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Abstract— In this paper we synthesize £(Lz2)-optimal full-state
feedback controllers for a one dimensional linear PDE with int
actuation and distributed disturbances. We use Sum-of-Scares (SOS)
polynomials and Semi-Definite Programming (SDP) to parameize
positive operators which define quadratic Lyapunov functios and the
controller gains. Additionally, we calculate the upper bowd on the
system state ensured by the calculated controllers. Moreev, we provide
numerical results, but not proofs, for PDEs with additional types of
boundary conditions.

I. INTRODUCTION

Processes in which a physical quantity undergoes diffugion-
vection and reaction are modeled by parabolic Partial Bafigal
Equations (PDEs). For e.g., plasma in thermonuclear fugah
chemical reactors [2] and heat propagation in media. Inphjser

polynomials algorithmically. Operator positivity corents are rep-
resented using matrix positivity constraints in an appnoaspired
the the SOS approximation to the cone of positive polynasiEs].
The proposed algorithm is an infinite-dimensional extemsod
H..-optimal controller synthesis for systems governed by Qadi
Differential Equations (ODEs). For ODEs, thH..-norm of a
system can be represented as an LMI constraint by means of the
Kalman-Yakubovich-Popov (KYP) lemma [6] which says that a
system withH., norm of v implies the existence of a quadratic
Lyapunov function a bound on the induced normyof/Ve replicate
this approach by searching for a controller and quadrataplyov
function which minimizes the induced(L.) of the closed-loop
system.

we consider a one dimensional inhomogeneous linear pacabol This article extends our work in [8] wherein we designed poin

PDE with polynomial, spatially distributed coefficientsich PDEs
are used to model diffusion, convection and reaction incdropic
media while being subjected to unknown, but bounded, exagen
disturbance due to, e.g. unmodeled nonlinear dynamics [t23
goal of this article is to construct full-state feedback tcolters,
with control via point actuation at the boundary which mirdes
the effect of disturbances on an output which is some funatb
the distributed state. The controller is optimized in therinef the

actuation point-observation output feedback controlfersexpo-
nential stabilization using the Luenberger framework. dtdition,

in [9] we showed that such output feedback controllers ensur
that the state of the PDE remains bounded in the presence of a
bounded, uniformly distributed exogenous input. The dbation

of this article is that while we simplify the problem by codsiing
state-feedback, we also improve over existing results tablamg

the algorithm tooptimize the closed-loop upper bound on the

induced£(L-) gain from external disturbance to regulated outputsystem. The ultimate goal of this line of research is to thaerel

The performance analysis and controller design is perfdrem
tirely in the infinite-dimensional framework, with no digtization
or model reduction at any step.

There is significant existing work on the stability and cohtr
of PDE systems, although most of this work ultimately rebiesa
reducation to a finite-dimensional state space or dis@@tEnlution
of an operator-valued equation or inequality. There areédvew

some works which consider the problem in its native infinite-
dimensional setting. For example, work on the use of Lyapuno
functions for the analysis and control of PDEs can be found

in [3], [5], [4]. Additionally, the use of optimization algithms for

the optimization step to design optimal dynamic output Beed
controllers which optimize over the controller and the restior.

The quadratic Lyapunov functionals we consider are pammet
ized asV = (¢, Pgb)Lz where the operatdP is parameterized by
polynomial multiplier M and polynomial semi-separable kernels
N; and N, as

(P&) (x) =M(2)d(x) + | Ni(x,€)p(E)de

0
1
+ / No(a,€)6(€)dz, o € La(0,1).

boundary control of PDEs using LMIs and a Lyapunov approactrhe polynomials\/, Ni, N» are parameterized by positive matrices
may be found in [7]. Prior work on the use of SOS polynomialg;sing a Sum-of-Squares type condition which ensures pibgitif
to PDEs and other infinite dimensional systems may be founghe operator. Likewise, the feedback controller is parenedd as

in [14], [17] and [20].

Our approach is based on the construction of quadratic Lyapu
functions parameterized by positive operators/en Such positive
operators are in turn parametrized by Sum-of-Squares (POI$)
nomials. Moreover, controller gains are parameterizeddbynmmi-
als as well. This polynomial parametrization of quadratapunov
functions and controller gains allows us to search for theirdd
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u = Kw wherew € L is the distributed state and the operator
is parameterized by the scalai and the polynomialF, as

u(t) = Kw := Flw(t, 1) + /: Fy(x)w(t, z)dz.

The polynomial F> is parameterized by its vector of monomial
coefficients.

This article is organized as follows: Section Il gives threlgem
statement and some background material. Section IV givesDin
parametrization of positive operators. Section V presdmsstate-
feedback optimization problem as an SDP. Finally, Sectidn V
describes a series of numerical tests, for two example PDEs,
numerical justification for the use of the semi-separablmdis
and extensions to different types of boundary conditions.



I1. NOTATION

We denote byS™ the set ofn-by-n symmetric real matrices.
We denote byI,, the identity matrix of dimensions-by-n and
I = I, whenn is clear from context. We denote hy*°(0, 1)
the set of real valued infinitely differentiable functiona @, 1].

C*?((0,00),[0,1]) denotes the set of bivariate real valued func-

tions continuously differentiable ofo, co) and twice continuously

differentiable on0, 1]. The shorthand.,, denotes the partial deriva-
tive of u with respect tac. L2 (0, 1) denotes the Hilbert space of real

valued square integrable functions endowed with ndtffiz, =

\/f01||f(a:)|\2dx and inner productf,g),, = f01 f(x)Tg(x)de.
For convenience, giverf,g € L2(0,1), we say thaty = f(-)g(+)
if g(z) = f(x)g(x).

L2(0,00; L2(0,1)) denotes the set of functiong(t,z) such
that for anyt € [0,00), if g(z) = f(t,x), theng € L2(0,1).
For f € L2(0,00;L2(0,1)), we denote byf(t,-) the map
from [0,00) — L2(0,1) defined by f(¢,-)(x) = f(t,z). We
equip L2(0, co0; L2(0,1)) with the norm || f|lz,(0,00,4(0,1)) =
\/ fooo||f(t7 )Hngdt

H™(0,1) :={f € Ly : :2;f € Ly, i =1,--- ,n} denotes the
Sobolev subspace with norfiif || = = >0, ||aa_;f”L2 . Z denotes
the identity operator on any Hilbert space. We defigx) to be

the column vector of all monomials in variable of degreed or
less. Similarly, we defineZ;(z,£) to be a column vector of all

For any such pairC and~, we term~ the £(L2) gain and the
associated controller the-optimal controller Note that for a given
controller, we obtained a bound oenin [9]. The contribution of
this paper is to represent this bound in such a way that it @n b
optimized

Finally, we note that for the PDE (1)-(2) under feedback & th
form in Equation (4) we assume that for ady € L2(0,00 :
L(0,1)), there exists a unique solutian € 2 ((0, c0), [0, 1]).

| Relevant conditions for existence of solutions may be foimf,

Section6].

IV. POSITIVE OPERATORS ON.2(0,1)

In this section, we show how positive matrices can be used to
parameterize positive operators. Specifically, we comsigerators
of the form

(Pf) () =M(2)f(x) + / "N (.0 f(€)de

+ / Nz, €) f(€)de, 5)

where M : [0,1] — S™ and N1, N> : [0,1] x [0,1] — R™*"
are polynomials. The following theorem shows that any pasit
operator with a square root belonging to this same classerfbprs
can be represented by a positive matrix.

Theorem 1:Suppose there exists some symmetric> 0 such
that

monomials in variables: and £ of degreed or less. We define Uy U Us el 0 0
Zn,d(xvg) = In@Zd(‘rv{)' U = |: Us1r Uz Uss ] > [O 0 0 (6)
Il. PROBLEM STATEMENT Uso Us2 Us 0 00
We consider the following class of possibly unsteady, oneThen If M, Ny and N, are defined as
dimensional inhomogeneous linear parabolic PDEs M(z) = Zi(z) U Z1 (z), (7
we(t, ) =a(2)was(t, ) + b(x)w, (t, x) + c(z)w(t, z) Ni(z,€) = Zi(2)  Ur2 Za (2, &) + Z2(€, )" Us1 Z1(€) ®)
13 <
+ T(x)d(t7$)7 (1) + / 7o (777 x)TU33Z2 (777 f)dn + / Zo (777 IE)TU3QZQ (7], f)dn
for € [0,1] and¢ > 0, with initial condition w(z,0) = 0 and 0 ¢ ©)
boundary conditions of the form L
T
w(t,0) =0, wa(t,1) = ult). @ +/z 22, )" U2 Z2(n, €)dn, (10)

The coefficientsa, b, ¢ and r are polynomials inz with a(z) >
a > 0, for all z € [0, 1]. The functiond € L2(0, 0o; L2(0,1)) is
the spatially distribute@xogenous inpubr disturbanceu(t) € R

is the control input which is to be determined by state feedback.

We define ouregulated outputas
y(t,z) = s(x)w(t, z), 3)

which is the quantity to be minimized and wheseis a given
polynomial. In addition to the boundary conditions as defiime(2),
the problem can be generalized to consider Dirichlet, Neumzand
Robin boundary conditions, as is discussed in Section VI.

We define our feedback controller to have the foutt) =
Kw(t) whereK is defined as

u(t) = Kw(t,-) = Fru(t, 1)+/0 Pa(z)w(t,z)ds,  (4)

for some to be determined scaldf; and polynomial F> €
L. (0,1). We consider optimal control in th€(Lz) norm. That
is, we seek to minimize oveiC and the boundy such that if
u(t) = Kw(t) and y(¢t,z) = s(z)w(t,x), then for anyd €
L2(0,00: L2(0,1)), y € L2(0,00 : L2(0,1)) and

19l 2o (0,00:L50,1)) < YNl Ly(0,00:L5(0,1)-

whereZi(z) = Zn,q, (), Z2(x,y) = Zn,a, (x,y) @andNa(z,§) =
N1 (€, )7, then the operatoP as defined in Egn. (5) is bounded,
self-adjoint and satisfies

P, rao1) > €l fllis00)

for all f € L2(0,1).

Proof: The proof is based on the result in [16] and is omitted
for brevity. [ ]
For convenience, we define the following set

En.dy de.e ={M, N1, N2 : M, N1, N> satisfy Theorem 1
for di,d2,n € N, ¢ > 0 and somel > 0}.

Theorem 1 allows us to us&/, N1, N2 € =, 4,,4,,. t0 enforce

the constraint that the operat@ét defined byM, N, and N, as

in Egn.(5), be positive. By expanding Eqns. (7), the coeffits

of the polynomialsM, K; and K> are linear combinations of the
elements of the matrix variablé. Constructing the matrices which
relate the elements o/ to the coefficients of the polynomials
M, Ny, and N, can be automated using Matlab toolboxes for
polynomial manipulation such as MULTIPOLY, contained ireth
package SOSTOOLS [18] and further developed in our package
DELAYTOOLS [16].



Finally, we note that, as will be seen in the following Sec-

tion, given a positive operatoP parameterized by, N1, N> €
En.dy,ds,e, it Will be necessary to construct the inverse Bt
Naturally, because the operator is positive, such an iaverists

and, moreover, it turns out that such an inverse is of the same
form asP (Although M, N, and N> may not be polynomial).

Furthermore, this inverse can be constructed as describ§tO]
and expanded in [8].

V. CONTROLLER SYNTHESIS

In this section, we define an SDP for synthesis of a controller
which minimizes a bound on th&(L2) norm of the closed loop
PDE defined in Eqn. (1). For convenience, we here restate tl

dynamics.
wi(t, ) =a(r)wea(t, ) + b(x)ws (t, x) + c(z)w(t, x)
+ r(x)d(t, ), (11)
with w(z,0) = 0 and boundary conditionsv(¢,0) = 0 and

wz(t,1)
output isy(t,z) = s(x)w(t, z).

Theorem 2:For given scalare > 0 and di,d> € N, suppose
there exist scalar¥; and~ > 0 and polynomialsM/, Y : [0, 1] —

R, Ny, N : [0,1] x [0,1] — R such that
{M, N1, N2} € E1,dy dg.c,
{_Q07 _Q17 _QQ} € E3yd17d2’07
N2 (O, 1’) = O,
2a(1)Y1 —a(1)My(1) + (b(1) — az(1))M(1) =0,
YQ(m) — ,Z\/v1,m(17 m) = 07
where
[ ) s(:c)M(:c)]
0 )
-
T1 (z § 0 Ni(z,8)s(§)
0 0 ,
N1 0 0
Q2(z,¢) =Q1(§7l’ ,
To(z) = (aza(x) — ba(x)) M (x) + b(z) Mo ()
+ a(z) Maz (2) + 2¢(x)M (z) — %ae
+a(o) |25 (@) - Ma(w ]|
E=x

Ti(z,8) =a(@)N1ae(z, §) + b(2) N1 2 (2, §)
+ a(§)Niee(z,§) + b(§) Nig(z, £)
+ (c(@) + ¢(£)) Ni (=, ),
1o (z,€)
Then if

u(t) =Y1 (Pflw) (t, 1) —|—/(; Ya(z) (Pflw) (t,z)dx,

:Tl(f, 1’)

=Fiw(t,1) —1—/(; Fy(z)w(t, x)dx,

(12)

where the operatoP ! is the inverse of the operat@ as defined
in Egn. (5), we have that for any € L2(0, 0o0; L2(0, 1)), Egn. (11)
implies that

Y1l £2(0,00:22(0,1)) < V€l £5(0,00:L2(0,1))-

i[]\‘leow, sinceP~

= u(t) where recalla(z) > « > 0 and the regulated

Proof: Let P be as defined in Eqn. (5). Then the inverseof
as defined in [10], [8] is positive, self-adjoint and has tokofving

form.
+ N 1 df

where M, N1, No € C*[0,1]. Now let

(P™'f) (z) =M () f(x)

1
u(t) = Y1 (P~ w) (t71)+/ Ya(z) (P~ w) (¢, z)dz.
0
! is self-adjoint, we have that

/ Ys(z) (Pflw) (t,z)dx = / (P71Y2) (x)w(t,z)dx.
0 0

Hence,

Y2 w) (t,x)dx = /0 ' <M(:C)Y2(m) (13)

0

+/0 Nl(x,f)Yz(f)df—F/xl Nz(x,é)Yz(f)de)w(t,x)dw

+ /01 Nl(m)w(m)dm) 7

/lesyz de

Also, since
v (,Pflw) (t,1) =Y (]\2/’(1)11/(:‘,7 1)
we have thatF;, = Y; M (1) and

Fy(z) =YiN (1, 2) + M(z

which implies that F, € (C°°(0,1). Since F» is continu-
ous, the closed loop system admits a unique solution e

C*2((0, 00), [0, 1]).
Now define the Lyapunov function

V(w) = {(w, P w). (14)
If w(t,z) is a solution of Eqn. (11), thel (w(t,-)) is given by
WD) — 5 (e, ), P e, ) 42 (r OVt ), P (e, )

dt
(15)
where the differential operatod : H%(0,1) — L2(0,1) is defined
as 2 p
A= a(2) T +b(z) = + c(a).

Let us definez(t,-) := P~ 'w(t,-). Then Equation (15) becomes

V(w(t, ) = 2(AP2(t, ), 2(t, ) + 2 {r(-)d(t, ), 2(t,)) -

Because of the tedious nature of the calculation, we remove
manipulation of the derivativé” to Lemma 3, which is attached as
an Appendix. Applying this lemma, we obtain

V(w(t,)) <(Tz(t,-), 2(t,-)) + 2 (r(-)d(t,-), 2(t, )
+ [a(1) M (1) + (b(1) — ax(1))M(1)] 2
+2a(1)M(1)za(t, 1) (8, 1),

(t,1)?
(16)

where the operatdf : L2(0,1) — L2(0, 1) is defined in Lemma 3
as

(T (@) =Ta()] @) + [ Ta(a.©) e + [ Tu(e, ) £(€)de.

x



Sincez = P~ 'w, we havew = Pz which implies

w(t,m):M(x)z(t7m)+LzN1(x7§)z(t,f)d{—&—' No(z,8&)z(t,&)dx

Since N1 (z, &) = N2(&, z) we have that

wy (6, 1) =Mz (1)z(t, 1)+ M(1)2z(¢,1) + /1]V171(1, x)z(t, z)dx.

Rearranging and applying the boundary condities(t, 1) = u(t),

we have

M(1)z.(t,1) = u(t) — Mx(1)z(¢, 1) / Ni (1, 2)2(t, z)d.
17)

Now, from the definition ofu(¢) in (12), we have that

u(t) =Fiw(t, 1) + ' Fy(x)w(t,z)dx

=Y1 (P~'w) (t,1) +/0 Ya(z) (P~ w) (t,2)dz

=Y1z(t,1) + /: Ya(z)z(t, x)dx

Substituting into (17), we obtain
M(1)ze(t,1) = (Y1 — Mo (1)) 2(¢,1)
+ /01 (Ya(z) — N1,2(1,2)) 2(¢, )da.
Substituting ford (1)z,(¢,1) in the last term of Equation (16)
V(w(t,)) < (Tz(t,-),2(t,-) + 2 (r()d(t, ), 2(t, )
+[2a()Y1 — a(1)Ma(1) + (b(1) — az(1)M(1)] 2(t,1)*

+ 2a(1)z(t, 1)/O (Ya(z) — N1,2(1,2)) 2(¢, z)dx. (18)

Now, from the conditions of the theorem statement, we have
2a(1)Y1 — a(1)Ma(1) + (b(1) — az(1))M(1) = 0,
Yr?(:c) - Nl»l"(]w m) =0,

which implies the last two terms of Eqn. (18) are eliminatedying
us with

V(w(t, ) <(Ta(t,-), 2(t) + 2 (r(-)d(t, ), 2(¢,)) . (19)
For any f € L2(0,1), we define the operators
(Rf) () =r(x)f(z), and (Sf)(z)=s(z)f(x). (20)

Then, by the definition of)o, @1 and @2, we have that foly €
X = LQ(O7 1) X LQ(O7 1) X LQ(O7 1),

T R (SP)
R — 0 |g](=)
SP 0
1
~ Qo / Qi(2, 99O + [ Que Oge)de,
and since{—Qo, —Q1, —Q2} € E3,4,,4,,0, We conclude that
T R (SP)
R —v 0 <0
SP 0 —

on X. Therefore, using a variation of the Schur complement,

T

onY := L2(0,1) x L2(0, 1). Therefore,

L) (e Z1 3 150 ) ),

is non-positive, and thus

~

(Ta(t, ), 2(t, ) + 2 (r()d(t, ), 2(t, ) = A]ld(t, )|
+ % (s() (P2) (t,-),5() (P2) (t,-)) < 0.

Now, sincePz = w ands(z)w(t, x) = y(t,x), we apply Eqn. (19)

to get .
V(w(t,") + ;Ily(u NP < Alld(t, )l

Integrating in time, for anyl” > 0, we obtain

/||y ||dt<7/ (e, )| 2dt.

Finally, since?~" > 0, V(w(T,-)) > 0. Furthermore, since
w(0,z) =0, V(w(0,-)) = 0. Therefore, we obtain

1 T 2 T 2
1 / ly(t,)I%dt <~ / ld(z, )| dt,
Y Jo 0
T 2 2 T 2
/ ly(t,)I%dt <~ / ld(t, )||dt,
0 0

Since this holds for any” > 0, the proof is complete. u

V(w(T,)) =

or

The conditions of Theorem 2 are affine the SDP variables, hvhic
consist of the positive matriX/, which defines the polynomials
M, Ny, and N, andY>, as well as the scalar; and coefficients
of polynomial Y>. Given a feasible solution to Theorem 2, the
controller can then be found by constructing the polynosnia,
Ny and N, which define the operatd? ' as described in [10], [8].
The controller gains are then recovered as described in ribvef p
asF, = Y1 M(1) and

Fy(x)

ViR (1, 2) + M (2)Ya(z) + N (2, €)Ya (€)de

+ [ S ora(e

VI. NUMERICAL RESULTS

In this section we test the algorithms defined by Theorem 2 on
two arbitrary unstable PDEs. SOSTOOLS [18] was used to tassis
in the the conversion of the polynomial constraints to an SDP
as described in Section IV. SeDuMi [19] was used to solve the
resulting SDP problem.

The first example problem is defined as

2 3
wi(t, ) =waa(t,z) + <I + 0.034) w(t,x) + (z° — 1)d(t, x),
(1)
(22)

y(t,z) =(z° — 0.5z + Dw(t, z),

The second example problem is defined as

wi(t, z) =(2° — 2° + 2wea(t, z) + (32° — 20)ws (¢, )
+ (—0.52° +1.32° — 1.5z + 5.42)w(t, z) + zd(t, z),
(23)
y(t,x) =(1 + x)w(t, z). (24)



Example 1 Example 2 w/o SS kernels

degree () 3 4 5 degree () d=4 5 6---10
minimum £(L2) gain > 50 5.2906  1.3471 minimum £(L2) gain 7.793 6.943  6.855

TABLE [: Min. achievable closed looff(L2) gain (y) as a fn. of TABLE IV: Min. achievable closed loof (L2) gain () as a fn. of
d1 = d2 = d using the algorithm defined by Thm. 2 as applied tad; = d2 = d using the algorithm defined by Thm. 2 with additional

Example 1. constraint withN; = N> = 0 as applied to Example 2.
Example 2
degree ) 1 5 6 We then used a disturbance defined as
minimum £(L2) gain ~ 0.42  0.1459  0.1136 d(t,z) = 100 sinc(t)(1 + z),

TABLE II: Min. achievable closed loog(L2) gain () as a fn. of ~Where sin(rt) g

d1 = d» = d using the algorithm defined by Thm. 2 as applied to sinc(t) = it ' t#0

Example 2. 0 if ¢ =0.

As mentioned, the autonomous systenft{ = 0) is unsteady, as
- . illustrated in Fig. 1. Figure 2 illustrates the same PDE ioseld
The boundary conditions for both examples are given by loop using a controller with performance bound= .1136. Finally,
w(t,0) =0, wa(t,1) = u(t). (25) Fig. 3 illustrates the associated control signét).

The coefficients of these two examples are arbitrary, buthosen
so that whend(¢, ) = 0 andu(t) = 0, the dynamics are unstable.
We verified autonomous instability analytically for Exampl
(Eqn. (21)) and by numerical simulation for Example 2 (E@8)J.

For both cases, we seek a controller which minimizes the dour
on the£(L2) gain,~, as defined in Thm. 2. We test the algorithm
for several degreed; = d» = d, as defined in Thm. 2. As the __ 100
degrees increase, the computational complexity of therihgo =
increases while the results become increasingly accufdtenu- \g/
merical experiments foe = 0.001 as defined in Thm. 2. Tables |
and Il illustrate the minimum boung achieved for examples 1 and
2, repsectively, as a function of degrek,

Tables | and Il indicate that increasingimproves the perfor-
mance of the controller. However, the number of decisiomxes
in the underlying SDP scales @3(d*) meaning that testing the
algorithm for higher values ofi requires more computational time 00 T
resources and specifically, more RAM (experiments wereopeiéd
using 8GB RAM).

We note that the inclusion of semi-separable kerdélsand N»
in Thm. 2 complicates the analysis and increases the cotymaé
complexity. To test the significance of the semi-separablmé!s,
we tested the conditions of Theorem 2 on PDEs (21) and (23) wit
the additional constrainV; = N> = 0. Tables Il and IV present
these results. Comparing Tables llI-IV with Tables I-1l wieserve
that the inclusion of the kerneld; and N, leads to synthesis of
controllers with significantly improved performance. 4

150

Fig. 1: Unstable dynamics of Eqn. (23) in open loop with distu
bance.

A. Numerical Simulation

To verify the performance bound derived in Thm. 2, we synthe /5-%:
sized a controller for Example 2 defined above in Eqn. (23)ctvhi \g/

achieved a performance bound of= .1136 with di = d2 = 6.

Example 1 w/o SS kernels -4 | 5
degree () 4 5 6---10 0
minimum £(L2) gain 13777 13.002  13.002 v time

x 10

TABLE lII: Min. achievable closed loo(L2) gain () as a fn. of
d1 = d2 = d using the algorithm defined by Thm. 2 with additional Fig. 2: Closed loop state evolution of Eqgn. (23).
constraint withN; = N> = 0 as applied to Example 1.



I T
time

Fig. 3: Control inputu(t) for Egn. (23).

To verify the norm bound, we calculatef (0, co; L2(0,1))
of both the disturbance and the output of the closed system
The disturbance has normid|| ., (o,00;2,(0,1)) = 1069.7 while
the output has norm|y||L,0,00;2,(0,1)) = 28.2761, yielding a

disturbance attenuation y”Lz(Z”?E;’ i” = 0.0264 which
Sl 2

satisfies the predicted bound Q%— 0. 1136 Note that this does
not necessarily imply conservatism in the bound or the élyor
as the norm is the supremum over all possible disturbances.

B. Alternative Boundary Conditions

The algorithms defined in this paper can be readily adapted
alternative boundary conditions. In this subsection, wasiter
several alternative types of boundary-valued control tispéror
brevity, we do not define the updated conditions explicitly.

We define the first example problem as

=waa(t, ) + Mw(t, z) + (2° — 1)d(t, z),
:(:p2 — 0.5z + Dw(t, x),

we(t, )
y(t,z)

which is parameterized by the constant
The second example problem is given by

(26)
@7)

wi(t, ) =(2° — 2% + wan(t, z) + (32° — 2x)w, (¢, )
+ (=0.52° +1.32° — 1.52 4+ 0.7+ Nw(t, z)

+ zd(t, ), (28)

y(t,z) =1+ 2)w(t, ), (29)

which is similarly parameterized by. For both example problems,
we consider the following three types of alternative boumda
conditions.

Dirichlet: w(0) =0, w(l) = u(t), (30)
Neumann: w,(0) =0, wz (1) = u(t), (31)
Robin: w(0) + w,(0) =0, w(1l) + w.(1) = u(t). (32)

For each example and set of boundary conditions, the pagamet
A € R is chosen such that the associated autonomous PDE is

unstable. These values are listed in Table V.

Tables VI and VII present the minimum achievable closeqloo

L1, norm boundy as a function of the polynomial degite=
d2 = d.

Dirichlet Neumann Robin
PDE (26) X = m°+0.04 0.033 —0.967
PDE (28) A = 19.006 —0.195 —2.37

TABLE V: Values of parametei chosen for Equations (26)-(28)
with boundary conditions (30)-(32).

Example 1

d=3 4 5
Dirichlet v=31.62 9.581 5.266
Neumann 3.525 0.923 0.293
Robin 4.107 1.172  0.313

TABLE VI: Min. achievable closed loogZ(L2) gain ) as a fn.
of di = d2 = d using the algorithm defined by Thm. 2 as applied
to Example 1 (Eqgn. (26)) with boundary conditions (30)-(32)

VII. CONCLUSIONS

In this paper, we proposed a convex approach to the conisinuct
of optimal controllers for parabolic PDE systems with inmit
the boundary and measurements of the entire distributéel Sthe
algorithms and controllers are formulated in an infinitexeihsional
framework and do not require discretization of the dynaratcany
stage. Optimality is defined with respect to a bound on thedad
L(L2) norm of the map from exogenous disturbance to output -
similar to the H., framework. Our methodology is based on an
SDP parametrization of positive quadratic Lyapunov fuorgdi and
distributed feedback gains. Numerical tests were usedustiifte
the accuracy of the algorithm and the associafdd.2) bound.
The work presented here can ultimately be used to synthesize
Pcft'mal output feedback controllers and to determine oaitsensor

cement - topics of ongoing work.

APPENDIX

Lemma 1 ([11],[13]): let w € H?(0,1) be a scalar function.
Then

1 1
w(z)’de < w(0)® + % w, ()’ dz.
T
The foIIownr?g lemma, which we shall Use subsequently, islest
lished by dividing the two double integrals in half and appdya
change of order of integration.
Lemma 2:For any bivariate polynomialé and N, for any z €

L2(0,1), the following identity holds

// L(z,€)z dgdm+/0/

/ /O L(z, &) + N(§, x)] 2(§)déda

//

)z(&)déd

z) [N(z,€) + L(§, )] 2(§)d¢d.

Example 2

d=1414 5 6
Dirichlet v=31.127 5.025 0.889
Neumann 0.225 0.102 0.076
Robin 0.135 0.074  0.072

TABLE VII: Min. achievable closed loopC(L2) gain y) as a fn.
of di = ds = d using the algorithm defined by Thm. 2 as applied
to Example 2 (Eqgn. (28)) with boundary conditions (30)-(32)



Lemma 3:Suppose there exist scaldis< ¢; < e2 < oo and
dy,d2 € N, and polynomialsl/ : [0,1] — R and N1, Ns : [0, 1] x
[0,1] — R such that

{M7 N17 N2} eEdl,d2,el,e27
N2(07 :C) =0.
Let M, N, and N» define? as in Equation (5). Additionally, let
A: H?(0,1) — L2(0,1) be defined as
d2 d
wherea, b andc are the coefﬂments of the PDE (11).

Then, for anyz = P~ 'w, w € H?(0,1) with w(0) = 0, the
following identity holds

2(APz,z) <(Tz,y) + 2a(1)M(1)z:(1)y(1)

+ [a(1) M (1) 4+ (b(1) — ax (1)) M(1)] 2(1)2.

Here, for anyf € L2(0, 1), we define
(T1) (@) =To@)f @)+ [T )¢

+ / T (o, €) £ (€)

and
To(+) = (a22(e) = b () M(@) +b(2) M2 0)
+ a(2) Maa () + 2¢(2) M(z) — %2%
rale) 20 0 - Mo 0l]

Ti(z,§) =a(z)N1, zz( §) + b(@) N1o (2, €)
+ a(§) N e (2,€) + b(E) Nie(x, €)

£ (@) + €(€)) Ny (2, 8),
Ta(0,6) =Ti(€,0)
Proof: Using the definitions of operatof8 and.A we obtain
2(APz, z) me (33)
where -
= [ o) s O(@)e(e)=(a)ds,
2 = [ ba) 2 (0(0)2(0)) sl
r = [ oz (] tosene) o
/ 82(/1\[21;52; >z(:c)d:c
r= [ o) a‘(/ N () oy
/ (/x No(, €)2(¢ >z(:c)d:c
Ty = /O o(2) M (2)2(x)?dz
/ / )N (z,€)2(€)déda
/ / 2)Na(, €)2(€)déd.

The definitionz = P~ 'w implies

w(0) = M(0)z(0) —1—/(; N2 (0, z)z(z)dx

Therefore, sincev(0) = 0 and N2(0,z) = 0, we getz(0) = 0.

Since M (z)a(z) > «ae and z(0) = 0, applying integration by
parts twice and using Lemma 1 gives us

I :%/o (am(:c)M(:c) + a(z)Mza(x) — %ae) 2(x)?dx
+ %(a(l)Mz(l) ~ ap()M(1)2(1)2
+a(l)M(1)z,(1)2(1).  (34)
Similarly, applying integration by parts once gives us
Ty :% /O (b(2) Mo () — ba () M () 2(z)2da
+ %b(l)M(l)z(l)z. (35)
Applying integration by parts twice gives us
1 9 )
I's = a(x) | =— [Ni(z,&) — Na(x, & z(x) dx
/0<<>[a [N (,€) — Na ”L—) (@)

T)N1 20 (2, §)2(§)dEdx

e

“f /
Applying Lemma 2
- <a<x> |32 (o) - Nz(%é)]L_z) (@)’

TS
//
//

/ / E) N2 ge(w,€)2(§)dEd.

Similarly, applying integration by parts once followed bgrhma 2
produces

[
L
N

N2 @ 1’ 5) ({)dfd:c

) N1,22(2, §)2(§)dédx
EN1ee(w, )z (§)déd
N2 zw :c ‘S) (f)d{dm

(36)

)N o (x,€)2(€)dé dx
)Ny (2, €)= (€)dédr

T)No,o(z,£)2(§)dd

/ / EN2e(x,£)z(€)dEdx.  (37)
Finally, applying Lemma 2 produces
I's :/0 c(z)M (z)z(x)*dx
1 [t
+%/0 /x z(x)(c(x) + c(€)) Na(x, £)2(€)dEdx.  (38)



Substituting Equations (34)-(38) into Equation (33) coetgb the [21] E. Witrant, E. Joffrin, S. Brémond, G. Giruzzi, D. MagdO. Barana,

proof. and P. Moreau. A control-oriented model of the current peofil
- tokamak plasma.Plasma Physics and Controlled Fusjo#9:1075,
2007.
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