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Abstract— In this paper we synthesize L(L2)-optimal full-state
feedback controllers for a one dimensional linear PDE with point
actuation and distributed disturbances. We use Sum-of-Squares (SOS)
polynomials and Semi-Definite Programming (SDP) to parametrize
positive operators which define quadratic Lyapunov functions and the
controller gains. Additionally, we calculate the upper bound on the
system state ensured by the calculated controllers. Moreover, we provide
numerical results, but not proofs, for PDEs with additional types of
boundary conditions.

I. INTRODUCTION

Processes in which a physical quantity undergoes diffusion, con-
vection and reaction are modeled by parabolic Partial Differential
Equations (PDEs). For e.g., plasma in thermonuclear fusion[21],
chemical reactors [2] and heat propagation in media. In thispaper
we consider a one dimensional inhomogeneous linear parabolic
PDE with polynomial, spatially distributed coefficients. Such PDEs
are used to model diffusion, convection and reaction in anisotropic
media while being subjected to unknown, but bounded, exogenous
disturbance due to, e.g. unmodeled nonlinear dynamics [12]. The
goal of this article is to construct full-state feedback controllers,
with control via point actuation at the boundary which minimizes
the effect of disturbances on an output which is some function of
the distributed state. The controller is optimized in the metric of the
inducedL(L2) gain from external disturbance to regulated output.
The performance analysis and controller design is performed en-
tirely in the infinite-dimensional framework, with no discretization
or model reduction at any step.

There is significant existing work on the stability and control
of PDE systems, although most of this work ultimately relieson a
reducation to a finite-dimensional state space or discretized solution
of an operator-valued equation or inequality. There are however,
some works which consider the problem in its native infinite-
dimensional setting. For example, work on the use of Lyapunov
functions for the analysis and control of PDEs can be found
in [3], [5], [4]. Additionally, the use of optimization algorithms for
boundary control of PDEs using LMIs and a Lyapunov approach
may be found in [7]. Prior work on the use of SOS polynomials
to PDEs and other infinite dimensional systems may be found
in [14], [17] and [20].

Our approach is based on the construction of quadratic Lyapunov
functions parameterized by positive operators onL2. Such positive
operators are in turn parametrized by Sum-of-Squares (SOS)poly-
nomials. Moreover, controller gains are parameterized by polynomi-
als as well. This polynomial parametrization of quadratic Lyapunov
functions and controller gains allows us to search for the desired
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polynomials algorithmically. Operator positivity constraints are rep-
resented using matrix positivity constraints in an approach inspired
the the SOS approximation to the cone of positive polynomials [15].
The proposed algorithm is an infinite-dimensional extension of
H∞-optimal controller synthesis for systems governed by Ordinary
Differential Equations (ODEs). For ODEs, theH∞-norm of a
system can be represented as an LMI constraint by means of the
Kalman-Yakubovich-Popov (KYP) lemma [6] which says that a
system withH∞ norm of γ implies the existence of a quadratic
Lyapunov function a bound on the induced norm ofγ. We replicate
this approach by searching for a controller and quadratic Lyapunov
function which minimizes the inducedL(L2) of the closed-loop
system.

This article extends our work in [8] wherein we designed point-
actuation point-observation output feedback controllersfor expo-
nential stabilization using the Luenberger framework. In addition,
in [9] we showed that such output feedback controllers ensure
that the state of the PDE remains bounded in the presence of a
bounded, uniformly distributed exogenous input. The contribution
of this article is that while we simplify the problem by considering
state-feedback, we also improve over existing results by enabling
the algorithm tooptimize the closed-loop upper bound on the
system. The ultimate goal of this line of research is to then extend
the optimization step to design optimal dynamic output feedback
controllers which optimize over the controller and the estimator.

The quadratic Lyapunov functionals we consider are parameter-
ized asV = 〈φ,Pφ〉

L2
where the operatorP is parameterized by

polynomial multiplierM and polynomial semi-separable kernels
N1 andN2 as

(Pφ) (x) =M(x)φ(x) +

∫ x

0

N1(x, ξ)φ(ξ)dξ

+

∫ 1

x

N2(x, ξ)φ(ξ)dx, φ ∈ L2(0, 1).

The polynomialsM , N1, N2 are parameterized by positive matrices
using a Sum-of-Squares type condition which ensures positivity of
the operator. Likewise, the feedback controller is parameterized as
u = Kw wherew ∈ L2 is the distributed state and the operatorK
is parameterized by the scalarF1 and the polynomialF2 as

u(t) = Kw := F1w(t, 1) +

∫ 1

0

F2(x)w(t, x)dx.

The polynomialF2 is parameterized by its vector of monomial
coefficients.

This article is organized as follows: Section III gives the problem
statement and some background material. Section IV gives anSDP
parametrization of positive operators. Section V presentsthe state-
feedback optimization problem as an SDP. Finally, Section VI
describes a series of numerical tests, for two example PDEs,
numerical justification for the use of the semi-separable kernels
and extensions to different types of boundary conditions.



II. NOTATION

We denote bySn the set ofn-by-n symmetric real matrices.
We denote byIn the identity matrix of dimensionsn-by-n and
I = In when n is clear from context. We denote byC∞(0, 1)
the set of real valued infinitely differentiable functions on [0, 1].
C1,2((0,∞), [0, 1]) denotes the set of bivariate real valued func-
tions continuously differentiable on(0,∞) and twice continuously
differentiable on[0, 1]. The shorthandux denotes the partial deriva-
tive of u with respect tox. L2(0, 1) denotes the Hilbert space of real
valued square integrable functions endowed with norm‖f‖L2 =
√

∫ 1

0
‖f(x)‖2dx and inner product〈f, g〉L2

=
∫ 1

0
f(x)T g(x)dx.

For convenience, givenf, g ∈ L2(0, 1), we say thatg = f(·)g(·)
if g(x) = f(x)g(x).

L2(0,∞;L2(0, 1)) denotes the set of functionsf(t, x) such
that for any t ∈ [0,∞), if g(x) = f(t, x), then g ∈ L2(0, 1).
For f ∈ L2(0,∞;L2(0, 1)), we denote byf(t, ·) the map
from [0,∞) → L2(0, 1) defined by f(t, ·)(x) = f(t, x). We
equip L2(0,∞;L2(0, 1)) with the norm ‖f‖L2(0,∞;L2(0,1)) :=
√

∫∞

0
‖f(t, ·)‖2L2

dt.

Hn(0, 1) := {f ∈ L2 : ∂i

∂xi f ∈ L2, i = 1, · · · , n} denotes the

Sobolev subspace with norm‖f‖Hn =
∑n

i=1‖
∂i

∂xi f‖L2 . I denotes
the identity operator on any Hilbert space. We defineZd(x) to be
the column vector of all monomials in variablex of degreed or
less. Similarly, we defineZd(x, ξ) to be a column vector of all
monomials in variablesx and ξ of degreed or less. We define
Zn,d(x, ξ) = In ⊗ Zd(x, ξ).

III. PROBLEM STATEMENT

We consider the following class of possibly unsteady, one-
dimensional inhomogeneous linear parabolic PDEs

wt(t, x) =a(x)wxx(t, x) + b(x)wx(t, x) + c(x)w(t, x)

+ r(x)d(t, x), (1)

for x ∈ [0, 1] and t ≥ 0, with initial condition w(x, 0) = 0 and
boundary conditions of the form

w(t, 0) = 0, wx(t, 1) = u(t). (2)

The coefficientsa, b, c and r are polynomials inx with a(x) ≥
α > 0, for all x ∈ [0, 1]. The functiond ∈ L2(0,∞;L2(0, 1)) is
the spatially distributedexogenous inputor disturbance.u(t) ∈ R

is the control input which is to be determined by state feedback.
We define ourregulated outputas

y(t, x) = s(x)w(t, x), (3)

which is the quantity to be minimized and wheres is a given
polynomial. In addition to the boundary conditions as defined in (2),
the problem can be generalized to consider Dirichlet, Neumann and
Robin boundary conditions, as is discussed in Section VI.

We define our feedback controller to have the formu(t) =
Kw(t) whereK is defined as

u(t) = Kw(t, ·) = F1w(t, 1) +

∫ 1

0

F2(x)w(t, x)dx, (4)

for some to be determined scalarF1 and polynomial F2 ∈
L∞(0, 1). We consider optimal control in theL(L2) norm. That
is, we seek to minimize overK and the boundγ such that if
u(t) = Kw(t) and y(t, x) = s(x)w(t, x), then for anyd ∈
L2(0,∞ : L2(0, 1)), y ∈ L2(0,∞ : L2(0, 1)) and

‖y‖L2(0,∞:L2(0,1)) ≤ γ‖d‖L2(0,∞:L2(0,1)).

For any such pairK and γ, we termγ the L(L2) gain and the
associated controller theγ-optimal controller. Note that for a given
controller, we obtained a bound onγ in [9]. The contribution of
this paper is to represent this bound in such a way that it can be
optimized.

Finally, we note that for the PDE (1)-(2) under feedback of the
form in Equation (4) we assume that for anyd ∈ L2(0,∞ :
L2(0, 1)), there exists a unique solutionw ∈ C1,2 ((0,∞), [0, 1]).
Relevant conditions for existence of solutions may be foundin [1,
Section6].

IV. POSITIVE OPERATORS ONL2(0, 1)

In this section, we show how positive matrices can be used to
parameterize positive operators. Specifically, we consider operators
of the form

(Pf) (x) =M(x)f(x) +

∫ x

0

N1(x, ξ)f(ξ)dξ

+

∫ 1

x

N2(x, ξ)f(ξ)dξ, (5)

where M : [0, 1] → S
n and N1, N2 : [0, 1] × [0, 1] → R

n×n

are polynomials. The following theorem shows that any positive
operator with a square root belonging to this same class of operators
can be represented by a positive matrix.

Theorem 1:Suppose there exists some symmetricU ≥ 0 such
that

U =





U11 U12 U13

U21 U22 U23

U31 U32 U33



 ≥





ǫI 0 0
0 0 0
0 0 0



 . (6)

Then if M , N1 andN2 are defined as

M(x) = Z1(x)
T
U11Z1(x), (7)

N1(x, ξ) = Z1(x)
T
U12Z2(x, ξ) + Z2(ξ, x)

T
U31Z1(ξ) (8)

+

∫ ξ

0

Z2(η, x)
T
U33Z2(η, ξ)dη +

∫ x

ξ

Z2(η, x)
T
U32Z2(η, ξ)dη

(9)

+

∫ 1

x

Z2(η, x)
T
U22Z2(η, ξ)dη, (10)

whereZ1(x) = Zn,d1(x), Z2(x, y) = Zn,d2 (x, y) andN2(x, ξ) =
N1(ξ, x)

T , then the operatorP as defined in Eqn. (5) is bounded,
self-adjoint and satisfies

〈Pf, f〉L2(0,1) ≥ ǫ‖f‖2L2(0,1),

for all f ∈ L2(0, 1).
Proof: The proof is based on the result in [16] and is omitted

for brevity.
For convenience, we define the following set

Ξn,d1,d2,ǫ ={M,N1, N2 : M,N1, N2 satisfy Theorem 1

for d1, d2, n ∈ N , ǫ > 0 and someU ≥ 0}.

Theorem 1 allows us to useM,N1, N2 ∈ Ξn,d1,d2,ǫ to enforce
the constraint that the operatorP defined byM , N1, andN2 as
in Eqn.(5), be positive. By expanding Eqns. (7), the coefficients
of the polynomialsM , K1 andK2 are linear combinations of the
elements of the matrix variableU . Constructing the matrices which
relate the elements ofU to the coefficients of the polynomials
M , N1, and N2 can be automated using Matlab toolboxes for
polynomial manipulation such as MULTIPOLY, contained in the
package SOSTOOLS [18] and further developed in our package
DELAYTOOLS [16].



Finally, we note that, as will be seen in the following Sec-
tion, given a positive operatorP parameterized byM,N1, N2 ∈
Ξn,d1,d2,ǫ, it will be necessary to construct the inverse ofP .
Naturally, because the operator is positive, such an inverse exists
and, moreover, it turns out that such an inverse is of the same
form asP (Although M , N1, and N2 may not be polynomial).
Furthermore, this inverse can be constructed as described in [10]
and expanded in [8].

V. CONTROLLER SYNTHESIS

In this section, we define an SDP for synthesis of a controller
which minimizes a bound on theL(L2) norm of the closed loop
PDE defined in Eqn. (1). For convenience, we here restate the
dynamics.

wt(t, x) =a(x)wxx(t, x) + b(x)wx(t, x) + c(x)w(t, x)

+ r(x)d(t, x), (11)

with w(x, 0) = 0 and boundary conditionsw(t, 0) = 0 and
wx(t, 1) = u(t) where recalla(x) ≥ α > 0 and the regulated
output isy(t, x) = s(x)w(t, x).

Theorem 2:For given scalarǫ > 0 and d1, d2 ∈ N, suppose
there exist scalarsY1 andγ > 0 and polynomialsM,Y2 : [0, 1] →
R, N1, N2 : [0, 1]× [0, 1] → R such that

{M,N1, N2} ∈ Ξ1,d1,d2,ǫ,

{−Q0,−Q1,−Q2} ∈ Ξ3,d1,d2,0,

N2(0, x) = 0,

2a(1)Y1 − a(1)Mx(1) + (b(1)− ax(1))M(1) = 0,

Y2(x)−N1,x(1, x) = 0,

where

Q0(x) =





T0(x) r(x) s(x)M(x)
r(x) −γ 0

s(x)M(x) 0 −γ



 ,

Q1(x, ξ) =





T1(x, ξ) 0 N1(x, ξ)s(ξ)
0 0 0

N1(x, ξ)s(x) 0 0



 ,

Q2(x, ξ) =Q1(ξ, x)
T
,

T0(x) = (axx(x)− bx(x))M(x) + b(x)Mx(x)

+ a(x)Mxx(x) + 2c(x)M(x)−
π2

2
αǫ

+ a(x)

[

2
∂

∂x
[N1(x, ξ)−N2(x, ξ)]

]

ξ=x

,

T1(x, ξ) =a(x)N1,xx(x, ξ) + b(x)N1,x(x, ξ)

+ a(ξ)N1,ξξ(x, ξ) + b(ξ)N1,ξ(x, ξ)

+ (c(x) + c(ξ))N1(x, ξ),

T2(x, ξ) =T1(ξ, x).

Then if

u(t) =Y1

(

P−1
w
)

(t, 1) +

∫ 1

0

Y2(x)
(

P−1
w
)

(t, x)dx,

=F1w(t, 1) +

∫ 1

0

F2(x)w(t, x)dx, (12)

where the operatorP−1 is the inverse of the operatorP as defined
in Eqn. (5), we have that for anyd ∈ L2(0,∞;L2(0, 1)), Eqn. (11)
implies that

‖y‖L2(0,∞;L2(0,1)) ≤ γ‖d‖L2(0,∞;L2(0,1)).

Proof: Let P be as defined in Eqn. (5). Then the inverse ofP
as defined in [10], [8] is positive, self-adjoint and has the following
form.

(

P−1
f
)

(x) =M̂(x)f(x) +

∫ x

0

N̂1(x, ξ)f(ξ)dξ

+

∫ 1

x

N̂2(x, ξ)f(ξ)dξ,

whereM̂, N̂1, N̂2 ∈ C∞[0, 1]. Now let

u(t) = Y1

(

P−1
w
)

(t, 1) +

∫ 1

0

Y2(x)
(

P−1
w
)

(t, x)dx.

Now, sinceP−1 is self-adjoint, we have that
∫ 1

0

Y2(x)
(

P−1
w
)

(t, x)dx =

∫ 1

0

(

P−1
Y2

)

(x)w(t, x)dx.

Hence,
∫ 1

0

Y2(x)
(

P−1
w
)

(t, x)dx =

∫ 1

0

(

M̂(x)Y2(x) (13)

+

∫ x

0

N̂1(x, ξ)Y2(ξ)dξ +

∫ 1

x

N̂2(x, ξ)Y2(ξ)dξ

)

w(t, x)dx.

Also, since

Y1

(

P−1
w
)

(t, 1) = Y1

(

M̂(1)w(t, 1) +

∫ 1

0

N̂1(1, x)w(t, x)dx

)

,

we have thatF1 = Y1M̂(1) and

F2(x) =Y1N̂1(1, x) + M̂(x)Y2(x) +

∫ x

0

N̂1(x, ξ)Y2(ξ)dξ

+

∫ 1

x

N̂2(x, ξ)Y2(ξ)dξ,

which implies that F2 ∈ C∞(0, 1). Since F2 is continu-
ous, the closed loop system admits a unique solutionw ∈
C1,2((0,∞), [0, 1]).

Now define the Lyapunov function

V (w) =
〈

w,P−1
w
〉

. (14)

If w(t, x) is a solution of Eqn. (11), theṅV (w(t, ·)) is given by

dV ((t, ·))

dt
= 2

〈

Aw(t, ·),P−1
w(t, ·)

〉

+2
〈

r(·)d(t, ·),P−1
w(t, ·)

〉

,

(15)
where the differential operatorA : H2(0, 1) → L2(0, 1) is defined
as

A = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x).

Let us definez(t, ·) := P−1w(t, ·). Then Equation (15) becomes

V̇ (w(t, ·)) = 2 〈APz(t, ·), z(t, ·)〉+ 2 〈r(·)d(t, ·), z(t, ·)〉 .

Because of the tedious nature of the calculation, we remove
manipulation of the derivativėV to Lemma 3, which is attached as
an Appendix. Applying this lemma, we obtain

V̇ (w(t, ·)) ≤〈T z(t, ·), z(t, ·)〉+ 2 〈r(·)d(t, ·), z(t, ·)〉

+ [a(1)Mx(1) + (b(1)− ax(1))M(1)] z(t, 1)2

+ 2a(1)M(1)zx(t, 1)z(t, 1), (16)

where the operatorT : L2(0, 1) → L2(0, 1) is defined in Lemma 3
as

(T f) (x) :=T0(x)f(x) +

∫ x

0

T1(x, ξ)f(ξ)dξ +

∫ 1

x

T2(x, ξ)f(ξ)dξ.



Sincez = P−1w, we havew = Pz which implies

w(t, x)=M(x)z(t,x)+

∫ x

0

N1(x, ξ)z(t, ξ)dξ+

∫ 1

x

N2(x, ξ)z(t, ξ)dx.

SinceN1(x, ξ) = N2(ξ, x) we have that

wx(t, 1)=Mx(1)z(t, 1)+M(1)zx(t, 1)+

∫ 1

0

N1,x(1, x)z(t, x)dx.

Rearranging and applying the boundary conditionwx(t, 1) = u(t),
we have

M(1)zx(t, 1) = u(t)−Mx(1)z(t, 1) −

∫ 1

0

N1,x(1, x)z(t, x)dx.

(17)
Now, from the definition ofu(t) in (12), we have that

u(t) =F1w(t, 1) +

∫ 1

0

F2(x)w(t, x)dx

=Y1

(

P−1
w
)

(t, 1) +

∫ 1

0

Y2(x)
(

P−1
w
)

(t, x)dx

=Y1z(t, 1) +

∫ 1

0

Y2(x)z(t, x)dx.

Substituting into (17), we obtain

M(1)zx(t, 1) = (Y1 −Mx(1)) z(t, 1)

+

∫ 1

0

(Y2(x)−N1,x(1, x)) z(t, x)dx.

Substituting forM(1)zx(t, 1) in the last term of Equation (16)

V̇ (w(t, ·)) ≤ 〈T z(t, ·), z(t, ·)〉+ 2 〈r(·)d(t, ·), z(t, ·)〉

+ [2a(1)Y1 − a(1)Mx(1) + (b(1)− ax(1))M(1)] z(t, 1)2

+ 2a(1)z(t, 1)

∫ 1

0

(Y2(x)−N1,x(1, x)) z(t, x)dx. (18)

Now, from the conditions of the theorem statement, we have

2a(1)Y1 − a(1)Mx(1) + (b(1)− ax(1))M(1) = 0,

Y2(x)−N1,x(1, x) = 0,

which implies the last two terms of Eqn. (18) are eliminated,leaving
us with

V̇ (w(t, ·)) ≤ 〈T z(t, ·), z(t, ·)〉+ 2 〈r(·)d(t, ·), z(t, ·)〉 . (19)

For anyf ∈ L2(0, 1), we define the operators

(Rf) (x) = r(x)f(x), and (Sf) (x) = s(x)f(x). (20)

Then, by the definition ofQ0, Q1 andQ2, we have that forg ∈
X := L2(0, 1)× L2(0, 1)× L2(0, 1),








T R (SP)⋆

R −γ 0
SP 0 −γ



 g



 (x)

= Q0(x)g(x) +

∫ x

0

Q1(x, ξ)g(ξ)dξ +

∫ 1

x

Q2(x, ξ)g(ξ)dξ,

and since{−Q0,−Q1,−Q2} ∈ Ξ3,d1,d2,0, we conclude that




T R (SP)⋆

R −γ 0
SP 0 −γ



 ≤ 0

on X . Therefore, using a variation of the Schur complement,
[

T R
R −γ

]

+
1

γ

[

(SP)⋆

0

]

[

SP 0
]

≤ 0,

on Y := L2(0, 1) × L2(0, 1). Therefore,
〈[

z(t, ·)
d(t, ·)

]

,

([

T R
R −γ

]

+
1

γ

[

(SP)⋆

0

]

[

SP 0
]

)[

z(t, ·)
d(t, ·)

]〉

Y

is non-positive, and thus

〈T z(t, ·), z(t, ·)〉+ 2 〈r(·)d(t, ·), z(t, ·)〉 − γ‖d(t, ·)‖2

+
1

γ
〈s(·) (Pz) (t, ·), s(·) (Pz) (t, ·)〉 ≤ 0.

Now, sincePz = w ands(x)w(t, x) = y(t, x), we apply Eqn. (19)
to get

V̇ (w(t, ·)) +
1

γ
‖y(t, ·)‖2 ≤ γ‖d(t, ·)‖2.

Integrating in time, for anyT > 0, we obtain

V (w(T, ·))− V (w(0, ·)) +
1

γ

∫ T

0

‖y(t, ·)‖2dt ≤ γ

∫ T

0

‖d(t, ·)‖2dt.

Finally, sinceP−1 ≥ 0, V (w(T, ·)) ≥ 0. Furthermore, since
w(0, x) = 0, V (w(0, ·)) = 0. Therefore, we obtain

1

γ

∫ T

0

‖y(t, ·)‖2dt ≤ γ

∫ T

0

‖d(t, ·)‖2dt,

or

∫ T

0

‖y(t, ·)‖2dt ≤ γ
2

∫ T

0

‖d(t, ·)‖2dt,

Since this holds for anyT > 0, the proof is complete.

The conditions of Theorem 2 are affine the SDP variables, which
consist of the positive matrixU , which defines the polynomials
M , N1, andN2 andY2, as well as the scalarY1 and coefficients
of polynomial Y2. Given a feasible solution to Theorem 2, the
controller can then be found by constructing the polynomials M̂ ,
N̂1 andN̂2 which define the operatorP−1 as described in [10], [8].
The controller gains are then recovered as described in the proof
asF1 = Y1M̂(1) and

F2(x) =Y1N̂1(1, x) + M̂(x)Y2(x) +

∫ x

0

N̂1(x, ξ)Y2(ξ)dξ

+

∫ 1

x

N̂2(x, ξ)Y2(ξ)dξ.

VI. NUMERICAL RESULTS

In this section we test the algorithms defined by Theorem 2 on
two arbitrary unstable PDEs. SOSTOOLS [18] was used to assist
in the the conversion of the polynomial constraints to an SDP,
as described in Section IV. SeDuMi [19] was used to solve the
resulting SDP problem.

The first example problem is defined as

wt(t, x) =wxx(t, x) +

(

π2

4
+ 0.034

)

w(t, x) + (x3 − 1)d(t, x),

(21)

y(t, x) =(x2 − 0.5x + 1)w(t, x), (22)

The second example problem is defined as

wt(t, x) =(x3 − x
2 + 2)wxx(t, x) + (3x2 − 2x)wx(t, x)

+ (−0.5x3 + 1.3x2 − 1.5x + 5.42)w(t, x) + xd(t, x),
(23)

y(t, x) =(1 + x)w(t, x). (24)



Example 1

degree (d) 3 4 5

minimumL(L2) gain > 50 5.2906 1.3471

TABLE I: Min. achievable closed loopL(L2) gain (γ) as a fn. of
d1 = d2 = d using the algorithm defined by Thm. 2 as applied to
Example 1.

Example 2

degree (d) 4 5 6

minimumL(L2) gain 0.42 0.1459 0.1136

TABLE II: Min. achievable closed loopL(L2) gain (γ) as a fn. of
d1 = d2 = d using the algorithm defined by Thm. 2 as applied to
Example 2.

The boundary conditions for both examples are given by

w(t, 0) = 0, wx(t, 1) = u(t). (25)

The coefficients of these two examples are arbitrary, but arechosen
so that whend(t, x) = 0 andu(t) = 0, the dynamics are unstable.
We verified autonomous instability analytically for Example 1
(Eqn. (21)) and by numerical simulation for Example 2 (Eqn. (23)).

For both cases, we seek a controller which minimizes the bound
on theL(L2) gain,γ, as defined in Thm. 2. We test the algorithm
for several degreesd1 = d2 = d, as defined in Thm. 2. As the
degrees increase, the computational complexity of the algorithm
increases while the results become increasingly accurate.All nu-
merical experiments forǫ = 0.001 as defined in Thm. 2. Tables I
and II illustrate the minimum boundγ achieved for examples 1 and
2, repsectively, as a function of degree,d.

Tables I and II indicate that increasingd improves the perfor-
mance of the controller. However, the number of decision variables
in the underlying SDP scales asO(d2) meaning that testing the
algorithm for higher values ofd requires more computational
resources and specifically, more RAM (experiments were performed
using 8GB RAM).

We note that the inclusion of semi-separable kernelsN1 andN2

in Thm. 2 complicates the analysis and increases the computational
complexity. To test the significance of the semi-separable kernels,
we tested the conditions of Theorem 2 on PDEs (21) and (23) with
the additional constraintN1 = N2 = 0. Tables III and IV present
these results. Comparing Tables III-IV with Tables I-II we observe
that the inclusion of the kernelsN1 andN2 leads to synthesis of
controllers with significantly improved performance.

A. Numerical Simulation

To verify the performance bound derived in Thm. 2, we synthe-
sized a controller for Example 2 defined above in Eqn. (23) which
achieved a performance bound ofγ = .1136 with d1 = d2 = 6.

Example 1 w/o SS kernels

degree (d) 4 5 6 · · · 10

minimumL(L2) gain 13.777 13.002 13.002

TABLE III: Min. achievable closed loopL(L2) gain (γ) as a fn. of
d1 = d2 = d using the algorithm defined by Thm. 2 with additional
constraint withN1 = N2 = 0 as applied to Example 1.

Example 2 w/o SS kernels

degree (d) d = 4 5 6 · · · 10

minimumL(L2) gain 7.793 6.943 6.855

TABLE IV: Min. achievable closed loopL(L2) gain (γ) as a fn. of
d1 = d2 = d using the algorithm defined by Thm. 2 with additional
constraint withN1 = N2 = 0 as applied to Example 2.

We then used a disturbance defined as

d(t, x) = 100 sinc(t)(1 + x),

where

sinc(t) =

{

sin(πt)
πt

if t 6= 0

0 if t = 0.

As mentioned, the autonomous system (u(t) = 0) is unsteady, as
illustrated in Fig. 1. Figure 2 illustrates the same PDE in closed
loop using a controller with performance boundγ = .1136. Finally,
Fig. 3 illustrates the associated control signalu(t).
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Fig. 1: Unstable dynamics of Eqn. (23) in open loop with distur-
bance.

0
0.5

1 0

5
−4

−2

0

2

4

time
x

w
(t
,
x
)

Fig. 2: Closed loop state evolution of Eqn. (23).
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Fig. 3: Control inputu(t) for Eqn. (23).

To verify the norm bound, we calculatedL2(0,∞;L2(0, 1))
of both the disturbance and the output of the closed system.
The disturbance has norm‖d‖L2(0,∞;L2(0,1)) = 1069.7 while
the output has norm‖y‖L2(0,∞;L2(0,1)) = 28.2761, yielding a

disturbance attenuation of
‖y‖L2(0,∞;L2(0,1))

‖d‖L2(0,∞;L2(0,1))
= 0.0264 which

satisfies the predicted bound ofγ = 0.1136. Note that this does
not necessarily imply conservatism in the bound or the algorithm,
as the norm is the supremum over all possible disturbances.

B. Alternative Boundary Conditions

The algorithms defined in this paper can be readily adapted to
alternative boundary conditions. In this subsection, we consider
several alternative types of boundary-valued control inputs. For
brevity, we do not define the updated conditions explicitly.

We define the first example problem as

wt(t, x) =wxx(t, x) + λw(t, x) + (x3 − 1)d(t, x), (26)

y(t, x) =(x2 − 0.5x+ 1)w(t, x), (27)

which is parameterized by the constantλ.
The second example problem is given by

wt(t, x) =(x3 − x
2 + 2)wxx(t, x) + (3x2 − 2x)wx(t, x)

+ (−0.5x3 + 1.3x2 − 1.5x + 0.7 + λ)w(t, x)

+ xd(t, x), (28)

y(t, x) =(1 + x)w(t, x), (29)

which is similarly parameterized byλ. For both example problems,
we consider the following three types of alternative boundary
conditions.

Dirichlet: w(0) = 0, w(1) = u(t), (30)

Neumann: wx(0) = 0, wx(1) = u(t), (31)

Robin: w(0) + wx(0) = 0, w(1) + wx(1) = u(t). (32)

For each example and set of boundary conditions, the parameter
λ ∈ R is chosen such that the associated autonomous PDE is
unstable. These values are listed in Table V.

Tables VI and VII present the minimum achievable closed-loop
LL2 norm boundγ as a function of the polynomial degreed1 =
d2 = d.

Dirichlet Neumann Robin
PDE (26) λ = π2 + 0.04 0.033 −0.967
PDE (28) λ = 19.006 −0.195 −2.37

TABLE V: Values of parameterλ chosen for Equations (26)-(28)
with boundary conditions (30)-(32).

Example 1

d = 3 4 5

Dirichlet γ = 31.62 9.581 5.266
Neumann 3.525 0.923 0.293
Robin 4.107 1.172 0.313

TABLE VI: Min. achievable closed loopL(L2) gain (γ) as a fn.
of d1 = d2 = d using the algorithm defined by Thm. 2 as applied
to Example 1 (Eqn. (26)) with boundary conditions (30)-(32).

VII. CONCLUSIONS

In this paper, we proposed a convex approach to the construction
of optimal controllers for parabolic PDE systems with inputat
the boundary and measurements of the entire distributed state. The
algorithms and controllers are formulated in an infinite-dimensional
framework and do not require discretization of the dynamicsat any
stage. Optimality is defined with respect to a bound on the induced
L(L2) norm of the map from exogenous disturbance to output -
similar to theH∞ framework. Our methodology is based on an
SDP parametrization of positive quadratic Lyapunov functions and
distributed feedback gains. Numerical tests were used to illustrate
the accuracy of the algorithm and the associatedL(L2) bound.
The work presented here can ultimately be used to synthesize
optimal output feedback controllers and to determine optimal sensor
placement - topics of ongoing work.

APPENDIX

Lemma 1 ([11],[13]): let w ∈ H2(0, 1) be a scalar function.
Then

∫ 1

0

w(x)2dx ≤ w(0)2 +
4

π2

∫ 1

0

wx(x)
2
dx.

The following lemma, which we shall use subsequently, is estab-
lished by dividing the two double integrals in half and applying a
change of order of integration.

Lemma 2:For any bivariate polynomialsL andN , for any z ∈
L2(0, 1), the following identity holds
∫ 1

0

∫ x

0

z(x)L(x, ξ)z(ξ)dξdx+

∫ 1

0

∫ 1

x

z(x)N(x, ξ)z(ξ)dξdx

=
1

2

∫ 1

0

∫ x

0

z(x) [L(x, ξ) +N(ξ, x)] z(ξ)dξdx

+
1

2

∫ 1

0

∫ 1

x

z(x) [N(x, ξ) + L(ξ, x)] z(ξ)dξdx.

Example 2

d = 4 5 6

Dirichlet γ = 31.127 5.025 0.889
Neumann 0.225 0.102 0.076
Robin 0.135 0.074 0.072

TABLE VII: Min. achievable closed loopL(L2) gain (γ) as a fn.
of d1 = d2 = d using the algorithm defined by Thm. 2 as applied
to Example 2 (Eqn. (28)) with boundary conditions (30)-(32).



Lemma 3:Suppose there exist scalars0 < ǫ1 < ǫ2 < ∞ and
d1, d2 ∈ N, and polynomialsM : [0, 1] → R andN1, N2 : [0, 1]×
[0, 1] → R such that

{M,N1, N2} ∈Ξd1,d2,ǫ1,ǫ2 ,

N2(0, x) =0.

Let M , N1 andN2 defineP as in Equation (5). Additionally, let
A : H2(0, 1) → L2(0, 1) be defined as

A = a(x)
d2

dx2
+ b

d

dx
+ c(x),

wherea, b andc are the coefficients of the PDE (11).

Then, for anyz = P−1w, w ∈ H2(0, 1) with w(0) = 0, the
following identity holds

2 〈APz, z〉 ≤ 〈T z, y〉+ 2a(1)M(1)zx(1)y(1)

+ [a(1)Mx(1) + (b(1)− ax(1))M(1)] z(1)2.

Here, for anyf ∈ L2(0, 1), we define

(T f) (x) =T0(x)f(x) +

∫ x

0

T1(x, ξ)f(ξ)dξ

+

∫ 1

x

T2(x, ξ)f(ξ)dξ,

and

T0(x) = (axx(x)− bx(x))M(x) + b(x)Mx(x)

+ a(x)Mxx(x) + 2c(x)M(x)−
π2

2
αǫ

+ a(x)

[

2
∂

∂x
[N1(x, ξ)−N2(x, ξ)]

]

ξ=x

,

T1(x, ξ) =a(x)N1,xx(x, ξ) + b(x)N1,x(x, ξ)

+ a(ξ)N1,ξξ(x, ξ) + b(ξ)N1,ξ(x, ξ)

+ (c(x) + c(ξ))N1(x, ξ),

T2(x, ξ) =T1(ξ, x).

Proof: Using the definitions of operatorsP andA we obtain

2 〈APz, z〉 =

5
∑

n=1

Γn, (33)

where

Γ1 =

∫ 1

0

a(x)
∂2

∂x2
(M(x)z(x))z(x)dx,

Γ2 =

∫ 1

0

b(x)
∂

∂x
(M(x)z(x))z(x)dx,

Γ3 =

∫ 1

0

a(x)
∂2

∂x2

(∫ x

0

N1(x, ξ)z(ξ)dξ

)

z(x)dx

+

∫ 1

0

a(x)
∂2

∂x2

(∫ 1

x

N2(x, ξ)z(ξ)dξ

)

z(x)dx,

Γ4 =

∫ 1

0

b(x)
∂

∂x

(∫ x

0

N1(x, ξ)z(ξ)dξ

)

z(x)dx

+

∫ 1

0

b(x)
∂

∂x

(
∫ 1

x

N2(x, ξ)z(ξ)dξ

)

z(x)dx,

Γ5 =

∫ 1

0

c(x)M(x)z(x)2dx

+

∫ 1

0

∫ x

0

z(x)c(x)N1(x, ξ)z(ξ)dξdx

+

∫ 1

0

∫ 1

x

z(x)c(x)N2(x, ξ)z(ξ)dξdx.

The definitionz = P−1w implies

w(0) = M(0)z(0) +

∫ 1

0

N2(0, x)z(x)dx.

Therefore, sincew(0) = 0 andN2(0, x) = 0, we getz(0) = 0.

SinceM(x)a(x) ≥ αǫ and z(0) = 0, applying integration by
parts twice and using Lemma 1 gives us

Γ1 =
1

2

∫ 1

0

(

axx(x)M(x) + a(x)Mxx(x)−
π2

2
αǫ

)

z(x)2dx

+
1

2

(

a(1)Mx(1)− ax(1)M(1)
)

z(1)2

+ a(1)M(1)zx(1)z(1). (34)

Similarly, applying integration by parts once gives us

Γ2 =
1

2

∫ 1

0

(b(x)Mx(x)− bx(x)M(x)) z(x)2dx

+
1

2
b(1)M(1)z(1)2. (35)

Applying integration by parts twice gives us

Γ3 =

∫ 1

0

(

a(x)

[

∂

∂x
[N1(x, ξ)−N2(x, ξ)]

]

ξ=x

)

z(x)2dx

+

∫ 1

0

∫ x

0

z(x)a(x)N1,xx(x, ξ)z(ξ)dξdx

+

∫ 1

0

∫ 1

x

z(x)a(x)N2,xx(x, ξ)z(ξ)dξdx.

Applying Lemma 2

Γ3 =

∫ 1

0

(

a(x)

[

∂

∂x
[N1(x, ξ)−N2(x, ξ)]

]

ξ=x

)

z(x)2dx

+
1

2

∫ 1

0

∫ x

0

z(x)a(x)N1,xx(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ x

0

z(x)a(ξ)N1,ξξ(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ 1

x

z(x)a(x)N2,xx(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ 1

x

z(x)a(ξ)N2,ξξ(x, ξ)z(ξ)dξdx. (36)

Similarly, applying integration by parts once followed by Lemma 2
produces

Γ4 =
1

2

∫ 1

0

∫ x

0

z(x)b(x)N1,x(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ x

0

z(x)b(ξ)N1,ξ(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ 1

x

z(x)b(x)N2,x(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ 1

x

z(x)b(ξ)N2,ξ(x, ξ)z(ξ)dξdx. (37)

Finally, applying Lemma 2 produces

Γ5 =

∫ 1

0

c(x)M(x)z(x)2dx

+
1

2

∫ 1

0

∫ x

0

z(x)(c(x) + c(ξ))N1(x, ξ)z(ξ)dξdx

+
1

2

∫ 1

0

∫ 1

x

z(x)(c(x) + c(ξ))N2(x, ξ)z(ξ)dξdx. (38)



Substituting Equations (34)-(38) into Equation (33) completes the
proof.

ACKNOWLEDGMENT

This research was supported by the Chateaubriand program and
NSF Grant# CMMI-1301851 CAREER.

REFERENCES

[1] A. Balogh and M. Krstic. Stability of partial differenceequations
governing control gains in infinite-dimensional backstepping. Systems
and Control Letters, 51:151–164, 2004.

[2] D. M. Boskovic and M. Krstic. Backstepping control of chemical
tubular reactors.Computers & Chemical Engineering, 26:1077–1085,
2002.

[3] F. Bribiesca Argomedo, C. Prieur, E. Witrant, and S. Brémond. A strict
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