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Abstract—In this paper, we propose an iterative method for
using SOS programming to estimate the region of attraction of
a polynomial vector field, the conjectured convergence of which
necessitates the existence of polynomial Lyapunov functions
whose sublevel sets approximate the true region of attraction
arbitrarily well. The main technical result of the paper is the
proof of existence of such a Lyapunov function. Specifically, we
use the Hausdorff distance metric to analyze convergence and in
the main theorem demonstrate that the existence of an n-times
continuously differentiable maximal Lyapunov function implies
that for any € > 0, there exists a polynomial Lyapunov function
and associated sub-level set which together prove stability of a
set which is within &€ Hausdorff distance of the true region
of attraction. The proposed iterative method and probably
convergence is illustrated with a numerical example.

I. INTRODUCTION

In this paper we consider the problem of estimating
the region of attraction of systems of nonlinear Ordinary
Differential Equations (ODE) of the form

x=f(x), x(0)=xo, (1

where f:R" — R" is the vector field and xp € R" is the initial
condition. If we define g(x,) as the associated solution map
and suppose f(0) =0, then the Region of Attraction (ROA)
is defined as

Spi= {xGR”:tIng(x,t)=0}. 2)

Accurate estimates of the ROA are necessary for such
problems as, e.g. flight control verification and validation [1]
and determining the range of concentration over which a
biological system takes on a certain set of steady state
concentrations corresponding to a preferred phenotype [2].
Existing approaches to approximating the ROA can be
divided into Lyapunov and non-Lyapunov based categories.
Among the non-Lyapunov based approaches, we find the use
of occupation measures to outer-approximate the ROA of
polynomial vector fields as in [3]. Unfortunately however,
these outer-approximations are not themselves stable and
furthermore the method is restricted to certain classes of
vector field. Some non-Lyapunov based approaches exist
which, although not categorized as Lyapunov, still make use
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of Lyapunov based arguments; examples include a trajectory
reversing method by backward integration of the vector
field for a number of stable initial conditions as in [4] and
advecting a stable sub-level set of a polynomial backward in
time as introduced in [5]. However, both these approaches
require an initial stable set which is typically obtained using
Lyapunov based methods.

By constrast, almost all Lyapunov-based methods for
estimating the ROA are based on the search for a Lyapunov
function V(x) and for a positive scaler b such that V(x)
is negative over the sub-level set C := {x:V(x) < b} [6].
Given such V and b, it can be shown that the connected
component of C containing the equilibrium is an inner-
approximation to the ROA. Neglecting accurate estimates of
the ROA momentarily, if we are interested in establishing the
existence of a Lyapunov function which is decreasing over
some bounded set, then the problem is convex and for a
polynomial vector field, there are a number of recent results
which use convex optimization-based approaches to search
for a polynomial Lyapunov function. See, e.g. [7] and [8]
or the Sum-of-Squares based open source toolboxes for con-
structing polynomial Lyapunov functions in SOSTOOLS [9]
and Yalmip [10]. Alternatives to the SOS approach can be
found in [11].

If we return to the problem of estimating the region of
attraction, however, then the problem of searching for a
polynomial LF with maximal sublevel sets is a bilinear Sum
of Squares (SOS) program as shown in. e.g. [12] and [13]. To
deal with this bilinearity, researchers have turned to Genetic
Algorithms and fuzzy modeling, examples of which can be
found in [14] and [15], respectively. Extensions to nonlinear
systems with uncertainties can also be found in [16] and [17].
One approach to overcoming this bilinearity, as proposed
in Section VI, is to increase the diameter of the region on
which the Lyapunov function is decreasing. As the region
approaches the true ROA, the problem approaches infeasi-
bility. We have conjectured that this asymptotic infeasibility
is then helpful, in that it implicitly constrains the polynomial
Lyapunov function to approximate a maximal Lyapunov
function and hence can be used to provide asymptotically
accurate estimates of the region of attraction. However,
this conjecture is purely speculative and, in fact, is based
on the assumption that polynomial Lyapunov function can
estimate the domain of attraction arbitrarily well. In this
paper, we examine the assumption that polynomial Lyapunov
functions can estimate the domain of attraction arbitrarily
well and show that, in fact, polynomial Lyapunov functions
can estimate the ROA as well as continuously differentiable



maximal Lyapunov functions.

Results on the existence of Lyapunov functions estab-
lishing stability of ODEs and estimates of the ROA are
classified as converse Lyapunov theorems [18]. Among the
class of converse Lyapunov results, there are two sub-
types we will use in this paper and are discussed in Sec-
tion IV. The first , Massera-type [18] establishes existence
of smooth Lyapunov functions on bounded subsets of the
ROA with quantitative upper and lower bounds. The second,
maximal-type, establish Lyapunov functions which approach
infinity at the boundary of the ROA and whose level sets
form asymptotically accurate inner-approximations to the
ROA [19]. However, despite extensive literature on converse
Lyapunov theory, there are very few results on the existence
of polynomial Lyapunov functions and in particular, it has
never been shown that for any desired accuracy € > 0,
there exists a polynomial LF for which a sub-level set is
within the Hausdorff &-distance of the ROA. Furthermore,
there is reason to doubt the existence of such polynomial
Lyapunov functions. For instance, in [20] we find an example
of a globally asymptotically stable polynomial system for
which there exists no polynomial LF proving the global
stability of the system. These counter examples motivate us
to investigate the conditions under which the sub-level sets
of polynomial LF can accurately approximate the ROA of
nonlinear systems.

The goal of this paper, then, is to resolve the problem of
whether the sub-level sets of polynomial Lyapunov functions
can provide arbitrarily accurate inner-approximations to the
ROA. For this purpose, we will combine the approximation
results. The first of these results, as shown in [21], is that
if there exists a smooth LF that is decaying over a region
then there also exists a Polynomial LF that is also decaying
over the same region. The second result, as stated in [19],
is that under mild conditions on the vector field, there exists
a maximal LF V : § — R that tends to infinity along the
boundary of the region of attraction.

The main result of this paper, then, and as stated in Theo-
rem 5, is that if Sy is bounded and there exists a sufficiently
smooth maximal LF V(x), which is defined over S, and
proves cxponential decay over cach of the sub-level sets,
{x:V(x) <a}, ac]0,+e), then for any desired accuracy
€ > 0, there exists a polynomial LF P.(x) with a sub-
level set {x: P:(x) < a} for which the connected component
containing the equilibrium, denoted by D, satisfies

1) H(De,cl(Sy)) <,

2) P proves exponential decay over Dg,
where cl(Sy) is the closure of Sy and H(A,B) denotes the
Hausdorff distance between the sets A and B.

The paper is organized as follows. Notation is introduced
in Sec. II. A few basic definitions and preliminary lemmas
are presented in Sec. III. The mathematical formulation of the
problem and corresponding theorems and assumptions are
stated in Sec. IV. The main result of the paper is presented
and proved in Sec. V. We give our proposed method for
estimating the ROA and apply it to a numerical example in
Sec. VI. Finally, we conclude in Sec. VII.

II. NOTATION

The set of n-tuples of nonnegative natural numbers is
denoted by N". Let R and R~ be the sets of positive and
negative real numbers, respectively. We denote the closed
ball of radius r € R™ centered at ¢ € R" as B.(c) := {x €
R" : |[x—c|» <} with the unit ball centered at the origin
B:=B;(0). For any subset, D, of a normed space, we use D°
to denote the interior of D and dD to denote the boundary
of D and cl(D) := DUJD to denote the closure of D.

For operators g; : X — X, we denote the composition
Il; gi := g1 0...0 gp. For any suitably differentiable function
f:R" - R" and a € N", we adopt the multi-index differen-
tial notation
o

¢ d
= o f(x)7

D) = 5o 0 =1

where, d°/9x?f(x) := f. The gradient operator then is given
by
- [Du,o,...,o) D(o,...,o,1)]T_

For any k € N and Q C R, let C¥(Q) be the set of all
functions f: Q@ — R" such that D*f(x) is continuous for
any o with [[af[ := Y] o; <k Let Z":={a € N"[q; €
{0,1},i=1,...,n}.

Finally, for any f:D — R and a € R, we use L(f,a) :=
{x € D|f(x) < a} to denote the a— sub-level set of f.

III. BASIC SET NORMS AND OPERATIONS

The technical contribution of this paper is to show that
polynomial Lyapunov functions can be used to estimate the
Region of Attraction arbitrarily well for suitably differential
vector fields. This existence result requires approximation not
just of the Lyapunov function and its derivatives, but the sub-
level sets of the Lyapunov function as well. For this reason,
we require a distance metric on sets for which we define
convergence. The set distance we use is the Hausdorff metric
which, for any two compact sets Dj,D, C R", is defined as

H(Dlsz) = maX{C(DlaDZ)vC(D27D1)}7

where, {(Dy,D;) 1= max \nﬁlg:”x—y”
1 y=2

In the following lemma, we see that sequential subsets satisfy
something akin to the triangle inequality in the Hausdorff
metric.

Lemma 1: Let X,Y and Z be compact subsets of R” such
that X C Y C Z. Then,

H(X,Z)>max{H(X,Y),H(Y,Z)}.
Proof: Since X C Y C Z, we have

HX,)Y)=C(Y.,X):= i —
(X,¥) = (¥, X) : = max min[|x — ]|
< max min||x —z||
zeZ xeX
— H(X,Z).

Therefore, H(X,Y) < H(X,Z). The proof of H(Y,Z)

<
H(X.,Z) is similar. [ |



IV. DEFINITIONS, ASSUMPTIONS, AND CONVERSE
LYAPUNOV THEORY

In this paper, we consider nonlinear differential equations
of the form

(1) = f(x(2),

where f:R" — R" and f(0) = 0. For simplicity, in the
following we will assume that the solution map for Eq. (3)
is well defined. That is there exists a unique function g(xo,?)
such that d;g(x,7) = f(g(x,7)) and g(xp,0) = xo.

Definition 1: We say a set U C R" is asymptotically stable
for Eq. (3) if

o U contains a neighborhood of the origin.

e For any x € U, g(x,t) € U for all + > 0 and

lim, o0 g(x,1) = 0,

Definition 2: We say that W C R" is an exponentially
stable set for Eq. (3) if there exist i > 0, 6 > 0 such that
for any x e W,

x(0) =xo, 1€[0,00), ©)

[lg(x, )| < pl[x]|exp(—61).

The Region of Attraction of Eq. (3) is defined as follows

Definition 3: The Region of Attraction (ROA) of the origin
for Eq. (3) is the asymptotically stable set S such that for any
asymptotically stable set U, U is contained in S. That is, S
is the union of all asymptotically stable sets, S = Uyis asU.
For convenience, we will henceforth denote the ROA for f
as Sf.

Note that ROA is an open set.

In this paper, we assume that S, exists and is bounded.
Furthermore, without loss of generality, we assume Sy is
contained in the unit ball - i.e. Sy C B.

Assumption 1: Sy exists and Sy C B.

Lyapunov Theorem:

Theorem 1: Let V be a continuously differentiable func-
tion, a,,7,6 > 0, and D be the connected component of
L(V,a). Further suppose

Bl < V(x) < vl
@' fx) < -8,

for all x € D. Then D is an exponentially stable set for Eq. (3),
as in Definition 2.
Converse Lyapunov Results: The main result of this pa-
per relies on the assumption that there exists a Lyapunov
function for Eq. (3) with certain properties. To argue that
this assumption is likely to be valid for many exponentially
stable systems, we present two converse Lyapunov results.

The first, Massera-type, result establishes the existence of
a k-differentiable Lyapunov function under certain differen-
tiability and stability conditions for problem (3).

Theorem 2: [22] Consider ODE (3) and suppose f is
k—times continuously differentiable, for some k € N. Sup-
pose there exists constants A, i, 8, r > 0 such that

g(e,0)l| < uflxl|exp(61),ve =0, Vxe B,(0), (4)
IVAI <A, V¥xe By (0). ®)

Then there exist a k—times continuously differentiable func-
tion W : R” — R and constants «, 3,7, > 0 such that

allx[[* < W(x) < Bllal[®, Va e B(0), (©)

VW) f(x) < —yllx|?,  Vxe B(0). @)

The second is a maximal Lyapunov function result which
says that there exists some Lyapunov function V and a
positive definite function ¢ such that VV (x)” f = —¢(x) for

all x € §y. Furthermore, the Lyapunov function is maximal
in the sense that for any y € 95, )chyn}yV(x) = oo,

Theorem 3: [19] Consider ODE (3) and suppose f is
Lipschitz continuous on S;. Then there exist a continuous
function V : §y — R* U{0} and a positive definite function
¢ such that

V(0)=0, V(x)>0, ¥reS\{0},
V(x)=—¢(x), VxeSy.
limV (x) =0, Vxe€ Sy, Vy€ ds,.

xX—y
A maximal Lyapunov function, V, has the advantage that

for any desired accuracy, € > 0, there exists a sublevel set
L(V,a) C Sy of V with H(S;,L(V,a)) < € in the Haussdorf
metric.

Under Assumption 1, from [19] we can conclude that if
f is continuously differentiable, then there exists a continu-
ously differentiable maximal Lyapunov function V: Sy — R™
which decreases over the trajectories of the system and
satisfies

lmV (x) = oo,

X—=y

Vyeds.

Furthermore V (x) proves exponential decay over each of the
sub-level sets of V(x) and these sublevel sets can approxi-
mate Sy as accurately as desired.

The following assumption presumes the existence of a
Lyapunov function with properties that are of a combination
of both Massera-type and maximal Lyapunov functions.

Assumption 2: Let S be the ROA of Eq. (3). There exists
a function V: S - R s.t.

1) D*V e C¥(Sy), YaeZ",

2) limV(x) = +eo, VyedSy,

Xy
3) Forall yeS§y:
a) L(V,V(y)) is compact.
b) There exist By, %, 6 € R such that
B> < V() < wllall®, VxeLV,V(y),
W) f() < =8[lxl?, YxeLV.V(y)).
The first part of Assumption 2 is a necessary condition for
the following theorem; which is used to show polynomials
can approximate smooth Lyapunov functions arbitrarily well
in the main proof of this paper.

Theorem 4: Suppose Vv is a function with partial
derivatives D*v € C?(B) for all a € Z". Then for
any €& > 0, there exists a polynomial p, such that
maxyezn Hw ‘ <e.

Proof: See Theorem 8 [21].

As indicated in the following lemma, these assumptions

guarantee the existence of a decreasing Lyapunov function V



whose sub-level sets can approximate the ROA, Sy for any
desired level of accuracy in the Haussdorf metric.

Lemma 2: Suppose Sy is the ROA of Eq. (3) as per
Definition 3 and let V : Sy — R be any function satistying
the conditions in Assumptions 1 and 2. For any € > 0, there
exists some r > 0 such that

H(cl(Sy),L(V,r)) < &.

Proof: By definition, 0 € (S;)°. Now let Sg be any
compact set such that 0 € Se and Se C Sy with H(Se, cl(S)) <
€. Define

X" :=argmax V(x),
XESe
and r* :=V(x*). By the definition of x*, S¢ C L(V,r*) C S.
Therefore, if we let

X =8, Y:=L(V,r"), Z:=cl(S),
then X CY C Z and by Lemma 1,
H(cl(S),L(V,r*)) =H(Z,Y) <H(X,Z) = H(Sg,cl(S)) < e.
| ]

V. THE MAIN RESULT

We start this section by recalling the goal of the paper that
is to determine conditions that guarantee the sub-level sets
of polynomial LFs can inner-approximate the ROA up to any
desired accuracy. The main result shows that this guaranty
can be provided under Assumptions 1 and 2.

Before presenting the main result, we give a slight mod-
ification of a result in [21], wherein it was shown that
polynomial Lyapunov functions could approximate twice
continuously differential Lyapunov functions.

Lemma 3: Suppose Sy is the ROA of Eq. (3) as in
Definition 3 and V : Sy — R satisfies the conditions in
Assumptions 1 and 2. Then for any € > 0 and ¢ > 0, there
exists a polynomial Lyapunov function P and positive scalers
B,y and § s.t.

Blldl* < P(x) < ¥lxlP?,
VP(x)" f(x) < 8],
P(x) =V(x)| <&,
for all x € L(V,c).
See the Appendix for a Proof.

Theorem 5: Let Sy be the ROA of Eq. (3) as in Def-
inition 3 and V : Sy — R be any function for which the
conditions in Assumptions 1 and 2 are satisfied. For any
€ > 0, there exists a polynomial Lyapunov Function P and
a sub-level set L(P,a) such that if we define D to be the
connected component of L(P,a) containing the origin, then

1) H(D,cl(Sy)) <&,

2) There exist scalers §,7,6 € Rt such that

Bllel* < P(x) < vl P,
VP()" f(x) < 8|l

for all x € D.

This theorem states that P can be used to prove stability on a
set D which is arbitrarily close to Sy in the Haussdorf norm.
Proof: In this proof, we combine the fact that the sub-level
sets of a maximal LF can inner-approximate the ROA as in
Lemma 2, and the fact that any sufficiently smooth maximal
Lyapunov function V can be approximated by polynomial LF
on each of the sub-level sets L(V,a), Ya > 0 as in Lemma 3,
to show that under Assumptions 1 and 2, the connected
components of the sub-level sets of polynomial LFs can
alone inner-approximate the ROA, arbitrarily well.

Let V : Sy — R satisfy the conditions in Assumption 2.
From Lemma 2, we know that there exists a scalar r; > 0
such that

H(L(V,r1).cl(Sy)) <e.

Now, let r, > r1. By Lemma 3, there exist scalars 3,7,  and
a polynomial Lyapunov function P(x) approximating V (x)
over the compact set L(V,r,) such that

rn—r
()~ V()] < 25,

Vx e L(V,r), (8)
BllxII* < P(x) <yllx]P,

vP(x)! f(x) < =8||x|[?, VYxeL(V,r).

Vxe L(V,r2), (9)
(10)
Now, suppose we can establish the existence of a sub-level

set L(P,a) with connected component D where D is compact
and

L(V,r;) CD CL(V,r). (11)

Then, since L(V,r) C S and H(L(V,r),cl(S)) <&, if we let
X:=L(V.rp),Y:=D and Z:=cl(S), we have X CY C Z.
Therefore, Lemma 1 implies that H(D, cl(S)) < €. Moreover,
since D C L(V,r2), Eq. (9) and (10) imply that
BIlx|I* < P(x) <yllx|>, VxeD
vP(x)" f(x) < =8|, VxeD,

(12)
(13)
as desired. The remainder of the proof is dedicated to

establishing the existence of such a sub-level set L(P,a) and
connected component D.

First, let
.- RN +ri, Xm := argmin P(x),
3 x€IL(V,ry)
a:=P(xy), E:=L(V,r2)NL(P,a),

Note that r| < r, < rp, and the existence of x,, follows from
the fact that L(V,r,,) is compact, as in Assumption 2, and P
is continuous.

If we define D as the connected component of L(P,a) such
that O € D, then we will show that E = D and D satisfies
Eq. (11) which completes the proof. In order to do so, first
note that E C L(V,r,) holds by definition. Next, we will in
turn show that:

1) E is connected and O € E,

2) L(V,r) CE,

3) E=D.

Proof of Part 1: In order to show that E is connected and
0 € E, we will show that E is an exponentially stable set



for Eq. (3), as in Definition 2. Note that any exponentially
stable set is connected and contains 0. Under Assumption 2,
L(V,rp) is an exponentially stable set. Now, since E C
L(V,ry) by definition, there exist 4 >0, 6 > 0 such that

(v, 0)]| < pllxlle®", Vi >0,

lim g(x,7) = 0,

[—yo0
for any x € E C L(V,ry). Therefore, in order to prove the
exponential stability of E, we only need to show that

glx,t)€eE, VxecE, Vt>0. (14)

Again, we use the exponential stability of L(V,r;) and the
fact that E C L(V,ry) to write:

glx,t) eL(V,ry), Vt>0,Vx€E. (15)
Now, based on Eq. (10), we have
VP(x)T f(x) <0, Vx € L(V,72)\0. (16)

Therefore, we can conclude from Eq. (15) and (16) that

Ple(n) = P()+ [ VP(glr. 7)) gl )t < (),
for any x € L(V,r)\0. Hence, since E C L(P,a), we have

P(g(x,1)) <P(x)<a,Vt>0,Yx€E. (17)

Therefore,

g(x,t) € L(P,a), Vt >0, Vx € E. (18)

Now, since E = L(V,r;) NL(P,a), Eq. (14) follows from
Eq. (15) and (18), as desired.

Proof of Part 2: We will use Lemma 4 in the Appendix
to show that L(V,r;) C E. Based on Assumption 2 and Part 1
of the proof, the sets L(V,r;) and E both contain 0 and are
compact and connected. In order to apply Lemma 4, we only
need to show that

1) L(V,r1)NE #0,

2) OL(V,r)NIE =0,

3) EZ(L(V.r1))".

First, It is immediate that 0 € L(V,r;) NE and hence
ENL(V,r)) #£0.

Second, by contradiction, we will show that JL(V,r;) N
JdE = 0. Suppose JL(V,r;)NIE # 0. Therefore,
Jx e dL(V,r)NIE.
Now, since E = L(V,r;) NL(P,a), we have
dE C OL(V,ry) UJL(P,a).
Therefore, at least one of the following should hold:

P(x) =a and V(x) =ry, (19)

or

V(x) =ry and V(x) =ry. (20)

Assertion (20) is impossible because r; < ry,. Therefore,
Assertion (19) holds. However, since {x;,x} C L(V,r2),
Eq. (8) implies that

|P(xm) =V (xXm)
|P(x) =V (x)

ey
(22)

Hence, since 7, = 251 4 ry, we use Assertion (19) and
Eq. (22) to write, |a—ri| < (rm —r1)/3. Also we substitute
P(xm) = a and V(x,) = rp in Assertion (21) to write,
la—rp| < (rm—r1)/3.

However, Eq. (V) and (V) by triangle inequality imply that

[ —r1] <2|rm—n1]/3,

which is a contradiction, because 7| # ry,.

Continuing the examination of the conditions in Lemma 4,
finally we show that E ¢ (L(V,r;))°. Note that P(x,,) = a and
V(xp) = rm < ry. Therefore, x, € E and x,, ¢ (L(V,r1))°.
Hence, E ¢ (L(V,r1))°, as desired. Finally, L(V,r|) C E
follows from Lemma 4.

Proof of Part 3: Let D be the connected component of
L(P,a) such that 0 € D. We will show that

E=D.

From Part 1 of the proof, we know that E is connected
and 0 € E. Moreover, E C L(P,a) by definition. Therefore,

ECD.

Now, by contradiction, we will show that D C E. Suppose
D ¢ E = L(V,r;) NL(P,a). Therefore, since D C L(P,a), we
conclude that D ¢ L(V,r;). This means that

dx € D such that x ¢ L(V,r,).

Connectedness of D implies that there exists a continuous
function y : [0,1] — D such that y(0) =0 and y(1) = x.
Given the facts that L(V,ry) is compact, 0 € L(V,r;) and
x ¢ L(V,rp), it can be shown that

3t € [0,1] such that y:=y(z) € IL(V,r,).
Therefore, y € D and y € JL(V,r;). Hence,
V(y)=r2 > ry+3rm—nl, (23)

and

P(y) <a=P(xm) <V(xn) +|rm —r1] = rm + [rm —r1].
(24)

Finally, Eq. (23) and (24) imply that V(y) — P(y) > 2|r;, —
r| = 2’2;"1, which is a contradiction. Therefore, D C E,
which implies that D = E, as desired. |

Corollary 1: P proves the exponential stability of D for
Eq. (3), as in Definition 2.




VI. A PROPOSED METHOD FOR USING SOS
PROGRAMMING TO APPROXIMATE THE ROA

In this section, we propose a Lyapunov based approach
to approximating the ROA of polynomial ODEs based on
the use of Sum of Squares (SOS) polynomials. Theorem 5
shows that under Assumptions 1 and 2, sub-level sets of
polynomial Lyapunov functions can inner-approximate the
ROA up to any desired accuracy. In order to illustrate the
practical implication of Theorem 5, in this section we will
consider the van-der-Pol oscillator as an example of an ODE
with a bounded ROA. For this ODE, we will show that the
sub-level sets of polynomial Lyapunov functions of degree
less than d can inner-approximate the ROA and these inner-
approximations approach the true ROA as d increases.

Consider the ordinary differential equation

x=f(x), x(0)=uxo,

where f:R" — R”" is a polynomial and f(0) = 0. Denote by
S the ROA of Eq. (25) around the equilibrium 0 and suppose
S is nonempty and bounded. For any r > 0, we represent
the ball B,(0) as {x:u,(x) >0} where u,(x) :=r> - Y1 x2.
If we can find a polynomial Lyapunov function P(x) and
positive scalers 3,7 and & such that

Bllx|[* < P(x) < vllx|%,
VP(x)" f(x) < =8| ||, 27)

for all x € B-(0) = {x: u,(x) > 0}, then for any sub-level
set L(P,a) such that (P,a) C B,(0), the connected com-
ponent containing the origin is an inner-approximation to
the ROA. The search for a polynomial Lyapunv function P
satisfying Eq. (26) and (27) can be formulated using SOS
programming. Specifically, for a fixed degree d, we have
the polynomial variable P(x) and SOS polynomial variables

(25)

(26)

51(x),...,86(x) of degree less than 2d with the constraint that
—ﬁix%sd +n(u(x), (28
£
x>+yfx% — () s, 9)
—VP(x Z x) +se(x)ur(x).  (30)

This form of SOS programming problem can be solved
efficiently using such Matlab toolboxes as SOSTOOLS. For
convenience, for given radius r and degree d, we refer to
this SOS program as P = F(d,r), where P is the feasible
polynomial if F is feasible and P = @ otherwise. We now
propose the following two-step bisection-based approach to
estimating the ROA using F(d,r)

1) Initialize 7max, "min-

2) Setr= r‘““—"zrlmﬂ

3) If F(d,r) is feasible, set rmi, = r, otherwise rpax = r

4) Goto step 2.
The estimate of the ROA is then recovered from the last
feasible P = F(d,r) using an auxilliary SOS program to find
the largest a(d,r) such that L(F(d,r),a(d,r)) C B,(0).

Now clearly, for any d, a necessary condition for the
feasibility of F(d,r) is Sy ¢ B,(0). Now define

¥ =supr such that Sy ¢ B,(0)
r

Now, based on the results of this paper and numerical
experimentation, we propose the conjecture that as r — r*,
the polynomial P must approximate some maximal Lyapunov
function arbitrarily well in some neighborhood of the bound-
ary of the ROA and this convergence can be extended to the
level sets of the Lyapunov function. Furthermore, since the
ROA is compact, we conjecture that this approximation can
be extended to the entire ROA. Or, in other words,

lim, - L(F(d,r),a(d,r)) = ROA.

Note that although the results of the paper do not establish
this convergence, they are necessary for the conjecture to be
true.

A. Numerical Illustration

In this subsection, we show the apparent convergence of
the proposed method.

Example: Consider the Van der Pol oscillator in reverse
time defined as

X1 = —xp, and x'2:x1+xz(x%71). 31

We applied the proposed method for degrees d =4, 6
and 8. Figure 1 shows the corresponding recovered inner-
approximate ROA compared to the true ROA, indicated by
the red line, as defined by forward-time numerical integration
ol Eq. (31). In addition, the maximal radius on which F(d,r)
is feasible is indicated for d =4, 6, 8 by the corresponding
dashed circle.

Inner-approximations to the Reblon of Attraction

Fig. 1. Inner-approximations to the ROA of Eq. (31) obtained by solving
the associated SDP for polynomial variables with degree bound 2d.

VII. CONCLUSION

In this paper, we have proposed an SOS-based method for
estimating the Region of Attraction of nonlinear ODEs, the
conjectured convergence of which relies on the assumption
that polynomial Lyapunov functions can estimate the true
ROA arbitrarily well. To verify this assumption, we have
presented sufficient conditions which guarantee that the
ROA can be inner-approximated by the sub-level sets of



polynomial Lyapunov Functions arbitrarily well in sense of
Hausdorff distance. The main result of the paper as presented
in Theorem 5 is that if the ROA is bounded and there
exists an n-times continuously differentiable maximal LF
satisfying the conditions in Assumption 2, then for any
scaler € > 0, there exists a polynomial LF, P, and a sub-
level set, L(P,a), such that if we define D as the connected
component of L(P,a) that contains the equilibrium, then P
proves exponential stability of the ODE on the set D and D
is within the Hausdorff € distance of the ROA. In order to
demonstrate convergence of our proposed approach consis-
tent with the existence results, we applied the methodology to
a 2—dimensional polynomial ODE. Work is ongoing to show
that as the domain approaches the ROA in the Hausdorff
metric, any polynomial Lyapunov function decreasing on that
domain must provide an asymptotically accurate estimate of
the ROA.
APPENDIX

In this appendix, we provide a proof for Lemma 3, that
was used in the proof of Theorem 5.

Proof of Lemma 3: By assumption, there exist 3y, %, 0 >
0 such that

Bollx|[* < V(x) < pllx]?,
YV ()" f(x) < —8|lx|?,

for all x € L(V,c).
Now choose 3,y and 6 such that B < S,
Given these 3,y and 8, we define

Y>%, 6<&.

|°°7

b= )
max|| /(x)
d:= min{ﬁO_B7 7—705(50—5)/"19» 8}7
By Theorem 8 in [21], there exists a polynomial P(x) such that

JP(x) IV(x)
ax;  Ox;

X°X

’w <d, Yi=1,...n

T ’Sd, and
X' X

for all x € L(V,c). Expanding, we have

P(x) — V(x)+ wx% > (Bo —d)x"x > Bx" x.
and

P =) + PV 7 sy < T
Finally:

X)— X r X
VR f(x) = WV (o) (o) + TSR

< (—8 t ndb)x"x < —8x"x.

XT)C

Moreover, we have

Px)—V(x)

P V() < | =2

<| | <d<eg, VxeL(vc),
as desired. B

Lemma 4: Let A,B C R" be nonempty, connected and compact
and JANJdB = 0. Then, one and only one of the followings hold:
ACB°orBCA° or ANB=0.
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