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Global Polynomial Optimization (GPO)

• Global Polynomial Optimization is defined as

minimize
x∈Rn

f(x)

subject to gi(x) ≥ 0 for i = 1, · · · ,m,

where f , gi ∈ R[x] are all real valued polynomials.

The Decision Variable is x ∈ Rn.

• Not Convex

Compare with Optimization of Polynomials

minimize
f∈Rm[x]

L1(f)(x))

subject to L2(f)(x)) ≥ 0 for all x ∈ Rm,

The Decision Variable is f ∈ Rm[x].

• Convex
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Example: A 2-variate GPO problem

• Consider the optimization problem

min .
x,y∈R

y

subject to x+ 5 ≥ 0 ,

x y − 10 ≥ 0 ,

15− x− y ≥ 0 ,

x2 + 3y2 − 180 = 0 .
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Many problems can be formulated as a GPO
Combinatorial Examples :

Max-cut problem:
asks for a minimal edge-cut of
maximum weight.

min .
x∈Rn

∑
i,j : (vi,vj)∈E

(xi xj − 1)
(wij

2

)
s.t. x2i = 1 for i = 1, · · · , n.

We want to know the CUT!
(xi ∈ {−1, 1})

Stable set problem:
asks for a maximum independent set of
vertices S ⊂ V .

min .
x∈Rn

n∑
i=1

−xi

s.t xi xj = 0 for vivj ∈ E,
s.t x2i − xi = 0 for i = 1, . . . , n.

We want to know the Vertices!
(xi ∈ {0, 1})
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Greatest Lower Bound (GLB) problem

Let S := {x ∈ Rn : gi(x) ≥ 0, for i = 1, . . . ,m} be a semialgebraic set.

GPO problem:

f∗ := f(x∗) = minimize
x∈Rn

f(x)

subject to x ∈ S.

GLB problem:

λ∗ := maximize
λ∈R

λ

subject to f(x)− λ ≥ 0 ,∀x ∈ S.

• Then λ∗ = f∗ (iff S 6= ∅).

• GLB is convex and relatively tractable.

• Can we use GLB to solve GPO?
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Suppose we can solve GLB exactly (λ∗ = f ∗)
f
1

*
f
2

*

x
1

*

x
2

*

λ∗1 = f∗1 := min .
x,y∈R

y

subject to x+ 5 ≥ 0 ,

x y − 10 ≥ 0 ,

15− x− y ≥ 0 ,

x2 + 3y2 − 180 = 0 .

Extra → − x(x+ 30) ≥ 0 .

λ∗2 = f∗2 := min .
x,y∈R

y

subject to x+ 5 ≥ 0 ,

x y − 10 ≥ 0 ,

15− x− y ≥ 0 ,

x2 + 3y2 − 180 = 0 .

Extra → x(30− x) ≥ 0 .

Then we know something!: If f∗1 < f∗2 , then x∗ ∈ [−30, 0]. Else, x∗ ∈ [0, 30]
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Repeat Until we get Desired Accuracy

f
1

*
f

2

*

x
1

*

Discard 1Discard 2

Discard 4

Discard 3

Discard 5

Discard 6

Complexity For Bisection along the longest edge, after q iterations, the longest
edge of the hypercube has decreased by a factor of 2−q/n.
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ClAIM: Given an algorithm which solves GLB (exactly!) in O(k) steps, then for
any accuracy ε, we can design an algorithm which returns an x ∈ Rn such that

• |x− x∗| ≤ ε,
• |f(x)− f(x∗)| < ε.

in O(log(1/ε)k) steps.
ALGORITHM:

• Suppose the feasible set of the GPO problem, S, satisfies

∅ 6= S ⊂ A = {x ∈ R : a ≤ x ≤ b}.

• At every iteration, we have a hyper-rectangle A = [a, b];

1. Bisect A = [a, b] = [a′, b′] ∪ [a′′, b′′] = A1 ∪A2;
2. Compute the Greatest Lower Bound of

λ∗i :=max .
λ∈R

λ

subject to f(x)− λ > 0 , ∀x ∈ S ∩Ai;

3. If λ∗1 > λ∗2, set A = A1, otherwise A = A2;
4. Goto 1 ;
5. At termination, we choose any x ∈ A.
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GLB as a SOSP

SOS Polynomials: ΣS := {s ∈ R[x] : s(x) =
∑l
i=1(pi(x))2, pi ∈ R[x], l ∈ N}

Feasible Set (Nonempty, Compact): S := {x ∈ Rn : gi(x) ≥ 0}.
The Quadratic Module generated by g1, . . . , gm is defined as

M := {σ0(x) +

m∑
i=1

σi(x) gi(x) | σi ∈ ΣS}.

• if h ∈M, then h(x) ≥ 0, ∀x ∈ S. Obvious
• if h(x) > 0, ∀x ∈ S, then h ∈M. Putinar’s Positivstellensatz�

In this case, M must be Archimedean. Can add a redundant norm bound
inequality if not (g := R2 −

∑n
j=1 x

2
i ≥ 0).

The GLB problem is Equivalent to the following SOSP:

λ∗ := max .
λ∈R

λ

subject to f(x)− λ ∈M,

• Which is equivalent to an infinite dimensional semidefinite program.

f(x)−λ = Z(x)T (Ω0+

m∑
i=1

Ωigi(x))Z(x), for some PSD matrices Ωi ≥ 0.
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Truncating the SOSP

• Bounding the degree of SOS polynomials by k ∈ N, we can define the
degree-k bounded quadratic module as

(M)k := {σ0(x) +

m∑
i=1

σi(x) gi(x)| σi ∈ ΣS , deg(σi) ≤ k}.

• Define the optimization problem (Dk) :

λ∗k := max .
λ∈R

λ

subject to f(x)− λ ∈ (M)k,

.
I (Dk) is a relaxation to the GLB problem.
I (Dk) is a semidefinite program with o((m+ 1)

(
n+k
k

)2
) variables.
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How Accurate is the Truncated SOSP?
Error bound on λ∗k

For any k ∈ N, (Dk) is a relaxation of the GLB problem.

1. The case S 6= ∅ [Nie, Scweighofer]:

0 ≤ λ∗ − λ∗k ≤
c1

c2
√

log k

I c1, c2 are constants - depend on f (objective) and gi (constraints).
I Recall λ∗ is the optimal objective value of the GLB problem.
I Recall λ∗k is the optimal objective value of the relaxation (Dk).

2. The case S = ∅:
−1 test: − 1 ∈M =⇒

∃k0 ∈ N s.t. λ∗k =∞ , ∀k > k0 ,

I There is no available bound on k0 so far.
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Modified B+B

For desired Accuracy, ε, let L > n log2

(
r
√
n
ε

)
(Iterations)(r = radius)

λ
1

*=8 (Discard)

|λ
i

*- λ* |< .2

x
1

*

λ
2

*=-5

λ
1

*=inf (Discard)

λ
2

*=-5

λ
1

*=inf (Discard) λ
2

*=-5

λ
1

*=inf (Discard)

λ
2

*=-5

λ
1

*=inf (Discard) λ
2

*=-5

λ
2

*=-4.9 (Keep)

λ
1

*= -5 (Keep)

λ*

λ*

λ*

Keep when

Trim a region Bi when λ∗(Bi) > λ∗min + mε
1+l
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Modified Branch and Bound (using SOS)

Index the algorithms as Ek, k ∈ N acording to the degree of the GLB
subroutine.

• Let ε > 0: error tolerance. L > n log2

(
r
√
n
ε

)
: # of iterations.

• At iteration l, we have an active hyper-rectangle A = [a, b] and a set of
feasible rectangles Zi = {[ai, bi]}i each with associated GLB λi.

1. Bisect A = [a, b] = [a′, b′] ∪ [a′′, b′′] = A1 ∪A2

2. Solve the k’th order SOS relaxation associated to the GLB problem

λ∗i :=max .
λ∈R

λ

subject to f(x)− λ > 0 ,∀x ∈ S ∩Ai.

3. If λ∗i ≤ λ∗ + lε
L

, add Ai to Z.
4. Set A = Zi where Zi is of the smallest volume in Z.
5. Set λ∗ = λj where Zj has the lowest lower bound in Z.
6. GOTO 1

FEASIBLE POINT: At termination, choose any x∗ ∈ A.
CLAIM: ∃y ∈ S such that ‖y − x∗‖ ≤ ε and f(y)− f∗ ≤ ε.
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To Understand Convergence, Consider Implementation:

The GPO problem:

min.
x∈R6

f(x) = 7x1x
3
5 + 6x1x

2
5x6 + 9x2x

3
4 + 4x2x4x5+

3x2x5x6 + x3x4x5

subject to g1(x) = 100− (x21 + x22 + x23 + x24 + x25 + x26) ≥ 0

g2(x) = x31 + x22x4 + x3x
2
5 ≥ 0

g3(x) = x22x1 + x35 + x4x1x2 ≥ 0

h1(x) = x1 + x22 − x23 + x4x5 = 0

h2(x) = x5x1 − x24 = 0

In this example:

• There are n = 6 variables.

Choose parameter ε = 0.05 with SOS relaxations of degree 5.
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Numerical Implementation
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Numerical Implementation
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Numerical Implementation

The algorithm returns the following point:
x̂∗ = [5.1416, 3.9307, 0.7568, −4.6777, 4.2676, −4.1504].

• All inequalities are feasible. The equality constraints h1 and h2 have errors
of 0.0563 and 0.0610, respectively.

• The best valid lower bound is −3718.9. The objective value is
f(x̂∗) = −3693.3, within the error of 0.007%.

• The first 40 iterations result in a nested sequence of branchings.
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CLAIM: The lower bounds are not decreasing

If we intersect the semialgebraic set

S := {x|gi(x) ≥ 0 , i = 1, . . . ,m}

with the hypercubes

C :={x : (xi − ci)(di − xi) ≥ 0, i = 1, . . . , n},
B :={x : (xi − ai)(bi − xi) ≥ 0, i = 1, . . . , n}

where B ⊂ C and C ∩ S 6= ∅ and define the GLB problems

λ∗b :=min .
λ∈R

− λ

s.t. f(x)− λ > 0, ∀ x ∈ S ∩B,

λ∗c :=min .
λ∈R

− λ

s.t. f(x)− λ > 0, ∀ x ∈ S ∩ C,
then obviously

λ∗b ≥ λ∗c .

How about the solution of the k’th order SOS relaxations?
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PROOF: The lower bounds are not decreasing

For a fixed k, the sequential monoids are nested.

Lemma: If a ≤ c < d ≤ b ∈ R, (ga,b) := (x− a)(b− x) and
(gc,d) := (x− c)(d− x) then there exist α, β and γ ∈ R, such that

(ga,b)(x) = α(gc,d(x)) + β(x+ γ)2 , α, β ≥ 0.

Therefore, if

M
(k)
c d :=

{
p : p = σ0 + σ1g + σ2(gc,d), σi ∈ ΣS , deg(σig) ≤ k

}
,

and

M
(k)
a b :=

{
p : p = σ0 + σ1g + σ2(ga,b), σi ∈ ΣS , deg(σig) ≤ k

}
,

we have M
(k)
c d ⊂M

(k)
a b .
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Main Result

Theorem: For any GPO problem

f∗ := min .
x∈Rn

f(x)

subject to x ∈ S = {x : gi(x) ≥ 0} for i = 1, · · · ,m,

where S 6= ∅ and S is compact and for any desired accuracy, ε > 0,

• there exists a k ∈ N,

• s.t. for L > n log2

(
r
√
n
ε

)
,

if the algorithm Ek(L) returns the point x∗ ∈ A, then

• there exists y ∈ S,

• f(y)− f∗ ≤ ε,
• ‖y − x‖ < ε,

where k depends on ε f , gi.
OPEN Question: What is k???
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Proof Outline

Given iteration bound, L, find the set of all possible hyper-rectangles, {Si}
• Over each feasible set, we have a bound

λ∗ − λ∗k ≤
c1

c2
√
logk

• This yields a degree bound for which we take the max over the set of all
feasible sets.

The nested hypercube lemma and increasing error tolerance then ensures a
sequence of nested hyper-rectangles.
Recall: the trim condition at iteration l: λ∗i ≤ λ∗ + lε

L
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Conclusion

• We proposed a hierarchy of Algorithms Ek, k ∈ N to extract solutions to
the GPO problem

f∗ := min .
x∈Rn

f(x)

subject to gi(x) ≥ 0 for i = 1, · · · ,m,

based on a combination of the BB and SOS relaxations.

• The computational-complexity of Algorithm Ek is
I polynomial in k,
I polynomial in the number of constraints,
I linear in the number of branches l.

• For any scaler ε > 0, there exists k ∈ N such that Algorithms Ek, in
O(log(1/ε)) number of iterations, returns a point that is within the
ε-distance of a feasible and ε-suboptimal point.

• For a fixed k ∈ N, our numerical case study demonstrates convergence of
Ek to a level of residual error which can then be decreased by increasing
the degree.

future work: bound this residual error as a function of degree using available
bounds on the error of SOS relaxations.
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Thank you!
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