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Abstract— In this paper, we present a methodology for
stability analysis of a general class of systems defined by coupled
Partial Differential Equations (PDEs) with spatially dependent
coefficients and a general class of boundary conditions. This
class includes PDEs of the parabolic, elliptic and hyperbolic
type as well as coupled systems without boundary feedback.
Our approach uses positive matrices to parameterize a new
class of SOS Lyapunov functionals and combines these with
a parametrization of projection operators which allow us to
enforce positivity and negativity on subspaces of L2. The result
allows us to express Lyapunov stability conditions as a set
of Linear Matrix Inequality (LMI) constraints which can be
constructed using SOSTOOLS and tested using Semi-Definite
Programming (SDP) solvers such as SeDuMi or Mosek. The
methodology is tested using several simple numerical examples
and compared with results obtained from simulation using a
standard form of numerical discretization.

I. INTRODUCTION

Partial Differential Equations (PDEs) are often used to

model systems in which the quantity of interest varies

continuously in both space and time. Examples of such quan-

tities include: deflection of beams (Euler-Bernoulli equation);

velocity and pressure of fluid flow (Navier-Stokes equations);

and population density in predator-prey models. See [2], [3]

and [4] for a wide range of examples.

In this paper we address the stability analysis of a gen-

eral class of coupled linear PDEs with spatially dependent

coefficients, i.e.

ut(t, x) = A(x)uxx(t, x) +B(x)ux(t, x) + C(x)u(t, x),
(1)

where u : [0,∞)× [a, b] → Rn and A,B,C are polynomial

matrices. Boundary conditions have the general form D ·
[u(a), u(b), ux(a), ux(b)]

T = 0 where D ∈ R
m×4n. PDEs

expressed in this form can be of the parabolic, elliptic, or

hyperbolic type. As can be seen in Section 3 such PDEs as,

for example, Schrodinger and accoustic wave equations can

be expressed in the form of Equation (1).

Recently, there has been some progress in theory of

analyzing and controlling PDE models of this form. First, we

note the development of a theory of state-space for systems

of PDEs or DDEs called Semigroup Theory, wherein the

state of the system belongs to a certain space of functions.
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The solution map for these systems is an operator-valued

function (“strongly continuous semigroup” - SCS), indexed

to the time domain, which maps the current state to a future

state. For an introduction to Semigroup Theory we refer

readers to [9], [5].

In the semigroup framework, stability, controllability and

observability conditions can be expressed using operator

inequalities in the same way that LMIs are used to represent

those properties for ODEs. As an example, for a system

u̇ = Au which defines a SCS on a Hilbert space X with

A being the infinitesimal generator, the exponential stability

of the system is equivalent to the existence of a positive

bounded linear operator P : X → X such that

〈u,APu〉X + 〈Au,Pu〉X ≤ −〈u, u〉X (2)

for all u in the domain of A. Condition (2) is termed

a Linear Operator Inequality (LOI). The terminology LOI

is deliberately chosen to suggest a parallel to the use of

Linear Matrix Inequalities (LMIs) for computational analysis

and control of ODEs. Indeed, there have been efforts to

use discretization to solve LOI type conditions for stability

analysis and optimal control of PDEs (see, e.g. [6]), optimal

actuator placement for parabolic PDEs (see [7] and [8]).

However, in this paper, we do not employ discretization.

While discretization has proven quite effective in practice,

one should note that in general it is difficult to determine

if feasibility of the discretized LOI implies stability of

the non-discretized PDE. In contrast, this paper is focused

on exploring how to use computation to solve LOIs (2)

directly by parameterizing the cone of positive and negative

operators.

An alternative approach to control (but not stability anal-

ysis) of PDEs is backstepping - See [1], [12]. The back-

stepping approach searches for a mapping from the original

PDE to a chosen stable PDE using a Volterra operator. The

desired controller is then found by formulating a PDE for

the kernel of the Volterra operator - the solution to which

yields a stabilizing controller for the original system. An

alternative approach, taken by [11], uses some of the machin-

ery developed for DDEs to express Lyapunov inequalities

as LMIs, which can then be tested using standard interior-

point algorithms. We also note that in [10] stability analysis

and initial state recovery of semi-linear wave equation are

presented in terms of LMIs.

Recently, our lab, in collaboration with other researchers

have begun to explore how to use the SOS method for opti-

mization of polynomials to study analyze and control PDEs

without the need for discretization. Specifically, in [18], we



considered stability analysis of scalar nonlinear PDEs using

a simple form of Lyapunov function. This simple Lyapunov

function was recently extended in [14] and in [17] to consider

some forms of coupled PDEs and in [16] to consider passiv-

ity. In [13] and related publications, the class of Lyapunov

functions was expanded to squares of semi-separable integral

operators and applied to output-feedback dynamic control of

scalar PDEs. Finally, in [15], we considered stability of PDEs

with multiple spatial variables.

The goal of this paper is, for the first time, to use SOS

Lyapunov functionals defined by combined multiplier and

integral operators to study stability of systems of coupled

PDEs. Specifically, we parameterize Lyapunov functionals

of the following form

V (w) =

∫ b

a

w(x)TM(x)w(x) dx

+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx (3)

where w ∈ Ln
2 (a, b), and M,N are polynomial matrices.

Using Lyapunov functionals of this form, the problem of

stability of coupled PDEs, in particular, is difficult in that

the coefficients of the PDE are matrix-valued and hence do

not commute with the polynomial matrices which define

the Lyapunov functions. This issue makes it difficult to

manipulate the derivative of the Lyapunov functional into

a form for which we can test negativity on L2. This is

complicated by the presence of spatial derivatives in the time-

derivative of the functional. To address this problem, we

use a generalization of the concept of “spacing operators”

which allows the algorithm to search over the space of

integral equalities defined by the Fundamental Theorem of

Calculus and our general form of boundary conditions - a

concept initially proposed for scalar PDEs in [14] and [15].

Numerical results indicate that the proposed algorithm is

effective at estimating the stability regions of several classes

of coupled PDEs.

II. NOTATION

R and N denote the sets of real and natural numbers.

In is the identity matrix of dimemsion n × n. Ln
2 (a, b) is

the Hilbert space of Lebesgue square integrable real vector

valued functions on the interval (a, b) ⊂ R, i.e.

Ln
2 (a, b) :=






f : (a, b) → R

n

∣
∣
∣
∣
∣

√
∫ b

a

f(x)T f(x) dx <∞







For a function u : [0,∞) × (a, b) → Rn, the classical

notation ut(t, x) and ux(t, x) represent partial derivatives

with respect to the first and second independent variables.

We also will use the classical notation for the derivative of

a function with one variable, i.e. w′, w′′.

III. CLASS OF SYSTEMS WE CONSIDER

In this paper we propose an algorithm for stability analysis

of the following class of PDEs where the function u :

[0,∞)× [a, b] → Rn satisfies

ut(t, x) = A(x)uxx(t, x)+B(x)ux(t, x)+C(x)u(t, x) (4)

for all t > 0 and x ∈ (a, b). The coefficients A,B,C are

polynomial matrices.

We use the matrix D ∈ R4n×4n to represent boundary

conditions, i.e. for all t > 0

D







u(t, a)
u(t, b)
ux(t, a)
ux(t, b)






= 0. (5)

Thus, in case of homogeneous Dirichlet boundary conditions

D =







In 0 0 0
0 In 0 0
0 0 0 0
0 0 0 0






. (6)

Mixed boundary conditions, for example homogeneous Neu-

mann at x = a and Dirichlet at x = b, can be written as (5)

with

D =







0 0 0 0
0 In 0 0
0 0 In 0
0 0 0 0






. (7)

We assume that solution to (4) exists, is unique and depends

continuously on the initial condition u(0, x). Also, for each

t > 0 we suppose u(t, ·), ux(t, ·), uxx(t, ·) ∈ Ln
2 (a, b).

A. Example 1: Schrödinger equation

To illustrate the class of PDEs which can be written as (1),

we first consider the Schrodinger equation. In the following

equation V is the potential energy, i is the imaginary unit,

~ is the reduced Planck constant and ψ is the wave function

of the quantum system.

i~ψt(t, x) = −
~
2

m
ψxx(t, x) + V (x)ψ(t, x)

can be written as two coupled PDEs if we decompose the so-

lution into real and imaginary parts as ψ(t, x) = ψrl(t, x)+
iψim(t, x) and then separate the real and imaginary parts of

the equation to get two coupled PDEs, i.e.
[
ψrl
t (t, x)

ψim
t (t, x)

]

=
~

m

[
0 −1
1 0

]

︸ ︷︷ ︸

A

[
ψrl
xx(t, x)

ψim
xx (t, x)

]

+
V (x)

~

[
0 1
−1 0

]

︸ ︷︷ ︸

C(x)

[
ψrl(t, x)
ψim(t, x)

]

.

B. Example 2: Model for an Acoustic Wave

Next consider the following model for a 1-D acoustic

wave. This hyperbolic PDE can be written in form (4) where

For all t > 0, r ∈ (0, R) and some fixed c > 0, we define

ptt(t, r) = c2prr(t, r) +
2c2

r
pr(t, r).



This scalar PDE is equivalent to two coupled first order PDEs

as
[
qt(t, r)
pt(t, r)

]

=

[
0 c2

0 0

]

︸ ︷︷ ︸

A

[
qrr(t, r)
prr(t, r)

]

+

[

0 2c2

r
0 0

]

︸ ︷︷ ︸

B(r)

[
qr(t, r)
pr(t, r)

]

+

[
0 0
1 0

]

︸ ︷︷ ︸

C

[
q(t, r)
p(t, r)

]

,

where q is an auxiliary function. If the boundary conditions

imply amplification of the waves, i.e.

p(t, 0) = f1p(t, R) and pr(t, 0) = f2pr(t, R)

for some f1, f2 > 0, then in that case the boundary

conditions are defined using

D =










0 1 0 −f1 0 0 0 0
0 0 0 0 0 1 0 −f2
0 0 . . . . . . . . . . . . . . . 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 . . . . . . . . . . . . . . . 0










IV. LYAPUNOV STABILITY THEOREM

Theorem 1: Let there exist continuous V : Ln
2 (a, b) → R,

l,m ∈ N and b, a > 0 such that

a‖w‖lLn

2

≤ V (w) ≤ b‖w‖mLn

2

for all w ∈ Ln
2 (a, b). Furthermore, suppose that there exists

c ≥ 0 such that for all t ≥ 0 the upper right-hand derivative

D+[V (u(t, ·))] ≤ −c‖u(t, ·)‖mLn

2

,

where u satisfies (4). Then

‖u(t, ·)‖Ln

2
≤

l

√

b

a
‖u(0, ·)‖

m/l
Ln

2

exp
{

−
c

lb
t
}

.

Proof: For the proof see [15].

V. AN SOS PARAMETRIZATION OF POSITIVE

FUNCTIONALS

In this section, we present parameterization of a set of

Lyapunov candidates for the class of PDEs that have form

(4) using positive matrices.

Theorem 2: Given any positive semi-definite matrix P ∈
S

n

2
(d+1)(d+4) we can partition it as

P =

[
P11 P12

P21 P22

]

, (8)

where P11 ∈ Sn(d+1). Define

Z1(x) := Zd(x)⊗ In and Z2(x, y) := Zd(x, y)⊗ In (9)

where x, y ∈ (a, b), Zd is a vector of monomials up to degree

d and ⊗ is the Kronecker product. If for some ǫ > 0

M(x) : = Z1(x)
TP11Z1(x) + ǫIn, (10)

N(x, y) : = Z1(x)
TP12Z2(x, y) + Z2(y, x)

TP21Z1(y)

+

∫ b

a

Z2(z, x)
TP22Z2(z, y) dz,

(11)

then functional V : Ln
2 (a, b) → R, defined as

V (w) : =

∫ b

a

w(x)TM(x)w(x) dx

+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx, (12)

satisfies

V (w) ≥ ǫ‖w‖Ln

2
for all w ∈ Ln

2 (a, b). (13)

Proof: The idea of the proof is to show that V from

(12), satisfies the following equation.

V (w) =

∫ b

a

(Zw)(x)TP (Zw)(x) dx + ǫ

∫ b

a

w(x)Tw(x) dx,

(14)

where for all x ∈ (a, b)

(Zw)(x) :=

[
Z1(x)w(x)

∫ b

a
Z2(x, y)w(y)dy

]

. (15)

Since P ≥ 0, then it is straightforward to show (13).

Consider the first integral of the right hand side in (14),

substitute for Z from (15) and use the partition (8) as follows.

∫ b

a

(Zw)(x)TP (Zw)(x) dx (16)

=

∫ b

a

w(x)TZ1(x)
TP11Z1(x)w(x) dx

+

∫ b

a

w(x)TZ1(x)
TP12

∫ b

a

Z2(x, y)w(y) dydx

+

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P21Z1(x)w(x)dx

+

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P22

∫ b

a

Z2(x, z)w(z) dzdx.

Changing the order of integration in the 3rd integral of

the right hand side of (16) and then switching between the

integration variables x and y results in

∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P21Z1(x)w(x)dx

=

∫ b

a

w(x)T
∫ b

a

Z2(y, x)
TP21Z1(y)w(y) dydx. (17)

Changing two times the order of integration in the 4th

integral of the right hand side of (16) and then switching first



between the integration variables x and z, and then between

x and y results in
∫ b

a

∫ b

a

w(y)TZ2(x, y)
T dy P22

∫ b

a

Z2(x, z)w(z) dz dx (18)

=

∫ b

a

∫ b

a

∫ b

a

w(y)TZ2(x, y)
TP22Z2(x, z)w(z)dxdzdy

=

∫ b

a

∫ b

a

∫ b

a

w(y)TZ2(z, y)
TP22Z2(z, x)w(x)dzdxdy

=

∫ b

a

∫ b

a

∫ b

a

w(x)TZ2(z, x)
TP22Z2(z, y)w(y)dzdydx

=

∫ b

a

w(x)T
∫ b

a

∫ b

a

Z2(z, x)
TP22Z2(z, y)dzw(y)dydx.

Using (16)-(18) we can write
∫ b

a

(Zw)(x)TP (Zw)(x) dx

=

∫ b

a

w(x)TZ1(x)
TP11Z1(x)w(x) dx

+

∫ b

a

w(x)T
∫ b

a

(

Z1(x)P12Z2(x, y)

+ Z2(y, x)P21Z1(y)

+

∫ b

a

Z2(z, x)
TP22Z2(z, y)dz

)

w(y) dy dx. (19)

Using (10), (11) and (19) we can see that
∫ b

a

(Zw)(x)TP (Zw)(x) dx

=

∫ b

a

w(x)TM(x)w(x) dx − ǫ

∫ b

a

w(x)Tw(x) dx

+

∫ b

a

w(x)T
∫ b

a

N(x, y)w(y) dydx. (20)

If we add ǫ
∫ b

a
w(x)Tw(x) dx to the both sides of (20) and

use (12), then we get (14), which concludes the proof.

A. Functionals that are positive on Ln
2 (a, b) and not neces-

sarily on Ln
2 (R).

Adding an extra term in (14) as follows allow us to

parameterize a larger set of Lyapunov candidates.

V (w) =

∫ b

a

(Zw)(x)TP (Zw)(x) dx + ǫ

∫ b

a

w(x)Tw(x) dx

+

∫ b

a

g(x)(Zw)(x)TQ(Zw)(x) dx, (21)

where g : [a, b] → R is continuous and positive and Q ≥ 0.

Specifically, in this paper, we choose

g(x) = (x− a)(b − x). (22)

Theorem 3: Given any positive semi-definite matrices

P,Q ∈ S
n

2
(d+1)(d+4) we can partition them as

P =

[
P11 P12

P21 P22

]

and Q =

[
Q11 Q12

Q21 Q22

]

, (23)

such that P11, Q11 ∈ Sn(d+1). If for some ǫ > 0

M(x) : = Z1(x)
T (P11 + g(x)Q11)Z1(x) + ǫIn, (24)

N(x, y) : = Z1(x)
T (P12 + g(x)Q12)Z2(x, y) (25)

+ Z2(y, x)
T (P21 + g(y)Q21)Z1(y)

+

∫ b

a

Z2(z, x)
T (P22 + g(z)Q22)Z2(z, y) dz,

where Z1, Z2 are defined as previously in (9) and g in (22),

then functional V : Ln
2 (a, b) → R, defined as in (12) satisfies

V (w) ≥ ǫ‖w‖Ln

2
for all w ∈ Ln

2 (a, b).
Proof: The proof for Theorem 3 is pretty much the

same as for Theorem 2 with (21) instead of (14) and thus

omitted here.

For simplicity we define a set of polynomials (M,N) as

follows.

Σn,d,ǫ
+ := {(M,N) : ∃P,Q ≥ 0 and (24), (25) hold}. (26)

Similarly, we can define another set of polynomials for

some ǫ < 0 that parameterize functionals of the form (12)

such that V (w) ≤ ǫ‖w‖Ln

2
for all w ∈ Ln

2 (a, b).

Σn,d,ǫ
−

:= {(M,N) : (−M,−N) ∈ Σn,d,−ǫ
+ }. (27)

VI. DERIVATIVE OF THE LYAPUNOV

FUNCTIONAL

For convenience we define the following functions. For all

x, y ∈ [a, b] and t > 0

K(x) : =





K11(x) M(x)B(x) M(x)A(x)
B(x)TM(x) 0 0
A(x)TM(x) 0 0



 ,

L(x, y) : =





L11(x, y) N(x, y)B(y) N(x, y)A(y)
B(x)TN(x, y) 0 0
A(x)TN(x, y) 0 0



 ,

K11(x) = C(x)TM(x) +M(x)C(x),

L11(x, y) = C(x)TN(x, y) +N(x, y)C(y),

U(t, x) : = [ u(t, x)T ux(t, x)
T uxx(t, x)

T ]T . (28)

If we substitute u(t, ·) for w in (12), differentiate the result

with respect to t and do some straightforward manipulations,

we can obtain

d

dt
[V (u(t, x))] =

∫ b

a

U(t, x)K(x)U(t, x) dx

+

∫ b

a

U(t, x)L(x, y)U(t, y) dydx. (29)

It is possible to check if (K,L) ∈ Σ3n,d,0
−

, but would

be conservative. The reason is that the elements in U are

not independent, i.e. second and third elements are partial

derivatives of the first one. Therefore it is enough to ask

(29) to be negative only on a subspace of L3n
2 (a, b), i.e.

Λ=











w1

w2

w3



∈L3n
2 (a, b) : D







w1(a)
w1(b)
w2(a)
w2(b)






= 0,

w2 = w′

1,

w3 = w′′

1







(30)



Notice, that Λ depends on D that represents the boundary

conditions as before in (5).

VII. SPACING OPERATORS

To parameterize functions which are negative on Λ, but

not necessarily on the whole space L3n
2 (a, b) we use the

following theorem.

Theorem 4: Let X be a closed subspace of some Hilbert

space Y . Then 〈u,Ru〉Y ≤ 0 for all u ∈ X if and only

if there exist M and T such that R = M + T and

〈w,Mw〉Y ≤ 0 for all w ∈ Y and 〈u, T u〉Y = 0 for all

u ∈ X .

Proof: (⇐) is straightforward. For (⇒), suppose

〈u,Ru〉Y ≤ 0 for all u ∈ X . Since X is a closed subspace

of a Hilbert space Y , there exists a projection operator such

that P = P∗ = PP and Pw ∈ X for all w ∈ Y . Let

M = PRP and T = M−R. Then for all w ∈ Y ,

〈w,Mw〉Y = 〈w,PRPw〉Y = 〈Pw,RPw〉Y ≤ 0

since Pw ∈ X . Furthermore, for all u ∈ X

〈u, T u〉Y = 〈u,PRPu〉Y − 〈u,Ru〉Y
= 〈Pu,RPu〉Y − 〈u,Ru〉Y
= 〈u,Ru〉Y − 〈u,Ru〉Y = 0.

We use Σ3n,d,0
−

to parameterize a subset of M that is

negative on the whole space L3n
2 (a, b). Now we show how to

parameterize a subset of operators T - the so-called “spacing

operators” using polynomial spacing functions. Therefore the

sum of M and T yield an operator R which is negative on

Λ, but not necessarily on the whole L3n
2 (a, b) space.

A. Parametrization of Spacing Operators by Polynomials

The following lemmas define the structure of polynomial

matrices T and R such that for all W ∈ Λ
∫ b

a

W (x)T T (x)W (x)dx

+

∫ b

a

W (x)T
∫ b

a

R(x, y)W (y)dydx = 0.

Beforehand define the following vector for convenience.

Υ := [ w(a)T w(b)T w′(a)T w′(b)T ]T (31)

Lemma 1: Let Pi : [a, b] → Rn×n, i = 1..4 be polynomi-

als and w,w′, w′′ ∈ Ln
2 (a, b). If

T (x)=





P ′

1(x) P1(x) + P ′

2(x) P2(x)
P1(x) + P ′

3(x) P2(x) + P3(x) + P ′

4(x) P4(x)
P3(x) P4(x) 0





(32)

then ∫ b

a

W (x)T (x)W (x) dx = ΥTΠ1Υ,

where Υ is defined in (31) and

Π1 =







−P1(a) 0 −P2(a) 0
0 P1(b) 0 P2(a)

−P3(a) 0 −P4(a) 0
0 P3(b) 0 P4(b)






.

Proof: The proof is based on applying the fundamental

theorem of calculus to
∫ b

a

d

dx

([
w(x)T

w′(x)T

]T [
P1(x) P2(x)
P3(x) P4(x)

] [
w(x)
w′(x)

])

dx.

and omitted for brevity.

Notice that DΥ = 0 and, therefore,

ΥTΠ1Υ = ΥT (I4n −D +D)TΠ1(I4n −D +D)Υ

= ΥT (I4n −D +D)TΠ1(I4n −D)Υ

= ΥT (I4n −D)TΠ1(I4n −D)Υ.

Using Lemma (1) we can define the following set.

Ξ1 := {T as defined in (32) : (I4n−D)TΠ1(I4n−D) = 0}

Thus, for any T ∈ Ξ1 and any W ∈ Λ we have

∫ b

a

W (x)TT (x)W (x)dx = 0.

Lemma 2: Let Qi : [a, b] × [a, b] → Rn×n, i = 1..4 be

polynomials and w,w′, w′′ ∈ Ln
2 (a, b). If

R1(x, y) =





Q1,xy(x, y) R1,12(x, y) Q3,x(x, y)
R1,21(x, y) R1,22(x, y) R1,23(x, y)
Q2,y(x, y) R1,32(x, y) Q4(x, y)



 ,

R1,12(x, y) = Q3,xy(x, y) +Q1,x(x, y),

R1,21(x, y) = Q2,xy(x, y) +Q1,y(x, y),

R1,22(x, y) = Q4,xy(x, y) +Q2,x(x, y) +Q3,y(x, y),

R1,23(x, y) = Q4,x(x, y) +Q3(x, y),

R1,32(x, y) = Q4,y(x, y) +Q2(x, y), (33)

then
∫ b

a

∫ b

a

W (x)TR1(x, y)W (y)dxdy = ΥTΘ1Υ,

where Υ is defined in (31) and

Θ1=







Q1(a, a) −Q1(a, b) Q3(a, a) −Q3(a, b)
−Q1(b, a) Q1(b, b) −Q3(b, a) Q3(b, b)
Q2(a, a) −Q2(a, b) Q4(a, a) −Q4(a, b)
−Q2(b, a) Q2(b, b) −Q4(b, a) Q4(b, b)







Proof: The proof is straightforward double application

of the fundamental theorem of calculus to
∫ b

a

∫ b

a

∂2

∂x∂y

([
w(x)T

w′(x)T

]T[
Q1(x, y) Q3(x, y)
Q2(x, y) Q4(x, y)

][
w(y)
w′(y)

])

dxdy.

Similarly as for Ξ1, using Lemma (2) we can define

Ξ2 := {R1 as defined in (33) : (I4n−D)TΘ1(I4n−D)=0}

Thus, for any R1 ∈ Ξ2 and any W ∈ Λ we have

∫ b

a

∫ b

a

W (x)TR1(x, y)W (y)dxdy = 0.



Lemma 3: Let Q5, Q6 : [a, b] × [a, b] → Rn×n be

polynomials and w,w′, w′′ ∈ Ln
2 (a, b). If

R2(x, y)=





0 0 0
0 0 0

Q5,y(x, y) Q6,y(x, y) +Q5(x, y) Q6(x, y)





(34)

then
∫ b

a

∫ b

a

W (x)TR2(x, y)W (y)dxdy=

∫ b

a

w′′(x)TΘ2(x)Υdx,

where Υ is defined in (31) and

Θ2(x)=
[
−Q5(x, a) Q5(x, b) −Q6(x, a) Q6(x, b)

]
.

Proof: The fundamental theorem of calculus should be

applied to
∫ b

a

∫ b

a

∂

∂y

(

w′′(x)T
[
Q5(x, y) Q6(x, y)

]
[
w(y)
w′(y)

])

dxdy.

Using Lemma (3) we can define the following set.

Ξ3 :=

{

R2 as defined in (34) :
Θ2(x)

T (I4n −D)=0
for all x ∈ (a, b)

}

Thus, for any R1 ∈ Ξ1 and any W ∈ Λ we have
∫ b

a

∫ b

a

W (x)TR2(x, y)W (y)dxdy = 0.

Lemma 4: Let Q7, Q8 : [a, b] × [a, b] → Rn×n be

polynomials and w,w′, w′′ ∈ Ln
2 (a, b). If

R3(x, y)=





0 0 Q7,x(x, y)
0 0 Q8,x(x, y) +Q7(x, y)
0 0 Q8(x, y)



 (35)

then
∫ b

a

∫ b

a

W (x)TR3(x, y)W (x)dx =

∫ b

a

ΥTΘ3(y)w
′′(y)dy,

where Υ is defined in (31) and

Θ3(y)=
[
−Q7(a, y) Q7(b, y) −Q8(a, y) Q8(b, y)

]
.

Proof: Apply the fundamental theorem of calculus to

∫ b

a

∫ b

a

∂

∂x

([
w(x)
w′(x)

]T [
Q7(x, y)
Q8(x, y)

]

w′′(y)

)

dxdy.

Using Lemma (4) we can define the following set.

Ξ4 :=

{

R3 as defined in (35) :
(I4n −D)TΘ3(x)=0

for all x ∈ (a, b)

}

Thus, for any R3 ∈ Ξ1 and any W ∈ Λ we have
∫ b

a

∫ b

a

W (x)TR3(x, y)W (y)dxdy = 0.

Finally, we can define a set of polynomials, similarly to (26)

and (27).

Σn,d
0 := {(T,R) : T ∈ Ξ1 and R ∈

4∑

i=2

Ξi}. (36)

TABLE I

MAXIMUM λ FOR WHICH (37) IS STABLE BASED ON THE PROPOSED

ALGORITHM FOR DIFFERENT DEGREE d WITH ǫ = 0.001.

d 1 2 3 4 5 6 λnum

λ 5 5.8 7.4 8.1 8.1 8.1 9.8

VIII. AN LMI CONDITION FOR STABILITY

In this section we present feasibility problem, solution to

which provides a Lyapunov function for (4).

Theorem 5: Given System (4), if there exist

• d ∈ N, ǫ1 > 0, ǫ2 < 0, (M,N) ∈ Σn,d,ǫ1
+ ,

• (T,R) ∈ Σ3n,2d+2+γ
0 , (H,G) ∈ Σ3n,d+γ,ǫ2

−

where γ = max{deg(A), deg(B), deg(C)}such that for all

x, y ∈ (a, b)




K11(x) M(x)B(x) M(x)A(x)
B(x)TM(x) 0 0
A(x)TM(x) 0 0





= T (x) +H(x),




L11(x, y) N(x, y)B(y) N(x, y)A(y)
B(x)TN(x, y) 0 0
A(x)TN(x, y) 0 0





= R(x, y) +G(x, y),

K11(x) = C(x)TM(x) +M(x)C(x),

L11(x, y) = C(x)TN(x, y) +N(x, y)C(y),

then (4) is stable.

Proof: Suppose conditions of the Theorem 5 hold. Then

V as defined in (12) satisfies (13). Since M and N are

polynomials, they are continuous. Thus there exists b ∈ R

such that

V (w) ≤ b‖w‖Ln

2
.

According to (28) and (29) the time derivative of V satisfies

d

dt
[V (u(t, ·))] ≤ ǫ2‖w‖Ln

2

and, therefore, we can apply Theorem 1, which concludes

the proof.

IX. NUMERICAL RESULTS

A. Example 1: System of Decoupled PDEs.

Consider the following parameterized coupled PDE.

ut(t, x) =

[
1 0
0 1

]

uxx(t, x) +

[
λ 0
0 λ

]

u(t, x). (37)

The boundary conditions are

u(t, 0) =

[
0
0

]

and u(t, 1) =

[
0
0

]

.

The numerical solution given by MATLAB PDEPE solver

implies that for λ = 9.8 (37) is stable and for λ = 9.9 (37)

it is unstable. We applied the proposed algorithm to estimate

the maximum λ for which (37) is stable. The results are

presented in Table I.



TABLE II

MAXIMUM λ FOR WHICH (38) IS STABLE BASED ON THE PROPOSED

ALGORITHM FOR DIFFERENT DEGREE d WITH ǫ = 0.001.

d 1 2 3 4 5 6 λnum

λ 4 5.8 6.9 7.2 7.4 7.4 8.8

TABLE III

MAXIMUM λ FOR WHICH (39) IS STABLE BASED ON THE PROPOSED

ALGORITHM FOR DIFFERENT DEGREE d WITH ǫ = 0.001.

d 1 2 3 4 5 6 λnum

λ 8.6 12.7 13.9 14.4 14.6 14.7 15.9

B. Example 2: System of Coupled PDEs.

ut(t, x) =

[
1 0
0 1

]

uxx(t, x) +

[
λ 1
1 λ

]

u(t, x) (38)

boundary conditions are

u(t, 0) =

[
0
0

]

and u(t, 1) =

[
0
0

]

.

The numerical solution given by MATLAB PDEPE solver

yields that for λ = 8.8 (38) is stable and for λ = 8.9 (38)

is unstable. We applied the proposed algorithm to calculate

the maximum λ for which (38) is stable. The results are

presented in Table II.

C. Example 3: System of Coupled PDEs with Mixed Bound-

ary Conditions.

Now consider a third parameterized PDE.

ut(t, x) =

[
1 0
0 1

]

uxx(t, x) +

[
λ λ

λ λ

]

u(t, x) (39)

The boundary conditions are

ux(t, 0) =

[
0
0

]

and u(t, 1) =

[
0
0

]

.

The numerical solution given by MATLAB PDEPE solver

implies that for λ = 15.9 (39) is stable and for λ = 16 (39)

is unstable. We applied the proposed algorithm to calculate

the maximum λ for which (39) is stable. The results are

presented in Table III.

D. Example 4: System of Coupled PDEs with Spatially

Dependent Coefficients.

For our final example, we consider a coupled PDE with

spatially varying coefficients.

ut(t, x) =

[
5x2 + 4 0
2x2 + 7x 7x2 + 6

]

uxx(t, x)

+

[
1 −4x

−3.5x2 0

]

ux(t, x)

−

[
x2 3
2x 3x2

]

u(t, x)

for all t > 0, x ∈ (0, 1). Also for all t > 0,

u(t, 0) =

[
0
0

]

and u(t, 1) =

[
0
0

]

.

Although this PDE is not parameterized, it is stable and our

algorithm verified this property using a Lyapunov function

with polynomial degree d = 4.

X. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a computational frame-

work for stability analysis of coupled linear PDEs with

spatially varying coefficients. We parameterized positive SOS

Lyapunov functionals defined by multiplier and integral

operators which are positive on an interval of the real line.

We have enforced negativity of the derivative using a combi-

nation of SOS and a parametrization of projection operators

defined by the fundamental theorem of calculus. The result

is an LMI test for stability which can be implemented using

SOSTOOLS coupled with an SDP solver such as Mosek.

We applied the proposed framework to several examples

of systems of coupled linear PDEs with both constant and

spatially varying coefficients and with both Dirichlet and

Neumann boundary conditions. The numerical results agreed

relatively well with results based on simulation. In future

work, we will use this framework to study stability of models

such as the accoustic wave equations as well as examine

the problem of optimal control and estimation for systems

of coupled PDEs. Another step includes extension of the

framework to systems with multiple spatial variables as in

[15] and include semi-separable kernels to improve accuracy

as in [13].
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