Optimal Thermostat Programming and Electricity Prices for Customers with Demand Charges

Reza Kamyar and Matthew Peet
Cybernetic Systems and Controls Laboratory

July 3, 2015
Power Companies Pay For Fuel & Generators

A simplified model for cost of generating electricity is a combination of:

1. **Cost of fuel** required to generate the total energy (kWh) consumed by users

 A common model is:
 \[
 \text{cost of fuel} = a \int q(t) \, dt
 \]

 \(q(t)\) (kW): power consumed by users, \(a\) ($/kWh): cost of fuel required to produce the next kWh

2. **Cost of building & maintaining generators** to accommodate for the maximum total power (kW) consumed by users

 A simple model can be:
 \[
 \text{Cost of building & maintaining generators} = b \sup_{t \in \text{on-peak}} q(t)
 \]

 \(b\) ($/kW): cost of installing the next kW of generating capacity
Current Pricing Strategies Do Not Charge For Max Power

- Most power companies use **flat** or **Time-of-Use (ToU)** pricing

 ➔ **Flat pricing**: Charges are independent of when energy is used

 \[
 \int q_1(t) dt \times \frac{\text{price}}{\text{kWh}} = \int q_2(t) dt \times \frac{\text{price}}{\text{kWh}}
 \]

 Electricity bills independent of \(q_{1\text{ max}}\) & \(q_{2\text{ max}}\)

 ➔ **ToU pricing**: Does not explicitly charge for max power used

 Elect. Bill = \(p_{\text{off}} \int_{\text{off-peak}} q(t) dt \)
 \[+ \ p_{\text{on}} \int_{\text{on-peak}} q(t) dt\]

 Large peak does not necessarily result in a large monthly bill
Current Pricing Strategies Are Problematic For Power Companies

- **Fact 1:** The ratio of maximum power used per year to average power used per year is setting records in the US!

 Partially due to increasing integration of renewables, e.g., solar

![Graph showing peak to average demand over years]

- **Fact 2:** Integration of renewables **does NOT** affect maximum power consumption, but reduces the total power sold by power companies ⇒ revenue decreases

- **Consequence:** Power companies won’t have enough revenue to supply for electricity without raising the prices

Reza Kamyar, Cybernetic Systems and Controls Laboratory (CSCL), Arizona State University
Demand Charge: A Solution To The Revenue Problem

- **Demand charge**: A monthly charge proportional to the maximum power consumed by the user during the on-peak hours of a month.
- A combination of off-peak, on-peak and demand charges can differentiate between “good” and “bad” user behavior.

![Diagram showing power consumption and charging periods]

Electricity Bill =

\[
p_{\text{off}} \int_{t \in \text{off-peak}} q(t) \, dt + p_{\text{on}} \int_{t \in \text{on-peak}} q(t) \, dt + p_d \sup_{t \in \text{on-peak}} q(t)
\]

- on-peak period charge
- off-peak period charge
- demand charge

Reza Kamyar, Cybernetic Systems and Controls Laboratory (CSCL), Arizona State University
How Can Power Companies Optimize Their Prices?

Power companies can solve the following optimization problem:

- **Objective:** minimize the cost of generating electricity

\[
\min_{p_{on}, p_{off}, p_d} \left(\underbrace{a \int_{t=0}^{t=24} g(t) \, dt}_{\text{fuel cost}} + \underbrace{b \sup_{t \in \text{on-peak period}} g(t)}_{\text{cost of building generators}} \right)
\]

- \(g(t) \): power (kW) generated at time \(t \)
- \(a \) (\$/kWh): cost of fuel required to produce the next kWh
- \(b \) (\$/kW): cost of installing the next kW of production capacity

- **Constraint:**
 - Equality of generation \(g(t) \) and power \(q_{user}(t) \) consumed by users:

\[
g(t) = q_{user}(t, p_{off}, p_{on}, p_d) \quad \forall t
\]

- **Variables:** on-peak, off-peak and demand prices: \(p_{on}, p_{off}, p_d \)
To optimize electricity prices, we need a model for users’ power consumption which;

1. Predicts how much electricity would a rational user consume, given the prices

Question: How can a rational user reduce his electricity bill?

- One way is to reduce HVAC load by using Energy storage
 1. Energy storage in residential batteries allows users to shift peaks from high-demand hours to another hours
 2. Using walls/floors as thermal energy storage: A free alternative to batteries
Precooling: As Time-of-Use Strategy To Reduce Bills

Precooling exploits thermal energy storage in walls to shift loads:

- Cool down walls/floors when electricity is cheap

- Cold walls will reduce the load on HVAC during on-peak hours - thus reducing the electricity bill
Precooling Fails When Demand Charges Are Applied

- Precooling does **NOT** reduce max power consumption. **Why?**
 1. Thermal storage in the walls **depletes** before the end of the on-peak period
 2. Then HVAC will remain as the **only** cooling mechanism
 3. At the end of on-peak period, same load will be on HVAC as if no precooling had occurred

- When demand charges exist, thermostat programming is difficult!
 - Thermal storage is governed by the heat equation - A PDE
 - Heat equation inherently has **latency**, thus a good strategy may involve counter-intuitive temperature settings

Reza Kamyar, Cybernetic Systems and Controls Laboratory (CSCL), Arizona State University
How Do Thermostat Settings Affect Energy Consumption?

Power consumed by user is a combination of heat loss to outside and heat given to/taken from interior walls

\[q_{\text{user}}(t) = q_{\text{loss}}(t) + q_{\text{wall}}(t) \quad \forall k \]

- Heat loss \(q_{\text{loss}}(t) \) is modeled by a linear heat sink and can be controlled by interior temperature \(T_{\text{in}} \):
 \[q_{\text{loss}}(t) = \frac{T_{\text{out}}(t) - T_{\text{in}}(t)}{R_w} \]

 \(T_{\text{out}} \): Outside temperature \quad \(R_w \): thermal resistance

- Heat thru walls \(q_{\text{wall}}(k) \) is modeled by the Heat equation (PDE):
 \[\frac{\partial T_w(t, x)}{\partial t} = \alpha \frac{\partial^2 T_w(t, x)}{\partial x^2} \]

 \[q_{\text{wall}}(k) = 2C_w \frac{\partial T_w}{\partial x}(t, 0) \]
How Do Rational Users Minimize Their Bill?

User can solve a discrete-time thermostat programming problem with

- **Objective:** minimize the electricity bill
 \[
 \min_{T_{\text{in}}(k)} \left(30 p_{\text{off}} \sum_{k \in I_{\text{off}}} q_{\text{user}}(k) + 30 p_{\text{on}} \sum_{k \in I_{\text{on}}} q_{\text{user}}(k) + p_d \sup_{k \in I_{\text{on}}} q_{\text{user}}(k) \right)
 \]
 - OFF-peak period charge
 - ON-peak period charge
 - demand charge

- **Constraints:**
 1. Interior temperature with a certain bound:
 \[T_{\text{min}} \leq T_{\text{in}}(k) \leq T_{\text{max}} \quad \forall k \]
 2. Energy conservation:
 \[q_{\text{user}}(k) = q_{\text{loss}}(T_{\text{in}}(k), T_e(k)) + q_{\text{wall}}(T_w(x, k)) \quad \forall k \]
 3. Discretized heat dynamics:
 \[T_w(k + 1) = A T_w(k) + B T_{\text{in}}(k) \]

- **Variables:** Interior temperature \(T_{\text{in}}(k) \) over time
A Reformulation of User’s Problem Can Be Solved By Dynamic Programming

- We reformulate the user’s problem

\[
\begin{align*}
\min_{T_{in}(k)} & \quad 30 \sum_{k \in I_{off}} q(k) + 30 \sum_{k \in I_{on}} q(k) + \max_{k \in I_{on}} p_d \sup_{k \in I_{on}} q(k) \\
\text{subject to} & \quad q(k) = q_{loss}(T_{in}, T_{out}) + q_w(T_w) \quad \forall k \\
& \quad T_w(k + 1) = f(T_w(k), T_{in}) \quad \forall k \\
& \quad T_{min} \leq T_{in}(k) \leq T_{max} \quad \forall k
\end{align*}
\]

as

\[
\begin{align*}
\min_{T_{in}(k), \gamma \in \mathbb{R}} & \quad 30 \sum_{k \in I_{off}} q(k) + 30 \sum_{k \in I_{on}} q(k) + p_d \gamma \\
\text{subject to} & \quad q(k) \leq \gamma \quad \forall k \in I_{on} \\
& \quad q(k) = q_{loss}(T_{in}, T_{out}) + q_w(T_w) \quad \forall k \\
& \quad T_w(k + 1) = f(T_w(k), T_{in}) \quad \forall k \\
& \quad T_{min} \leq T_{in}(k) \leq T_{max} \quad \forall k
\end{align*}
\]

- For fixed \(\gamma \), the reformulated problem can be solved by Dynamic Programming.

- \(\gamma \) is a scalar, so we use bisection over \(\gamma \).
Building’s Parameters and Outside Temperature in User’s Problem

Building’s parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>wall’s width</td>
<td>0.4 (m)</td>
</tr>
<tr>
<td>thermal diffusivity</td>
<td>8.3×10^{-7} (m2/s)</td>
</tr>
<tr>
<td>thermal resistance</td>
<td>0.0015 (K/W)</td>
</tr>
<tr>
<td>thermal capacity</td>
<td>45 (Wm/K)</td>
</tr>
</tbody>
</table>

External temperature of three typical days in Phoenix, AZ

![Graph showing temperature vs. time](image)

On-peak, off-peak & demand prices from Arizona power company

<table>
<thead>
<tr>
<th></th>
<th>On-peak ($\dfrac{$}{kWh}$)</th>
<th>Off-peak ($\dfrac{$}{kWh}$)</th>
<th>Demand ($\dfrac{$}{kWh}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>0.089</td>
<td>0.044</td>
<td>13.50</td>
</tr>
</tbody>
</table>

Reza Kamyar, Cybernetic Systems and Controls Laboratory (CSCL), Arizona State University
Our Algorithm Is A Good Way To Reduce Electricity Bills

User’s consumption and interior temperature using prices from Arizona Public Service

![Graph showing power consumption and interior temperature over time.](image)

<table>
<thead>
<tr>
<th>Temperature setting</th>
<th>Our algorithm</th>
<th>GPOPS</th>
<th>Pre-cooling</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly bill</td>
<td>365.8$</td>
<td>370.3$</td>
<td>392.3$</td>
<td>394.2$</td>
</tr>
</tbody>
</table>
Increasing $\frac{p_{d}}{p_{off}}$ Helps Reducing Max Consumption during on-peak

Weight of **demand** price relative to **on-peak & off-peak** prices affects maximum consumption

Peak is only suppressed during the on-peak hours
Pricing Optimization Problem Revisited!

To set prices p_{on}, p_{off}, p_d, power companies can solve:

- **Objective:** minimize the cost of generating electricity

\[
\min_{p_{on}, p_{off}, p_d} \left(a \sum_k g(k) dt + b \sup_{k \in \text{on-peak period}} g(k) \right)
\]

- **Constraint:**
 1. Equality of **generation** ($g(t)$) and **power** ($q_{user}(t)$) consumed by users:

\[
g(k) = q_{user}(k, p_{off}, p_{on}, p_d) \quad \forall t
\]

- **Variables:** on-peak, off-peak and demand prices: p_{on}, p_{off}, p_d
We solved the power company’s problem with a single user by

- Applying a **descent algorithm** to optimize over prices p_{on}, p_{off}, p_d
- Used **Dynamic Programming** at each iteration of the descent algorithm to find an optimal power generation

Initialize prices

$\begin{align*}
\text{while } \text{Cost}_{\text{new}} - \text{Cost}_{\text{old}} > \epsilon \text{ do} \\
\quad \text{Find a descent direction by evaluating the cost at a 7-point stencil centered at } p \\
\quad \text{For each price, solve user’s problem using bisection & dynamic programming} \\
\quad \text{Update the best price } p_{on}, p_{off}, p_d \text{ and best cost} \\
\text{end}
\end{align*}$
6.3% Reduction in Generation Cost For Salt River Project

- Comparison of generation costs for 3 days, using Salt River Project’s prices and optimal prices:

<table>
<thead>
<tr>
<th>Strategy</th>
<th>p_{off} ($/kWh), p_{on} ($/kWh), p_d ($/kW)$</th>
<th>Generation cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Algorithm</td>
<td>[0.0820, 0.1080, 54.004]</td>
<td>83.33$</td>
</tr>
<tr>
<td>SRP</td>
<td>[0.0572, 0.0814, 59.760]</td>
<td>89.00$</td>
</tr>
</tbody>
</table>

- Result is 6.3% reduction in generation cost which corresponds to $\approx 2 \text{ M$ saving per month.}$
Integration of Renewables Has Minor Effect On Costs & Peaks

- We solved the power company’s problem when **50% of users** have access to local **solar generation**

<table>
<thead>
<tr>
<th>Users</th>
<th>Optimal prices</th>
<th>Electricity Bill</th>
<th>Max power used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar & Non-solar</td>
<td>$[0.089, 0.115, 51.988]$</td>
<td>$$50.05$</td>
<td>$6.1947 kW$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$$84.71$</td>
<td>$8.6787 kW$</td>
</tr>
<tr>
<td>Single Non-solar</td>
<td>$[0.081, 0.108, 54.004]$</td>
<td>$$83.33$</td>
<td>$8.3008 kW$</td>
</tr>
<tr>
<td>Single Solar</td>
<td>$[0.088, 0.118, 58.556]$</td>
<td>$$54.31$</td>
<td>$6.1916 kW$</td>
</tr>
</tbody>
</table>

- When optimal prices are used, 50% increase in renewables causes **< 2% change** in the bill of nonsolar users

- When SRP prices are used, 50% increase in renewables causes **8% change** in the bill of nonsolar users
Conclusions

- We defined a new model for **optimal behavior** of a user who minimizes his electricity bill based on given prices
 - Optimal thermostat programming

- Used our model to define a framework for optimization of electricity prices for rational users
 - Objective is to **minimize the cost of generation** while generation equals consumption

- We proposed prices which induce **30% reduction** in peak load and more than **6% reduction** in generation cost

- We would like to thank Salt River Project power company of Arizona for funding this research and providing data
Ongoing Work: Peak Load Reduction Using Batteries

- Incorporating **residential batteries**, such as Tesla’s Powerwall in our user’s models to reduce demand charges.

Optimal residential battery control for minimizing electricity bill

Reza Kamyar, Cybernetic Systems and Controls Laboratory (CSCL), Arizona State University
Ongoing Work: Improving Our Model For Generation Cost

We used the following model for cost of generation:

\[a \int_{t=0}^{t=24} g(t) \, dt + b \sup_{t \in \text{on-peak period}} g(t) \]

- An improved model will include the costs associated with:
 - **Fuel cost** of various types of generating units
 - **Unit commitment**: Cost for bringing each generating unit online
 - **Arbitrage**: Selling/buying from electricity spot market