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Abstract—In this paper, we present an algorithmic ap- reasonable given the vast body of literature on discretizat
proach to the construction of Lyapunov functions for infinite-  and numerical simulation of PDEs. We would argue, how-
dimensional systems. This paper unifies and extends many gyer that lumped-parameter approaches make less sense in

previous results which have appeared in conference and jour .
nal format. The unifying principle is that a linear matrix the context of Lyapunov theory, wherein we are concerned

parametrization of operators in Hilbert space inevitably leads ~Not with reconstructing the solution, but with derivipgp-

to a linear parametrization of positive forms using positive  erties of the solution.

semidefinite matrices via squared representations. For liear The use of LMI conditions for constructing Lyapunov-
systems, these positive forms are defined by positive lineap-  k450yskii functions for infinite-dimensional systems and

erators and define quadratic Lyapunov functions. For nonlirear i del t . ticular i i Of th th
systems, the forms are defined by nonlinear operators and Ime-delay Systems in particuiar 1s not new. ese, the

will define non_quadratic Lyapunov functions. Specia| casg most I’e|evant are those Wh|Ch are based on the SO'Ca”ed
of these results include operators defined by multipliers ad  “complete-quadratic functional” - a form based on converse
kernels which are: polynomial; piecewise-polynomial; or emi- | yapunov theory [1]. Examples include the piecewise linear
separable and apply to systems with delay; multiple spatial approach [2] and the delay-partitioning approach [3]. An

domains; or mixed boundary conditions. We also introduce a . t fi LM ht ical iorct
set of efficient software tools for creating these functionla. interesting (semi- ) approach to numerical reconsiare

Finally, we illustrate the approach with numerical examples.  Of the Lyapunov function can be found in [4]. The literature
on LMI-based Lyapunov methods for PDE systems is more

. INTRODUCTION limited. but ¢ K be found in 5], Usi
Recently, there has been substantial interest in algoiti:thm'mIe , but some recent work can be found in [5]. Using

approaches to analysis and controller synthesis for bii-ti Squared representations for delayed and PDE systems has

delay systems and partial-differential equations. Foedin be§n7stL_:_orl:§d by the author l‘f’ldmi. collak:jora’iors n, ef.g. [6]
systems, this problem can be addressed in both the timar 7). IS Paper 1S a consolidation and extension ot many
{ these earlier results.

domain and in the frequency domain. For the purposes 8 A Lyapunov function for both finite and infinite-

this paper, however, we will only focus on time-domain imensional systems is a positive map with domain contain
approaches and, in particular, on Lyapunov-based methoa%. ySte P P X )
Ing the set of initial conditions for which a unique solution

It is commonly understood that the difficulty with mamp_exists,D. For ODEs, this domain may . For time-delay

ulating infinite-dimensional systems lies in the compkcht d’systems with maximal delay, the set of initial conditions
dependence of the solution on initial conditions. Indee . '
P I5 often defined as as subspaceXf= R" x C[—7,0]. For

the term “infinite-dimensional system” refers to the infinit tge purposes of this paper, we suppose that this domain is
number of parameters which influence the dynamics of the . ' .
" b whien infiu y : a Hilbert spaceH with X C H. For R", this is clear. For

solution map. For time-delay systems, the initial conditio . finite-di ional svst the i duct will tadl
is understood as history of evolution over a previous perio'([j' inite-dimensional systems, the inner-product will tadly

of the maximum delay. For partial-differential equatiotise ?eLi_or ‘Sfobolev (e.ng). In th|stfr3rrggworli a;lzy L37/§1punov
initial condition is a combination of the boundary conditio UNCtion V(z) may be represente (2) = (Ra, Ra)

and the distributed state. Unlike for ordinary-differati whereR : X — H is a bounded, injective, possibly

equations, for infinite-dimensional systems, constructid %2r;gn§a(; oper?_tor. WheR is Itlnegr,ﬂ\wlvet _{eg;e]rc_ top = lid
the solution as an explicit function of the initial conditio L = ?S at' ya‘lfunoz ope7;a or inthat it detines a vall
is often a difficult if not impossible task. For this reason, y;':lpttjtr:.ov unction (mzl_ <"ﬁ’ miH i i i
(with notable exceptions) most of the analysis and corroll rr;melferﬁggep:b;\i/t?vs &\//Z\puc;lvgv Oossfat$§2V%$ Zﬁ?js 0
synthesis work in this area has focused on projection (ffa : o

y pro) nctionsV (z) = (Rx, Rx), under the constraint thak

the infinite-dimensional system onto a finite-dimensiona}fj_ f lsub f bounded. iniecti .
subspace of ordinary differential equations by choosing i In one ot several supspaces ot bounded, Ijective, blyssi

suitable finite basis for the set of solutions. This apprdach nonllpear operators. Spemﬂcally, for "T‘e"’“ systgm_s, vile w
consider the case wherR is a combined multiplier and
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are: polynomial; piecewise-polynomial; or semi-sepagabl for all x € X. Unfortunately, this result tells us very little
This result is also extended to the case wieis nonlinear. about the properties of the operatBr A notable exception
to this is the case of time-delay systems.

Il. NOTATION )
Standard notation includes the Hilbert spadegX] of A. A Converse Lyapunov Theorem for Time-Delay Systems

operators square integrable Ghand W[X] := {z : 2,4 € Linear discrete-delay systems are defined by differential
Lo[X]}. We will omit the[X] when the domain is clear from €quations of the form:

context.C[X] denotes the continuous functions éh S™ K
denotes the symmetric matrices of dimensioan. I,, € S" i(t) = Aoz(t) + ZAM(L‘ —7) forall ¢>0,
denotes the identity matrix. i—1

Ill. SEMIDEFINITE PROGRAMMING AND LMI's z(t) = ¢(t) for ¢ € [-7x,0] )

Semidefinite programming (SDP) is the optimization of

X nxn _ .
a linear objective subject to matrix positivity constrainf Whe_reAzFe R27E, I(bte cl T(’jo] antq 0;;6 <7< d f‘<
general form is Tk = T. For any solutiorr and any time > 0, we can define

. the ‘state’ of System (1) as, € C[—7,0], wherez;(s) =
cmax trace(CX), subject to:L1(X) > By, La(X) =Bz (¢ + s). For linear discrete-delay systems of Form (1), the
where theL; can be arbitrary linear transformations. Asystem hasaur_uque solution fo_ramye C.[._T’ 0] and glopal,
Linear Matrix Inequality (LMI) is the feasibility prob- local, asymptatic and expor_le_ntlal stability are 6_"_' e‘_“““"“_
lem associated with an SDP. Efficient algorithms exist for FOr Systems of Form (1), itis known that stability is equiv--
the solution of SDPs and LMIs and implementations inglent. to the existence of a quadratic Lyapunov-Krasovskii
clude [8] [9] [10]. For large SDP and LMI problems, limited functional of the form
parallel implementations exist, such as [11]. Because the 0 #(0) T #(0)

: : S ; — M(s) d
goal of this paper is parametrization of Lyapunov functions ~ ] |é(s) b(s)
using positive matrices, the ability to construct and solve 0 .0
relatively large SDP and LMI problems is a prerequisitve for +/ #(s) T N(s,0)0(0)dsdf, (2)
the successful utilization of these results. Generallykig, =T /=T
the complexity of the LMIS/SDPs i©)(n%) wheren is as
defined above.

T

where the Lie (upper-Dini) derivative of the functional is

negative along any solution of (1). Furthermore, the unkmow

IV. STATE-SPACE FORINFINITE-DIMENSIONAL SYSTEMS  functionsM andN may be assumed to be continuous in their
The use of Lyapunov-Krasovskii functionals can be simrespective arguments everywhere except possibly at points

plified by considering stability in the semigroup framework{7:,--- ,7x—1}. To express this result in the Semigroup

- a generalization of the concept of differential equationdramework, we defindf := {R™ x L.} and

See [12] and [13]. Although the results of this paper do not K

require the semigroup architecture, we adopt this notation A [Il} (s) := [onl + Zizl Ai@(—ﬂ')} )

in order to simplify the concepts and avoid unnecessary 2 a2 (s)

notaFion. Someti_mes k,npwn as the ‘flow map’, a ‘stronglyl.he state-space iS{ = {[:61 xg}T € H : 2 €

continuous semigroup’ is an operatd(t) : H — H, Cl|—7,0] andz2(0) = x1}. Using these definitions ofl, H

defined by the Hilbert spacé, which represents the evo- and X, the “complete-quadratic’ Lyapunov functional (2)
lution of the state of the system so that for any solutior&an be’ represented as

x, z(t + s) = S(s)z(t). Note that for a givenH, the
semigroup may not exist even if the solution exists for any V() = <{¢(0)] P {¢(0)}>
initial conditions in H. Associated with a semigroup off o |’ ) L
is an operatotd4, called the ‘infinitesimal generator’ which
satisfies d

Z5(t)6 = AS(t)6 - w M) Lf@)} ) /OT N(s.6) [:C:(IH)} e

for any ¢ € X. The spaceX is often referred to as the T2

domain of the generatad, and is the space on which the That is, the Lyapunov functional is defined by a multiplier
generator is defined and need not be a closed subspdte ofand integral operator whose multiplier and kernel are un-
In this paper we will refer toX as the ‘state-space’. Although known. Likewise, the derivative of the functional can be
there are very few converse Lyapunov theorems for genenapresented as

classes of infinite-dimensional systems, it is known [12}tth

a strongly continuous semigroup defined by a linear operator(¢) = <[¢(O)} ,PA {¢(0)]> +<A [¢(0)] , P {¢(0)]> .

& = Az on Hilbert spaceH is exponentially stable if and ¢ ¢ z ¢ ¢ Lo

only if there exists a positive operatér such that Thus, for time-delay systems, our challenge is to parame-
(Az, Pz)y + (Az, PAz) ; < —€llz||m terize positive operators in the form of (3) and (4).

where



V. THE SOS DHINT POSITIVITY CONDITIONS (Ra,Ra),, = /0 2(5)T Z1(s) T Q1121 () (s)ds

In this paper, we introduce a new method for enforcing
positivity of a combined multiplier and integral operator // (5)T Z5(6, 5)T Q2121 (0)x(0)dbds
such as defined in (3). This result has two parts. In the
first, we observe that a positive operator will always have + / (s )Tzl( ) Q1275 (s,0)x(0)dbds

a square root. We assume that this square root is also of the r

form of operator (3) with functiond/ and N polynomial of / /ZQ(w )T Qa2 Zo(w, 0)dwz(6) ds dO

bounded degree. Under this assumption, we give necessary

and sufficient conditions for the positivity of (3). The sado T

part (discussed in Section VIII) is to create slack variable — [ s)ds + // N (s, 0)x(9)dods

which account for the limited equivalence between the mul-_ — (z,Pz),,

tiplier and integral operator when the state-space hasapec

structure. To begin, consider a simple operator of the form u
Theorem 1 gives a linear parametrization of a cone of

(Px) (s) := M(s)x(s) + / N(s,0)x(6). (5) positive operators using positive semidefinite matricesteN

that there are few constraints on the functiofis and Z5.

where we assum@/ and N are square-integrable on regionThese functions serve as the basis for the multipliers and

of integrationI". kernels found in the square rootBf The class of multipliers
Theorem 1:For any functionsZ; : I' - R™*™ andZ> :  and kernels defined by Theorem 1 is thus determined by these
I' x I' - R™2*" square integrable oh, suppose that functions. We consider certain choices&f and Z, shortly.
A. Strict Positivit
M(s) = Z1(s)" Q11 Z 6 y
() 1(s)" QuZi(s) T © The conditions of Theorem 1 are positive semidefinite.
N(s,0) = Z1(5)Q1222(s,0) + Z2(0, 5)” Q2121(0) Lyapunov functions, however, must be positive definite in

/Zg(w s)TQgng(w 0)dw (7) some norm. In this case, the conditions of Theorem 1 can
I

be readily modified for strict positivity as follows.
Corollary 2: For integrableZ; and Z;, and ¢ > 0,

where suppose that
o) Qu Q2| 4 ;
Q21 Q22 M(s) = Z1(s)" QuZ1(s) + €l
— T
Then for P as defined in Equation (5)z, Pxz),, > 0 for N(s,0) = Z1(5)Q1222(s,0) + Za2(0, 5)" Q21Z1(0)
Proof: Since Q > 0, there exist matricesdD < - 2(w, 8)" Q22Z2(w, 0) dw
Rmatmexmi gnd { € R™+m2xm2 gych that Q1 Ow

where ) = > 0. Then for P as defined in
- Qll ng - DTD DTH - DT D H Q QQI Q22 - P
Q= Q21 Qs|  |HTD HTH| ™ |HT [ ] Equation (5)(z, Pz);, > ||z, for all z € Ly[I'].
VI. NON-QUADRATIC LYAPUNOV FUNCTIONS

Theorem 1 can be extended to non-quadratic Lyapunov

functions, as seen by the foIIowmg lemma.
(Rx) (s) := DZ1(s /HZ? s,0)x(0)do.  (8) Lemma 3: For any functionsZ; : I' x R® — R™ and

Zy:T'xT' x R® — R™2, square integrable oR, suppose

Now define the operator

Then (z,Pz),, = (Rx,Rz),,, as can be seen by the .
following progression wherg = Rz. Vi(z) = /le(svx(S)) Qu1Z1(s,x(s))ds
<R£C,RZC>L2 = <yaRI>L2 +//Zl(s,x(s))ngZg(s,é’,x(H))dsdH
_ T T
= /r (y(s) DZy(s)x(s) —i—/ry(s) HZ5(s,0)x(6) dé‘) ds //22 (0. 5,2(5))7 Qor 21 (0, 2(6))dsd0

0
_ [Tx(s)TZl(S)TDTDZl(s)x(S)dS ///22 (0. 5. 5(8))7 QaaZa(io, 0. 5(8)) dvddh,

// T Zy(s,t)" HT DZy(s)a(s)dsdt where _[@u Qi)
T T ©= |:Q21 Q22] =
+/F/Fx s)" Z1(s)" D HZs(s, )z (6)dbds ThenV (x) >0 for all x € Ly[T).

r S Proof: Similar to the progression in the proof of
+///I(a) Za(s,a)” H HZy(s,0)x(0) dadfds  Theorem 1, define the nonlinear operator

By the definition of D and H we have (Ra)(s) == DZu(s, x( /H22 5,0, () df.



m B. Matrix-Valued Polynomials
Note that, at the expense of additional computational We first consider the case where we desie and N
complexity, we could improve and simplify these conditionso be matrix-valued polynomials of degred. First define
by letting V' have the form Z4(s) as a vector whose elements form a basis for the

polynomials in variables of degreed or less. e.g. The vector
/ // Z(s,t,2(s),2(t))" QZ(s,0,x(s), x(0)) dtdfds of monomials. Then define
rJrJr

for Q > 0 and integrable functio. In this case, we would Zip(s) = Zals) @ In, Zop(s,0) = Za(s,0) © I (10)
recover the squared representatiofx) = (Rxz, Rx) where If Z;(s) = Z1,(s) and Za(s,0) = Zap(s,0) and M and N
are defined as in Equations (6) and (7), thgnand N are

(Rx) (s) := / HZ(s,0,x(s),z(9)) dob. (9) polynomial matricesR"*") of degree2d.
r
However, in multivariate systems, the number of termgin © Matrix—Va!ued Piecewise—PonnomiaIs
would make computation prohibitively expensive. As noted in the section on converse Lyapunov theory
for time-delay systems, it is often conservative to assume
A. Sum-of-Squares continuity of the functionsl/ and N. For delay systems, we

. L . know that these functions can be discontinuous at points of
In the context of analysis of finite-dimensional systems

) . delay. To define multipliers and kernels with discontiresti
Lemma 3 is well-known under the title Sum-of-Squares. . L . : -
. ) . . at known points, we divide the region of integratibninto
Definition 4: A polynomial p(z) is Sum-of-Squares

. : . countable disjoint subregioris; on which continuity holds
(SOS), denotegh € 2., if there exist a polynomialg; such and assume the functions are polynomial on these subregions

_NM 2
thatp(a) = 35i-, gi(2)". o . o To do this, we introduce the indicator functions (not to be
Clearly, any SOS polynomial is positive semidefinite an‘ti.onfused with the identity matrix)

although there exist many positive polynomials which are

not SOS, the set of SOS polynomials has been shown to 1 tely
. ”» ; : L) = _ i=1,---, K

approximate the set of positive polynomials to arbitrary 0 otherwise,
accuracy. Naturally, this is a special case of Lemma 3 where r
for p of degree2d, Z,(z) is the vector of monomials in  and the vector of indicator functions= [I; --- Ik]|,
of degreed or less,Z> = 0, and H = RM, 7 _ I(s). 7 0 = 7o (5. 0\ ()T (6

Corollary 5: For a polynomial of degreed, let Z(z) be 1pe(8) = Z1p(8)@T (5), Zope(s, 0) = Zop(s,0)DT (5)@J ().
the vector of monomials in of degreed or less. Therp € Lemma 6:1f Z,(s) = Zi,c(s) and Za(s,0) = Zope(s,0)

%, if and only if V(z) = Z(x)" QZ(x) for someQ > 0. andM andN are defined as in Equations (6) and (7), tién
Proof:  (Necessity) Since thg; are polynomial of ,nqn are piecewise-polynomial matrice®’(*") of degree

degreed, there exists a matrixl such thaty(z) = HZ(z) 94 yith possible discontinuities at the boundary of fhe In

whereg is the vector of polynomialg;. Now letR be given s case, the functions’ and N can be defined piecewise

by Rz := HZ(x) = g(z). Let Q = HTH. Then as

M(s) = {Mi(s) seT;

M
(R, Re) g = Z(2)"QZ(x) = 9() 9(@) = D 0:@* | ere
=1

M; = Z4(s)" Q11,41 Za(s)
n . . . .

Thus, although it is NP-hard to determine whether a giveWhereQ”’i’j Is thei, jth block of Q11 Likewise,

polynomial is positive, determining whether a polynomal i N(s,0) = {Nij(s, ) seT;andfeTl;

SOS is reducable to a semidefinite programming constraint

on the coefficients of the polynomial. This constraint Where

may be implemented in a straightforward manner throughy. .

N, =z Dy Z1p(5, 0
the use of Matlab toolboxes such as SOSTOOLS [14], (8)Quz (- s Z1p (5 6)

T
Gloptipoly [15] or SOSOPT [16]. + Z2p(0,5)" Q1,51 K+, Z15(0)
K
VIl. SPECIAL CASES + Z/F Zop(wis ) Qaz,i- (k= 1) K, (k1)K Z2p (W, 0) duwi,
k=1"Tx ) .
We now consider the implications of Theorem 1 for certain ~ Proof:  The proof of this lemma is long, but not
classes of basis functior&, and Zs. sophisticated. First observe the structureZgf,.
- - . Ziy ()11 (5)
A. Note on Multiple Spacial Domains Zuels) :
c S) = .
Variabless and@ in Z;(s) and Z»(s, #) need not be scalar P Zu ).I (s)
and the domain of integration need not be an interval. This 18 LKAS
applies to each of the special cases to follow. Now, sincel;(s)I;(s) =0 for i # j and I;(s)I;(s) = I;(s),



M(s) = Z1(s)" Qu1Z1(s)
le(S)Il (S)

le( jIK( )

:Zle

1]1

_Zzlp

Therefore

Similarly, we expandV (s, t) using the structure of,. First,
we divide N as N = N; +N2+f N; db:

Ni(s,t) = Z1(5)Q12Z2(s,t), Na(s,t) =

Ng(S,t):\/I:ZQ(W,S)TQQQZQ(W,t)dw.

Recall theceil and mod functions

c(i) = min j,

j>i,j€N

N1 (S, t) = Zl(S)Q12ZQ(Sv t)

le(s)ll (3)

Il
N
—
bS]
—~
[
N—
Q
piby
S
S
D
bS]
—~
»
~
S—
~
—~
S—

=33 21y @izli -y Zapls, D) (1)

Similarly,

NQ(S, t) = Zg(t, s)TQ2121 (t)

K

=1 j=

K K
= Z > Zop(t, 9)[Qa1l -1y i +i,5 Z1p (D) 1i(5) I (t)

N
Il
-

<.
Il
-

Finally,

le(S).IK(S)

(Q11)ij Z1p(s)1i(8)L;(s)

Qll uZlP( )I (S)

Zo(t,8)T Q2121 (),

=Y Z; Zap(t, 8)[Q21](i-1) K 15,1 Z1p(0) i (1) 1 (s)

Ns(s,t) = Z2(0,5)" Q2222(6, )

[ Zap(0,5)11(0) 11 (s) ] Zap(0, )11 (0) L1 (¢
Zap(0,5)1(6)12(s) Zap(

= | Zop(0. )L (O)Txc(5) | Qua | Zoy(8. )11 (0)Tc (2)

(0, 5) 1o (011 (5) o0, 0) Lo (0)1 (1)
| Zp(0, )1 (5)1(0) ] | Zap(6,0) 15 (0) I (1))
K2
= Z ZQP(ev S)[QQQ]Z}J'ZQP(& t)'

L) (0) L (s, k) (S)Ic(%) (O) (.10 (1)

K
= > Zop(0,5)[Qa2] i (—1)x, Z2p (0, 1) I (0) I (5) I; (£).
i,j,k=1 J+k-1K
Thus
Ns3db

I
Z /F Zop (0, 8)[Q22) i (k1) . Zop (0, 1)dOL;(5) I (£)

i,5,k=1 7+(/€ HK
We conclude that
(S 9) { Z](S 9) sely and@efj.

]
Note that this proof implies that many blocks @fdo not
appear directly in the Lyapunov functional. This featura ca
be exploited to improve computational performance.

D. Semi-Separable Functions

Semi-separable kernels are often preferable to separable
kernels in that they can define operators with infinite-
dimensional image space. The use of semi-sepable kernels
without joint positivity was first used to define Lyapunov-
Krasovskii functionals in [17]. A discussion of the advan-
tages of this class of operators can be found therein.

Now define the indicator function

fs<t>={1 e

0 otherwise.

If ¢ is multidimensional (e.gt € R™), then the inequality
is understood to represent a complete orderingl'oe.g.
t > 0if ¢t > 0 for arbitrary vectorc). Now define the
basis vectors

Z1ss(8) = Z1p(5), Zass(5.6) = EE i eﬂ

If Z, = Z1,s and Zy = Z5,, and M and N are defined as
in Equations (6) and (7), theM is a polynomial matrix and
N is a semi-separable polynomial matriR’(*"*) of degree
2d. If Z1p. and Z,. are substituted fo#Z;, and Z,,, then

the matrices are semiseparable and piecewise continuous.
Lemma 7:For a complete ordering>, define the sets

Pyt =460 : 0 —s >0} andl,- := {0 : s—60 > 0}.
SupposeZ; = Zy4s and Zy = Zs,, and M and N are



defined as in Equations (6) and (7) where we partition theshich holds since

matrix @ > 0 as

Qll QIZ QlS
Q: Q21 Q22 Q23 .
Q31 QSZ Q33

Then M is a polynomial matrix andV is a semi-separable
polynomial matrix, both of degre®d where

e
where

Ny (S, t) = Zl(S)TQmZQ(S,t) + Zg(t, S)lezl(t)
+/ Z(0,5)"Q222(0,t)d0
I+

s

+/ Z(0,5)7Q322(6,t)do
Ft+ﬂ1‘s,

+ / Z(0,5)7Q33Z(6,t)d6.
T,

and
NQ(S, t) = Zl(S)TQ13Z2(S,t) + Zg(t, S)lezl(t)

+/ Z(H,S)TQQQZ(O,t)dH
Lyt

t

+ / Z(0,5)TQqa32(6,t)do
FS+mFt,

+ / Z(0,5)7Qs3Z(8,t)d6h.
T

1(9—5)1(9—t)](5_t)_{1 0>s>t

otherwise

)

0>t>s
0 otherwise.

10 —s)I(0 —t)I(t—s) = {
Similarly, (0 — s)I(t —0)I(s —t) =0 and

1 t>60>s
0 otherwise

IO —s)I({t—0)I(t—s)= {
yields
/ Z(0,5)7Qa3Z(0,t)1(0 — s)I(t — 6)d
r
= / Z(0,5)7Qa3Z(0,t)dOI(t — s).
L 4+NC,—
Again, I(s —6)I(0 —t)I(t —s) = 0 and
1 s>0>t
Is =616 -l 1) = {O otherwise

yields
/ Z(0,5)TQs322(0,t)I(s — 0)I(6 — t)df
r

= / Z(0,5)TQa32(0,t)dOI(s — t).
L, nNr,

Finally,

I(s—0)I(t—0)I(s—1)

Proof: To conserve space, for this proof only, we denote {1 s>t>0

Z(s) = Z1(s), Z(s,t) = Za(s,t) and I(t) = Is(t). Now,
expanding the expressions faf and N in Equations (6)
and (7), we obtain

M(s) = Z(s)Qu Z(s)
and
N(s,t) = Z(s)TQ12Z(s,t)I(s — 1)
+ Z(8)TQ13Z (s, t)I(t — )
+Z(t,8) ' QuuZ(t)I(t — s) + Z(t,8)7 Q31 Z(t)I (s — 1)

+ / Z(0,5)T Qa2 Z(0,t)1(0 — s)I(6 — t)db
r
+ / Z(0,5)T Qa3 Z(0,4)I(0 — s)I(t — 6)do
r
+/ Z(0,5)TQ32Z(0,1)I(s — 0)I(6 — t)do
r
+ / Z(0,5)TQs32(0,t)I(s — 0)I(t — 6)do
r
Noting the identityl = I(¢ — s) + I(s — 6), we obtain
/ Z(0,5)7Qa2Z(0,)1(0 — 5)I(0 — t)db
r
= / Z(0,5) 7 Q2 (6,t)d0I(s — t)
Fs+

+/ Z(0,5)T Qa2 Z(0,1)d0I(t — s)
Lyt

t

0 otherwise

1 t>s>0
0 otherwise

yields
/ Z(0,5)7Qs3Z(0,t)I(s — 0)I(t — 6)d
r

:/ Z(0,5)7Q33Z(0,t)dAI(s — 1)
r,_

+/ Z(0,8)7Q33Z(0,t)dOI(t — s).
r

a—

Grouping the terms which multiply(s — t) and I (¢t — s)

separately, we obtain the equality in the Lemma statement.
[ |

Note that, if desired, this approach can be extended to a more
generalized partition of . However, the integrals in this case
are more complicated.

VIIl. SPACING FUNCTIONS AND MIXED STATE-SPACE

The result in Theorem 1 as stated applies to the space
Lo(T"). However, as seen in (3), for delay systems, the state
lies in the subspac®™ x Lo(T'). For such systems, the
positivity conditions can be improved through the use of
spacing functions.



Theorem 8:For any integrable functionsZ; : I' —
R™*2% and Z, : T' x ' — R™2%2" suppose that
M(s) = Z1(s)" Q1121 (s)

T(s) + 7 [y Jp Ru(w,t)dwdt [}, Ria(w, s)dw
fp R21(57w)dw 0
N(Sa 0) = Zl(S)Q12Z2(Sa 9) + 22(97 S)TQ2121 (0)
T _ | Ru(s,0)  Ria(s,0)

+ /F ZQ((Ua S) Q22ZQ(W5 9) dw |:R21(Sv 0) 0

/FT(S):o

wherer = [|. ds and

_ @ Q2
©= |:Q21 Q22

Then forP as defined in Equation (5)z, Px) > 0 for all
z = (c,y) € R" x C[I].
Proof: The proof is straightforward
&

e AR [?;fsﬂ "
" F/F {y(CS)] N(s.6) {y
:/Fy(S)T21(S)TQ11Z1(s)y(s)ds
" /r /r y(s)" Z2(0, 5)" Qa1 Z1(0)y(0)dds
[ 27 st oo
* /1" /r y(s)" /r Za(w, $)T Q2Z2(w, 0) dwy(6) ds df

which was shown to be positive in Theorem 1 é{r> 0. ®
The use of the spacing functidh was introduced in [6]

E

c

(9)} dfds

as part of necessary and sufficient conditions for posjtivit D(¢) =

of the multiplier operator on mixed state-space. Theorem
extends this concept through the use of the shifting funstio

R;; which account for equivalence between multiplier and

integral operators when acting @&i".
IX. A MATLAB TOOLBOX

sosmat eq. m

« Declare a matrix-valued equality constraint.

The functions are implemented within the pvar framework
of SOSTOOLS and the user must have some familiarity with
this relatively intuitive language to utilize these furncts.
Note also that the entire toolbox and supporting modified
implementations of SOSTOOLS and MULTIPOLY must be
added to the path for these functions to execute.

X. STABILITY OF TIME-DELAY SYSTEMS

Although the conditions for positivity which appear in this
paper may seem complex, to some extent, this complexity
is hidden for the user. That, is the user need only consider
M and N to be functions of the desired class. The toolbox
will then ensure thal/ and NV define positive operators. The
difficulty for the user is to find the derivative of the Lyapuno
function and ensure it is defined by multiplier and integral
operators which can then be constrained to be negative using
the toolbox. The simplest application of the parametrirati
discussed above is to systems with delay. In this section, we
give an example of this. These results can be viewed as an
extension of previous work developed in [6] [18] [17].

Our first step is to define the class of Lyapunov functions

to be used. Let
- . . M and N satisfy the conditions of
— {(Mv N) + Theorem 8 withZ; = Z1,. and Zz = ngc.}

The next step is to define the linear map betwékh V)
and the multiplier and kernel which define the derivative of
the Lyapunov function as defined in (2). For convenience,
define the jump values o/ and N at the discontinuities as
aSAM(Ti) Mi(—Ti) — Mi+1(_7—i) and
ANj(Ti,t) = Ni,j(—Ti,t) - Ni+17j(—7'i,t).

Then we have
Definition 9: Define the map. by (D, E) = L(M, N) if

DT11 Dis D13 Dia;(t)
Dy Daz Doy (t) e
. . T Duy Dasilt) t€[—m,—Ti—1]
T T T Dy ()

%(Mu(o) + M1 (0) + May(0)),

M1 Ak 4]

Dy = AT My + My Ao +
D1y = [M1 4

To assist with the application of these results, we have
created a library of functions for the synthesis of the
Lyapunov functions described in this paper. These libgarie

_ % [AMia(71) AMiz(73-1)]

make use of modified versions of the SOSTOOLS an#!3 =

MULTIPOLY toolboxes coupled with either SeDuMi or

SDPT. A complete package can be downloaded from the

websiteht t p: // control . asu. edu/ sof t war e. Key
examples of functions included are:
sosj oi nt pos_mat _ker. m

« Declares a positive polynomial multiplier, kernel pair.
sosj oi nt pos_mat _ker _ndel ay. m

1
M1 Ak — ;(M12(_T))a
L.
D22 = ; dlag(—AMQQ(Tl), ceey _AMQQ(TKfl)),

Diai(t) = Ni(0,t) + AL Mo 4(t) — My2i(t),
—ANi(Tl, t) —|— A,{M12Z(t)

-1
; Dsg = TM22(—T),

« Declares a positive piecewise-polynomial muItipIier,D24-,i(t) = : ;

kernel pair.
sosj oi nt pos_mat _ker _seni sep. m

« Declares a positive semiseparable multiplier/kernel pair

—ANi(TK_l, t) + A};ilj\/flg,i(t)
D3y i(t) = AL Mia(t) — Nii(—T, 1),
Dyy,i(t) = —Maz 4(t)



and
aNij(Svt) SE[—Ti,—Ti—1]
te[—75,—7j-1]

such that(M —

E(S7 t) _ aNij(S, t)

Theorem 10:Sup505e there exist > 0

Notably absent from this discussion is an application o§¢he
results to PDE systems. This is partially a lack of space and
partially because such work is non-trivial and will varyrfro
application to application. Indeed, our results should et

eI, N) ¢ Zand—L(M,N) € Z. Then the system defined seen as a general solution for analysis of infinite-dimeradio

by Equation (1) is exponentially stable.
Proof: If V is defined as in (2), then

2(0) 17 z(0) 17
0 . .
V(z) = D(s :
(=) /—r x(—7K) ( x(—7K)
0 0
z(s)E(s,t)x(t)dsdt <0
[ [ alBnatts < y
where(D, E) = L(M, N). [ ]

To illustrate how these conditions can be efficiently coded?]
using the Matlab toolbox, we give a pseudocode implmen—[s]
tation of the conditions of Theorem 10.

1) [M N] =sosj oi nt pos_nmat _ker _ndel ay

2) [D E[=L(M N

3) [ Q R] =sosj oi nt pos_mat _ker _ndel ay

4) sosmateq((D,E) + (QR) 5]

For brevity, the pseudocode does not include the spac-
ing functions of Theorem 8. See the complete solver inl6]
sol ver _ndel ay_nd_j oi nt. mfor a full implementa-
tion of the algorithm for multiple delays.

(4

(7]
XI.

The conditions of Theorem 10 are implemented in the fileg)
sol ver _ndel ay_j oi nt. m available with the rest of the
supporting functions described previously.

N UMERICAL RESULTS

g‘c(t)={_01 11] :c(t)+[_01 8] x(t_%)Jr[(l) 8} (1) [10]

The maximum and minimum values offor this system are
listed in Table XI, where5OS [6] refers to the SOS stability
test without joint positivity andSOS — joint refers to the

" [12]
conditions of Theorem 10.

SOS [6] SOS-joint [13]
d Tmin Tmax Tmin Tmax
1| .20247| 1.354 | .20247| 1.3711 (14]
2 | .20247]| 1.3722| .20247] 1.3722

Because previous SOS results for stability of time—delag}s]
systems were asymptotically exact, the numerical validati
here should not be particularly surprising. However, aB6l
expected , the convergence is faster as a function of tr[wg]
polynomial degree.

XIl. CONCLUSION 18]
In this paper, we have given a primer on how to con-

struct Lyapunov functions for infinite-dimensional system
Specifically, we have shown how several classes of positi\Hagl
operators may be parameterized using positive matrices and
constructed efficient algorithms to implement these result

systems, but rather a reference for those working in the field
on specific applications and who may find the representations
and algorithms useful. We also mention, the joint positivit

results of this paper have been used to create asymptgticall
exact dual stability conditions using the results of [19].
However, discussion of these results is beyond the scope of
this paper.
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