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Abstract— We introduce a new algorithm to check the local
stability and compute the region of attraction of isolated
equilibria of nonlinear systems with polynomial vector fields.
First, we consider an arbitrary convex polytope that contains
the equilibrium in its interior. Then, we decompose the polytope
into several convex sub-polytopes with a common vertex at
the equilibrium. Then, by using Handelman’s theorem, we
derive a new set of affine equality and inequality feasibility
conditions -solvable by linear programming- on each sub-
polytope. The solution to this feasibility problem yields a
piecewise polynomial Lyapunov function on the entire polytope.
To the best of the authors’ knowledge, this is the first effort that
utilizes Handelman’s theorem to construct piecewise polynomial
Lyapunov functions on sub-divided arbitrary polytopes. In a
computational complexity analysis, we show that for large
number of states and large degrees of the Lyapunov function,
the complexity of the proposed feasibility problem is less than
the complexity of the semi-definite programs associated with
Sum-of-Squares and Polya’s algorithms. Using different types
of convex polytopes, we assess the accuracy of the algorithm in
estimating the region of attraction of the equilibrium point of
reverse-time Van Der Pol oscillator.

I. INTRODUCTION

Analyzing the stability of dynamical systems by apply-
ing Lyapunov-based methods often requires checking the
feasibility of a set of inequalities. Solving these feasibility
problems can also be thought of as deciding the positivity of
a set of functions. In the case of dynamical systems with
polynomial vector fields, choosing polynomial Lyapunov
functions results in the problem of deciding the positivity
of a set of polynomials. However, it has been shown that the
general problem of deciding the positivity of polynomials is
NP-hard [1]. One approach to solve this decision problem is
to find a representation which certifies the positivity of the
polynomial and can be calculated in polynomial time.

Thus far, several positivity certificates for polynomials
have been proposed [2]. One of the most well-known pos-
itivity certificates is the Sum of Squares (SOS) representa-
tion. Perhaps the most fundamental result on the existence
of SOS representations for positive polynomials is Artin’s
theorem [3]. It states that for every positive-semi-definite
polynomial f , there exists a polynomial g such that g2 f is
SOS. However, it has been shown that there exists no single
polynomial g (a uniform denominator) that satisfies Artin’s
theorem for every positive-semi-definite polynomial f [4].
The problem of searching for the SOS representation of a
positive polynomial can be formulated as a Semi-Definite
Program (SDP) [5] using the SOS algorithm [6]. Since
solving SDPs is computationally tractable, SOS algorithm
has been used extensively in stability analysis and control of

a variety of complex systems. These include stability analysis
of nonlinear systems [7], [8], robust stability analysis of
switched and hybrid systems [9], and stability analysis of
time-delay systems [10], [11]. Moreover, it was shown in
[12] that there exists an SOS Lyapunov function with a
degree bound for every exponentially stable nonlinear system
on a bounded region.

Another well-known positivity certificate is given by
Polya’s Theorem [13]. It states that every positive homo-
geneous polynomial defined on the positive orthant can
be represented as a sum of even-powered monomials with
positive coefficients. Different variants and extensions of
Polya’s theorem have been utilized in analysis and control,
e.g., Polya’s certificate on a simplex and multi-simplex for
robust stability analysis [14], [15], non-negativity certificate
for polynomials with zeros [16] and a certificate for positivity
on the entire real domain [17].

Using SOS or Polya’s algorithm for stability analysis of
large-scale systems requires setting up and solving large
SDPs. For example, using the SOS algorithm to construct a
degree 6 Lyapunov function on a hypercube for a system with
5 states requires solving an SDP with ∼ 106 variables with
an LMI of size ∼ 103. However, unlike the SOS algorithm,
the SDPs associated with Polya’s algorithm possess a block-
diagonal structure. This enables efficient decentralization of
the computation required for setting up and solving the SDP.
Decentralized implementations of Polya’s algorithm applied
to robust and nonlinear stability problems can be found
in [18], [19]. However, Polya’s algorithm can only be used
to obtain positivity certificates on simple geometries such as
simplices and hypercubes. To find certificates of positivity
on a broader class of convex sets, one can use Handelman’s
theorem [20]. The theorem gives a complete parameterization
of the cone of positive polynomials defined on arbitrary
convex polytopes by giving a representation in the basis of
affine functions (Handelman basis) with positive coordinates.
A degree bound for Handelman’s certificate is given in [21].
A non-negativity certificate expressed in Handelman basis
and with arbitrary positive polynomial coordinates is given
in [22].

Thus far, Handelman’s theorem has been used to construct
polynomial Lyapunov functions on hypercubes [23]. In this
paper, we employ a decomposition strategy which allows us
to use Handelman’s theorem to construct piecewise poly-
nomial Lyapunov functions on arbitrary convex polytopes.
First, we decompose a given convex polytope into a set
of convex sub-polytopes that share a common vertex at
the origin. Then, on each sub-polytope we derive a set of



constraints that are affine in the unknown coefficients of
the Lyapunov function expressed in the Handelman basis.
Finally, we derive an additional set of affine constraints
which ensure the zeroness of the Lyapunov function at the
origin and its continuity on the entire polytope. The feasi-
bility of the derived affine constraints can be checked using
linear programming. Our complexity analysis shows that for
certain decompositions, the computational cost of solving
the linear program associated with the derived constraints
scales polynomially with the state-space dimension. We also
show that for large state-space dimensions, high degrees
of the Lyapunov functions and certain decompositions, the
complexity of the proposed LP is lower than the complexities
of the SDPs associated with SOS and Polya’s algorithms.
Finally, we perform a numerical experiment to evaluate the
accuracy of the proposed method in computing the invariant
set of the reverse-time Van Der Pol oscillator.

II. DEFINITIONS AND NOTATION

In this section, we define convex polytopes, facets of
polytopes, decompositions, interfaces, Handelman bases and
representations with respect to polytopes.

Definition 1: (Convex Polytope) Given the set of vertices
P := {pi ∈ Rn, i = 1, · · · ,K}, define the convex polytope ΓP
as

ΓP := {p ∈ Rn : p =
K

∑
i=1

µi pi : µi ∈ [0,1] and
K

∑
i=1

µi = 1}.

Every convex polytope can be represented as

Γ := {x ∈ Rn : wT
i x+ui ≥ 0, i = 1, · · · ,K},

for some wi ∈Rn,ui ∈R, i = 1, · · · ,K. Throughout the paper,
every polytope that we use contains origin.

Definition 2: (Facets of a polytope) Given a polytope of
the form

Γ := {x ∈ Rn : wT
i x+ui ≥ 0, i = 1, · · · ,K},

define the i−th facet of the polytope Γ as

ζ i := {x ∈ Rn : wT
i x+ui = 0 and wT

j x+u j ≥ 0

for j ∈ {1, · · · ,K}, j 6= i}.
Definition 3: (D-decomposition) Given a polytope of the

form

Γ := {x ∈ Rn : wT
i x+ui ≥ 0, i = 1, · · · ,K},

we say DΓ := {Di}i=1,··· ,L is a D-decomposition of Γ, if Di ⊂
Rn are polytopes of the form

Di := {x ∈ Rn : hT
i, jx+gi, j ≥ 0, j = 1, · · · ,mi}

such that ∪L
i=1Di =Γ, ∩L

i=1Di = {0} and int(Di)∩ int(D j)= /0
for i, j ∈ {1, · · · ,L}, i 6= j.

Definition 4: (Collection of adjacent sub-polytopes)
Given a D-decomposition {Di}i=1,··· ,L of polytope Γ, where
Di := {x ∈ Rn : hT

i, jx+ gi, j ≥ 0, j = 1, · · ·mi}, for any i, we
denote the polytopes adjacent to Di as

{H i
j} :=

{H i
j ∈ DΓ : hT

j,k1
x+g j,k1 = hT

i,k2
x+gi,k2 for some k1,k2 ∈ N}

Definition 5: (Handelman basis associated with a poly-
tope) Given a polytope of the form

Γ := {x ∈ Rn : wT
i x+ui ≥ 0, i = 1, · · · ,K},

we define the set of Handelman bases, indexed by

α ∈ Ed := {α ∈ NK : |α|1 ≤ d}, as

B(Γ) := {λα(x) : λα(x) =
K

∏
i=1

(wT
i x+ui)

αi , α ∈ Ed}.

Definition 6: (Restriction of a polynomial to a facet)
Given a polytope of the form Γ := {x ∈ Rn : wT

i x+ ui, i =
1 · · ·K}, and a polynomial f (x) of the form

f (x) = ∑
α∈Ed

bα
K

∏
i=1

(wT
i x+ui)

αi ,

define the restriction of f (x) to the k-th facet of Γ as

f (x)|ζ k := ∑
α∈Ed :αk=0

bα
K

∏
i=1

(wT
i x+ui)

αi .

Definition 7: (Upper Dini Derivative) Let f : Rn →Rn be
a continuous map. Then, define the upper Dini derivative of
a function V : Rn → R in the direction of f (x) as

D+(V, f (x)) = limsup
h→0+

V (x+h f (x))−V (x)
h

.

It can be shown that for a continuously differentiable V (x),

D+(V, f (x)) = 〈∇V (x), f (x)〉.

Finally, given a polynomial of the form

f (x) = ∑
α∈Ed

bα
K

∏
i=1

(wT
i x+ui)

αi , x ∈ Rn

with N = ∑d
j=0

( j+n−1)!
j!(n−1)! monomials, we will use the map C :

R[x]→ RN , C ( f ) := [c1, · · · ,cN ], where c j is the coefficient
of the j-th monomial in f (x) in the lexicographical ordering.
We have derived c j as a function of bα ,d,ui,wi, i = 1, · · · ,K
in the Appendix.

III. BACKGROUND AND PROBLEM STATEMENT

We address the problem of local stability of nonlinear
systems of the form

ẋ = f (x), (1)

around the origin, where f : Rn → Rn. Consider the classic
Lyapunov result for nonlinear systems.

Theorem 1: For any Ω ⊂ Rn such that 0 ∈ Ω, if there
exists a continuous function V : Rn → R and continuous
positive definite functions W1,W2,W3,

W1(x)≤V (x)≤W2(x) for x ∈ Ω and
D+(V, f (x))≤−W3(x) for x ∈ Ω,

then system (1) is asymptotically stable on {x : {y : V (y) ≤
V (x)} ⊂ Ω}.
In this paper, we construct piecewise polynomial Lyapunov
functions, which may not have classical derivatives. As such,



we use Dini derivatives instead, which exist for all contin-
uous functions, thus for piecewise polynomial functions as
well.

In this paper, we solve the following problem.
Problem statement: Given the vertices pi ∈Rn, i = 1, · · · ,K,
we would like to find maxs∈R+ s and a polynomial V (x) such
that V (x) satisfies the conditions of Theorem 1 on the convex
polytope {x∈Rn : x=∑K

i=1 µi pi : µi ∈ [0,s] and ∑K
i=1 µi = s}.

Every convex polytope can be represented as a semi-
algebraic set. It has been shown that deciding whether a
real-valued polynomial is positive over a semi-algebraic set
is NP-hard [1]. To avoid intractability, we use a result given
by Handelman [20] which defines a tractable certificate for
positivity of polynomials on convex polytopes.

Theorem 2: (Handelman’s Theorem) Given wi ∈ Rn,ui ∈
R, i = 1, · · · ,K, define the polytope Γ := {x ∈Rn : wT

i x+ui ≥
0, i = 1, · · · ,K}. If polynomial f (x) > 0 for all x ∈ Γ, then
there exist bα ≥ 0, α ∈ Nm such that for some d ∈ N,

f (x) = ∑
α∈Ed

bα(wT
1 x+u1)

α1 · · ·(wT
Kx+uK)

αK .

Recall that the set of exponents Ed is defined in Defini-
tion 5. For any arbitrary positive polynomial and some poly-
tope Γ, Theorem 2 gives a representation of the polynomial
using the Handelman basis B(Γ) associated with the polytope
Γ and with non-negative coordinates bα . In other words, the
theorem parameterizes every positive polynomial using the
positive orthant. We now present the converse of Theorem 2,
which gives a certificate of nonnegativity of a polynomial on
a polytope using the Handelman basis.

Proposition 1: Given wi ∈ Rn,ui ∈ R, i = 1, · · · ,K, define
the polytope Γ := {x ∈ Rn : wT

i x + ui ≥ 0, i = 1, · · · ,K}.
Suppose the polynomial f (x) of degree d is of the form

f (x) = ∑
α∈Ed

bα(wT
1 x+u1)

α1 · · ·(wT
Kx+uK)

αK ,

where each bα ≥ 0. Then, f (x)≥ 0 for all x ∈ Γ.
In the following section, we use Proposition 1 to construct
a set of affine constraints for a given polynomial on a
given polytope. The feasibility of these constraints can be
tested using linear programming. Any feasible point yields a
certificate for the positivity of the polynomial on the given
polytope.

IV. PROBLEM SETUP

We first present some lemmas necessary for the proof of
our main result.

Lemma 1: (Zeroness at the origin) Let DΓ := {Di}i=1,··· ,L
be a D-decomposition of a polytope Γ, where for each i

Di := {x ∈ Rn : hT
i, jx+gi, j ≥ 0, j = 1, · · · ,mi},

and let

fi(x) = ∑
α∈Ed

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi , i = 1, · · ·L.

Then, for all i ∈ {1, · · · ,L} and all

α ∈ Êd := {α ∈ Nmi : |α|1 ≤ d, αk = 0 for all k : gi,k = 0},

if bα,i = 0, then each fi(0) = 0.
Proof: Note that

fi(x)= ∑
α∈Ed\Êd

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi + ∑
α∈Êd

bα ,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi .

First, for each α ∈ Ed\Êd , there exists at least one k ∈
{1, · · · ,mi} such that gi,k = 0 and αk > 0. Thus, at x = 0,

∑
α∈Ed\Êd

bα ,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi = 0. (∗)

Second, for each α ∈ Êd , bα ,i = 0. Thus, for any x

∑
α∈Êd

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi = 0. (∗∗)

Thus, from (*) and (**), we show that if bα ,i = 0 for all α ∈
Êd , then fi(0) = 0.

Lemma 2: (Continuity of piecewise polynomial functions)
Let DΓ := {Di}i=1,··· ,L be a D-decomposition of a polytope
Γ, where for each i

Di := {x ∈ Rn : hT
i, jx+gi, j ≥ 0, j = 1, · · · ,mi},

and let {H i
s} be the set of all polytopes adjacent to Di. For

i = 1, · · · ,L, define

fi(x) = ∑
α∈Ed

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi .

If
C ( fi(x)|ζ k) = C ( fq(x)|ζ l )

for every facet ζ k ⊂ Di,k = 1, · · · ,mi and every facet ζ l ⊂
Dq, l = 1, · · · ,mi and every q ∈ {1, · · · ,L} such that Dq ∈
{H i

s} and ζ k = ζ l , then fi(x) = fq(x) for all x ∈ Di ∩Dq.
Proof: For any i ∈ {1 · · · ,L} and k ∈ {1, · · · ,mi}, we

can write

fi(x) = ∑
α∈Ed :αk>0

bα ,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi+

∑
α∈Êd :αk=0

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

αi .

Since for any x ∈ ζ k ⊂ Di, hT
i,kx+gi,k = 0, it follows that for

any x ∈ ζ k,

∑
α∈Ed :αk>0

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

α j = 0.

Therefore, for any x ∈ ζ k

fi(x) = ∑
α∈Ed :αk=0

bα ,i

mi

∏
j=1

(hT
i, jx+gi, j)

α j .

Then, from Definition 6 we have

fi(x) = fi(x)|ζ k . (∗)



Furthermore, since for every facet ζ k ⊂Di,K = 1, · · · ,mi and
every facet ζ l ⊂ Dq, l = 1, · · · ,mi and every q ∈ {1, · · · ,L}
such that Dq ∈ {H i

s} and ζ k = ζ l we have

C ( fi(x)|ζ k) = C ( fq(x)|ζ l ),

it follows that

fi(x)|ζ k = fq(x)|ζ l . (∗∗)

Last, for any x ∈ ζ l ⊂ Dq,

fq(x)|ζ l = fq(x). (∗∗∗)

Thus, if for every facet ζ k ⊂ Di,K = 1, · · · ,mi and every
facet ζ l ⊂ Dq, l = 1, · · · ,mi and every q ∈ {1, · · · ,L} such
that Dq ∈ {H i

s} and ζ k = ζ l ,

C ( fi(x)|ζ k) = C ( fq(x)|ζ l )

then from (*), (**) and (***), fi(x) = fq(x) for all x ∈ Di ∩
Dq.

Theorem 3: (Main result) Consider system (1) with poly-
nomial vector field f (x) of degree d f . Given wi, hi, j ∈ Rn,
ui, gi, j ∈ R, define the polytope

Γ := {x ∈ Rn : wT
i x+ui ≥ 0, i = 1, · · · ,K},

with D-decomposition DΓ := {Di}i=1,··· ,L, where

Di := {x ∈ Rn : hT
i, jx+gi, j ≥ 0, j = 1, · · · ,mi}.

Suppose for each i ∈ {1, · · · ,L}, {H i
s} is the set of polytopes

adjacent to each Di. Then, for some d ∈ N and for i =
1, · · · ,L, if there exist

bα,i ≥ 0 for α ∈ Ed and (2)
cβ ,i ≤ 0 for β ∈ Ed+d f −1, (3)

such that
I. bα,i > 0 and cβ ,i < 0 for at least one α ∈ Ed and β ∈

Ed+d f −1,
II. bα,i = 0 for all α ∈ Êd := {α ∈ Nmi : |α |1 ≤ d,

αk = 0, for all k : gi,k = 0},
III. C (Vi(x)|ζ k) = C (Vq(x)|ζ l ) for every facet ζ k ⊂ Di,k =

1, · · · ,mi and every facet ζ l ⊂ Dq, l = 1, · · · ,mi and
every q ∈ {1, · · · ,L} such that Dq ∈ {H i

s} and ζ k = ζ l ,
IV. C (〈∇Vi(x), f (x)〉) = C (Zi(x)),

where

Vi(x) := ∑
α∈Ed

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

α j and (4)

Zi(x) := ∑
β∈Ed+d f −1

cβ ,i

mi

∏
j=1

(hT
i, jx+gi, j)

β j ,

then system 1 is asymptotically stable at the origin.
Proof: Let us choose V (x) as

V (x) =Vi(x) = ∑
α∈Ed

bα,i

mi

∏
j=1

(hT
i, jx+gi, j)

α j

for x ∈ Di, i = 1, · · · ,L.

In order to show that V (x) is a Lyapunov function for
system 1, we need to prove the following:

1) Vi(x)> 0 for all x ∈ Di\{0}, i = 1, · · · ,L,
2) D+(Vi(x), f (x))< 0 for all x ∈ Di\{0}, i = 1, · · · ,L,
3) V (0) = 0,
4) Continuity of V (x).

Then, by Theorem 1, it follows that the system 1 is asymp-
totically stable at the origin. Now, let us prove items (1)-
(4). First, since for each i ∈ {1, · · · ,L} and α ∈ Ed , bα ,i ≥
0 and cβ ,i ≤ 0, from Proposition 1, it follows that for each
i ∈ {1, · · · ,L}, Vi(x) ≥ 0 and Zi(x) ≤ 0 for all x ∈ Di\{0}.
Then, from condition I, since for each i ∈ {1, · · · ,L}, there
exists at least one bα ,i > 0, and at least one cβ ,i < 0, thus,
for each i ∈ {1, · · · ,L}, Vi(x) > 0 and Zi(x) < 0 for all
x ∈ Di\{0}. Second, since Zi(x) < 0 for x ∈ Di\{0}, i ∈
{1, · · · ,L}, and C (〈∇Vi(x), f (x)〉) = C (Zi(x)), it follows that
for each i ∈ {1 · · · ,L}, 〈∇Vi(x), f 〉(x)< 0 for all x ∈ Di\{0}.
Then, since for each i ∈ {1, · · · ,L}, D+(Vi(x), f (x)) =
〈∇Vi(x), f (x)〉 for all x ∈ Di, D+(Vi(x), f (x))< 0 for all x ∈
Di\{0} and i ∈ {1 · · · ,L}. Third, by Lemma 1, condition II
directly implies that Vi(0) = 0 for all i ∈ {1, · · · ,L}. Thus,
V (0) = 0. Finally, since each Vi(x) is continuous on int(Di),
we only need to show that V (x) is continuous on Di ∩
Dq, for all i,q∈{1, · · · ,L} : Dq ∈{H i

s}. By Lemma 2, condi-
tion III directly implies that Vi(x) =Vq(x) for all x ∈ Dq∩Di.

Remark 1: The inequality and equality constraints (2), (3),
I and II in Theorem 3 are affine in {bα,i} and {cβ ,i}. Fur-
thermore, in the Appendix, we have shown that the equality
constraints in III and IV are affine in {bα,i} and {cβ ,i}. Thus,
for some d ∈ N, one can use linear programming to find
{bα ,i} and {cβ ,i} that satisfy the constraints (2), (3) and I to
IV.

Using Theorem 3, we define the following algorithm to
find the set of coefficients {bα,i} of Lyapunov functions of
the form (4).

V. COMPLEXITY ANALYSIS

In this section, we analyze and compare the complexity
of the LP and SDP problems associated with Algorithm 1,
Polya’s algorithm in [19] and SOS algorithm. In this com-
parison, we consider the polytopic domain of analysis to be
a hypercube, centered at the origin. We will use the formula

Nvars :=
d

∑
i=0

(i+K −1)!
i!(K −1)!

,

which gives the number of basis functions in B(Γ) for a
convex polytope Γ with K facets.

A. Complexity of the LP associated with Algorithm 1

We consider the following assumption in the analysis.
Assumption 1: We perform the analysis on an

n−dimensional hypercube, centered at the origin. The
hypercube is decomposed into L = 2n sub-polytopes such
that each sub-polytope has m = 2n − 1 facets, m̄ = 1 of
which do not contain the origin. Fig. 1 shows the 1−, 2−
and 3−demensional decomposed hypercube.



Algorithm 1: Search for piecewise polynomial Lyapunov
functions
Inputs:

• The polytope’s data: wi,ui for i = 1, · · · ,L.
• D-decomposition data: hi, j and gi, j for i = 1, · · · ,K and

j = 1, · · · ,mi.
• The vector field of the dynamical system: f (x).
• Maximum degree of the Lyapunov function: dmax

for i = 1, · · · ,L do
Calculate the set of adjacent polytopes to Di, i.e.,
{H i

j} using Definition 4
Calculate the set of facets of Di, i.e., {ζ j} using
Definition 2

while d < dmax do
Check the feasibility of the constraints (2), (3) and I
to IV in Theorem 3 using an LP solver
if feasible then

Break the while loop
else

Set d = d +1

Outputs:
• In case of feasibility: the coefficients bα,i for α ∈ Ed ,

i = 1, · · · ,L of the piecewise polynomial Lyapunov
function Vi(x) = ∑α∈Ed

bα,i ∏mi
j=1(h

T
i, jx+gi, j)

α j .

Fig. 1. Decomposition of the hypercube in 1−,2− and 3−dimensions

Let n be the state-space dimension, dV be the degree of the
Lyapunov function and d f be the degree of the vector field
f (x) in system (1). Then, the number of decision variables
in the LP associated with Algorithm 1 is

NH
vars = L

(
dV

∑
d=0

(d +m−1)!
d!(m−1)!

+

dV+d f −1

∑
d=0

(d +m−1)!
d!(m−1)!

−
dV

∑
d=0

(d + m̄−1)!
d!(m̄−1)!

)
, (5)

where the first term is the number of bα coefficients, the
second term is the number of cβ coefficients and the third
term is the number of bα coefficients that are set to zero in
condition II of Theorem 3. By substituting for L,m and m̄
in (5) from Assumption 1, we have

NH
vars = 2n

(
dV

∑
d=0

(d +2n−2)!
d!(2n−2)!

+

dV+d f −1

∑
d=0

(d +2n−2)!
d!(2n−2)!

−dV −1

)
.

Then, for large number of states, i.e., large n,

NH
vars ∼ 2n

(
(2n−2)dV +(2n−2)dV+d f −1

)
∼ ndV+d f

The number of constraints in the LP is

NH
cons =NH

vars+L

(
dV

∑
d=0

(d +n−1)!
d!(n−1)!

+

dV+d f −1

∑
d=0

(d +n−1)!
d!(n−1)!

)
,

(6)
where the first term is total number of inequality constraints
associated with the positivity of bα and negativity of cβ ,
the second term is the number of equality constraints on
the coefficients of the Lyapunov function to maintain the
continuity (see condition III of Theorem 3) and the third term
is the number of equality constraints on the coefficients of the
Lie derivative to maintain its negativity (see condition IV of
Theorem 3). By substituting for L in (6) from Assumption 1,
for large n we get

NH
cons ∼ ndV+d f +2n(ndV +ndV+d f −1)∼ ndV+d f .

Since solving an LP with an interior-point algorithm requires
O(N2

varsNcons) operations [24], the computational cost of
solving the LP associated with Algorithm 1 is

∼ n3(dV+d f ).

B. Complexity of the SDP associated with Polya’s algorithm

Polya’s algorithm [25] checks the positivity of a poly-
nomial over n−hupercubes as follows. First, the algorithm
defines each variable of the polynomial on a distinct simplex.
Then, it constructs a homogeneous representation of the
polynomial on the multi-simplex generated by the cross
product of the simplices. Finally, it checks the positivity of
the coefficients of the homogeneous polynomial. Since the
multi-simplex lies on the positive orthant, positivity of the
coefficients of the homogeneous representation of the poly-
nomial is a certificate for the positivity of the polynomial.

By using semi-definite programming, the Polya’s algo-
rithm in [19] searches for the coefficients of polynomial
P(x) over the cone of positive definite matrices, to construct
Lyapunov functions of the form V (x) = xT P(x)x. In [19], we
have shown that the number of decision variables in the SDP
associated with Polya’s algorithm is

NP
vars =

n(n+1)
2

dV−2

∑
d=0

(d +n−1)!
d!(n−1)!

.

The number of rows in the LMI constraint of the SDP is

NP
cons =

n(n+1)
2

(
(dV + e−1)n +(dV +d f + e−2)n) ,

where e is the Polya’s exponent. Then, for large n,

NP
vars ∼ ndV and NP

cons ∼ (dV +d f + e−2)n.

Since solving an SDP with an interior-point algorithm
typically requires O(N3

cons + N3
varNcons + N2

varN
2
cons) opera-

tions [24], the computational cost of solving the SDP as-
sociated with Polya’s algorithm is

∼ (dV +d f + e−2)3n.



C. Complexity of the SDP associated with SOS algorithm

To find a Lyapunov function for (1) over the polytope of
the form

Γ =
{

x ∈ Rn : wT
i x+ui ≥ 0, i ∈ {1, · · · ,K}

}
using SOS algorithm and the Positivstellensatz results [26],
we find polynomial V (x) and SOS polynomials si(x) and
ti(x) for i = 1, · · · ,K such that for any ε > 0

V (x)− εxT x−
K

∑
i=1

si(x)(wT
i x+ui) is SOS and

−〈∇V (x), f (x)〉− εxT x−
K

∑
i=1

ti(x)(wT
i x+ui) is SOS.

Let us choose the degree of si(x) to be dV −2 and the degree
of ti(x) to be dV +d f −2. Then, it can be shown that the total
number of decision variables in the SDP associated with the
SOS algorithm is

NS
vars =

N1(N1 +1)
2

+K
N2(N2 +1)

2
+K

N3(N3 +1)
2

, (7)

where N1 is the number of monomials in a polynomial of
degree dV/2 , N2 is the number of monomials in a polynomial
of degree (dV −2)/2 and N3 is the number of monomials in
a polynomial of degree (dV +d f −2)/2 calculated as

N1 =
dV /2

∑
d=1

(d +n−1)!
(d)!(n−1)!

,

N2 =
(dV−2)/2

∑
d=0

(d +n−1)!
(d)!(n−1)!

and N3 =

(dV+d f −2)/2

∑
d=0

(d +n−1)!
(d)!(n−1)!

.

The first, second and third terms in (7) are the number of de-
cision variables associated with the SOS format (z(x)T Mz(x),
z(x) is the vector of monomial basis) of the polynomials
V (x),si(x) and ti(x), respectively. It can be shown that the
number of rows in the LMI constraint of the SDP is

NS
cons = N1 +2K N2 +N3,

where the first term is the number of rows associated with
the positivity of V (x), the second term is the number of rows
associated with the positivity of si(x) and ti(x), i = 1, · · · ,K
and the third term is the number of rows associated with the
negativity of the Lie derivative. By substituting K = 2n (For
the case of a hypercube), for large n we have

NS
vars ∼ ndV+d f −1 and NS

cons ∼ n(dV+d f −2)/2.

Finally, the computational cost of solving the SDP associated
the SOS algorithm, using an interior-point algorithm is

∼ n3.5(dV+d f )−4

D. Comparison of the Complexities

We draw the following conclusions from our complexity
analysis.

1) For large number of states and with Assumption 1, the
complexities of the LP associated with Algorithm 1
and the SDP associated with the SOS algorithm grows
polynomially with n, whereas the complexity of the

SDP associated with Polya’s algorithm grows expo-
nentially with n. Furthermore, for large state-space
dimensions and degrees of the Lyapunov polynomial,
the LP has the least computational complexity.

2) The complexity of the LP associated with Algorithm 1
scales linearly with the number of sub-polytopes L. In
case simplicial complex decomposition, where L = 2n,
the complexity of the LP grows exponentially with the
state-space dimension.

3) In Fig. 2, we show the number of decision variables
and constraints of the LP and SDPs, for different de-
grees of the Lyapunov function and different degrees of
the vector field. The figure shows that in general, SDP
associated with Polya’s algorithm has the least number
of variables and the greatest number of constraints,
whereas the SDP associated with SOS algorithm has
the greatest number of variables and the least number
of constraints.
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Fig. 2. Number of decision variables and constraints of the optimization
problems associated with Algorithm 1 and Polya’s and SOS algorithms, for
different degrees of Lyapunov function and vector field f (x)

VI. NUMERICAL RESULTS

In this section, we test the accuracy of our algorithm in
approximating the region of attraction of locally-stable non-
linear systems through numerical examples. We perform the
stability analysis on the reverse-time Van Der Pol oscillator.

ẋ1 =−x2, ẋ2 = x1 + x2(x2
1 −1), (8)

using the following polytopes:
1) Parallelogram ΓP: the convex hull of the vertices

p1 =

[
−1.31
0.18

]
, p2 =

[
0.56
1.92

]
, p3 =

[
−0.56
−1.92

]
p4 =

[
1.31
−0.18

]
2) Square ΦQ: the convex hull of the vertices

q1 =

[
−1
1

]
,q2 =

[
1
1

]
,q3 =

[
1
−1

]
q4 =

[
−1
−1

]
3) Diamond ΘR: the convex hull of the vertices

r1 =

[
−1.41

0

]
,r2 =

[
0

1.41

]
,r3 =

[
1.41

0

]
r4 =

[
0

−1.41

]



We decompose the parallelogram and the diamond into 4
triangles and the decompose the square into 4 squares. We
would like to solve the following optimization problem for
d = 2,4,6,8 as the degree of the Lyapunov function.

max
s∈R+,bα,i≥0,cβ ,i≤0

s

s.t. conditions I to IV of Theorem 3 hold for

Vi(x) = ∑
α∈Ed

bα,i

3

∏
j=1

(hT
i, jx+gi, j)

α j , i = 1, · · · ,4,

Zi(x) := ∑
β∈Ed+d f −1

cβ ,i

mi

∏
j=1

(hT
i, jx+gi, j)

β j , i = 1, · · · ,4,

and system (8) for all

x ∈ {x ∈ R2 : x =
K

∑
i=1

µi pi : µi ∈ [0,s] and
K

∑
i=1

µi = s}.

We solve the above problem using a bisection search on s
in an outer-loop, and an LP solver in the inner loop. We
repeat the bisection search for Vi(x) of degrees d = 2,4,6,8.
In Fig. 3, for each d, we have shown

Γ∗
P := {x ∈ Rn : x =

K

∑
i=1

µi pi : µi ∈ [0,s∗] and
K

∑
i=1

µi = s∗}

and the largest level-set of Vi(x) inscribed in Γ∗
P. Similarly,

we solved the same optimization problem with square ΦQ
and diamond ΘR as the sets of analysis. In all cases,
increasing d results in a larger level-set of Vi(x). We obtained
the largest level-set using the parallelogram ΓP with the
scaling factor s∗ = 1.639. The maximum scaling factor for
ΦQ is s∗ = 1.800 and the maximum scaling factor for ΘR is
s∗ = 1.666.

Fig. 3. Largest level sets of Lyapunov functions of different degrees and
their associated parallelograms
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Fig. 4. Largest level sets of Lyapunov functions of different degrees and
their associated squares
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Fig. 5. Largest level sets of Lyapunov functions of different degrees and
their associated diamonds

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce an algorithm to analyze the
local stability of nonlinear systems with polynomial vector
fields. The algorithm searches for the coefficients of a
piecewise polynomial Lyapunov function defined on a sub-
divided convex polytope and represented in the Handelman
basis. We show that these coefficients can be obtained by
solving a sequence of linear programs. We also show that
the complexities of the linear programs scale polynomially
in the number of states. In the numerical examples, we show
the accuracy of the algorithm in approximating the region
of attraction inscribed within different polytopes. As future
work, we would like to apply this algorithm to stability anal-
ysis of switched systems and controller synthesis problems.
We will also develop a decentralized algorithm to setup and
solve the linear program associated with Theorem 3.

VIII. APPENDIX: DERIVATION OF THE COEFFICIENT MAP

Given wi ∈ Rn and bα ,ui ∈ R, Let

V (x) = ∑
α∈Ed

bα
K

∏
i=1

(wT
i x+ui)

αi ,

where Ed := {α ∈ NK : |α |1 ≤ d}. Let X := (x1, · · · ,xn,y).
Then, we define the homogeneous representation of V (x) as

Ṽ (X) = ∑
α∈Ed

bα
K

∏
i=1

(wT
i x+uiy)αi .

By employing the multinomial theorem, we get

Ṽ (X) = ∑
α∈Ed

bα
K

∏
i=1

 ∑
li, j∈N:∑n+1

j=1 li, j=αi

αi!w
li,1
i,1 ...w

li,n
i,n u

li,n+1
i

li,1!...li,n+1!


x

li,1
1 ...xli,n

n yli,n+1
)
.

By letting p(αi, li,wi,ui) =
αi!w

li,1
i,1 ...w

li,n
i,n u

li,n+1
i

li,1!...li,n+1! and expanding
Ṽ (X), we have

Ṽ (X) = ∑
α∈Ed

bα

 ∑
l1, j∈N:

∑n+1
j=1 l1, j=α1

... ∑
lK, j∈N:

∑n+1
j=1 lK, j=αK

(
K

∏
i=1

p(αi, li,wi,ui)

)

y∑K
i=1 li,n+1 x∑K

m=1 lm,1
1 · · ·x∑K

m=1 lm,n
n

)
.



Note that F(x1, ...,xn,1) =V (x). Thus, by substituting y = 1
we have

V (x) = ∑
α∈Ed

bα ∑
l1, j∈N:

∑n+1
j=1 l1, j=α1

... ∑
lK, j∈N:

∑n+1
j=1 lK, j=αK

(
K

∏
i=1

p(αi, li,wi,ui)

)

x∑K
m=1 lm,1

1 · · ·x∑K
m=1 lm,n

n

)
.

Thus, for every {li, j ∈ N}i=1,··· ,K
j=1,··· ,n

, the coefficient of the

monomial x∑K
m=1 lm,1

1 · · ·x∑K
m=1 lm,n

n is

∑
α∈Ed :

∑n
j=1 l1, j=α1

...
∑n

j=1 lK, j=αK


∑

l1,n+1∈{0,··· ,d−α1}
...

lK,n+1∈{0,··· ,d−αK}

bα

(
K

∏
i=1

p(α1, li,wi,ui)

)

.

Thus, for any polynomial V (x) of the form

V (x) = ∑
α∈Ed

bα
K

∏
i=1

(wT
i x+ui)

αi ,x ∈ Rn,

with N = ∑d
j=0

( j+n−1)!
j!(n−1)! monomials, we define the coefficient

map C : R[x]→ RN as C ( f ) := [c1, · · · ,cN ] , where

ck = ∑
α∈Ed :

∑n
j=1 l1, j=α1

...
∑n

j=1 lK, j=αK


∑

l1,n+1∈{0,··· ,d−α1}
...

lK,n+1∈{0,··· ,d−αK}

bα

(
K

∏
i=1

p(α1, li,wi,ui)

)


(9)
for some lp, j ∈ N such that xγ1

1 · · ·xγn
n with γ j = ∑K

p=1 lp, j,
is the k−th monomial in V (x) using the lexicographical
ordering, and where

p(αi, li,wi,ui) =
αi!w

li,1
i,1 ...w

li,n
i,n u

li,n+1
i

li,1!...li,n+1!
.

Notice that, from (9), the coefficients of V (x) are affine in
{bα}. Similarly, it can be shown that the coefficients of
〈∇V (x), f (x)〉 are affine in {bα}. However, for the sake of
brevity, we do not derive a formula for the coefficients of
〈∇V (x), f (x)〉 in terms of {bα}.
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