ·× (Xn, X̃n) ∈ ∆̃{2.··· ,2}.
Likewise, Given A(x),x ∈ Φn,r of degree vector da ∈NN , Na
monomials with coefficients A1, · · · ,ANa in lexicographical
ordering, we can represent A(x) as

H (Â)(X , X̃)= ∑
h1∈Wda1

· · · ∑
hN∈Wdan

AhN X
h1,1
1 X̃

h1,2
1 · · ·XhN,1

N X̃
hN,2
N ,

(11)
where for brevity we denote AhN (A1, · · · ,ANa)∈Rn×n by AhN

and where (X1, X̃1)×·· ·× (Xn, X̃n) ∈ ∆̃{2.··· ,2}. Likewise, we
represent P(x),x ∈ Φn,r as

H (P̂)(X , X̃)= ∑
h1∈Wdp1

· · · ∑
hN∈WdpN

PhN X
h1,1
1 X̃

h1,2
1 · · ·XhN,1

N X̃
hN,2
N ,

(12)
where we denote the unknown coefficients PhN (P1, · · · ,PNp)∈
S+n by PhN and (X1, X̃1)×·· ·× (Xn, X̃n) ∈ ∆̃{2.··· ,2}.

By substituting for H (P̂)(X , X̃) in (8) from (12) and
calculating the coefficients of the resulting monomials, the
first stability condition can be expressed as the following
LMI with unknown variables PnN .

∑
h1∈Wdp1

· · · ∑
hN∈Wd pN

(
β{hN ,ΓN}PhN

)
� 0, (13)

where ΓN denotes {γ1, · · · ,γN}, where γ1 ∈Wdp1+d1 , · · · ,γN ∈
WdpN +d1 and where hN denotes {h1, · · · ,hN}. For some
hN and ΓN , we define β{hN ,ΓN} ∈ N as the coefficient of
PhN in the monomial with the exponent vector [γ1, · · · ,γN ].
Similarly, by substituting for M(X , X̃), H (Â)(X , X̃) and
H (P̂)(X , X̃) in (9) from (10), (11) and (12), and calculat-
ing the coefficients of the resulting monomials, the second
stability condition can be expressed as

∑
h1∈Wdp1

· · · ∑
hN∈WdpN

(
HT
{hN ,ΓN}(PhN +

1
2

MT
hN
)

+(PhN +
1
2

MhN )H{hN ,ΓN}

)
≺ 0,

(14)

where h1 ∈WdP1
, · · · ,hN ∈WdPN

and γ1 ∈Wdpa1+d2 , · · · ,γN ∈
WdpaN +d2 , where dpai := dpi +dai . For some hN and ΓN , we
define H{hN ,ΓN} as the coefficient of PhN in the monomial
with the exponent vector [γ1, · · · ,γN ]. Recursive formulas for
calculating β and H coefficients are given in [19].

In the following section, we define a sequence of struc-
tured SDPs associated with the LMIs in (13) and (14). Then
we propose a decentralized set-up algorithm to construct this
sequence.

C. SDP formulation of the stability conditions

We solve the LMIs associated with Theorem (3) by
means of semi-definite programming. In this section, we
introduce a sequence of dual SDP formulations of the LMIs
in (13) and (14) with constraints of block-diagonal structure.
The sequence is indexed by Polya’s exponent d, where for
simplicity we consider the case d1 = d2 = d.

We define the elements of the sequence {SDPd}∞
d=0 as

follows.
SDPd : min

y(d),Z(d)
aT y(d)

subject to
K

∑
i=1

y(d)i B(d)
i −C(d) = Z(d)

Z(d) < 0 , y(d) ∈ RK

where Z(d) ∈ S+m ∪{0} and y(d) ∈ RK are the dual variables.
We define the elements of SDPd , i.e., C(d),B(d)

i ,a as follows.
The element C(d) is

C(d) := diag(C(d)
1 , · · ·C(d)

L ,C(d)
L+1, · · ·C

(d)
L+M), (15)

where
L =

n

∏
i=1

(dpi +d1 +1)!
(dpi +d1)!

(16)

is the number of monomials in (8) and

L′ =
n

∏
i=1

(dpi +dai +d2 +1)!
(dpi +dai +d2)!

(17)

is the number of monomials in (9) and C(d)
j can be calculated

as in [19].
For i = 1, · · · ,K, define the elements B(d)

i as

B(d)
i = diag(B(d)

i,1 , · · · ,B
(d)
i,L ,B

(d)
i,L+1, · · · ,B

(d)
i,L+L′), (18)

where
K =

n(n+1)
2

n

∏
i=1

(dpi +1)!
dpi !

, (19)

is the dimension of the dual variable y and where for 1 ≤
j ≤ L,

B(d)
i, j = ∑

h1∈Wdp1

· · · ∑
hN∈WdpN

β{hN ,ΓN, j}UhN (ei) (20)

and for L+1 ≤ j ≤ L+L′,

B(d)
i, j = ∑

h1∈Wdp1

· · · ∑
hN∈WdpN

(
HT
{hN ,ΓN, j−L}

(
UhN (ei)+

1
2

V T
hN
(ei)

)

+

(
UhN (ei)+

1
2

VhN (ei)

)
H{hN ,ΓN, j−L}

)
, (21)

where recall that ΓN, j := {γ1 j , · · · ,γN j}, where γi j is the jth

element of WdMi+d using lexicographical ordering, and
UhN (z) := PhN (D1(z), · · · ,DNp(z)) (22)



and
VhN (z) := MhN (D1(z), · · · ,DNp(z)), (23)

where
Dk(z) :=

Ñ

∑
l=1

El zl+Ñ(k−1), (24)

where recall form Section II that Ek is the basis of Sn and
Ñ := n(n+1)

2 . By setting a =~1 ∈RK , The definition of SDPd
is complete.

Finally, we provide a pseudo-code for Polya’s algorithm
to find an approximation of the region of attraction (in case
of stability) of system (1).

Algorithm 1: Polya’s algorithm
Inputs: Number of monomials in A(x) : Na, Coefficients
of A(x) : Ai, i = 1, · · · ,Na, degree vector of A(x) : da,
exponent vectors of P(x) : ei, Number of monomials in
P(x) : Np, upper-bound on Polya’s exponent: dmax,
lower- and upper-bounds on the size of Φn,r : r0,r1.

Bisection search on r:
while d < dmax do

Homogenize A(x) and calculate AhN as in [19]
Calculate UhN and VhN using (22), (23)
Calculate β (d) and H(d) coefficients as in [19]
Construct SDPd using (15)-(21)
if SDPd is feasible then

Break while loop
Set d = d +1

Calculate Pi = ∑Ñ
l=1 El xl+Ñ(k−1) for i = 1, · · · ,Np

Calculate P(x) = ∑Np
i=1 Pixei

Outputs: Lyapunov function: V = xT (t)P(x)x(t) and the
Maximum size of Φn,r : rmax such that (1) is stable on
{x : {y : V (y)≤V (x)} ⊂ Φn,rmax}

In the following section, we provide a parallel implemen-
tation for the set-up algorithm (steps 1 to 4 of the while loop
in Algorithm 1).

IV. PARALLEL IMPLEMENTATION

To construct the sequence {SDPd}∞
d=0, we first develop an

asynchronous parallel set-up algorithm with no centralized
data and computation. Then the parallel SDP solver in [24]
which is specifically designed to solve SDPs with a block-
diagonal structure, will be used to perform the last step of Al-
gorithm 1. A simplified pseudo-code for the proposed decen-
tralized set-up algorithm is as follows. The speed-up results
of the algorithm are provided in Example 2 of Section V and
a parallel C++ implementation of Algorithm 2 is available at
www.sites.google.com/a/asu.edu/kamyar/software.

V. NUMERICAL RESULTS

In this section, we assess the conservatism and speed-up
of the developed algorithms in two numerical examples.

Example 1: Accuracy
In this example, we show how the accuracy of the algorithm
in approximating the region of attraction of a typical nonlin-
ear system improves by increasing the degree of P(x) in the
Lyapunov function V (x) = xT P(x)x. Consider the Van der
Pol oscillator in reverse time, modeled as

ẋ1(t) =−x2(t), ẋ2(t) = x1(t)+ x2(t)
(
x2

1(t)−1
)

Algorithm 2: Decentralized set-up algorithm
Inputs: No. of processors: Nc, Coefficients of A : Ai,
degrees and No. of monomials in A and P: da,dp,Na,Np
Initialization:
for i = 1, · · · ,Nc, processor i do

Set d = 0, dpa = dp +da
Calculate L and L′ using (16), (17).
Calculate per-core number of monomials:

N p = floor(Np/Nc) , Na = floor(Na/Nc) ,

L = floor(L/Nc) , L′ = floor
(
L′/Nc

)
for γ(i−1)L+1, · · · ,γiL and h1, · · · ,hL do

Calculate β (0)
{hN ,ΓN} as in [19]

for γ(i−1)L′+1, · · · ,γiL′ and h1, · · · ,hL do
Calculate H(0)

{hN ,ΓN} as in [19]

Polya’s iterations:
for i = 1, · · · ,Nc, processor i do

for d = 1, · · · ,dmax do
Set dp = dp +

−→
1n . Update L and L

Set dpa = dpa +
−→
1n . Update L′ and L′

for γ(i−1)L+1, · · · ,γiL and h1, · · · ,hL do
Update β (d)

{hN ,ΓN} as in [19]

for γ(i−1)M′+1, · · · ,γiM′ and h1, · · · ,hL do
Update H(d)

{hN ,ΓN} as in [19]

Calculating the SDP elements:
for j = (i−1)L+1, · · · , iL do

Calculate C(d)
j as in [19]

for j = 1, · · · ,K do
for k = (i−1)L, · · · , iL do

Calculate B(d)
j,k using (20)

for k = L+(i−1)L′+1, · · · ,L+ iL′ do
for l = (i−1)N p, · · · , iN p do

Calculate Dl(e j) using (24)

Calculate B(d)
j,k using (21).

Outputs: processor i returns the elements:
C(d)

j for j = (i−1)L+1, · · · , iL, B(d)
j,k for j = 1, · · · ,K

and k = (i−1)L, · · · , iL,L+(i−1)L′+1, · · · ,L+ iL′

and the hypercubes Φ2,r1 , · · · ,Φ2,r4 , where r1 = [1,1],r2 =
[1.5,1.5],r3 = [1.7,1.8],r4 = [1.9,2.4]. For the hypercube of
radius ri, i = 1, · · · ,4, we solved the problem
min λ subject to

V (x) = xT P(x)x > 0, for all x ∈ Φ2,ri and with dp = [λ ,λ ]
V̇ < 0 for all x ∈ Φ2,ri

using a bisection search on λ in an outer-loop, and Algo-
rithm 1 in the inner-loop. Recall that dp ∈ N2 is the degree
vector of P(x). The thick curve in Fig. 1 is the region of
attraction of the Van der Pol equation. For each hypercube



of size ri, we have shown the largest inscribed level-set
of the Lyapunov function and its corresponding dp which
are found by solving the above optimization problem. The
figure suggests that increasing dp results in less conservative
Lyapunov functions and better approximations for the region
of attraction.
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Fig. 1. Largest invariant sets of the Lyapunov functions V = xT P(x)x
associated with hypercubes of different sizes

Example 2: Speed-up
In this example, we ran the decentralized set-up algorithm
for three random nonlinear systems of state-space dimensions
n = 10,20 and 50. Polya’s exponent is d = 1 and A(x) has
degree 2 in all the cases. We used a linux-based Karlin
cluster computer at Illinois Institute of Technology. Fig. 2
shows the speed-up of the algorithm versus the number of
processors. An algorithm is scalable if the speed-up versus
the number of the processors shows a linear trend. It is
observed that the speed-up of the algorithm is closer to the
ideal linear speed-up for larger state-space dimensions. So
the algorithm achieves a better scalability for systems of
higher dimensions.
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Fig. 2. Speed-up of the decentralized set-up algorithm

VI. CONCLUSION AND FUTURE WORKS

A decentralized algorithm based on Polya’s theorem is
proposed to solve the stability problem of systems with large
number of nonlinear differential equations. The states are
assumed to lie on a hypercube. The numerical experiments
show the excellent scalability of the algorithm. The accuracy
of the algorithm is assessed in a numerical example for
different degrees of the Lyapunov functions and Polya’s
exponents. The method can be readily extended to solve
nonlinear robust stability problems, by applying Polya’s algo-
rithm on the parameter-dependent Lyapunov conditions with
parameters on the hypercube. Also, the algorithm can be used
to perform a decentralized computation for robust controller
synthesis, by setting-up and solving the LMIs associated
with H2 and H∞ synthesis. Decentralized compuytation for

stability analysis on more complicated geometries such as
convex polytopes will be studied in future.
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