
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013 1931

Solving Large-Scale Robust Stability Problems by
Exploiting the Parallel Structure of Polya’s Theorem

Reza Kamyar, Matthew M. Peet, and Yulia Peet

Abstract—In this paper, we propose a distributed computing
approach to solving large-scale robust stability problems on
the simplex. Our approach is to formulate the robust stability
problem as an optimization problem with polynomial variables
and polynomial inequality constraints. We use Polya’s theorem
to convert the polynomial optimization problem to a set of highly
structured linear matrix inequalities (LMIs). We then use a slight
modification of a common interior-point primal-dual algorithm to
solve the structured LMI constraints. This yields a set of extremely
large yet structured computations. We then map the structure
of the computations to a decentralized computing environment
consisting of independent processing nodes with a structured
adjacency matrix. The result is an algorithm which can solve the
robust stability problem with the same per-core complexity as
the deterministic stability problem with a conservatism which is
only a function of the number of processors available. Numerical
tests on cluster computers and supercomputers demonstrate
the ability of the algorithm to efficiently utilize hundreds and
potentially thousands of processors and analyze systems with

dimensional state-space. The proposed algorithms can be
extended to perform stability analysis of nonlinear systems and
robust controller synthesis.

Index Terms—Decentralized computing, large-scale systems,
polynomial optimization, robust stability.

I. INTRODUCTION

T HIS PAPER addresses the problem of stability of large-
scale systems with several unknown parameters. Control

system theory, when applied in practical situations, often in-
volves the use of large state-space models, typically due to the
inherent complexity of the system, the interconnection of sub-
systems, or the reduction of an infinite-dimensional or PDE
model to a finite-dimensional approximation. One approach to
dealing with such large-scale models has been to use model re-
duction techniques, such as balanced truncation [1]. However,
the use of model reduction techniques is not necessarily robust
and can result in arbitrarily large errors. In addition to large state
space, practical problems often contain uncertainty in the model

Manuscript received November 21, 2011; revised September 24, 2012; ac-
cepted February 26, 2013. Date of publication March 19, 2013; date of current
version July 19, 2013. This work was supported entirely by funding from the
National Science Foundation under Award CMMI-1100376. Recommended by
Fabrizio Dabbene.
R. Kamyar is with the Department of Mechanical Engineering, Cybernetic

Systems and Controls Laboratory, Arizona State University, Tempe, AZ 85281
USA (e-mail: rkamyar@asu.edu).
M. M. Peet and Y. Peet are with the School for Engineering of Matter,

Transport, and Energy, Engineering Research Center, Arizona State University,
Tempe, AZ 85281 USA (e-mail: mpeet@asu.edu; ypeet@asu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2013.2253253

due to modeling errors, linearization, or fluctuation in the oper-
ating conditions. The problem of stability and control of systems
with uncertainty has been widely studied. See, for example, the
texts [2]–[5]. However, a limitation of existing computational
methods for analysis and control of systems with uncertainty
is high complexity. This is a consequence of the fact that the
problem of robust stability of systems with parametric uncer-
tainty is known to be NP-hard [6], [7]. The result is that for sys-
tems with parametric uncertainty and with hundreds of states,
existing algorithms will fail with the primary point of failure
usually being a lack of unallocated memory.
In this paper, we seek to distribute the computation laterally

over an array of processors within the context of existing
computational resources. Specifically, we seek to utilize
cluster-computing, supercomputing, and graphics-processing
unit (GPU)-computing architectures. When designing algo-
rithms to run in a parallel computing environment, one must
both synchronize computational tasks among the processors
while minimizing communication overhead among the pro-
cessors. This can be difficult, since each architecture has a
specific communication graph. We account for communication
by explicitly modeling the required communication graph
between processors. This communication graph is then mapped
to the processor architecture using the message-passing inter-
face (MPI) [8]. While there are many algorithms for robust
stability analysis and control of linear systems, ours is the first
which explicitly accounts for the processing architecture in the
emerging multicore computing environment.
Our approach to robust stability is based on the well-es-

tablished use of parameter-dependent quadratic-in-the-state
(QITS) Lyapunov functions. The use of parameter-dependent
Lyapunov QITS functions eliminates the conservativity associ-
ated with, for example, quadratic stability [9], [10], at the cost
of requiring some restriction on the rate of parameter variation.
Specifically, our QITS Lyapunov variables are polynomials
in the vector of uncertain parameters. This is a generalization
of the use of QITS Lyapunov functions with affine param-
eter dependence as in [11] and expanded in, for example,
[11]–[14]. The use of polynomial QITS Lyapunov variables
can be motivated by [15], wherein it is shown that any feasible
parameter-dependent LMI with parameters inside a compact
set has a polynomial solution or [16] wherein it is shown that
local stability of a nonlinear vector field implies the existence
of a polynomial Lyapunov function.
There are several results which use polynomial QITS Lya-

punov functions to prove robust stability. In most cases, the
stability problem is reduced to the general problem of opti-
mization of polynomial variables subject to linear matrix in-

0018-9286/$31.00 © 2013 IEEE

1932 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

equality (LMI) constraints—an NP-hard problem [17]. To avoid
NP-hardness, the polynomial optimization problem is usually
solved in an asymptotic manner by posing a sequence of suffi-
cient conditions of increasing accuracy and decreasing conser-
vatism. For example, building on the result in [15], [18] pro-
vides a sequence of increasingly precise LMI conditions for ro-
bust stability analysis of linear systems with affine dependency
on uncertain parameters on the complex unit ball. Necessary
and sufficient stability conditions for linear systems with one
uncertain parameter are derived in [19], providing an explicit
bound on the degree of the polynomial-type Lyapunov function.
The result is extended to multiparameter-dependent linear sys-
tems in [20]. Another important approach to the optimization of
polynomials is the sum of squares (SOS) methodology which
replaces the polynomial positivity constraint with the constraint
that the polynomial admits a representation as a sum of squares
of polynomials [21]–[24]. A version of this theorem for polyno-
mials with matrix coefficients can be found in [23]. While we
have worked extensively with the SOS methodology, we have
not, as of yet, been able to adapt algorithms for solving the re-
sulting LMI conditions to a parallel computing environment. Fi-
nally, there have been several results in recent years on the use
of Polya’s theorem to solve polynomial optimization problems
[25] on the simplex. An extension of the Polya’s theorem for
uncertain parameters on the multisimplex or hypercube can be
found in [26]. The approach presented in this paper is an ex-
tension of the use of Polya’s theorem for solving polynomial
optimization problems in a parallel computing environment.
The goal of this project is to create algorithms which ex-

plicitly map computation, communication, and storage to ex-
isting parallel processing architectures. This goal is motivated
by the failure of existing general-purpose semidefinite program-
ming (SDP) solvers to efficiently utilize platforms for large-
scale computation. Specifically, it is well established that linear
programming and semi-definite programming both belong to
the complexity class P-Complete, also known as the class of in-
herently sequential problems. Although there have been several
attempts to map certain SDP solvers to a parallel computing en-
vironment [27], [28], certain critical steps cannot be distributed.
The result is that as the number of processors increases, cer-
tain bottleneck computations dominate, leading a saturation in
computational speed of these solvers (Amdahl’s law [29]). We
avoid these bottleneck computations and communications by
exploiting the particular structure of the LMI conditions as-
sociated with Polya’s theorem. Note that, in principle, a per-
fectly designed general-purpose SDP algorithm could identify
the structure of the SDP, as we have, and map the communi-
cation, computation, and memory constraints to the parallel ar-
chitecture. Indeed, there has been a great deal of research on
creating programming languages which attempt to do just this
[30], [31]. Presently, however, such languages are mostly the-
oretical and have certainly not been incorporated into existing
SDP solvers.
In addition to parallel SDP solvers, there have been some

efforts to exploit structure in certain polynomial optimization
algorithms to reduce the size and complexity of the resulting
LMIs. For example, in [32], symmetry was used to reduce the
size of the SDP variables. A specific sparsity structure was used

in [33]–[35] to reduce the complexity of the linear algebra cal-
culations. Generalized approaches to the use of sparsity in SDP
algorithms can be found in [34]. Groebner basis techniques [36],
[37] have been used by [33] to simplify the formulation of the
SDPs associated with the SOS decomposition problems.
This paper is organized around two independent problems:

setting up the sequence of structured SDPs associated with
Polya’s theorem and solving them. Note that the problem of
decentralizing the setup algorithm is significant in that for
large-scale systems, the instantiation of the problem may be
beyond the memory and computational capacity of a single
processing node. For the setup problem, the algorithm that
we propose has no centralized memory or computational re-
quirements whatsoever. Furthermore, if a sufficient number
of processors are available, the number of messages does not
change with the size of the state space or the number of Polya’s
iterations. In addition, the ideal communication architecture for
the set-up algorithm does not correspond to the communication
structure of GPU computing or supercomputing. In the second
problem, we propose a variant of a standard SDP primal-dual
algorithm and map the computational, memory, and commu-
nication requirements to a parallel computing environment.
Unlike the setup algorithm, the primal-dual algorithm does have
a small centralized component corresponding to the update
of the set of dual variables. However, we have structured the
algorithm so that the size of this dual computation is solely a
function of the degree of the polynomial QITS Lyapunov func-
tion and does not depend on the number of Polya’s iterations,
meaning that the sequence of algorithms has fixed centralized
computational and communication complexity. In addition,
there is no communication between processors, which means
that the algorithm is well suited to most parallel computing
architectures. A graph representation of the communication
architecture of the setup and SDP algorithms has also been
provided in the relevant sections.
Combining the setup and SDP components and testing the

results of both in cluster computing environments, we demon-
strate the capability of robust analysis and control of systems
with states and several uncertain parameters. Specifically,
we ran a series of numerical experiments using a local Linux
cluster and the Blue Gene supercomputer (with 200 processor
allocation). First, we applied the algorithm to a current problem
in robust stability analysis of magnetic confinement fusion using
a discretized PDE model. Next, we examine the accuracy of the
algorithm as Polya’s iterations progress and compare this accu-
racy with the SOS approach. We show that unlike the general-
purpose parallel SDP solver SDPARA [28], the speed-up—the
increase in processing speed per additional processor—of our
algorithm shows no evidence of saturation. Finally, we calcu-
late the envelope of the algorithm on the Linux cluster in terms
of the maximum state-space dimension, number of processors,
and Polya’s iterations.

NOTATION

We represent -variate monomials as , where
is the vector of variables and is the vector of

exponents and is the degree of the monomial. We

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1933

define as the totally ordered
set of the exponents of -variate monomials of degree , where
the ordering is lexicographic. In lexicographical ordering

precedes , if the leftmost nonzero entry of
is positive. The lexicographical index of every can be
calculated using the map defined as [38]

(1)

whereas in [39]

for

for (2)

is the cardinality of , that is, the number of -variate mono-
mials of degree . For convenience, we also define the index of
a monomial to be . We represent -variate homogeneous
polynomials of degree as

(3)

where is the matrix coefficient of the monomial
. We denote the element corresponding to the th row and
th column of matrix as . The subspace of symmetric
matrices in is denoted by . We define a basis for as

if
otherwise

(4)

where

if
otherwise.

(5)

Note that this choice of basis is arbitrary—any other basis
could be used. However, any change in basis would require
modifications to the formulae defined in this paper. The
canonical basis for is denoted by for ,

where . The vector with all en-
tries equal to one is denoted by . The trace of
is denoted by . The block-diagonal
matrix with diagonal blocks is de-
noted as or occasionally as

. The identity and zero matrices are
denoted by and .

II. PRELIMINARIES

Consider the linear system

(6)

where and is a vector of uncertain
parameters. In this paper, we consider the case where is a
homogeneous polynomial and , where is the
unit simplex, i.e.,

(7)

If is not homogeneous, we can obtain an equivalent homo-
geneous representation in the following manner. Suppose
is a nonhomogeneous polynomial with , is of degree
, and has monomials with nonzero coefficients. Define

, where is the degree of the th mono-
mial of according to lexicographical ordering. Now define
the polynomial as follows.
1) Let .
2) For , multiply the th monomial
of , according to lexicographical ordering, by

.

Then, since , for all and,
hence, all properties of are retained by the
homogeneous system .
1) Example: Construction of the Homogeneous System

: Consider the nonhomogeneous polynomial
of degree , where

. Using the aforementioned procedure, the
homogeneous polynomial can be constructed as

(8)

The following is a stability condition [25] for system (6).
Theorem 1: System (6) is stable if and only if there exists a

polynomial matrix such that and

(9)

for all .
A similar condition also holds for discrete-time linear sys-

tems. The conditions associated with Theorem 1 are infinite-di-
mensional LMIs, meaning they must hold at an infinite number
of points. Such problems are known to be NP-hard [17]. In this
paper, we derive a sequence of polynomial-time algorithms such
that their outputs converge to the solution of the infinite-dimen-
sional LMI. Key to this result is Polya’s Theorem [40]. A vari-
ation of this theorem for matrices is given as follows.
Theorem 2: (Polya’s Theorem): The homogeneous polyno-

mial for all if and only if for all sufficiently
large

(10)

has all positive definite coefficients.
Upper bounds for Polya’s exponent can be found as in [41].

However, these bounds are based on the properties of and are
difficult to determine apriori. In this paper, we show that ap-
plying Polya’s theorem to the robust stability problem (i.e., the
inequalities in Theorem 1) yields a semi-definite programming
condition with an efficiently distributable structure. This is dis-
cussed in Section IV.

1934 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

III. PROBLEM SETUP

In this section, we show how Polya’s theorem can be used
to determine the robust stability of an uncertain system using
linear matrix inequalities with a distributable structure.

A. Polya’s Algorithm

We consider the stability of the system described by (6). We
are interested in finding a which satisfies the conditions
of Theorem 1 . According to Polya’s theorem, the constraints of
Theorem 1 are satisfied if for some sufficiently large and ,
the polynomials

(11)

(12)

have all positive definite coefficients.
Let be a homogeneous polynomial of degree which

can be represented as

(13)

where the coefficients and where we recall that

is the set of the exponents

of all -variate monomials of degree . Since is a homo-
geneous polynomial of degree , we can write it as

(14)

where the coefficients . By substituting (13)
and (14) into (11) and (12) and defining as the degree of

, the conditions of Theorem 2 can be represented in
the form

(15)

(16)

Here, is defined to be the scalar coefficient which
multiplies in the th monomial of the homogeneous

polynomial using the lexicographical

ordering. Likewise, is the term whose
left or right multiplies in the th monomial of

using lexico-
graphical ordering. For an intuitive explanation as to how these
and terms are calculated, we consider a simple example.

Precise formulae for these terms will follow the example.

1) Example: Calculating the and Coefficients: Consider
and . By ex-

panding (11) for , we have

(17)

The terms are then extracted as

(18)
Next, by expanding (12) for , we have

(19)

The terms are then extracted as

(20)

2) General Formula: The can be formally defined
recursively as follows. Let the initial values for be de-
fined as

if
otherwise

(21)
Then, iterating for , we let

and

(22)
Finally, we set . To obtain ,
set the initial values as

(23)

Then, iterating for , we let

and

(24)
Finally, set .
For the case of large-scale systems, computing and storing

and is a significant challenge due to the
number of these coefficients. Specifically, the number of terms
increases with (number of uncertain parameters in system (6)),
(degree of), (degree of) and

(Polya’s exponents) as follows.
3) Number of Coefficients: For given and ,

since and , the number of
coefficients is the product of and

. Recall that card is the number of all

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1935

Fig. 1. Number of and coefficients versus the number of uncertain parameters for different Polya’s exponents and for 2.

-variate monomials of degree and can be calculated using
(2) as follows:

for

for

(25)

Likewise, , that is, the number of all -variate
monomials of degree is calculated using (2) as follows:

for

for

(26)

The number of coefficients is .
4) Number of Coefficients: For given and
, since and , the number of

coefficients is the product of and
. By using (2), we have

for

for

(27)

The number of coefficients is .
The number of and coefficients and the re-

quired memory to store these coefficients are shown in Figs. 1
and 2 in terms of the number of uncertain parameters and for
different Polya’s exponents. In all cases, 2.
It is observed from Fig. 2 that, even for small and ,

the required memory is in the Terabyte range. In [38], we pro-
posed a decentralized computing approach to the calculation of

on large cluster computers. In this paper, we extend

Fig. 2. Memory required to store and coefficients versus the number of
uncertain parameters, for different and 2.

this method to the calculation of and the SDP el-
ements which will be discussed in Section V. We express the
LMIs associated with conditions (15) and (16) as an SDP in
primal and dual forms. We also discuss the structure of the
primal and dual SDP variables and the constraints.

B. SDP Problem Elements

A semi-definite programming problem can be stated either in
primal or dual format. Given , , and ,
the primal problem is of the form

subject to

(28)

where the linear operator is defined as

(29)

1936 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

is the primal variable. Given a primal SDP, the associ-
ated dual problem is

subject to

(30)

where is the transpose operator and is given by

(31)

and where and are the dual variables. The
elements , , and of the SDP problem associated with the
LMIs in (15) and (16) are defined as follows. We define the
element as

(32)

where

(33)
Recall that is the number of monomials

in ; is the number of

monomials in , where is the dimen-
sion of system (6); is the number of uncertain parameters; and
is a small positive parameter.
For , define elements as

(34)

where is the number of dual variables in (30) and is equal to
the product of the number of upper-triangular elements in each

(the coefficients in) and the number of coef-
ficients in (i.e., the cardinality of). Since there are

coefficients in and each coefficient
has upper-triangular elements, we find

(35)

To define the blocks, first, we define the function

(36)

which maps each variable to a basis matrix , where we recall
that is the basis for . Note that a different choice of basis
would require a different function . Then, for

(37)

Finally, to complete the SDP problem associated with Polya’s
algorithm set

(38)

C. Parallel Setup Algorithm

In this section, we propose a decentralized, iterative algo-
rithm for calculating the terms , , , and
as defined in (22), (24), (32), and (34). The algorithm has

been implemented in C++, using message passing interface
(MPI) and is available at: www.sites.google.com/a/asu.edu/
kamyar/software. We present an abridged description of this
algorithm in Algorithm 1, where is the number of available
processors.
Note that we have only addressed the problem of robust sta-

bility analysis, using the polynomial inequality

for . However, we can generalize the decentralized setup
algorithm to consider a more general class of feasibility prob-
lems, i.e.,

(41)
for . One motivation behind the development of such a
generalized setup algorithm is that the parameter-dependent ver-
sions of the LMIs associated with and synthesis prob-
lems in [42] and [43] can be formulated in the form of (41).

D. Setup Algorithm: Complexity Analysis

Since checking the positive definiteness of all representatives
of a square matrix with parameters on proper real intervals is in-
tractable [7], the question of feasibility of (9) is also intractable.
To solve the problem of inherent intractability, we establish a
tradeoff between accuracy and complexity. In fact, we develop
a sequence of decentralized polynomial-time algorithms whose
solutions converge to the exact solution of the NP-hard problem.
In other words, the translation of a polynomial optimization
problem to an LMI problem is the main source of complexity.
This high complexity is unavoidable and, in fact, is the reason
we seek parallel algorithms.
Algorithm 1 distributes the computation and storage of

and among the processors and their
dedicated memories, respectively. In an ideal case, where the
number of available processors is sufficiently large (equal to
the number of monomials in , that is,) only one
monomial (of and of) are assigned to
each processor.
1) Computational Complexity Analysis: Themost computa-

tionally expensive part of the setup algorithm is the calculation of
the blocks in (37).Considering that the cost ofmatrix-matrix
multiplication is , the cost of calculating each block is

. According to (34) and (37), the total number
of blocks is . Hence, per Algorithm 1, each pro-
cessor processes of the
blocks, where is the number of available processors. Thus, the
per processor computational cost of calculating the at each
Polya’s iteration is

(42)

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1937

Algorithm 1: The parallel set-up algorithm

Inputs: degree of degree of number
of states, : number of uncertain parameters, number
of Polya’s iterations, Coefficients of .
Initialization: Set and Calculate
as the number of monomials in using (25) and

as the number of monomials in using (27). Set
. Calculate floor and floor as

the number of monomials in and assigned
to each processor.
for do
Initialize for and

using (21).
Initialize for and

using (23).
Calculating and coefficients:
while do
if then
for do
Set and Update
using (26). Update
Calculate for
and using (22).

if then
for do
Set and Update
using (27). Update .
Calculate for

and
using (24).

Calculating the SDP elements:
for do
Calculate the number of dual variables using (35).
Set .
Calculate the blocks of the SDP element as

using (33) for
for

Set the sub-blocks of the SDP element as

(39)

for do
Calculate the blocks of the SDP elements as

using (37)- for
using (37)- for

Set the sub-blocks of the SDP element as

(40)

Outputs: Sub-blocks and of the SDP elements
for and

By substituting for from (35), card from (25), from
(26), and from (27), the per processor computation cost at
each iteration is

(43)

assuming that and . For example, for the case
of large-scale systems (large and), the computation cost per
processor at each iteration is having

processors, having
processors, and having processors.
Thus, for the case where , the number of operations
grows more slowly in than in .
2) Communication Complexity Analysis: Communica-

tion between processors can be modeled by a directed graph
, where the set of nodes is the set

of indices of the available processors and the set of edges
is the set of all pairs of processors that

communicate with each other. For every directed graph, we can
define an adjacency matrix . If processor communicates
with processor , then ; otherwise, .
In this section, we only define the adjacency matrix for the
part of the algorithm that performs Polya’s iterations on .
For Polya’s iterations on , the adjacency matrix
can be defined in a similar manner. For simplicity, we assume
that at each iteration, the number of available processors
is equal to the number of monomials in .
Using (26), let us define and as the numbers of
monomials in and . For

, define

lex. indices of monomials in

and

Then, for and

if and and
otherwise.

Note that this definition implies that the communication graph of
the setup algorithm changes at every iteration. To help visualize
the graph, the adjacency matrix for the case where is

...
...
. . .

. . .
. . .

...
...
. . .

...
...
...

. . .
. . .

...
. . .

...
...
. . .

...

1938 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

Fig. 3. Graph representation of the network communication of the setup al-
gorithm. (a) Communication-directed graph for the case , .
(b) Communication-directed graph for the case , 2.

where the nonzero sub-block of lies in . We can
also illustrate the communication graphs for the cases
and with as seen in Fig. 3(a) and (b).
For a given algorithm, the communication complexity is

defined as the sum of the size of all communicated mes-
sages. For simplicity, let us consider the worst case scenario,
where each processor is assigned more than one monomial
and sends all of its assigned and coeffi-
cients to other processors. In this case, the algorithm assigns

of the coefficients, each of
size 1, and of the

coefficients, each of size , to each processor. Thus,
the communication complexity of the algorithm per processor
and per iteration is

(44)

This indicates that increasing the number of processors (up
to) actually leads to less communication overhead per
processor and improves the scalability of the algorithm. By
substituting for card from (25), from (26), and from
(27), and considering large and , the communication com-
plexity per processor at each Polya’s iteration is
having processors, having
processors, and having processors.

IV. PARALLEL SDP SOLVER

In this section, we describe the steps of our primal-dual in-
terior-point algorithm and show how, for the LMIs in (15) and
(16), these steps can be distributed in a distributed-computing,
distributed-memory environment.

A. Interior-Point Methods

Interior-point methods define a popular class of algorithms
for solving linear and semidefinite programming problems. The
most widely accepted interior-point algorithms are dual scaling
[44], [45]; primal-dual [46]–[48]; and cutting-plane/spectral
bundle [49]–[51]. In this paper, we use the central-path-fol-
lowing primal-dual algorithm described in [27] and [48].
Although we found it possible to use dual-scaling algorithms,

we chose to pursue a primal-dual algorithm because, in general,
primal-dual algorithms converge faster [45], [48] while still pre-
serving the structure of the solution [see (59)] at each iteration.
We prefer primal-dual to cutting plane/spectral bundle methods
because, as we show in Section V-D, the centralized part of
our primal-dual algorithm consists of solving a symmetric
system of linear equations [see (80)], whereas for the cutting
plane/spectral bundle algorithm, the centralized computation
would consist of solving a constrained quadratic program (see
[50] and [51]) with a number of variables equal to the size of
the system of linear equations. Since centralized computation is
the limiting factor in a parallel algorithm and because solving
symmetric linear equations is simpler than solving a quadratic
programming problem, we chose the primal-dual approach.
The choice of a central path-following primal-dual algorithm

as in [48] and [52] was motivated by results in [53] which
demonstrated better convergence, accuracy, and robustness
over the other types of primal-dual algorithms. More specifi-
cally, we chose the approach in [48] over [52] because unlike
the Schur complement matrix (SCM) approach of the algorithm
in [52], the SCM of [48] is symmetric and only the upper-tri-
angular elements need to be sent/received by the processors.
This leads to less communication overhead. The other reason
for choosing [48] is that the symmetric SCM of the algorithm
in [48] can be factorized using Cholesky factorization, whereas
the nonsymmetric SCM of [52] must be factorized by LU
factorization (LU factorization is roughly twice as expensive
as Cholesky factorization). Since factorization of SCM com-
prises the main portion of the centralized computation in our
algorithm, it is crucial for us to use computationally cheaper
factorization methods to achieve better scalability.
In the primal-dual algorithm, both primal and dual problems

are solved by iteratively calculating primal and dual step direc-
tions and step sizes, and applying these to the primal and dual
variables. Let be the primal variable and and be the dual
variables. At each iteration, the variables are updated as

(45)

(46)

(47)

where , , and are Newton’s search direction and
and are the primal and dual step sizes. We choose the step
sizes using a standard line-search between 0 and 1 with the con-
straint that and remain positive semidefinite. We
use a Newton’s search direction given by

(48)

(49)

(50)

where , , and are the predictor step directions and
, , and are the corrector step directions. Per [48], the

predictor step directions are found as

(51)

(52)

(53)

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1939

where and the operators and are as defined in the pre-
vious section

(54)

and

(55)

Recall that are the standard basis for . Once we
have the predictor step directions, we can calculate the corrector
step directions per [48]. Let . The corrector
step directions are

(56)

(57)

(58)

The stopping criterion is . Information
regarding the selection of starting points and convergence of
different variants of interior-point primal-dual algorithms, in-
cluding the algorithm we use in this paper, are presented in
[46]–[48].

B. Structure of SDP Variables

The key algorithmic insight of this paper, which allows us
to use the primal-dual approach presented in [48], is that by
choosing an initial value for the primal variable with a certain
block structure corresponding to the distributed structure of the
processors, the algorithm will preserve this structure at every it-
eration. Specifically, we define the following structured block-
diagonal subspace where each block corresponds to a single
processor.

(59)

According to the following theorem, the subspace is in-
variant under Newton’s iteration in the sense that when the al-
gorithm in [48] is applied to the SDP problem defined by the
polynomial optimization problem with an initial value of the
primal variable , then the primal variable remains
in the subspace at every Newton’s iteration .
Theorem 3: Consider the SDP problem defined in (28) and

(30) with elements given by (32), (34), and (38). Suppose and
are the cardinalities of and . If (45)–(47)

are initialized by

(60)

then for all

(61)

Proof: We proceed by induction. First, suppose for some

and (62)

We would like to show that this implies .
To see this, observe that according to (45)

for all (63)

From (48), can be written as

for all (64)

To find the structure of , we focus on the structures of
and individually. Using (52), is

for all (65)

where, according to (54), is

for all (66)

First, we examine the structure of . According to the defini-
tion of and in (32) and (34), and the definition of
in (31), we know that

(67)

Since all terms on the right-hand side of (66) are in and
is a subspace, we conclude

(68)

Returning to (65), using our assumption in (62) and noting that
the structure of the matrices in is also preserved through
multiplication and inversion, we conclude

(69)

Using (57), the second term in (64) is

for all (70)

To determine the structure of , first we investigate the
structure of and . According to (53) and (58), we have

for all (71)

for all (72)

Since all the terms in the right-hand side of (71) and (72) are in
, then

(73)

1940 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

Recalling (69), (70), and our assumption in (62), we have

(74)

According to (69), (73), and (74), the total step directions are in

(75)

(76)

and it follows that:

(77)

(78)

Thus, for any and , if , we
have . Since we have assumed that the
initial values , we conclude by induction that

and for all

C. Parallel Implementation

In this section, a parallel algorithm for solving the SDP prob-
lems associated with Polya’s algorithm is provided. We show
how to map the block-diagonal structure of the primal vari-
able and Newton updates described in Section V-A to a par-
allel computing structure consisting of a central root processor
with slave processors. Note that processor steps are simul-
taneous and transitions between root and processor steps are
synchronous. Processors are idle when root is active and vice-
versa. A C++ implementation of this algorithm, using MPI and
Blas/Lapack libraries is provided at: www.sites.google.com/a/
asu.edu/kamyar/software. Let be the number of available pro-
cessors and . Per Algorithm 1, we as-
sume processor has access to the sub-blocks and de-
fined in (39) and (40) for . Be aware that minor
parts of Algorithm 2 have been abridged in order to simplify the
presentation.

Algorithm 2: The parallel SDP solver algorithm

Inputs: for and the
sub-blocks of the SDP elements provided to processor
by the set-up algorithm.
Processors Initialization step:
for do
Initialize primal and dual variables , and as

'

and

Calculate the complementary slackness [49]
. Send to processor root.

Root Initialization step:
Root processor do
Calculate the barrier parameter [49] .
Set the SDP element .

Processors step 1:
for do
for do
Calculate the elements of (R-H-S

of (80))

for do

Calculate the elements of the SCM as

(79)

Send and and
to root processor.

Root step 1:
Root processor do
Construct the R-H-S of (80) and the SCM as

...
and

...
...

Solve the following system of equations for the predictor
dual step and send to all processors.

(80)

Processors step 2:
for do
Calculate the predictor step directions

for do
Calculate the elements of (R-H-S of (81))

Send and to root processor.

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1941

Root step 2:
Root processor do
Construct the R-H-S of (81) as

Solve the following system of equations for the corrector
dual variable and send to all processors.

(81)

Processors step 3:
for do
Calculate the corrector step directions as follows.

Calculate primal dual step total step directions as follows.

Set primal step size and dual step size
using an appropriate line search methos.
Update primal and dual variables as

Processors step 4:
for do
Calculate the contribution to primal cost

and the complementary slack
. Send and to root processor.

Root step 4:
Root processor do
Update the barrier parameter

Calculate primal and dual costs as
and If , then go to

Processors step 1; Otherwise calculate the coefficients of
as for

D. Computational Complexity Analysis: SDP Algorithm

is defined to be the class of problems which can
be solved in a polylogarithmic number of steps using a poly-
nomially number processor and is often considered to be the
class of problems that can be parallelized efficiently. The class
P-complete is a set of problems which are equivalent up to an
NC reduction, but contains no problem in NC and is thought to
be the simplest class of “inherently sequential” problems. It has
been proven that linear programming (LP) is P-complete [54]
and SDP is P-hard (at least as hard as any P-complete problem)
and, thus, is unlikely to admit a general-purpose parallel solu-
tion. Given this fact and given the observation that the problem
we are trying to solve is NP-hard, it is important to thoroughly

understand the complexity of the algorithms we are proposing
and how this complexity scales with various parameters which
define the size of the problem. To better understand these issues,
we have broken our complexity analysis down into several cases
which should be of interest to the control community. Note that
the cases below do not discuss memory complexity. This is be-
cause in the cases when a sufficient number of processors are
available, for a system with states, the memory requirements
per block are simply proportional to .
1) Case 1: Systems With a Large Number of States: Sup-

pose we are considering a problem with states. For this case,
the most expensive part of the algorithm is the calculation of
the Schur complement matrix by the processors in Proces-
sors step 1 (and summed by the root in Root step 1, although we
neglect this part). In particular, the computational complexity
of the algorithm is determined by the number of operations re-
quired to calculate (79), restated here

for

and (82)

Since the cost of matrix-matrix multiplication is and
each has number of blocks in

, the number of operations performed by the th processor
to calculate for and is

(83)

at each iteration, where . By substituting in (83)
from (35), for , each processor performs

(84)

operations per iteration. Therefore, for systems with large and
fixed and , the number of operations per processor required
to solve the SDP associated with parameter-dependent feasi-
bility problem is proportional to
. Solving the LMI associated with the parameter-independent

problem using our algorithm or most of the
SDP solvers, such as [27], [28], [55], also requires oper-
ations per processor. Therefore, if we have a sufficient number
of processors, the proposed algorithm solves the stability and
robust stability problems by performing operations per
processor in this case.
2) Case 2: High Accuracy/Low Conservativity: In this case,

we consider the effect of raising Polya’s exponent. Consider the
definition of simplex as follows:

(85)

Suppose we now define the accuracy of the algorithm as the
largest value of found by the algorithm (if it exists) such that
if the uncertain parameters lie inside the corresponding sim-
plex, the stability of the system is verified. Typically, increasing
Polya’s exponent in (10) improves the accuracy of the algo-
rithm. If we again only consider Processor step 1, according to
(84), the number of processor operations is independent of the

1942 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

Polya’s exponent and . Since this part of the algorithm
does not vary with Polya’s exponent, we look at the root-pro-
cessing requirements associated with solving the systems of
equations in (80) and (81) in Root step 1 using Cholesky fac-
torization. Each system consists of equations. The compu-
tational complexity of Cholesky factorization is . Thus,
the number of operations performed by the root processor is pro-
portional to

(86)

In terms of communication complexity, the most significant op-
eration between the root and other processors is sending and
receiving for ; ; and

in Processors step 1 and Root step 1. Thus, the total
communication cost for processors per iteration is

(87)

From (84), (86), and (87), it is observed that the number of pro-
cessors operations, root operations, and communication opera-
tions are independent of Polya’s exponent and . Therefore,
we conclude that for a fixed and a sufficiently large number
of processors , improving the accuracy by in-
creasing and does not add any computation per processor
or communication overhead.
3) Case 3: Algorithm Scalability/Speedup: The speedup of

a parallel algorithm is defined as , where is
the execution time of the sequential algorithm and is the
execution time of the parallel algorithm using processors.
The speedup is governed by

(88)

where is defined as the ratio of the total operations performed
by all processors except root to total operations performed by all
processors and root. is the ratio of the operations performed
by root to total operations performed by all processors and root.
Suppose that the number of available processors is equal to the
number of sub-blocks in defined in (32). Using the aforemen-
tioned definitions for and , (84) as the decentralized com-
putation, and (86) as the centralized computation, and can
be approximated as

and (89)

(90)

According to (26) and (27), the number of processors
is independent of ; Therefore

Fig. 4. Theoretical speedup versus number of processors for different system
dimensions for 10, 2, 3, and 4, where
53625.

By substituting and in (88) with their limit values, we have
. Thus, for large , by using pro-

cessors, the presented decentralized algorithm solves large ro-
bust stability problems times faster than the sequential
algorithms. For different values of the state-space dimension
, the theoretical speedup of the algorithm versus the number
of processors is illustrated in Fig. 4. As shown in Fig. 4, for
problems with large , by using processors,
the parallel algorithm solves the robust stability problems ap-
proximately times faster than the sequential algorithm. As
increases, the trend of speedup becomes increasingly linear.

Therefore, in case of problems with a large number of states ,
our algorithm becomes increasingly efficient in terms of pro-
cessor utilization.
4) Case 4: Synchronization and Load Balancing: The pro-

posed algorithm is synchronous in that all processors must re-
turn values before the centralized step can proceed. However, in
the case where we have fewer processors than blocks, some pro-
cessors may be assigned one block more than other processors.
In this case, some processors may remain idle while waiting for
the more heavily loaded blocks to complete. In the worst case,
this can result in a 50% decrease in speed. We have addressed
this issue in the following manner:
1) We allocate almost the same number of blocks
of the SDP elements and to all processors, that
is, blocks to processors and

blocks to the other processors,
where is the remainder of dividing by .

2) We assign the same routine to all of the processors in the
Processors steps of Algorithm 2.

If is a multiple of , then the algorithm assigns the
same amount of data, that is, blocks of and to
each processor. In this case, the processors are perfectly syn-
chronized. If is not a multiple of , then according to
(83), of processors perform extra operations per it-
eration. This fraction is of the
operations per iteration performed by each of the processors.
Thus, in the worst case, we have a 50% reduction, although this
situation is rare. As an example, the load balancing (distribution

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1943

Fig. 5. Number of blocks of the SDP elements assigned to each processor—an
illustration of load balancing.

Fig. 6. Communication graph of the SDP algorithm.

of data and calculation) for the case of solving an SDP of the
size using different numbers of available proces-
sors is demonstrated in Fig. 5. This figure shows the number
of blocks that are allocated to each processor. According to this
figure, for 2, 12, and 24, the processors are well-balanced,
whereas for the case where 18, twelve processors perform
50% fewer calculations.
5) Case 5: Communication Graph: The communication-di-

rected graph of the SDP algorithm (Fig. 6) is static (fixed for all
iterations). At each iteration, root sends messages (and)
to all of the processors and receives messages (in (79))
from all of the processors. The adjacency matrix of the commu-
nication-directed graph is defined as follows. For
and

if or and
Otherwise.

V. TESTING AND VALIDATION

In this section, we present validation data in four key areas.
First, we present analysis results for a realistic large-scale model
of Tokamak operation using a discretized PDE model. Next, we
present accuracy and convergence data and compare our algo-
rithm to the SOS approach. Next, we analyze the scalability and
speedup of our algorithm as we increase the number of pro-
cessors and compare our results to the general-purpose parallel
SDP solver SDPARA. Finally, we explore the limits of the algo-
rithm in terms of problems size when implemented on a moder-
ately powerful cluster computer and using a moderate processor
allocation on the Blue Gene supercomputer.
1) Example 1: Application to Control of a Discretized PDE

Model in Fusion Research: The goal of this example is to use

the proposed algorithm to solve a real-world stability problem.
A simplified model for the poloidal magnetic flux gradient in a
Tokamak reactor [56] is

(91)

with the boundary conditions and ,
where is the deviation of the flux gradient from a refer-
ence flux gradient profile, is the permeability of free space,

is the plasma resistivity and is the radius of the last
closed magnetic surface (LCMS). To obtain the finite-dimen-
sional state-space representation of the PDE, we discretize the
PDE in the spatial domain . The state-space model is then

(92)

where has the following nonzero entries:

(93)

for

(94)

for

(95)

for

(96)

(97)

where and .
We discretize the model at points. Typically, the

are not precisely known (they depend on other state variables),
so we substitute for in (92) with , where
are the nominal values of , and are the uncertain pa-
rameters. At 0.036, 0.143, 0.286, 0.429, 0.571, 0.714,
0.857, 0.964, we use data from the Tore Supra reactor to esti-
mate the as

. The
uncertain system is then written as

(98)

where is affine, (the are omitted
for the sake of brevity). For a given , we restrict the uncertain
parameters to , defined as

(99)

1944 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

Fig. 7. Speedup of setup and SDP algorithms versus the number of processors
for a discretized model of magnetic flux in Tokamak.

which is a simplex translated to the origin. We would like to
determine the maximum value of such that the system is stable
by solving the following optimization problem:

System (98) is stable for all (100)

To represent using the standard unit simplex defined in (7),
we define the invertible map as

(101)

Then, if we let , since is one-to-one

Thus, the stability of is
equivalent to the stability of (98) for all .
We solve the optimization problem in (100) using bisection.

For each trial value of , we use the proposed parallel SDP
solver to solve the associated SDP obtained by the parallel setup
algorithm. The SDP problems have 224 constraints with the
primal variable . The normalized maximum
value of is found to be 0.0019. In this particular example, the
optimal value of does not change with the degrees of
and Polya’s exponents and , primarily because the model
is affine.
The SDPs are constructed and solved on a parallel Linux-

based cluster Cosmea at Argonne National Laboratory. Fig. 7
shows the algorithm speed-up versus the number of processors.
Note that solving this problem by SOSTOOLS [21] on the
same machine is impossible due to the lack of unallocated
memory.
2) Example 2: Accuracy and Convergence: The goal of this

example is to investigate the effect of the degree of , ,
and the Polya’s exponents on the accuracy of the algo-
rithm. Given a computer with a fixed amount of RAM, we com-
pare the accuracy of the proposed algorithm with the SOS al-

Fig. 8. Upper bound on optimal versus Polya’s exponents and , for
different degrees of . .

gorithm. Consider the system where is a
polynomial degree 3 defined as

(102)

with the constraint

Defining as in Example 1, the problem is

(103)

Using bisection in , as in Example 1, we varied the param-
eters , , and . The cluster computer Karlin at the Illi-
nois Institute of Technology with 24 GB/node of RAM (216-GB
total memory) was used to run our algorithm. The upper bounds
on the optimal are shown in Fig. 8 in terms of and
and for different . Considering the optimal value of to be

0.111, Fig. 8 shows how increasing and/or ,

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1945

Fig. 9. Error of the approximation for the optimal value of versus degrees
of for different Polya’s exponents.

TABLE I
UPPER BOUNDS FOUND FOR BY THE SOS ALGORITHM USING DIFFERENT

DEGREES FOR AND (INF: INFEASIBLE, O.M.: OUT OF MEMORY)

—when they are still relatively small—improves the accu-
racy of the algorithm. Fig. 9 demonstrates how the error in our
upper bound for decreases by increasing and/or , .
For comparison, we solved the same stability problem using

the SOS algorithm [21] using only a single node of the same
cluster computer and 24 GB of RAM. We used the Posi-
tivstellensatz approach based on [57] to impose the constraints

and . Table I shows the
upper bounds on given by the SOS algorithm using different
degrees for and . By considering a Lyapunov function of
degree two in and degree one in , the SOS algorithm gives
0.102 as the upper bound on compared with our value

of 0.111. Increasing the degree of in the Lyapunov function
beyond degree two resulted in a failure due to a lack of memory.
Note that while relevant, this comparison may not be entirely
fair since the SOS algorithm has not been decentralized and
it can handle global nonlinear stability problems, which our
algorithm cannot.
3) Example 3: Speedup: In this example, we evaluate the

efficiency of the algorithm in using additional processors to de-
crease computation time. As mentioned in Section V-D on com-
putational complexity, the measure of this efficiency is called
“speedup” and in Case 3, we gave a formula for this number.
To evaluate the true speedup, we first ran the setup algorithm on
the Blue Gene supercomputer at Argonne National Laboratory
using three random linear systems with different state-space di-
mensions and numbers of uncertain parameters. Fig. 10 shows
a log-log plot of the computation time of the setup algorithm
versus the number of processors. As can be seen, the scala-
bility of the algorithm is practically ideal for several different
state-space dimensions and numbers of uncertain parameters.
To evaluate the speedup of the SDP portion of the algo-

rithm, we solved three random SDP problems with different
dimensions using the Karlin cluster computer. Fig. 11 gives
a log-log plot of the computation time of the SDP algorithm
versus the number of processors for three different dimensions

Fig. 10. Computation time of the parallel setup algorithm versus the number
of processors for different dimensions of linear system and numbers of un-
certain parameters - executed on the Blue Gene supercomputer of the Argonne
National Laboratory.

Fig. 11. Computation time of the parallel SDP algorithm versus the number
of processors for different dimensions of primal variable and of
dual variable —executed on the Karlin cluster computer of Illinois Institute
of Technology.

of the primal variable and the dual variable . As indicated
in the figure, the three dimensions of the primal variable are
200, 385, and 1092, and the dimensions of the dual variable
are 50, 90, and 224, respectively. In all cases, 2

and 1. The linearity of the Time versus Number of
Processors curves in all three cases demonstrates the scalability
of the SDP algorithm.
For comparison, we plot the speedup of our algorithm versus

that of the general-purpose parallel SDP solver SDPARA 7.3.1
as illustrated in Fig. 12. Although similar for a small number of
processors, for a larger number of processors, SDPARA satu-
rates, while our algorithm remains approximately linear.
4) Example 4: Max State-Space and Parameter Dimensions

for a Nine-Node Linux Cluster Computer: The goal of this ex-
ample is to show that given moderate computational resources,
the proposed decentralized algorithms can solve robust stability
problems for systems with states. We used the Karlin
cluster computer with 24 GB/node RAM and nine nodes. We
ran the setup and SDP algorithms to solve the robust stability
problem with dimension and uncertain parameters on one
and nine nodes of the Karlin cluster computer. Thus, the total
memory access was thus 24 Gig and 216 Gig, respectively.
Using trial and error, for different and , we found the
largest for which the algorithms do not terminate due to insuf-
ficient memory (Fig. 13). In all of the runs . Fig. 13
shows that by using 216-GB RAM, the algorithms can solve the
stability problem of size 100 with four uncertain parame-
ters in Polya’s iteration and with three uncertain
parameters in 4 Polya’s iterations.

1946 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 58, NO. 8, AUGUST 2013

Fig. 12. Comparison between the speedup of the present SDP solver and SD-
PARA 7.3.1, executed on the Karlin cluster computer.

Fig. 13. Largest number of uncertain parameters of -dimensional systems for
which the setup algorithm (a) and SDP solver (b) can solve the robust stability
problem of the system using 24- and 216-GB RAM.

VI. CONCLUSION

In this paper, we have presented a cluster-computing and su-
percomputing approach to stability analysis of large-scale linear
systems of the form , where is polyno-
mial, and , and where or

. The approach is based on mapping the structure of
the LMI conditions associated with Polya’s theorem to a de-
centralized computing environment. We have shown that for
a sufficient number of processors, the proposed algorithm can
solve the NP-hard robust stability problem with the same per-
core computation cost as solving the Lyapunov inequality for a
system with no parametric uncertainty. Theoretical and experi-
mental results verify near-perfect scalability and speedup for up
to 200 processors. Moreover, numerical examples demonstrate

the ability of the algorithm to perform robust analysis of sys-
tems with states and several uncertain parameters using
a simple nine-node Linux cluster computer. We have also ar-
gued that our algorithms can also be extended to solve nonlinear
stability analysis and robust controller synthesis problems, al-
though this is left for future work.

REFERENCES

[1] S. Gugercin and A. Antoulas, “A survey of model reduction by bal-
anced truncation and some new results,” Int. J. Control, vol. 77, no. 8,
pp. 748–766, 2004.

[2] J. Ackermann, A. Bartlett, D. Kaesbauer, W. Sienel, and R. Stein-
hauser, Robust Control: Systems with Uncertain Physical Parame-
ters. New York, USA: Springer-Verlag, 2001.

[3] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control: The
Parametric Approach. Upper Saddle River, NJ: Prentice-Hall, 1995.

[4] M. Green and D. J. N. Limebeer, Linear Robust Control. Upper
Saddle River, NJ, USA: Prentice-Hall, 1995.

[5] K. Zhou and J. Doyle, Essentials of Robust Control. Upper Saddle
River, NJ: Prentice-Hall, 1998.

[6] V. Blondel and J. Tsitsiklis, “A survey of computational complexity
results in systems and control,” Automatica, vol. 36, no. 9, pp.
1249–1274, 2000.

[7] A. Nemirovskii, “Several Np-hard problems arising in robust stability
analysis,”Math. Control, Signals, Syst., vol. 6, no. 2, pp. 99–105, 1993.

[8] D. Walker and J. Dongarra, “Mpi: A standard message passing inter-
face,” Supercomputer, vol. 12, pp. 56–68, 1996.

[9] A. Packard and J. Doyle, “Quadratic stability with real and complex
perturbations,” IEEE Trans. Autom. Control, vol. 35, no. 2, pp.
198–201, Feb. 1990.

[10] B. R. Barmish and C. L. DeMarco, “A new method for improvement
of robustness bounds for linear state equations,” presented at the Conf.
Inform. Sci. Syst., NJ, 1986.

[11] P. Gahinet, P. Apkarian, and M. Chilali, “Affine parameter-dependent
Lyapunov functions and real parametric uncertainty,” IEEE Trans.
Autom. Control, vol. 41, no. 3, pp. 436–442, Mar. 1996.

[12] R. C. L. F. Oliveira and P. L. D. Peres, “Stability of polytopes of ma-
trices via affine parameter-dependent Lyapunov functions: Asymptoti-
cally exact LMI conditions,” Linear Algebra Appl., vol. 405, no. 3, pp.
209–228, Aug. 2005.

[13] R. C. L. F. Oliveira and P. L. D. Peres, “A less conservative LMI con-
dition for the robust stability of discrete-time uncertain systems,” Syst.
Control Lett., vol. 43, no. 4, pp. 371–378, Aug. 2001.

[14] D. Ramos and P. Peres, “An LMI approach to compute robust stability
domains for uncertain linear systems,” in Proc. Amer. Control Conf.,
Jun. 2001, pp. 4073–4078.

[15] P.A.Bliman, “Anexistence result forpolynomial solutionsofparameter
dependent LMIs,” Syst. Control Lett., no. 3–4, pp. 165–169, 2004.

[16] M. Peet, “Exponentially stable nonlinear systems have polynomial
Lyapunov functions on bounded regions,” IEEE Trans. Autom. Con-
trol, vol. 54, no. 5, pp. 979–987, May 2009.

[17] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Math.
Oper. Res., vol. 23, no. 4, pp. 769–805, 1998.

[18] P. A. Bliman, “A convex approach to robust stability for linear systems
with uncertain scalar parameters,” SIAM J. Control Optim, vol. 42, no.
3–4, pp. 2016–2042, 2004.

[19] X. Zhang and P. Tsiotras, “Parameter-dependent Lyapunov functions
for stability analysis of lti parameter dependent systems,” in Proc.
IEEE 42nd Conf. Decision Control, 2003, pp. 5168–5173.

[20] X. Zhang, P. Tsiotras, and P. A. Bliman, “Multi-parameter dependent
Lyapunov functions for the stability analysis of parameter-dependent
LTI systems,” in Proc. IEEE Int. Symp. Mediterrean Conf. Control
Autom., 2005, pp. 1263–1268.

[21] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOS-
TOOLS: A general purpose sum of squares programming solver,” in
Proc. IEEE Conf. Decision Control, 2002, pp. 741–746.

[22] D. Henrion and J. B. Lassere, “Gloptipoly: Global optimization over
polynomials with Matlab and SeDuMi,” in Proc. IEEE Conf. Decision
Control, Mar. 2003, pp. 747–752.

[23] C.W. Scherer and C.W. J. Hol, “Matrix sum-of squares relaxations for
robust semi-definite programs,” Math. Programming Ser. B, vol. 107,
no. 1–2, pp. 189–211, 2006.

[24] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Polynomially param-
eter-dependent Lyapunov functions for robust stability of polytopic
systems: An LMI approach,” IEEE Trans. Autom. Control, vol. 50, no.
3, pp. 365–370, Mar. 2005.

KAMYAR et al.: SOLVING LARGE-SCALE ROBUST STABILITY PROBLEMS 1947

[25] R. C. L. F. Oliveira and P. L. D. Peres, “Parameter-dependent LMIs
in robust analysis: Characterization of homogeneous polynomially pa-
rameter-dependent solutions via LMI relaxations,” IEEE Trans. Autom.
Control, vol. 52, no. 7, pp. 1334–1340, Jul. 2007.

[26] R. C. L. F. Oliveira, P.-A. Bliman, and P. L. D. Peres, “Robust LMIs
with parameters in multi-simplex: Existence of solutions and applica-
tions,” in Proc. IEEE Conf. Decision Control, 2008, pp. 2226–2231.

[27] B. Borchers and J. G. Young, “Implementation of a primal dual method
for SDP on a shared memory parallel architecture,” Comput. Optimiz.
Appl., vol. 37, no. 3, pp. 355–369, 2007.

[28] M. Yamashita, K. Fujisawa, and M. Kojima, “SDPARA: Semidefinite
programming algorithm parallel version,” Parallel Comput., vol. 29,
pp. 1053–1067, 2003.

[29] G. M. Amdahl, “Validity of the single processor approach to achieving
large-scale computing capabilities,” in Proc. AFIPS Conf., 1967, pp.
483–485.

[30] L. Kalé, B. Ramkumar, A. Sinha, and A. Gursoy, “The charm parallel
programming language and system: Part i-description of language fea-
tures” Parallel Programming Lab. Tech. Rep. 95-02, 1994.

[31] S. Deitz, “High-level programming language abstractions for advanced
and dynamic parallel computations,” Ph.D. dissertation, Comput. Sci.
Eng. Dept., University of Washington, , 2005.

[32] K. Gatermann and P. Parrilo, “Symmetry groups, semidefinite pro-
grams, and sums of squares,” J. Pure Appl. Algebra, vol. 192, no. 1,
pp. 95–128, 2004.

[33] P. Parrilo, “Exploiting algebraic structure in sum of squares programs,”
Positive Polynomials Control, pp. 580–580, 2005.

[34] S. Kim, M. Kojima, and H. Waki, “Generalized lagrangian duals and
sums of squares relaxations of sparse polynomial optimization prob-
lems,” SIAM J. Optimiz., vol. 15, no. 3, pp. 697–719, 2005.

[35] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto, “Algo-
rithm 883: Sparsepop—A sparse semidefinite programming relaxation
of polynomial optimization problems,” ACM Trans. Math. Softw., vol.
35, no. 2, 2008.

[36] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative
Algebra. New York, USA: Springer-Verlag, 2007, vol. 10.

[37] B. Buchberger and F. Winkler, Gröbner Bases and Applications.
Cambridge, U.K.: Cambridge Univ Press, 1998, vol. 251.

[38] M. M. Peet and Y. V. Peet, “A parallel-computing solution for opti-
mization of polynomials,” inProc. Amer. Control Conf., Jun./Jul. 2010,
pp. 4851–4856.

[39] E. Scheinerman, Mathematics: A Discrete Introduction, 2nd
ed. USA: Thomson Brooks/Cole Publishing, 2005.

[40] G. Hardy, J. E. Littlewood, and G. Pólya, Inequalities. Cambridge,
U.K.: Cambridge University Press, 1934.

[41] M. Castle, V. Powers, and B. Reznick, “A quantitative polya’s theorem
with zeros,” Effective Methods in Algebraic Geometry, vol. 44, no. 9,
pp. 1285–1290, 2009.

[42] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H
infinity control,” Int. J. Robust Nonlinear Control, vol. 4, pp. 421–448,
1994.

[43] G. Dullerud and F. Paganini, A Course in Robust Control Theory.
New York: Springer, 2000, vol. 6.

[44] S. J. Benson, “DSDP3: Dual scaling algorithm for general positive
semidefinite programs,” Tech Rep. ANL/MCS-P851-1000, 2001, Ar-
gonne National Labs.

[45] S. J. Benson, Y. Ye, and X. Zhang, “Solving large-scale sparse semidef-
inite programs for combinatorial optimization,” SIAM J. Optimiz., vol.
10, pp. 443–461, 1998.

[46] F. Alizadeh, J. A. Haeberly, and M. Overton, “Primal-dual inte-
rior-point methods for semidefinite programming: Convergence rates,
stability and numerical results,” SIAM J. Optimiz., vol. 8, no. 3, pp.
746–768, 1998.

[47] R.D. C.Monteiro, “Primal-dual path following algorithms for semidef-
inite programming,” SIAM J. Optimiz., vol. 7, no. 3, 1997.

[48] C. Helmberg, F. R. R. J. Vanderbei, and H. Wolkovicz, “An interior-
point method for semidefinite programming,” SIAM J. Optimiz., vol. 6,
pp. 342–361, 1996.

[49] C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite
programming,” SIAM J. Optimiz., vol. 10, no. 3, pp. 673–696, 2000.

[50] K. K. Sivaramakrishnan, “A parallel interior point decomposition algo-
rithm for block angular semidefinite programs,”Comput. Optim. Appl.,
vol. 46, no. 1, pp. 1–29, 2010.

[51] M. Nayakkankuppam, “Solving large-scale semidefinite programs in
parallel,” Math. Program., vol. 109, no. 2, pp. 477–504, 2007.

[52] M. L. O. F. Alizadeh and J. P. A. Haeberly, “Primal-dual interior-point
methods for semidefinite programming,” presented at the Math Pro-
gramming Symp., Ann Arbor, MI, 1994.

[53] F. Alizadeh, J. Haeberly, and M. Overton, “Primal-dual interior-point
methods for semidefinite programming: Convergence rates, stability
and numerical results,” SIAM J. Optimiz., vol. 8, no. 3, pp. 746–768,
1998.

[54] R. Greenlaw, H. Hoover, and W. Ruzzo, Limits to Parallel Computa-
tion: P-Completeness Theory. New York, USA: Oxford University
Press, 1995.

[55] J. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” in Proc. Optimiz. Meth. Softw., 1999, vol.
11–12, pp. 625–653.

[56] E. Witrant, E. Joffrin, S. Brémont, G. Giruzzi, D. Mazon, O. Barana,
and P. Moreau, “A control-oriented model of the current profile
in tokamak plasma,” Plasma Phys. Controlled Fusion, vol. 49, pp.
1075–1105, 2007.

[57] G. Stengle, “A Nullstellensatz and a Positivstellensatz in semialgebraic
geometry,” Math. Ann., vol. 207, no. 2, pp. 87–97, 1973.

Reza Kamyar received the B.S. and M.S. degrees
in aerospace engineering from Sharif University of
Technology, Tehran, Iran, in 2008 and 2010, respec-
tively, and is currently pursuing the Ph.D. degree in
mechanical engineering from Arizona State Univer-
sity, Tempe, AZ, USA.
He is a Research Assistant with Cybernetic

Systems and Controls Laboratory (CSCL), School
for Engineering of Matter, Transport and Energy
(SEMTE), Arizona State University. His research
focuses on the development of decentralized algo-

rithms applied to the problems of stability and control of large-scale complex
systems.

MatthewM. Peet received the B.S. degree in physics
and in aerospace engineering from the University of
Texas, Austin, TX, USA, in 1999 and the M.S. and
Ph.D. degrees in aeronautics and astronautics from
Stanford University, Stanford, CA, in 2001 and 2006,
respectively.
He was a Postdoctoral Fellow at the National In-

stitute for Research in Computer Science and Control
(INRIA), Paris, France, from 2006 to 2008, where he
worked in the SISYPHE and BANG groups. He was
an Assistant Professor of Aerospace Engineering in

the Mechanical, Materials, and Aerospace Engineering Department, Illinois In-
stitute of Technology, Chicago, IL, USA, from 2008 to 2012. Currently, he is
an Assistant Professor of Aerospace Engineering, School for the Engineering
of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA,
and Director of the Cybernetic Systems and Controls Laboratory. His research
interests are in the role of computation as it is applied to the understanding and
control of complex and large-scale systems. Applications include fusion energy
and immunology.
Dr. Peet received a National Science Foundation CAREER award in 2011.

Yulia Peet received the B.S. degree in applied math-
ematics and physics and theM.S. degree in aerospace
engineering from Moscow Institute of Physics and
Technology, Moscow, Russia, in 1997 and 1999, re-
spectively, and the Ph.D. degree in aeronautics and
astronautics from Stanford University, Stanford, CA,
USA, in 2006.
Currently, she is an Assistant Professor of

Mechanical and Aerospace Engineering, School
for Engineering of Matter, Transport and Energy,
Arizona State University, Tempe, AZ, USA. Her

previous appointments include a postdoctoral position at the University of
Pierre and Marie Curie, Paris, France, in 2006–2008, and a dual appointment as
a National Science Foundation Research and Teaching Fellow at Northwestern
University, Evanston, IL, USA, and Assistant Computational Scientist at the
Mathematics and Computer Science Division, Argonne National Laboratory,
Lemont, IL, USA, in 2009–2012.

