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Abstract— In this paper, we present an algorithmic ap-
proach to the construction of Lyapunov functions for infinite-
dimensional systems. This paper unifies and extends many
previous results which have appeared in conference and jour-
nal format. The unifying principle is that a linear matrix
parametrization of operators in Hilbert space inevitably leads
to a linear parametrization of positive forms using positive
semidefinite matrices via squared representations. For linear
systems, these positive forms are defined by positive linearop-
erators and define quadratic Lyapunov functions. For nonlinear
systems, the forms are defined by nonlinear operators and
will define non-quadratic Lyapunov functions. Special cases
of these results include operators defined by multipliers and
kernels which are: polynomial; piecewise-polynomial; or semi-
separable and apply to systems with delay; multiple spatial
domains; or mixed boundary conditions. We also introduce a
set of efficient software tools for creating these functionals.
Finally, we illustrate the approach with numerical examples.

I. I NTRODUCTION

Recently, there has been substantial interest in algorithmic
approaches to analysis and controller synthesis for both time-
delay systems and partial-differential equations. For linear
systems, this problem can be addressed in both the time-
domain and in the frequency domain. For the purposes of
this paper, however, we will only focus on time-domain
approaches and, in particular, on Lyapunov-based methods.

It is commonly understood that the difficulty with manip-
ulating infinite-dimensional systems lies in the complicated
dependence of the solution on initial conditions. Indeed,
the term “infinite-dimensional system” refers to the infinite
number of parameters which influence the dynamics of the
solution map. For time-delay systems, the initial condition
is understood as history of evolution over a previous period
of the maximum delay. For partial-differential equations,the
initial condition is a combination of the boundary conditions
and the distributed state. Unlike for ordinary-differential
equations, for infinite-dimensional systems, construction of
the solution as an explicit function of the initial condition
is often a difficult if not impossible task. For this reason,
(with notable exceptions) most of the analysis and controller
synthesis work in this area has focused on projection of
the infinite-dimensional system onto a finite-dimensional
subspace of ordinary differential equations by choosing a
suitable finite basis for the set of solutions. This approachis
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reasonable given the vast body of literature on discretization
and numerical simulation of PDEs. We would argue, how-
ever, that lumped-parameter approaches make less sense in
the context of Lyapunov theory, wherein we are concerned
not with reconstructing the solution, but with derivingprop-
ertiesof the solution.

The use of LMI conditions for constructing Lyapunov-
Krasovskii functions for infinite-dimensional systems and
time-delay systems in particular is not new. Of these, the
most relevant are those which are based on the so-called
“complete-quadratic functional” - a form based on converse
Lyapunov theory [1]. Examples include the piecewise linear
approach [2] and the delay-partitioning approach [3]. An
interesting (semi-LMI) approach to numerical reconstruction
of the Lyapunov function can be found in [4]. The literature
on LMI-based Lyapunov methods for PDE systems is more
limited, but some recent work can be found in [5]. Using
squared representations for delayed and PDE systems has
been studied by the author and collaborators in, e.g. [6]
and [7]. This paper is a consolidation and extension of many
of these earlier results.

A Lyapunov function for both finite and infinite-
dimensional systems is a positive map with domain contain-
ing the set of initial conditions for which a unique solution
exists,D. For ODEs, this domain may beRn. For time-delay
systems with maximal delayτ , the set of initial conditions
is often defined as as subspace ofX = R

n × C[−τ, 0]. For
the purposes of this paper, we suppose that this domain is
a Hilbert space,H with X ⊂ H . For Rn, this is clear. For
infinite-dimensional systems, the inner-product will typically
beL2 or Sobolev (e.g.W2). In this framework, any Lyapunov
function V (x) may be represented asV (x) = 〈Rx,Rx〉H ,
where R : X → H is a bounded, injective, possibly
nonlinear operator. WhenR is linear, we refer toP =
R∗R ≥ 0 as a Lyapunov operator in that it defines a valid
Lyapunov functionV (x) = 〈x,Px〉H .

In this paper, we show how to use positive matrices to
parameterize positive Lyapunov operatorsP = R∗R and
functionsV (x) = 〈Rx,Rx〉H under the constraint thatR
lie in one of several subspaces of bounded, injective, possibly
nonlinear operators. Specifically, for linear systems, we will
consider the case whereR is a combined multiplier and
integral operator defined by multipliers and kernels which
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are: polynomial; piecewise-polynomial; or semi-separable.
This result is also extended to the case whenR is nonlinear.

II. N OTATION

Standard notation includes the Hilbert spacesL2[X ] of
operators square integrable onX andW2[X ] := {x : x, ẋ ∈
L2[X ]}. We will omit the[X ] when the domain is clear from
context.C[X ] denotes the continuous functions onX . Sn

denotes the symmetric matrices of dimensionn×n. In ∈ S
n

denotes the identity matrix.

III. SEMIDEFINITE PROGRAMMING AND LMI S

Semidefinite programming (SDP) is the optimization of
a linear objective subject to matrix positivity constraints. A
general form is

max
X∈Rn×n

trace(CX), subject to:L1(X) ≥ B1, L2(X) = B2

where theLi can be arbitrary linear transformations. A
Linear Matrix Inequality (LMI) is the feasibility prob-
lem associated with an SDP. Efficient algorithms exist for
the solution of SDPs and LMIs and implementations in-
clude [8] [9] [10]. For large SDP and LMI problems, limited
parallel implementations exist, such as [11]. Because the
goal of this paper is parametrization of Lyapunov functions
using positive matrices, the ability to construct and solve
relatively large SDP and LMI problems is a prerequisitve for
the successful utilization of these results. Generally speaking,
the complexity of the LMIs/SDPs isO(n6) wheren is as
defined above.

IV. STATE-SPACE FORINFINITE-DIMENSIONAL SYSTEMS

The use of Lyapunov-Krasovskii functionals can be sim-
plified by considering stability in the semigroup framework
- a generalization of the concept of differential equations.
See [12] and [13]. Although the results of this paper do not
require the semigroup architecture, we adopt this notation
in order to simplify the concepts and avoid unnecessary
notation. Sometimes known as the ‘flow map’, a ‘strongly
continuous semigroup’ is an operator,S(t) : H → H ,
defined by the Hilbert spaceH , which represents the evo-
lution of the state of the system so that for any solution
x, x(t + s) = S(s)x(t). Note that for a givenH , the
semigroup may not exist even if the solution exists for any
initial conditions inH . Associated with a semigroup onH
is an operatorA, called the ‘infinitesimal generator’ which
satisfies d

dt
S(t)φ = AS(t)φ

for any φ ∈ X . The spaceX is often referred to as the
domain of the generatorA, and is the space on which the
generator is defined and need not be a closed subspace ofH .
In this paper we will refer toX as the ‘state-space’. Although
there are very few converse Lyapunov theorems for general
classes of infinite-dimensional systems, it is known [12] that
a strongly continuous semigroup defined by a linear operator
ẋ = Ax on Hilbert spaceH is exponentially stable if and
only if there exists a positive operatorP such that

〈Ax,Px〉H + 〈Ax,PAx〉H ≤ −ǫ‖x‖H

for all x ∈ X . Unfortunately, this result tells us very little
about the properties of the operatorP . A notable exception
to this is the case of time-delay systems.

A. A Converse Lyapunov Theorem for Time-Delay Systems

Linear discrete-delay systems are defined by differential
equations of the form:

ẋ(t) = A0x(t) +

K
∑

i=1

Aix(t− τi) for all t ≥ 0,

x(t) = φ(t) for t ∈ [−τK , 0] (1)

whereAi ∈ R
n×n, φ ∈ C[−τ, 0] and0 < τ1 < τ2 < · · · <

τK = τ . For any solutionx and any timet ≥ 0, we can define
the ‘state’ of System (1) asxt ∈ C[−τ, 0], wherext(s) =
x(t + s). For linear discrete-delay systems of Form (1), the
system has a unique solution for anyφ ∈ C[−τ, 0] and global,
local, asymptotic and exponential stability are all equivalent.

For systems of Form (1), it is known that stability is equiv-
alent to the existence of a quadratic Lyapunov-Krasovskii
functional of the form

V (φ) =

∫ 0

−τ

[

φ(0)
φ(s)

]T

M(s)

[

φ(0)
φ(s)

]

ds

+

∫ 0

−τ

∫ 0

−τ

φ(s)TN(s, θ)φ(θ) ds dθ, (2)

where the Lie (upper-Dini) derivative of the functional is
negative along any solution of (1). Furthermore, the unknown
functionsM andN may be assumed to be continuous in their
respective arguments everywhere except possibly at points
{τ1, · · · , τK−1}. To express this result in the Semigroup
framework, we defineH := {Rn × L2} and

A

[

x1

x2

]

(s) :=

[

A0x1 +
∑K

i=1 Aix2(−τi)
ẋ2(s)

]

.

The state-space isX := {
[

x1 x2

]T
∈ H : x2 ∈

C[−τ, 0] andx2(0) = x1}. Using these definitions ofA, H
and X , the “complete-quadratic” Lyapunov functional (2)
can be represented as

V (φ) =

〈[

φ(0)
φ

]

,P

[

φ(0)
φ

]〉

L2

where

P

[

x1

x2

]

:= M(s)

[

x1

x2(s)

]

+

∫ 0

−τ

N(s, θ)

[

x1

x2(θ)

]

. (3)

That is, the Lyapunov functional is defined by a multiplier
and integral operator whose multiplier and kernel are un-
known. Likewise, the derivative of the functional can be
represented as

V̇ (φ) =

〈[

φ(0)
φ

]

,PA

[

φ(0)
φ

]〉

Z

+

〈

A

[

φ(0)
φ

]

,P

[

φ(0)
φ

]〉

L2

.

(4)
Thus, for time-delay systems, our challenge is to parame-

terize positive operators in the form of (3) and (4).
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V. THE SOS JOINT POSITIVITY CONDITIONS

In this paper, we introduce a new method for enforcing
positivity of a combined multiplier and integral operator
such as defined in (3). This result has two parts. In the
first, we observe that a positive operator will always have
a square root. We assume that this square root is also of the
form of operator (3) with functionsM andN polynomial of
bounded degree. Under this assumption, we give necessary
and sufficient conditions for the positivity of (3). The second
part (discussed in Section VIII) is to create slack variables
which account for the limited equivalence between the mul-
tiplier and integral operator when the state-space has special
structure. To begin, consider a simple operator of the form

(Px) (s) := M(s)x(s) +

∫

Γ

N(s, θ)x(θ). (5)

where we assumeM andN are square-integrable on region
of integrationΓ.

Theorem 1:For any functionsZ1 : Γ → R
m1×n andZ2 :

Γ× Γ → R
m2×n, square integrable onΓ, suppose that

M(s) = Z1(s)
TQ11Z1(s) (6)

N(s, θ) = Z1(s)Q12Z2(s, θ) + Z2(θ, s)
TQ21Z1(θ)

+

∫

Γ

Z2(ω, s)
TQ22Z2(ω, θ) dω (7)

where
Q =

[

Q11 Q12

Q21 Q22

]

≥ 0.

Then forP as defined in Equation (5),〈x,Px〉L2
≥ 0 for

all x ∈ L2[Γ].
Proof: Since Q ≥ 0, there exist matricesD ∈

R
m1+m2×m1 andH ∈ R

m1+m2×m2 such that

Q =

[

Q11 Q12

Q21 Q22

]

=

[

DTD DTH

HTD HTH

]

=

[

DT

HT

]

[

D H
]

Now define the operator

(Rx) (s) := DZ1(s)x(s) +

∫

Γ

HZ2(s, θ)x(θ) dθ. (8)

Then 〈x,Px〉L2
= 〈Rx,Rx〉L2

, as can be seen by the
following progression wherey = Rx.

〈Rx,Rx〉L2
= 〈y,Rx〉L2

=

∫

Γ

(

y(s)TDZ1(s)x(s) +

∫

Γ

y(s)THZ2(s, θ)x(θ) dθ

)

ds

=

∫ 0

−τ

x(s)TZ1(s)
TDTDZ1(s)x(s)ds

+

∫

Γ

∫

Γ

x(t)TZ2(s, t)
THTDZ1(s)x(s)dsdt

+

∫

Γ

∫

Γ

x(s)TZ1(s)
TDTHZ2(s, θ)x(θ)dθds

+

∫

Γ

∫

Γ

∫

Γ

x(a)TZ2(s, a)
THTHZ2(s, θ)x(θ) da dθds

By the definition ofD andH we have

〈Rx,Rx〉L2
=

∫ 0

−τ

x(s)TZ1(s)
TQ11Z1(s)x(s)ds

+

∫

Γ

∫

Γ

x(s)TZ2(θ, s)
TQ21Z1(θ)x(θ)dθds

+

∫

Γ

∫

Γ

x(s)TZ1(s)
TQ12Z2(s, θ)x(θ)dθds

+

∫

Γ

∫

Γ

x(s)T
∫

Γ

Z2(ω, s)
TQ22Z2(ω, θ)dωx(θ) ds dθ

=

∫ 0

−τ

x(s)TM(s)x(s)ds +

∫

Γ

∫

Γ

x(s)TN(s, θ)x(θ)dθds

= 〈x,Px〉L2

Theorem 1 gives a linear parametrization of a cone of
positive operators using positive semidefinite matrices. Note
that there are few constraints on the functionsZ1 andZ2.
These functions serve as the basis for the multipliers and
kernels found in the square root ofP . The class of multipliers
and kernels defined by Theorem 1 is thus determined by these
functions. We consider certain choices ofZ1 andZ2 shortly.

A. Strict Positivity
The conditions of Theorem 1 are positive semidefinite.

Lyapunov functions, however, must be positive definite in
some norm. In this case, the conditions of Theorem 1 can
be readily modified for strict positivity as follows.

Corollary 2: For integrableZ1 and Z2, and ǫ > 0,
suppose that

M(s) = Z1(s)
TQ11Z1(s) + ǫI

N(s, θ) = Z1(s)Q12Z2(s, θ) + Z2(θ, s)
TQ21Z1(θ)

+

∫

Γ

Z2(ω, s)
TQ22Z2(ω, θ) dω

whereQ =

[

Q11 Q12

Q21 Q22

]

≥ 0. Then for P as defined in

Equation (5),〈x,Px〉L2
≥ ‖x‖L2

for all x ∈ L2[Γ].

VI. N ON-QUADRATIC LYAPUNOV FUNCTIONS

Theorem 1 can be extended to non-quadratic Lyapunov
functions, as seen by the following lemma.

Lemma 3:For any functionsZ1 : Γ × R
n → R

m1 and
Z2 : Γ× Γ× R

n → R
m2 , square integrable onΓ, suppose

V (x) =

∫

Γ

Z1(s, x(s))
TQ11Z1(s, x(s))ds

+

∫

Γ

∫

Γ

Z1(s, x(s))Q12Z2(s, θ, x(θ))dsdθ

+

∫

Γ

∫

Γ

Z2(θ, s, x(s))
TQ21Z1(θ, x(θ))dsdθ

+

∫

Γ

∫

Γ

∫

Γ

Z2(ω, s, x(s))
TQ22Z2(ω, θ, x(θ)) dωdsdθ,

where
Q =

[

Q11 Q12

Q21 Q22

]

≥ 0.

ThenV (x) ≥ 0 for all x ∈ L2[Γ].
Proof: Similar to the progression in the proof of

Theorem 1, define the nonlinear operator

(Rx)(s) := DZ1(s, x(s)) +

∫

Γ

HZ2(s, θ, x(θ)) dθ.
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Note that, at the expense of additional computational
complexity, we could improve and simplify these conditions
by lettingV have the form
∫

Γ

∫

Γ

∫

Γ

Z(s, t, x(s), x(t))TQZ(s, θ, x(s), x(θ)) dtdθds

for Q ≥ 0 and integrable functionZ. In this case, we would
recover the squared representationV (x) = 〈Rx,Rx〉 where

(Rx) (s) :=

∫

Γ

HZ(s, θ, x(s), x(θ)) dθ. (9)

However, in multivariate systems, the number of terms inZ

would make computation prohibitively expensive.

A. Sum-of-Squares

In the context of analysis of finite-dimensional systems,
Lemma 3 is well-known under the title Sum-of-Squares.

Definition 4: A polynomial p(x) is Sum-of-Squares
(SOS), denotedp ∈ Σs, if there exist a polynomialsgi such
that p(x) =

∑M
i=1 gi(x)

2.

Clearly, any SOS polynomial is positive semidefinite and
although there exist many positive polynomials which are
not SOS, the set of SOS polynomials has been shown to
approximate the set of positive polynomials to arbitrary
accuracy. Naturally, this is a special case of Lemma 3 where
for p of degree2d, Z1(x) is the vector of monomials inx
of degreed or less,Z2 = 0, andH = R

M .
Corollary 5: For a polynomial of degree2d, let Z(x) be

the vector of monomials inx of degreed or less. Thenp ∈
Σs if and only if V (x) = Z(x)TQZ(x) for someQ ≥ 0.

Proof: (Necessity) Since thegi are polynomial of
degreed, there exists a matrixH such thatg(x) = HZ(x)
whereg is the vector of polynomialsgi. Now letR be given
by Rx := HZ(x) = g(x). Let Q = HTH . Then

〈Rx,Rx〉RM = Z(x)TQZ(x) = g(x)T g(x) =

M
∑

i=1

gi(x)
2.

Thus, although it is NP-hard to determine whether a given
polynomial is positive, determining whether a polynomial is
SOS is reducable to a semidefinite programming constraint
on the coefficients of the polynomialp. This constraint
may be implemented in a straightforward manner through
the use of Matlab toolboxes such as SOSTOOLS [14],
Gloptipoly [15] or SOSOPT [16].

VII. SPECIAL CASES

We now consider the implications of Theorem 1 for certain
classes of basis functionsZ1 andZ2.

A. Note on Multiple Spacial Domains

Variabless andθ in Z1(s) andZ2(s, θ) need not be scalar
and the domain of integration need not be an interval. This
applies to each of the special cases to follow.

B. Matrix-Valued Polynomials

We first consider the case where we desireM and N

to be matrix-valued polynomials of degree2d. First define
Zd(s) as a vector whose elements form a basis for the
polynomials in variabless of degreed or less. e.g. The vector
of monomials. Then define

Z1p(s) = Zd(s)⊗ In, Z2p(s, θ) = Zd(s, θ)⊗ In. (10)

If Z1(s) = Z1p(s) andZ2(s, θ) = Z2p(s, θ) andM andN
are defined as in Equations (6) and (7), thenM andN are
polynomial matrices (Rn×n) of degree2d.

C. Matrix-Valued Piecewise-Polynomials

As noted in the section on converse Lyapunov theory
for time-delay systems, it is often conservative to assume
continuity of the functionsM andN . For delay systems, we
know that these functions can be discontinuous at points of
delay. To define multipliers and kernels with discontinuities
at known points, we divide the region of integrationΓ into
countable disjoint subregionsΓi on which continuity holds
and assume the functions are polynomial on these subregions.
To do this, we introduce the indicator functions (not to be
confused with the identity matrix)

Ii(t) =

{

1 t ∈ Γi

0 otherwise,
i = 1, · · · ,K

and the vector of indicator functionsJ =
[

I1 · · · IK
]T

,

Z1pc(s)=Z1p(s)⊗J(s), Z2pc(s, θ)=Z2p(s, θ)⊗J(s)⊗J(θ).

Lemma 6: If Z1(s) = Z1pc(s) andZ2(s, θ) = Z2pc(s, θ)
andM andN are defined as in Equations (6) and (7), thenM

andN are piecewise-polynomial matrices (R
n×n) of degree

2d with possible discontinuities at the boundary of theΓi. In
this case, the functionsM andN can be defined piecewise
as

M(s) =
{

Mi(s) s ∈ Γi

where
Mi = Zd(s)

TQ11,iiZd(s)

whereQ11,i,j is the i, jth block ofQ11. Likewise,

N(s, θ) =
{

Nij(s, θ) s ∈ Γi andθ ∈ Γj

where

Nij = Z1p(s)Q12,i,(i−1)K+jZ1p(s, θ)

+ Z2p(θ, s)
TQ21,(j−1)K+i,jZ1p(θ)

+
K
∑

k=1

∫

Γk

Z2p(ωk, s)
TQ22,i+(k−1)K,j+(k−1)KZ2p(ωk, θ) dωk

Proof: The proof of this lemma is long, but not
sophisticated. First observe the structure ofZ1,pc

Z1pc(s) =







Z1p(s)I1(s)
...

Z1p(s)IK(s)







Now, sinceIi(s)Ij(s) = 0 for i 6= j andIi(s)Ii(s) = Ii(s),
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M(s) = Z1(s)
TQ11Z1(s)

=







Z1p(s)I1(s)
...

Z1p(s)IK(s)







T

Q11







Z1p(s)I1(s)
...

Z1p(s)IK(s)







=

K
∑

i,j=1

Z1p(s)[Q11]ijZ1p(s)Ii(s)Ij(s)

=
K
∑

i=1

Z1p(s)[Q11]iiZ1p(s)Ii(s)

Therefore

M(s) =
{

Mi(s) s ∈ Γi.

Similarly, we expandN(s, t) using the structure ofZ2. First,
we divideN asN = N1 +N2 +

∫

Γ
N3 dθ:

N1(s, t) = Z1(s)Q12Z2(s, t), N2(s, t) = Z2(t, s)
TQ21Z1(t),

N3(s, t) =

∫

Γ

Z2(ω, s)
TQ22Z2(ω, t) dω.

Recall theceil andmod functions

c(i) = min
j≥i, j∈N

j, m(i, j) = i − j max
k≤i/j, k∈N

k.

N1(s, t) = Z1(s)Q12Z2(s, t)

=







Z1p(s)I1(s)
...

Z1p(s)IK(s)






Q12

























Z2p(s, t)I1(s)I1(t)
Z2p(s, t)I1(s)I2(t)

...
Z2p(s, t)I1(s)IK(t)
Z2p(s, t)I2(s)I1(t)

...
Z2p(s, t)IK(s)IK(t)

























=

K
∑

i=1

K2

∑

j=1

Z1p(s)[Q12]i,jZ2p(s, t)Ii(s)Ic( j

K )(s)Ij−m(j,K)(t)

=

K
∑

i=1

K
∑

j=1

Z1p(s)[Q12]i,(i−1)K+jZ2p(s, t)Ii(s)Ij(t)

Similarly,

N2(s, t) = Z2(t, s)
TQ21Z1(t)

=

K
∑

i=1

K
∑

j=1

Z2p(t, s)[Q21](i−1)K+j,iZ1p(t)Ii(t)Ij(s)

=
K
∑

i=1

K
∑

j=1

Z2p(t, s)[Q21](j−1)K+i,jZ1p(t)Ii(s)Ij(t)

Finally,

N3(s, t) = Z2(θ, s)
TQ22Z2(θ, t)

=

























Z2p(θ, s)I1(θ)I1(s)
Z2p(θ, s)I1(θ)I2(s)

...
Z2p(θ, s)I1(θ)IK(s)
Z2p(θ, s)I2(θ)I1(s)

...
Z2p(θ, s)IK(s)IK(θ)

























Q22

























Z2p(θ, t)I1(θ)I1(t)
Z2p(θ, t)I1(θ)I2(t)

...
Z2p(θ, t)I1(θ)IK (t)
Z2p(θ, t)I2(θ)I1(t)

...
Z2p(θ, t)IK (θ)IK(t)

























=
K2

∑

i,j=1

Z2p(θ, s)[Q22]i,jZ2p(θ, t)·

Ic( i
K )(θ)Im(i,K)(s)Ic( j

K )(θ)Im(j,K)(t)

=

K
∑

i,j,k=1

Z2p(θ, s)[Q22]i+(k−1)K,
j+(k−1)K

Z2p(θ, t)Ik(θ)Ii(s)Ij(t).

Thus
∫

Γ

N3dθ

=

K
∑

i,j,k=1

∫

Γk

Z2p(θ, s)[Q22]i+(k−1)K,
j+(k−1)K

Z2p(θ, t)dθIi(s)Ij(t)

We conclude that

N(s, θ) =
{

Ni,j(s, θ) s ∈ Γi andθ ∈ Γj.

Note that this proof implies that many blocks ofQ do not
appear directly in the Lyapunov functional. This feature can
be exploited to improve computational performance.

D. Semi-Separable Functions
Semi-separable kernels are often preferable to separable

kernels in that they can define operators with infinite-
dimensional image space. The use of semi-sepable kernels
without joint positivity was first used to define Lyapunov-
Krasovskii functionals in [17]. A discussion of the advan-
tages of this class of operators can be found therein.

Now define the indicator function

Is(t) =

{

1 t ≥ 0

0 otherwise.

If t is multidimensional (e.g.t ∈ R
n), then the inequality

is understood to represent a complete ordering onΓ (e.g.
t ≥ 0 if cT t ≥ 0 for arbitrary vectorc). Now define the
basis vectors

Z1ss(s) = Z1p(s), Z2ss(s, θ) =

[

Zp(s, θ)I(s− θ)
Zp(s, θ)I(θ − s)

]

If Z1 = Z1ss andZ2 = Z2ss andM andN are defined as
in Equations (6) and (7), thenM is a polynomial matrix and
N is a semi-separable polynomial matrix (R

n×n) of degree
2d. If Z1pc andZ2pc are substituted forZ1p andZ2p, then
the matrices are semiseparable and piecewise continuous.

Lemma 7:For a complete ordering≥, define the sets
Γs+ := {θ : θ − s ≥ 0} and Γs− := {θ : s − θ ≥ 0}.
SupposeZ1 = Z1ss and Z2 = Z2ss and M and N are
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defined as in Equations (6) and (7) where we partition the
matrix Q ≥ 0 as

Q =





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33



 .

ThenM is a polynomial matrix andN is a semi-separable
polynomial matrix, both of degree2d where

M(s) = Z1(s)
TQ11Z1(s), N(s, t) =

{

N1(s, t) s ≥ t

N2(s, t) s < t,

where

N1(s, t) = Z1(s)
TQ12Z2(s, t) + Z2(t, s)Q31Z1(t)

+

∫

Γ
s+

Z(θ, s)TQ22Z(θ, t)dθ

+

∫

Γ
t+

∩Γ
s−

Z(θ, s)TQ32Z(θ, t)dθ

+

∫

Γ
t−

Z(θ, s)TQ33Z(θ, t)dθ.

and

N2(s, t) = Z1(s)
TQ13Z2(s, t) + Z2(t, s)Q21Z1(t)

+

∫

Γ
t+

Z(θ, s)TQ22Z(θ, t)dθ

+

∫

Γ
s+

∩Γ
t−

Z(θ, s)TQ23Z(θ, t)dθ

+

∫

Γ
s−

Z(θ, s)TQ33Z(θ, t)dθ.

Proof: To conserve space, for this proof only, we denote
Z(s) = Z1(s), Z(s, t) = Z2(s, t) and I(t) = Is(t). Now,
expanding the expressions forM and N in Equations (6)
and (7), we obtain

M(s) = Z(s)Q11Z(s)

and

N(s, t) = Z(s)TQ12Z(s, t)I(s− t)

+ Z(s)TQ13Z(s, t)I(t− s)

+ Z(t, s)TQ21Z(t)I(t− s) + Z(t, s)TQ31Z(t)I(s− t)

+

∫

Γ

Z(θ, s)TQ22Z(θ, t)I(θ − s)I(θ − t)dθ

+

∫

Γ

Z(θ, s)TQ23Z(θ, t)I(θ − s)I(t− θ)dθ

+

∫

Γ

Z(θ, s)TQ32Z(θ, t)I(s− θ)I(θ − t)dθ

+

∫

Γ

Z(θ, s)TQ33Z(θ, t)I(s− θ)I(t− θ)dθ

Noting the identity1 = I(θ − s) + I(s− θ), we obtain
∫

Γ

Z(θ, s)TQ22Z(θ, t)I(θ − s)I(θ − t)dθ

=

∫

Γ
s+

Z(θ, s)TQ22Z(θ, t)dθI(s− t)

+

∫

Γ
t+

Z(θ, s)TQ22Z(θ, t)dθI(t− s)

which holds since

I(θ − s)I(θ − t)I(s− t) =

{

1 θ ≥ s ≥ t

0 otherwise

I(θ − s)I(θ − t)I(t− s) =

{

1 θ ≥ t ≥ s

0 otherwise.

Similarly, I(θ − s)I(t− θ)I(s − t) = 0 and

I(θ − s)I(t− θ)I(t − s) =

{

1 t ≥ θ ≥ s

0 otherwise

yields
∫

Γ

Z(θ, s)TQ23Z(θ, t)I(θ − s)I(t− θ)dθ

=

∫

Γ
s+

∩Γ
t−

Z(θ, s)TQ23Z(θ, t)dθI(t − s).

Again, I(s− θ)I(θ − t)I(t− s) = 0 and

I(s− θ)I(θ − t)I(s− t) =

{

1 s ≥ θ ≥ t

0 otherwise

yields
∫

Γ

Z(θ, s)TQ32Z(θ, t)I(s− θ)I(θ − t)dθ

=

∫

Γ
t+

∩Γ
s−

Z(θ, s)TQ23Z(θ, t)dθI(s − t).

Finally,

I(s− θ)I(t− θ)I(s − t) =

{

1 s ≥ t ≥ θ

0 otherwise

I(s− θ)I(t− θ)I(t − s) =

{

1 t ≥ s ≥ θ

0 otherwise

yields
∫

Γ

Z(θ, s)TQ33Z(θ, t)I(s− θ)I(t− θ)dθ

=

∫

Γ
t−

Z(θ, s)TQ33Z(θ, t)dθI(s− t)

+

∫

Γ
s−

Z(θ, s)TQ33Z(θ, t)dθI(t− s).

Grouping the terms which multiplyI(s − t) and I(t − s)
separately, we obtain the equality in the Lemma statement.

Note that, if desired, this approach can be extended to a more
generalized partition ofΓ. However, the integrals in this case
are more complicated.

VIII. S PACING FUNCTIONS AND M IXED STATE-SPACE

The result in Theorem 1 as stated applies to the space
L2(Γ). However, as seen in (3), for delay systems, the state
lies in the subspaceRn × L2(Γ). For such systems, the
positivity conditions can be improved through the use of
spacing functions.
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Theorem 8:For any integrable functionsZ1 : Γ →
R

m1×2n andZ2 : Γ× Γ → R
m2×2n, suppose that

M(s) = Z1(s)
TQ11Z1(s)

+

[

T (s) + 1
τ

∫

Γ

∫

Γ
R11(ω, t)dωdt

∫

Γ
R12(ω, s)dω

∫

Γ
R21(s, ω)dω 0

]

N(s, θ) = Z1(s)Q12Z2(s, θ) + Z2(θ, s)
TQ21Z1(θ)

+

∫

Γ

Z2(ω, s)
TQ22Z2(ω, θ) dω −

[

R11(s, θ) R12(s, θ)
R21(s, θ) 0

]

∫

Γ

T (s) = 0

whereτ =
∫

Γ
ds and

Q =

[

Q11 Q12

Q21 Q22

]

≥ 0

Then forP as defined in Equation (5),〈x,Px〉 ≥ 0 for all
x = (c, y) ∈ R

n × C[I].
Proof: The proof is straightforward

〈x,Px〉 =

∫

Γ

[

c

y(s)

]T

M(s)

[

c

y(s)

]

ds

+

∫

Γ

∫

Γ

[

c

y(s)

]T

N(s, θ)

[

c

y(θ)

]

dθds

=

∫

Γ

y(s)TZ1(s)
TQ11Z1(s)y(s)ds

+

∫

Γ

∫

Γ

y(s)TZ2(θ, s)
TQ21Z1(θ)y(θ)dθds

+

∫

Γ

∫

Γ

y(s)TZ1(s)
TQ12Z2(s, θ)y(θ)dθds

+

∫

Γ

∫

Γ

y(s)T
∫

Γ

Z2(ω, s)
TQ22Z2(ω, θ) dωy(θ) ds dθ

which was shown to be positive in Theorem 1 forQ ≥ 0.
The use of the spacing functionT was introduced in [6]

as part of necessary and sufficient conditions for positivity
of the multiplier operator on mixed state-space. Theorem 8
extends this concept through the use of the shifting functions
Rij which account for equivalence between multiplier and
integral operators when acting onRn.

IX. A M ATLAB TOOLBOX

To assist with the application of these results, we have
created a library of functions for the synthesis of the
Lyapunov functions described in this paper. These libraries
make use of modified versions of the SOSTOOLS and
MULTIPOLY toolboxes coupled with either SeDuMi or
SDPT. A complete package can be downloaded from the
website http://control.asu.edu/software. Key
examples of functions included are:
sosjointpos_mat_ker.m

• Declares a positive polynomial multiplier, kernel pair.
sosjointpos_mat_ker_ndelay.m

• Declares a positive piecewise-polynomial multiplier,
kernel pair.

sosjointpos_mat_ker_semisep.m
• Declares a positive semiseparable multiplier/kernel pair.

sosmateq.m
• Declare a matrix-valued equality constraint.
The functions are implemented within the pvar framework

of SOSTOOLS and the user must have some familiarity with
this relatively intuitive language to utilize these functions.
Note also that the entire toolbox and supporting modified
implementations of SOSTOOLS and MULTIPOLY must be
added to the path for these functions to execute.

X. STABILITY OF TIME-DELAY SYSTEMS

Although the conditions for positivity which appear in this
paper may seem complex, to some extent, this complexity
is hidden for the user. That, is the user need only consider
M andN to be functions of the desired class. The toolbox
will then ensure thatM andN define positive operators. The
difficulty for the user is to find the derivative of the Lyapunov
function and ensure it is defined by multiplier and integral
operators which can then be constrained to be negative using
the toolbox. The simplest application of the parametrization
discussed above is to systems with delay. In this section, we
give an example of this. These results can be viewed as an
extension of previous work developed in [6] [18] [17].

Our first step is to define the class of Lyapunov functions
to be used. Let

Ξ := {(M,N) : M andN satisfy the conditions of
Theorem 8 withZ1 = Z1pc andZ2 = Z2pc.}

The next step is to define the linear map between(M,N)
and the multiplier and kernel which define the derivative of
the Lyapunov function as defined in (2). For convenience,
define the jump values ofM andN at the discontinuities as
as∆M(τi) = Mi(−τi)−Mi+1(−τi) and

∆Nj(τi, t) = Ni,j(−τi, t)−Ni+1,j(−τi, t).

Then we have
Definition 9: Define the mapL by (D,E) = L(M,N) if

D(t) =









D11 D12 D13 D14,i(t)
T D22 D23 D24,i(t)
T ∗T D33 D34,i(t)
T ∗T ∗T D44,i(t)









t ∈ [−τi,−τi−1]

D11 = AT
0 M11 +M11A0 +

1

τ

(

M12(0) +M21(0) +M22(0)
)

,

D12 =
[

M11A1 · · · M11AK−1

]

−
1

τ

[

∆M12(τ1) · · · ∆M12(τk−1)
]

,

D13 = M11AK −
1

τ

(

M12(−τ)
)

,

D22 =
1

τ
diag

(

−∆M22(τ1), . . . ,−∆M22(τK−1)
)

,

D23 = 0, D33 =
−1

τ
M22(−τ),

D14,i(t) = Ni(0, t) +AT
0 M12,i(t)− Ṁ12,i(t),

D24,i(t) =







−∆Ni(τ1, t) +AT
1 M12,i(t)

...
−∆Ni(τK−1, t) +AT

K−1M12,i(t)






,

D34,i(t) = AT
kM12,i(t)−NK,i(−τ, t),

D44,i(t) = −Ṁ22,i(t)
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and

E(s, t) =
∂Nij(s, t)

∂s
+

∂Nij(s, t)

∂t

s∈[−τi,−τi−1]
t∈[−τj,−τj−1]

Theorem 10:Suppose there existǫ > 0 such that(M −
ǫI,N) ∈ Ξ and−L(M,N) ∈ Ξ. Then the system defined
by Equation (1) is exponentially stable.

Proof: If V is defined as in (2), then

V̇ (x) =

∫ 0

−τ











x(0)
...

x(−τK)
x(s)











T

D(s)











x(0)
...

x(−τK)
x(s)











T

+

∫ 0

−τ

∫ 0

−τ

x(s)E(s, t)x(t)dsdt ≤ 0

where(D,E) = L(M,N).
To illustrate how these conditions can be efficiently coded

using the Matlab toolbox, we give a pseudocode implmen-
tation of the conditions of Theorem 10.

1) [M,N]=sosjointpos_mat_ker_ndelay
2) [D,E]=L(M, N)
3) [Q,R]=sosjointpos_mat_ker_ndelay
4) sosmateq((D,E) + (Q,R))

For brevity, the pseudocode does not include the spac-
ing functions of Theorem 8. See the complete solver in
solver_ndelay_nd_joint.m for a full implementa-
tion of the algorithm for multiple delays.

XI. N UMERICAL RESULTS

The conditions of Theorem 10 are implemented in the file
solver_ndelay_joint.m, available with the rest of the
supporting functions described previously.

ẋ(t) =

[

0 1
−1 .1

]

x(t)+

[

0 0
−1 0

]

x(t−
τ

2
)+

[

0 0
1 0

]

x(t−τ)

The maximum and minimum values ofτ for this system are
listed in Table XI, whereSOS [6] refers to the SOS stability
test without joint positivity andSOS − joint refers to the
conditions of Theorem 10.

SOS [6] SOS-joint
d τmin τmax τmin τmax

1 .20247 1.354 .20247 1.3711
2 .20247 1.3722 .20247 1.3722

Because previous SOS results for stability of time-delay
systems were asymptotically exact, the numerical validation
here should not be particularly surprising. However, as
expected , the convergence is faster as a function of the
polynomial degree.

XII. C ONCLUSION

In this paper, we have given a primer on how to con-
struct Lyapunov functions for infinite-dimensional systems.
Specifically, we have shown how several classes of positive
operators may be parameterized using positive matrices and
constructed efficient algorithms to implement these results.

Notably absent from this discussion is an application of these
results to PDE systems. This is partially a lack of space and
partially because such work is non-trivial and will vary from
application to application. Indeed, our results should notbe
seen as a general solution for analysis of infinite-dimensional
systems, but rather a reference for those working in the field
on specific applications and who may find the representations
and algorithms useful. We also mention, the joint positivity
results of this paper have been used to create asymptotically-
exact dual stability conditions using the results of [19].
However, discussion of these results is beyond the scope of
this paper.
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I. Birkhäuser, 1992.

[14] S. Prajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing
SOSTOOLS: a general purpose sum of squares programming solver,”
Proceedings of the IEEE Conference on Decision and Control, 2002.

[15] D. Henrion, J. B. Lasserre, and J. Loefberg, “Gloptipoly 3: moments,
optimization and semidefinite programming,”Optimization Methods
and Software, vol. 24, no. 4-5, pp. 761–779, 2009.

[16] P. Seiler, “Sosopt: A toolbox for polynomial optimization,” December
2010, university of Minnesota.

[17] M. M. Peet and A. Papachristodoulou, “Using polynomialsemi-
separable kernels to construct infinite-dimensional Lyapunov func-
tions,” in Proceedings of the IEEE Conference on Decision and
Control, 2008.

[18] ——, “Joint positivity of Lyapunov operators for lineartime-delay
systems,” inProceedings of the IEEE Conference on Decision and
Control, Dec. 2007.

[19] M. Peet, “Full-state feedback of delayed systems usingsos: A new
theory of duality,” in 11th IFAC Workshop on Time-Delay Systems,
2013.

8


