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Abstract: In this paper, we show that the controller synthesis of delayed systems can be
formulated and solved in a convex manner through the use of a duality transformation, a
structured class of operators, and the Sum-of-Squares (SOS) methodology. The contributions
of this paper are as follows. We show that a dual stability condition can be formulated in
terms of Lyapunov operators which are positive, self-adjoint and preserve the structure of the
state-space. Second, we provide a class of such operators which can be parameterized using
Sum-of-Squares. Next, we show how any operator in this class can be inverted using simple
operations on the SOS variables which can be performed in Matlab. Next we use SOS and
semidefinite programming to formulate a dual stability test for time-delay systems. Next, we
use the dual stability results to formulate a convex test for stabilizability and show how SOS can
be used to solve this test and recover the controller. Finally, we give a numerical example. The
results of this paper are significant in that they open the way for dynamic output H∞ optimal
control of infinite-dimensional systems by giving the first truly convex, numerically realizable
full-state feedback controller synthesis criterion.

Keywords: Sum-of-Squares; Delayed Systems; Infinite-Dimensional Systems; Duality;
Controller Synthesis.

1. INTRODUCTION

Systems with delay have been well-studied for some
time Niculescu [2001], Gu et al. [2003], Richard [2003].
Recently, there have been many results on the use of opti-
mization and semidefinite programming for the stability
analysis of these systems. Although the computational
question of stability of a delayed system is believed to
be NP-hard, several techniques have been developed to
construct sequences of polynomial-time algorithms which
provide sufficient stability conditions and appear to con-
verge to necessity as the complexity of the algorithms
increase. Examples of such sequential algorithms include
the piecewise-linear approach Gu et al. [2003], the delay-
partitioning approach Gouaisbaut and Peaucelle [2009]
and the SOS approach Peet et al. [2009]. In addition, there
are also frequency-domain approaches such as Michiels and
Vyhlidal [2005]. These algorithms are sufficiently reliable
so that for the purposes of this paper, we may consider the
problem of robust stability analysis of linear fixed-delay
systems to be solved.

The purpose of this paper is to explore methods by which
the success in stability analysis of time-delay systems may
be used to attack the relatively underdeveloped field of
optimal controller synthesis. Although there have been a
number of results on controller synthesis for time-delay
systems, none of these results has been able to resolve
the fundamental bilinearity of the synthesis problem. That
is, controller synthesis is not convex in the combined
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Lyapunov operator P and controller operator K. Some
papers use iterative methods to alternately optimize the
Lyapunov operator and controller as in Moon et al. [2001]
or Fridman and Shaked [2002] (via a “tuning parame-
ter”). However, this iterative approach is not guaranteed
to converge due to the non-convexity of the problem. In
abstract space, there have been a number of results on
dual and adjoint systems Bensoussan et al. [1992]. Un-
fortunately, however, these dual systems are not delay-
type systems and there is no clear relationship between
stability of these adjoint and dual systems and stability of
the original delayed system. In this paper, we propose a
broad set of conditions on the Lyapunov operator under
which the controller synthesis problem may be convexified.
Specifically, the operator must be invertible on the state-
space, self-adjoint in L2, and must preserve the structure
of the state-space. Furthermore, we use polynomials to
parameterize a set of operators which meet these three
basic conditions. Although we do not expect that this
set of operators is complete in any sense, the resulting
synthesis conditions can be computed using SOS and can
be used to solve a broad set of control problems for infinite-
dimensional systems using LMI techniques developed for
finite-dimensional systems.

This paper is organized as follows. Initially, we review
previous work on the parametrization of positive operators
using SOS and recall how this can be applied to stability
analysis of time-delay systems. Furthermore, we recall pre-
vious work on inversion of SOS-derived positive operators
and expand these results to a new class of operator. Next,



we enumerate the conditions under which a dual stability
condition may be derived. Then, we show how this dual
condition may be tested using SOS. In Section 10, we
briefly outline the convex operator conditions for full-
state-feedback stabilization using a variable substitution
trick. Next, we show how these synthesis conditions may
be tested using SOS. Finally, we discuss numerical imple-
mentation, ongoing challenges and conclude the paper.

2. NOTATION

Standard notation includes the Hilbert spaces L2 of square
integrable operators and W2 := {x : x, ẋ ∈ L2} with
domains which will be clear from context. C[X ] denotes
the continuous functions on X . Sn denotes the symmetric
matrices of dimension n× n. In ∈ S

n denotes the identity
matrix.

3. SUM-OF-SQUARES

Sum-of-Squares (SOS) refers to the optimization of pos-
itive polynomial variables by recasting the problem as
a semidefinite programme. A polynomial p is SOS if it
can be represented as the finite sum of squared polyno-

mials p(x) =
∑N

i=1
gi(x)

2. Clearly, any SOS polynomial
is positive semidefinite and although there exist many
positive polynomials which are not SOS, the set of SOS
polynomials has been shown to approximate the set of
positive polynomials to arbitrary accuracy. Most signif-
icantly, although it is NP-hard to determine whether a
given polynomial is positive, it is relatively simple to pa-
rameterize the set of SOS polynomials for any given degree
bound. Specifically, a polynomial p of degree 2d is SOS if
and only if there exists some positive semidefinite matrix
Q ≥ 0 such that p(x) = Z(x)TQZ(x), where Z is the
vector of monomials in variables x of degree d or less. The
resulting constraint that a polynomial p be SOS is then a
semidefinite programming constraint on the coefficients of
the polynomial p.

Throughout this paper, we will use the Notation: p ∈ Σs

to denote the constraint that p be SOS. This constraint
implies that p is positive semidefinite and may be imple-
mented in a straightforward manner through the use of
Matlab toolboxes such as SOSTOOLS Prajna et al. [2002],
Gloptipoly Henrion et al. [2009] or SOSOPT Seiler [2010].

4. LYAPUNOV STABILITY OF TIME-DELAY
SYSTEMS

In this paper, we consider stability of linear discrete-delay
systems of the form

ẋ(t) = A0x(t) +

K
∑

i=1

Aix(t − τi) for all t ≥ 0,

x(t) = φ(t) for all t ∈ [−τK , 0]
(1)

where Ai ∈ R
n×n, φ ∈ C[−τK , 0], K ∈ N and for

convenience τ1 < τ2 < · · · < τK . We associate with any
solution x and any time t ≥ 0, the ‘state’ of System (1),
xt ∈ C[−τK , 0], where xt(s) = x(t + s). Although we
only consider discrete-delay systems, the results of this
paper may easily be extended to systems with distributed
delay. For linear discrete-delay systems of the form (1),
the system has a unique solution for any φ ∈ C[−τk, 0] and
global, local, asymptotic and exponential stability are all
equivalent.

Stability of Equations (1) may be certified through the
use of Lyapunov-Krasovskii functionals - an extension
of Lyapunov theory to systems with infinite-dimensional
state-space. In particular, it is known that stability of
linear time-delay systems is equivalent to the existence of
a quadratic Lyapunov-Krasovskii functional of the form

V (φ) =

∫ 0

−τK

[

φ(0)
φ(s)

]T

M(s)

[

φ(0)
φ(s)

]

ds

+

∫ 0

−τK

∫ 0

−τK

φ(s)TN(s, θ)φ(θ) ds dθ, (2)

where the Lie (upper-Dini) derivative of the functional is
negative along any solution x of (1). That is,

V̇ (xt) = lim
h→0

V (xt+h)− V (xt)

h
≤ 0

for all t ≥ 0. Furthermore, the unknown functions M and
N may be assumed to be continuous in their respective
arguments everywhere except possibly at points H :=
{x1, · · · , xK}.

5. POSITIVE OPERATORS

The use of Lyapunov-Krasovskii functionals can be simpli-
fied by considering stability in the semigroup framework -
a generalization of the concept of differential equations.
Although the results of this paper do not require the
semigroup architecture, we adopt this notation in order
to simplify the concepts and avoid unnecessary notation.
Sometimes known as the ‘flow map’, a ‘strongly continuous
semigroup’ is an operator, S(t) : Z → Z, defined by the
Hilbert space Z, which represents the evolution of the state
of the system so that for any solution x, xt+s = S(s)xt.
Note that for a given Z, the semigroup may not exist
even if the solution exists for any initial conditions in Z.
Associated with a semigroup on Z is an operator A, called
the ‘infinitesimal generator’ which satisfies

d

dt
S(t)φ = AS(t)φ

for any φ ∈ X . The space X is often referred to as the
domain of the generator A, and is the space on which the
generator is defined and need not be a closed subspace of
Z. In this paper we will refer to X as the ‘state-space’. For
System (1), following the approach in Curtain and Zwart
[1995], we define Z := {Rn × L2} and

A

[

x1

x2

]

(s) :=







A0x1 +
K
∑

i=1

Aix2(−τi)

ẋ2(s)






.

The state-space isX := {

[

x1

x2

]

∈ Z : x2 ∈ W2 and x2(0) =

x1}. Using these definitions of A, Z and X , the “complete-
quadratic” Lyapunov functional (2) can be compactly rep-
resented as

V (φ) = 〈

[

φ(0)
φ

]

,P

[

φ(0)
φ

]

〉Z

where

P

[

x1

x2

]

:= M(s)

[

x1

x2(s)

]

+

∫ 0

−τ

N(s, θ)

[

x1

x2(θ)

]

. (3)

That is, the Lyapunov functional is defined by a multiplier
and integral operator whose multiplier and kernel are



unknown. Likewise, the derivative of the functional can
be represented as

V̇ (φ) = 〈

[

φ(0)
φ

]

,PA

[

φ(0)
φ

]

〉Z + 〈A

[

φ(0)
φ

]

,P

[

φ(0)
φ

]

〉Z .

In fact, it is known Curtain and Zwart [1995] that a
strongly continuous semigroup defined by a linear operator
ẋ = Ax on Hilbert space X is exponentially stable if and
only if there exists a positive operator P such that

〈Ax,Px〉Z + 〈Ax,PAx〉Z ≤ −ǫ‖x‖

for all x ∈ X .

6. THE SOS POSITIVITY CONDITIONS

In previous work, we noted that for P to be positive, the
multiplier and kernel functions in (5) must satisfy certain
pointwise conditions. Specifically, we have the following
two theorems.

Theorem 1. Suppose M : [−τ, 0] → Sn+m is continuous
except possibly at points τi and is bounded. Then the
following are equivalent.

(i) There exists an ǫ > 0 so that for all c ∈ Rn and
continuous y : [−τ, 0] → Rm,

∫ 0

−τ

[

c
y(t)

]T

M(t)

[

c
y(t)

]

dt ≥ ǫ‖y‖L2
(4)

(ii) There exist an η > 0 and a function T : [−τ, 0] → Sn,
continuous except possibly at points τi, which is
bounded and satisfies

M(t) +

[

T (t) 0
0 −ηI

]

≥ 0 for all t ∈ [−τ, 0]

and

∫ 0

−τ

T (t) dt = 0.

Theorem 2. Suppose N : [−τ, 0] × [−τ, 0] → Rn×n is a
polynomial of degree 2d. Then the following are equivalent:

•
∫ 0

−τ

∫ 0

−h

x(s)TN(s, t)x(t)dsdt ≥ 0 for all x ∈ C

• There exists a Q ≥ 0 such that

N(s, t) +N(t, s)T = Zd(s)
TQZd(t)

where Zd(s) = In ⊗ Z(t) where Z(t) is the length d + 1
vector of monomials in variable t of degree d or less.

Note that the conditions associated with Theorem 2 do
not imply pointwise positivity of the function N(s, t) and
hence is not actually a SOS constraint. However, the
conditions associated with Theorem 2 are semidefinite
programming constraints on the coefficients of N and
hence can be implemented alongside SOS constraints in
such Matlab toolboxes as SOSTOOLS. To differentiate
positivity of the integral operator from positivity of the
function N , we will use the Notation: N ∈ Σk to denote
that N satisfies the conditions of Theorem 2.

6.1 Inverting Positive Operators

Positive operators are always invertible. However, in Peet
and Papachristodoulou [2009], we demonstrated that if M
and N are polynomial and P is positive in the sense of the
Theorems 1 and 2, then the inverse of P may be calculated
directly as per the following theorem.

Theorem 3. Consider the linear operator P defined by

Px(s) = M(s)x(s) +

∫

I

N(s, θ)x(θ)dθ,

where M(s) > 0 for all s ∈ I and N has a representation
N(s, θ) = Z(s)TRZ(θ) where Z is a vector of basis

functions and R > 0. Define the linear operator P̂ by

P̂ x(s) = M(s)−1x(s) +

∫

I

N̂(s, θ)x(θ)dθ

Where

N̂(s, θ) = M(s)−1Z(s)TQZ(θ)M(θ)−1

Q = −R(S−1 +R)−1S−1

S =

∫

I

Z(s)
(

M(s)−1
)

22
Z(s)Tds.

Then P̂Px = PP̂x = x for any integrable function x.

In this paper, we expand this inversion formula to cover
a broader class of operator. Specifically, we have the
following.

Theorem 4. Define L = L1 + L2, where

(L1x)(s) := K(s)x(0)

(L2x)(s) := M(s)x(s) +

∫

I

N(s, θ)x(θ) dθ

Suppose that L2 is invertible as per Theorem 3 with

(L−1

2
x)(s) = Q(s)x(s) +

∫

I

R(s, θ)x(θ) dθ

and that ρ(J) < 1, where

J := Q(0)K(0) +

∫

I

R(0, s)K(s) ds.

Then

((L1 + L2)
−1x)(s) :=

Y0(s)x(0) + Y1(s)x(s) +

∫

I

Y2(s, θ)x(θ) dθ.

where

Y0(s) = −H(s)(I + J)−1Q(0)

Y1(s) = Q(s)

Y2(s, θ) = R(s, θ)−H(s)(I + J)−1R(0, θ)

H(s) = Q(s)K(s) +

∫

I

R(s, θ)K(θ) dθ

Proof. All proofs omitted to meet 6-page conference
restriction. Proofs will be published in the journal version
of this paper.

7. A STRUCTURED OPERATOR

In order to create a dual stability condition, we must
restrict ourselves to a class of operators which are self-
adjoint with respect to the given inner-product and which
preserve the structure of the state-space. Recall that the

state-space is X := {

[

x1

x2

]

∈ Z : x2 ∈ W2 and x2(0) =

x1} . To preserve this structure, we consider operators of
the form



(Px)(s) :=

[

y1
y2(s)

]

=









(τQ2(0, 0) +Q1(0))x1 +

∫ 0

−τ

Q2(0, s)x2(s)ds

τQ2(s, 0)x2(0) +Q1(s)x2(s) +

∫ 0

−τ

Q2(s, θ)x2(θ)dθ









(5)

Clearly, we have that P is a bounded linear operator
and maps P : X → X . Furthermore, P is self-adjoint
with respect to the L2 inner product, as indicated in the
following lemma.

Lemma 5. Suppose that Q2(s, θ) = Q2(θ, s)
T and Q1(s) ∈

Sn. Then the operator P , as defined in Equation (5), is
self-adjoint with respect to the L2 inner product.

Proof. All proofs omitted to meet 6-page conference
restriction. Proofs will be published in the journal version
of this paper.

Now that we have show that P is self-adjoint, we briefly
discuss constructing the inverse of P . Let us represent P
as

(Px)(s) =

[

(P̄ x2)(0)
(P̄ x2)(s)

]

Assuming that P̄ is invertible, we may construct the
operator

(P−1y)(s) =

[

(P̄−1y2)(0)
(P̄−1y2)(s)

]

P−1 is a left inverse since left composition yields

(P−1Px)(s) =

[

(P̄−1P̄ x2)(0)
(P̄−1P̄ x2)(s)

]

=

[

x2(0)
x2(s)

]

=

[

x1

x2(s)

]

.

Likewise P−1 is also a right inverse.

8. A DUAL STABILITY CONDITION

Now that we have parameterized a class of positive,
invertible, structure-preserving self-adjoint operators, we
may easily construct a dual stability condition for time-
delay systems.

Theorem 6. Suppose that A generates a strongly contin-
uous semigroup on L2 with domain X . Further suppose
there exists a positive operator P : X → X which is self-
adjoint with respect to the L2 inner product and

〈AP, x〉 + 〈x,APx〉 ≤ −〈x, x〉

for all x ∈ X . Then the dynamical system ẋ(t) = Ax
generates an exponentially stable semigroup.

Proof. Because P is positive, self-adjoint, any inverse
must also be positive and self-adjoint. Define the Lyapunov
function

V (y) = 〈y, P−1y〉

where y ∈ X and with derivative

V̇ (y) = 〈ẏ, P−1y〉+ 〈y, P−1ẏ〉

= 〈Ay, P−1y〉+ 〈y, P−1Ay〉

= 〈Ay, P−1y〉+ 〈P−1y,Ay〉.

Now define x = P−1y ∈ X . Then y = Px and

V̇ (y) = 〈Ay, P−1y〉+ 〈P−1y,Ay〉

= 〈APx, x〉 + 〈x,APx〉

≤ −〈x, x〉 = −〈y, P−1P−1y〉 ≤ −α〈y, y〉

where the last inequality holds for some α > 0 by positivity
of P−1. Negativity of the derivative of the Lyapunov
function implies exponential stability in the square norm
of the state by, e.g. Curtain and Zwart [1995] or by the
invariance principle.

9. AN SOS TEST OF THE DUAL STABILITY
CONDITION

To use Sum-of-Squares to test the dual stability condition,
we quantify the relevant operators. Recall that the gener-
ator, A is defined as

(Ax) (s) =









A0x1 +

K
∑

i=1

Aix2(t− τi)

d

ds
x2(s)









. (6)

Note that although we do not include a distributed delay
term, such a term may easily be included. In Equation 5,
we have restricted P to have the form

(Px)(s) :=








(τQ2(0, 0) +Q1(0))x1 +

∫ 0

−τ

Q2(0, s)x2(s)ds

τQ2(s, 0)x2(0) +Q1(s)x2(s) +

∫ 0

−τ

Q2(s, θ)x2(θ)dθ









(7)

for polynomial functions Q1 and Q2.

Theorem 7. Suppose there exist polynomials Q1, Q2, T
such that the following hold

[

τQ2(0, 0) +Q1(0) + T (s) τQ2(0, s)
τQ2(s, 0) Q1(s)

]

− ǫI ∈ Σs, (8)

∫ 0

−τ

T (s)ds = 0, Q2(s, θ) ∈ Σk (9)





S11 + ST

11 + U11(s) ∗T ∗T

ST

12 + U21(s) S22 + U22(s) ∗T

S13(s)
T 0 Q̇1(s)



− ǫI ∈ Σs,

S11 = A0(τQ2(0, 0) +Q1(0)) + τA1Q2(−τ, 0) +
1

2τ
Q1(0),

S12 = A1Q1(−τ),

S22 = −
1

τ
Q1(−τ),

S13(s) = τA0Q2(0, s) + τA1Q2(−τ, s) + τQ̇2(s, 0)
T ,

∫ 0

−τ

[

U11(s) ∗T

U21(s) U22(s)

]

ds = 0, (10)

d

ds
Q2(s, θ) +

d

dθ
Q2(s, θ) ∈ Σk. (11)

Then the system defined by Equation (1) is exponentially
stable.

Proof. All proofs omitted to meet 6-page conference
restriction. Proofs will be published in the journal version
of this paper.

10. FULL-STATE FEEDBACK

Given a dual stability condition, it is easy to construct a
synthesis condition for full-state feedback.

Corollary 8. Suppose that A generates a strongly continu-
ous semigroup on L2 with domain X and B : U → X . Fur-
ther suppose there exists a positive operator P : X → X



which is self-adjoint with respect to the L2 inner product
and an operator Z : X → U such that

〈(AP +BZ)x, x〉+ 〈x, (AP +BZ)x〉 ≤ −〈x, x〉

for all x ∈ X . Let K = ZP−1. Then the dynamical
system ẋ(t) = (A+BK)x generates an exponentially
stable semigroup.

Proof. The proof follows immediately from Theorem 6
with Z = KP .

11. A SUM-OF-SQUARES IMPLEMENTATION

To use Sum-of-Squares to synthesize stabilizing con-
trollers, we first recall and quantify the relevant operators.
We use as a baseline, the single-delay system

ẋ(t) = A0x(t) + A1x(t− τ) +B0u(t). (12)

In this case the generator, A is defined as

(Ax) (s) =

[

A0x1 +A1x2(t− τ)
d

ds
x2(s)

]

. (13)

Note that although we do not include a distributed delay
term, such a term may easily be included. In Equation 5,
we have restricted P to have the form

(Px)(s) :=








(τQ2(0, 0) +Q1(0))x1 +

∫ 0

−τ

Q2(0, s)x2(s)ds

τQ2(s, 0)x2(0) +Q1(s)x2(s) +

∫ 0

−τ

Q2(s, θ)x2(θ)dθ









(14)

for polynomial functions Q1 and Q2. Next, we note that
B : Rm → X has the simple form

(Bu)(s) :=

[

B0u
0

]

.

Finally, we must assume some structure for the variable
operator Z : X → Rm, which we will assume has the form

(Zx)(s) = Z0x1 + Z1x2(−τ) +

∫ 0

−τ

Z2(s)x2(s)ds

We are now ready to state our controller synthesis con-
dition. For simplicity, we will only state the condition for
the case of a single delay.

Theorem 9. Suppose there exist matrices Z0, Z1 and poly-
nomials Q1, Q2, Z2, U, T such that the following hold

[

τQ2(0, 0) +Q1(0) + T (s) τQ2(0, s)
τQ2(s, 0) Q1(s)

]

+ ǫI ∈ Σs, (15)

∫ 0

−τ

T (s)ds = 0, Q2(s, θ) ∈ Σk (16)





S11 + ST

11 + L11 + LT

11 ∗T ∗T

S21 + LT

12 S22 ∗T

S31(s) + L13(s)
T 0 Q̇1(s)



 (17)

+





U11(s) U21(s)
T 0

U21(s) U22(s) 0
0 0 0



+ ǫI ∈ Σs,

S11 = A0(τQ2(0, 0) +Q1(0)) + τA1Q2(−τ, 0) +
1

2τ
Q1(0),

S21 = Q1(−τ)TAT

1 ,

S22 = −
1

τ
Q1(−τ),

S31(s) = τQ2(0, s)
TAT

0 + τQ2(−τ, s)TAT

1 + τQ̇2(s, 0),

L11 = B0Z0

L12 = B0Z1

L13 = τB0Z2(s)
∫ 0

−τ

[

U11(s) ∗T

U21(s) U22(s)

]

ds = 0,

d

ds
Q2(s, θ) +

d

dθ
Q2(s, θ) ∈ Σk. (18)

Then the delayed system (1) is full-state feedback stabiliz-
able. Furthermore, let

(P−1

1 x)(s) = Y0(s)x1 + Y1(s)x2(s) +

∫ 0

−τ

Y2(s, θ)x(θ)dθ

be the inverse of

(P1x)(s)= τQ2(s,0)x2(0)+Q1(s)x2(s)+

∫ 0

−τ

Q2(s, θ)x2(θ)dθ

as defined in Theorem 3. Then a stabilizing controller is

u(t) = K0x(t) +K1x(t− τ) +

∫ 0

−τ

K2(s)x(t+ s)ds

where

K0 =Z0Y0(0)+Z1Y0(−τ)+

∫ 0

−τ

Z2(s)Y0(s)ds+Z0Y1(0)

K1 = Z1Y1(−τ)

K2(s) = Z0Y2(0, s) + Z1Y2(−τ, s) + Z2(s)Y1(s)

+

∫ 0

−τ

Z2(θ)Y2(θ, s)dθ.

Proof. All proofs omitted to meet 6-page conference
restriction. Proofs will be published in the journal version
of this paper.

12. NUMERICAL RESULTS

SOS Dual Stability Condition: Although not the
primary focus of this paper, it is worth considering the
merit of the dual stability condition on its own. For
testing stability, the dual stability condition by itself does
not seem to perform as well as the primal version, we
described in Peet et al. [2009]. This is most likely due to the
restrictive structure placed on the Lyapunov operator. As
an example, the dual test is only able to prove stability of
ẋ(t) = −x(t−τ) for τ ∈ [0, .7] for a polynomial degree of 8.
However, any conservatism in the analysis condition seems
to be lost in the synthesis conditions. This is likely due to
the controller being optimized for the structure imposed
in the dual conditions.
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Fig. 1. A Matlab DDE23 simulation of System (19) with
Controller (20) and delay τ = 5s.

Synthesis Condition After a non-exhaustive search, we
have yet to find a result which cannot be replicated using
the method described here. However, this comparison is
somewhat unfair, as most “state-feedback” results in the
literature typically only use x(t) or x(t− τ) and hence are
working with more limited information. Often such results
are appropriately justified by a presumed lack of knowl-
edge of the delay. However, in such a case, the approach is
not truly state feedback and should rather be considered
output feedback, a topic we leave for future work. To illus-
trate our approach, we consider the commonly referenced
dynamical system

ẋ(t) =

[

0 0
0 1

]

x(t) +

[

−2 −.5
0 −1

]

x(t− τ) +

[

0
1

]

u(t). (19)

This system was stabilized using non-convex iterative/“tuning
parameter” methods in e.g. Moon et al. [2001] and Frid-
man and Shaked [2002] for τ < 1 (using only x(t)).
We applied the methods of this paper for τ = 5 using
simple degree 2 polynomials and obtained the following
exponentially stabilizing controller.

u(t) =

[

−3601
−944

]T

x(t) +

[

−.00891
.872

]T

x(t− τ)

+

∫ 0

−5

[

52.1 + 6.98s+ .00839s2 − .0710s3

12.7 + 1.50s− .0407s2 − .0190s3

]T

x(t+ s)ds

(20)

These results were obtained using a combination of Mat-
lab, MuPad and SOSTOOLS to perform the optimization
and controller reconstruction. The polynomial inversion
was performed in MuPad and approximated using poly-
nomial functions to simplify presentation. Simulations for
fixed initial conditions were performed and can be seen in
Figure 1.

13. CONCLUSION

In conclusion, we have proposed a new form of duality
which allows us to convexify the controller synthesis prob-
lem for infinite-dimensional systems. This dual principle
requires a Lyapunov operator which is positive, invertible,
self-adjoint and preserves the structure of the state-space.
We have used Sum-of-Squares to parameterize a class
of such operators. We applied these results to generate

full-state feedback controllers for time-delay systems. Nu-
merical tests indicate the algorithm compares favorably
with results in the literature, although this comparison is
somewhat specious as we were unable to find any literature
which uses true full-state feedback for control. The contri-
bution of the present paper is not in the accuracy of the
results, however, as these are likely conservative when com-
pared to previous SOS results due to the highly structured
nature of the operators used. Rather the contribution is in
the convexification of the synthesis problem which opens
the door for dynamic output-feedback H∞ synthesis for
infinite-dimensional systems. Future work will entail this
extension as well as an expansion of the class of Lyapunov
operators over which it is possible to optimize.
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