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Abstract—We present an optimization-based framework for Consider the following class of scalar-valued anisotropic
analysis and control of linear parabolic Partial Differential parabolic PDEs with input(t) € R,
Equations (PDEs) with spatially varying coefficients withat
discretization or numerical approximation. For controller syn-  wy(z,t) = a(z)wyy(z,t) + b(z)wy (x,t) + c(x)w(z, t), (1)
thesis, we consider both full-state feedback and point obseation )
(output feedback). The input occurs at the boundary (point Z € [0,1], ¢ > 0, which has outpub(t) = w(1,t) € R and
actuation). We use positive definite matrices to parametere mixed boundary conditions of the form
positive Lyapunov functions and polynomials to parameterze
controller and observer gains. We use duality and an invertile w(0,t) =0, wy(1,1) = u(t), (2)

state variable transformation to convexify the controller synthesis herea. b and ¢ are polvnomials witha > 0. for
problem. Finally, we combine our synthesis condition with he a, ¢ polynomials witha(z) > a > 0,

Luenberger observer framework to express the output feedozk < € [0, 1]. We assume the controller is parlameterized by scalar
controller synthesis problem as a set of LMI/SDP constraing. R and functionR; asu(t) = Riw(1,t)+ [; Re(z)w(z,t)dx

We perform an extensive set of numerical experiments t0 \where «) is an estimate ofw obtained from some set of
demonstrate accuracy of the conditions and to prove necesgi observer dynamics. The objective of the paper is to propose

of the Lyapunov structures chosen. We provide numerical and timization-b d thod for det L trolk
analytical comparisons with alternative approaches to cotmol an optimization-based method for aetermining controleng

including Sturm Liouville theory and backstepping. Finally we 1 and R, and observer dynamics which minimize certain

use numerical tests to show that the method retains its accacy closed-loop gains.

for alternative boundary conditions. Control of PDE models is a challenging problem in that

. I ndex Terms—Distributed paramgter systems, partial differen- slight variations in the type of PDE, boundary conditiorts, e

tial equations (PDEs), control design, sum of squares. may dramatically alter properties of the solution [22]. The
model defined above is classified as an anisotropic parabolic
PDE with point inputs and point outputs. The term anisottopi

I. INTRODUCTION means that the values of the coefficient&r),b(x) and
c(z) depend on the spatial variable € [0,1]. Examples
Partial Differential Equations (PDEs) are used to modef anisotropic systems include heat conduction with non-

quantities which vary in both space and time with earljomogeneous conductive properties or a wave propagating

examples including the D’Alembert wave equation (1746)hrough a medium of varying density. The term point input

the Euler-Bernoulli beam (1750); the Euler equations (375{boundary actuated) means that the control input detesnine

and the Fourier heat equation (1822). Today, the use of Plgke of the boundary values and therefore has no direct mea-

models has expanded to include phenomena such as the nsg@able effect on Equation (1). This is in contrast to theecas

netohydrodynamics of plasma in a fusion reactor [43], tumouf distributed inputs, wherein the control effort is spreagr

growth, infectious diseases, and ecological successidl [8ome measurable subset of the domain. In a similar manner,

Chapter 11]. However, despite the variety of phenomenghe term point output means that the sensor measures tke stat

modeled by PDEs, compared to the literature on Ordinagy a single point in the domain and hence the output operator

Differential Equations (ODEs), our knowledge of how tgs unbounded in thé. induced norm.

analyze and control PDEs remains incomplete. Perhaps the most common approach to analysis and control
of PDEs is based on the use of discrete approximation. Such
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priori. Consequently, the stability of any particular ampr in control of ODEs. For stability analysis, as discussed in
imation is not guaranteed to imply stability of the actuabections V and VI, we use positive definite matrices to craate
PDE. For this reason, among others, there has been sdmear parametrization of a cone of Lyapunov functions wihic
interest in finding approaches to analysis and control whietne positive on the Hilbert spade. Specifically, the Lyapunov
can be applied directly to the PDE model without the use @inctions have the quadratic forii = (Z(w), PZ(w)),,
discretization or numerical approximation. Such methaets avherew € L is the infinite-dimensional staté, is a positive
sometimes termed direct or infinite-dimensional. definite matrix andZ is a fixed vector of multiplication and
There has been significant progress in the use of diréastegral operators with monomial multipliers and kerndlse
methods for control of PDE systems. One approach is derivative of the Lyapunov function is likewise constraine
express the control problem as the solution to a set wf be a negative definite quadratic form. If such a Lyapunov
operator-valued Riccati equations. This approach wasiepplfunction exists it directly proves stability of the PDE -.iteere
to distributed input/distributed output optimal controbplems is no numerical approximation. For state-feedback coletrol
in [41]. The problem of point actuation with full-state fdmtk synthesis, the controller, as defined above, is parametkby
was considered in [21] (and related work) and extended ih [28 scalarR; and a functionk,. Combining these gains with the
to output feedback controller synthesis through the use ofgaadratic Lyapunov functions used for stability analysedds
Luenberger observer. An alternative Riccati-based amtroaynthesis conditions which are bilinear in the design \rdes
for static output feedback of a certain class of well-posddowever, as described in Sections VIl and VIII, by defining an
operators can be found in [35], [36], [42]. A limitation ofebe invertible state transformation and a variable substitytive
Riccati-based methods, however, is that they rely on finitderive synthesis conditions which are linear in the optatian
dimensional numerical methods for obtaining the operatorariables. Next, in Section IX we introduce a class of inéinit
valued solution. While convergence of these approximatiodimensional Luenberger observers with observer gainspaga
has been demonstrated [21], for a given level of approximparameterized by the coefficients of polynomials. Agaimais
tion, it is not possible to determine whether existence ofthe Lyapunov function from Section V and the invertible stat
solution implies the closed loop is stable when applied ® tlvariable transformation from Section VII, we obtain SDP-
original PDE. based observer synthesis conditions. Finally, in SectilprmX
Backstepping [18] is a popular and well-developed methagrify the accuracy of the method with a series of numerical
for boundary control of parabolic PDE systems. This apgnoatests which indicate that the proposed stability condgiane
is based on the use of a boundary controller to transformecurate to several decimal places and suggest that for any
the PDE to a simpler model for which the existence of suitably controllable and observable system, the algorith
decreasing Lyapunov function has previously been estadglis will return an observer-based controller. This is followeyl
The backstepping approach is commonly used in the litezatuBection Xlll, wherein we include numerical and analytical
and has been extended to many classes of PDE systems - ceparisons with other results in the literature, inclgdin
e.g. [17], [33], [34], [32]. A highlight of the backsteppingSturm-Liouville and backstepping.
method is that for certain types of system, stabilizability A significant contribution of the paper, in addition to a
guarantees the existence of a backstepping transformatioew approach to analysis and control of PDEs, lies in the
However, a drawback of the backstepping approach is ttkxibility of the optimization-based approach. Specifigahs
it is not based on optimization, but rather typically regsir the use of LMIs for control of ODEs enabled the field of
numerical integration of a PDE in order to obtain the stabiebust control, so too does our LMI/Lyapunov-based apgroac
lizing controller - thereby making extensions to robust an control of PDEs allow the extension to analysis and cdntro
optimal control more difficult. Although a complete surveyf PDEs with parametric uncertainty, PDEs with nonlingarit
the of the literature on direct control of PDEs is beyonchultivariate PDEs and PDEs coupled with ODEs or delays.
the scope of this paper, we do note some other significaihally, we note that our approach is complementary to sgver
results on the use of Lyapunov functions for analysis andcent results in the use of LMIs for stability and control of
control of infinite dimensional systems including: a ratgti PDEs, including, e.g. our early work in [27], modeling and
beam [4]; quasilinear hyperbolic systems [3]; and contffol @ontrol of nonlinear dynamic systems in [39], stability bs#s
systems governed by conservation laws [5]. As an altermativf semilinear parabolic and hyperbolic systems in [12] dred t
to Lyapunov-based methods, a classical spectral appr@aachtimerous results contained in [26].
stability and stabilization is based on Sturm-Liouvillethy.
In particular, the differential operators which define tH2E3
in this paper can be adapted to the Sturm-Liouville framéyor
from whence one can attempt to determine stability andWe denote the vector space of-by-n real matrices by
designstatic output-feedback controllers. As is demonstratel™>™ and the subspace of symmetric matrices 3§y C
in Section XIII, however, the use of dynamic output feedbadk™*™ where the multiplicative and additive identities are
offers considerable advantages over this classical frarlew denoted byl, € S™ and0,,, € R™*", respectively. For
The goal of this paper is to design stabilizing static state € S*, P > 0 (P > 0) denotes thatP is a positive
feedback and dynamic output feedback controllers for POdefinite (positive semi-definite) matrix. The spacesetimes
systems. Our approach is inspired by the use of Linear Matdontinuously differentiable and infinitely differentigbfunc-
Inequalities (LMIs) and Semi-Definite Programming (SDPjons on an intervalW C R are denoted byC™ (W) and

II. NOTATION



C>(W), respectively. In a similar manne€;/™™ (W1, Ws)
represents the space af and m—times continuously dif-
ferentiable functions on interval#’; ¢ R and Wy C R,
respectively. The shorthand, and u; denote the partial
derivative ofu with respect to independent variablesand
t, respectively. For a bivariate functiorf(z,y), we denote
D.f := f, and Dyof := f, - i.e. D; is differentiation with
respect to the first variable anB, is differentiation with
respect to the second. In a similar mannBé := f£,, and
D? = f,,. Recall Ly(W) is the standard Hilbert space
of square Lebesgue integrable functions with standard no
and inner product. We usé&™ (W) to denote the Sobolev

subspaceH™ (W) := {y € Ly(W) : Lu eLg(W)} with
inner product(z, y) ;. = Som_, (42 970N We occa-

sionally letL5(0,1) := L»([0,1]) and H™(0, 1) :L:2 H™([0,1]).
For normed spaceX and Y, £(X,Y) denotes the Ba-
nach space of bounded linear operators fradmto Y with
induced norm||G|z := supj,,=./Gz[ly and we denote
L(X) == L(X,X). We defineZ,(z) € R¥*1x! to be the
column vector of all monomials in variables of degreed
or less arranged in increasing lexicographical order. Venof
use the notatiorZ,(x,y) := Z4([x;y]) to denote the vector
of monomials in bothz and y. For any functionT € Lo
we useMr : Ly — Lo to denote the multiplier operator
defined byT'. i.e. (Mrw)(z) = T'(z)w(z). For any functions
M, K1, Ky € C* we define

(X{M7K17K2}w) (.CC)
x 1
= M(z)w(z) + / Ko (2, €)w(€)de + / Ko (i, €)w(€)de.
: 3)

Ill. PROBLEM STATEMENT

For the system of Equations (1) - (2), the strict positivify o,

a(x) implies that the differential operator defining the PD
is uniformly elliptic [11, Section6.1]. This means thatw
diffuses from higher density to lower density, a propertychh

then the trivial solutionw = 0 is globally exponentially
stable with some desired rate of decay,

Output feedback controlif only output feedback is
available ¢(t) = w(1,t)), construct gaing, € C*°(0, 1)
and L, € R such that for stabilizing gain®; and Ry, if

3)

u(t) = Ryw(1,t) —i—/o Ry(z)w(z, t)de,

wherew satisfies

Wi (x,t) =a(x)Wey (x,t) + b(x)y (2, )

rm
+ c(x)w(x,t) + Li(x) (0

(t) —o(t)),

(5
for v(t) = w(l,t) and 9(t) = w(1,t) with boundary
conditions

w(0,t) =0, We(1,t) = u(t) + Lo (0(t) — v(t))

(6)
then the trivial solutionw = 0 of Equations (1) - (2) is
globally exponentially stable.

Note that if we consider only bounded linear operators, then
the structure of the controller in (4) is not restrictive, &gy
bounded linear functional can be represented in this waygusi
only the integral form (second term). However, we also would
like to consider unbounded operators and hence we include
the termR,w(1,t) as well. If controllers of this form prove
inadequate, then one can generalize the structure further t
include terms such aﬁ; Rs(z)wy(z, t)dx as in [15].

The choice for the structure of the Luenberger observer was
similarly determined in an ad-hoc manner through inclusibn
terms necessary to achieve separation of controller sgisthe
and observer design objectives. That is, the goal of the
observer is to stabilize the dynamics of the estimationrerro
e = w — w and the terms in Equations (5) - (6) were chosen
as the minimal necessary to achieve this objective. Again,
is structure mirrors the structure of observers foundhim t
ackstepping approach.

Existence and Uniqueness

is representative of most physical systems. The choice 1 _ _ _ _
sensor and actuator location is somewhat arbitrary. For theéMe now briefly discuss the uniqueness and existence of
heat equation, inputv,(1,#) = wu(t) would represent heat solutions. Define the operator

flow into the rod and the output(t) = w(1,t) represents the d2 d

temperature of the rod at that point. Note that the results of A = a(z) - +blz)— +c(@). @)
this paper can be adapted to Dirichlet, Neuman and RokﬂnIS known that the operatod restricted to space
boundary conditions with only slight modifications to the

conditions and proofs. These extensions are addressed in Dy = {w € H*(0,1): w(0) = w,(1) =0}, (8)

Section XIV. . :
The goal of this article is to design algorithms which rexaolvgene.rates a _ strongly-continuous semigroup, or Ca-
semigroup, onLs(0,1) (see, e.g., [7, Sectiod.1]). More

the following problems: . .
. ) ) i .. precisely, one can represedt as the negative of a Sturm-

1) Stablllty.AnaIyss .Establlsh global exponential stability| ;, ville operator onD, and hence, using the spectral prop-
of the tr|V|a(Ij saolutlon_w Eho of the aut_0||'10mousf ZyStemerties of a Sturm-Liouville operator, it can be proven that
u(t) = 0 and determine the exponential rate o eéay restricted toD, generates a&-semigroup onL»(0,1) [9].

2) State feedback controltf the autonomous systém Sy g ising Theorens1.3 and3.1.7 in [7] we conclude that
uns:]abf:e, <.:fonstruct gain, € R andRz(z) € C=(0,1) i the autonomous case(¢) = 0), for any initial condition
such that | wy € Dy there exists a unique classical solution of (1) - (2).

For the state-feedback case, using a fixed point argument

1
u(t) = Riw(l,1) +/0 Ry(z)w(z,t)dz,  (4)  gimilar to the one presented in [2] it can be shown that for



Ry € R andR; € Lo (0,1), the closed loop system (1) - (2)V(w) = (Z(w), PZ(w)), whereZ : L, — RP is a vector
with . of bases for a subspace of linear operatorsign(similar
u(t) :R1w(17t)+/ Ro(2)w(z, t)dz, to how z = (X1, ; z,|T is a vector of bases for the
0 space of linear functions o™). In our case, howeverZ
parameterizes a subspace of multiplier and integral operat
with polynomial multipliers and semi-separable kernelsei,
if P > eI, it has a symmetric square root and hence

V(w) = <P%2(w),P%Z(w)> > ¢|lw|]?>. For the time

admits a unique local in time solutian € C'*2((0,7), [0, 1]),
for T' > 0 sufficiently small, for any initial conditiom, € D,
where
) derivative, we will similarly requireV (w(t)) + pV (w(t)) =
_ —(Z(w(t)), QZ(w(t))), for some scalap > 0 and@ > 0
.(1)=Rw(l)+ [ R dz}. { ) :
wa(1) (1) /0 2(w)w(w)dzr} where here and throughout the paper we denote/bthe
(9 function which satisfiesV (w(t)) = LV (w(t)) for any
Thus if we can establish that any solution of the close¥plution of the associated PDE - i.e. the derivative along
loop system decays exponentially, then this implies the exelutions or time-derivative. Existence of suéh@Q > 0
istence and uniqueness of a unique classical solutiom implies exponential stability of the system. As was done for
C12((0,00), [0, 1]) for any wy € D. The proof of this state- LMis in finite-dimensional systems, this approach can then
ment has been omitted, but follows the arguments presenggdextended to controller and observer synthesis, as edtlin
in [2, Section 6]. below. _ _ _
Finally, consider the observer-based controller as defiméed &) Controller SynthesisFor controller synthesis, again
Equations (1) - (2) and (5) - (6). Define the estimator error gonsider the LMI approach for the finite-dimensional system

e = W — w, which is governed by #(t) = Ax(t) + Bu(t)

D ={we H?*0,1): w(0) = 0 and

er(x,t) = a(x)ez(x, t)+b(x)e, (x,t)+c(x)e(z, t)+Li(x)e(l, 1),
(@) (®)ess (@, ) Fblz)en (. O elle(z, O+ )(1(0) )Wherex(t) € R™ and u(t) € R™. For this system, there

with boundary conditions exists a stabilizing state feedback controller of the fauft) =
Rz(t) if and only if there exists a positive definite matix
e(0,t) =0,  es(1,t) = Loe(L,1). (11) andY e R™*" such that
It has been established in [12, Section 2] that for € (AP + BY) + (AP + BY)T < 0.

C'(0,0) and L, € R, Equations (10) - (11), if expo-
nentially stable, admit a unique local in time solutienc |f this LMI is feasible, then forR = Y P!, the Lyapunov
C2((0,7),0,1]), for T > 0 sufficiently small, for any initial function V(z) = z7 P~z is positive definite and has time

conditioney € D., where derivative
D. = {w € H(0,1): w(0) = 0 anduw, (1) = L)V =at (Pl PUBR ¢ ATP 4 (BR)TP e
_ -1, \T T T —1
Therefore, if we can establish that any solution of the = (I’ )" (AP + BRP + PA" + (BRP)")(P™ x)
coupled closed-loop dynamics decays exponentially, thent = y" (AP + BY + PA" + (BY)")y <0,
local in time solution can be extended to a classical satutio . ) )
e € C12((0,00), [0, 1]) for any initial conditioneg € D.. wherey = P~ x. The extension of this LMI approach to

PDEs is to search for a positive definite operdfoe Z*PZ
for some P > 0 and operator)), defined by(YVz)(z) =

IV. A FRAMEWORK FORSTABILITY ANALYSIS AND .
Yi2(1) + [, Ya(x)z(x)dz, such that ifu = Rw = YP~lw,

CONTROL

Our approach is motivated by the use of LMIs for optimal 1
control of finite-dimensional systems. For example, cosrsid u(t) = Riw(l, 1) +/0 Ry(z)w(z, t)dx
the autonomous finite-dimensional ODE

i(t) = Ax(t), =Y1(P~ w)(1,1) +/0 Yo (z) (P~ w)(z, t)dx,

where z(t) € R™. This ODE is exponentially stable if andthen the Lyapunov functionV = (w,P7lw) =
only if there exists a positive definite matrix € S such that (z(P~'w), PZ(P~'w)) satisfiesV (w(t)) + 2uV (w(t)) =

ATP 4+ PA <0, —(2 (Pfl_w) ,QZ (P~'w)) for some scalar > 0 and

@ > 0, which implies the closed-loop system is exponentially

Feasibility of this LMI implies that the Lyapunov functionstable. This is detailed in Section VIII.
V(r) = 2T Pz is positive definite and its derivative along b) Observer SynthesisAs mentioned previously, for
solutions V(z) = zT(ATP + PA)x is negative definite. observer design, we use a Luenberger observer and a sep-
For stability of PDEs, our approach is to use positive maration principle to decouple the error dynamics as defined
trices to define positive quadratic Lyapunov functions, exa Equations (10) - (11). For a finite-dimensional Luenberge
cept that instead o¥/(z) = z” Pz, we will use the form observer, where the output igt) = Cz(t), the estimator



x

dynamics are defined using the controller g&ilmnd observer + / Zo(n,2)T P3yZo(n, €)dn
gain L as 3
1
i = (A+ LO)E — Lu(t) + Bu(t). + [ Zaln.)" Prazaln, ) (15)
If uw(t) = Fi(t), then the error dynamics become Ko(z,8) = K1(¢, ). (16)
é(t) = (A+ LO)e(t). Then
Existence of an observer gain which renders the error dynag,,) — /1 w(z)M (z)w(z)dz
ics stable is equivalent to the existence dPa 0 andT such 0
that Lo
PA4TC + ATP + CTIT < + [ [ e et
If this LMI is feasible, then forL = P~'T, the Lyapunov +/1 /1w(:c)K2(:v Ow(€)déd (17)
function V(e) = e® Pe is positive definite and has derivative 0 Ja ’
V(e) = " (PA+ PLC + ATP + CTLTP)e = (Z(w), PZ(w)) = (PEZ(w), P Z(w)) > e|lw]®.
=l (PA+TC+ATP+CT'TT)e < 0. Proof: The proof follows directly from the definition of
Z and the Sum-of-Squares representation/of [ ]

For the infinite-dimensional PDE, we have two observer gains-l-he form of the Lyapunov function defined by Theorem 1 in
which we construct as Equation (17) is somewhat atypical for the study of paraboli

Li(z) =P Y Ti(z) + T3(z)) and Ly =P YTy), PlDEs. A more commonly used version 1Would béw) =

_ X Jo w(z)M (z)w(x)dx or evenyel/ (w) = [; w(x)Mw(z)dx

for some gainsly, T; and T3 and whereP = Z*PZ for for A7 > 0. Such forms can be obtained as a special case
some P > 0. We then use the Lyapunov functidri(e) = f Theorem 1 whenP,; = 0 for i # j # 1. However, as
(2(e), PZ(c)) and search for & > 0 such thatV(e) = e discuss in Section XII, neglect of th€, and K, terms
—(2(e),QZ(e)) < —dV(e) < 0, for somed > 0. This is  resylts in significantly less accurate conditions for ditgtand

detailed in Section IX. control.
For polynomialsM, K; and K», let X k, k,} be de-
V. SUM-OF-SQUARESLYAPUNOV FUNCTIONS WITH fined as in (3). If M, K; and K, satisfy the conditions
SEMI-SEPARABLE KERNELS of Theorem 1, therV (w) = (w, Xar i, k3 w) = efwl]?,
In this Section, we define the mapand show how this map Which implies the operatoA’;, k, k,} is positive definite
is used to construct Lyapunov functions of the fovigw) = and furthermore, coercive. Moreover, sintg K; andK; are
(Z(w), PZ(w)). This approach is based on prior work, agolynomials, the operator is bounded, which implies thateh
described in [28]. Specifically, we define exists af > 0 such thate[|w||* < V(w) < 0]|w|*. Finally,
the constraint (16) in Theorem 1 implies that the operator
. Zay (z)w(z) Xk, K, 1S self-adjoint.
(Zw)(z) = f% Za, (z, Ew(§)dE | As discussed in Section IV, Theorem 1 allows us to use
fo Zay(z, §)w(§)dE positive matrices to parameterize positive Lyapunov fiomst

are the vectors of all of the Form (17). By expanding these forms, the c.oeff_icients
of the polynomialsM, K; and K, are linear combinations
of the elements ofP > 0. Furthermore, if we can express
Theorem 1. Givend;,d; € N ande > 0, ¢ € R, let the derivativeV in the Form (17), where the coefficients are
Z1(z) = Zg, (z) and Zz(z,§) = Za,(v,§), withn =d; + 1 again linear combinations of the elementsRfthen we can
andm = £(d2+2)(d2+1) denoting the length of these vectorsenforce negativity of the derivative along the solutiansy

where recall Z;, (z) and Zg,(z, &)
monomials of degred; andd, or less, starting with.

respectively. Suppose that there exists a mafti S"**™  ysingV(w) = — (Z(w), QZ(w)) to equate these coefficients
such that to those defined by) > 0. Constructing the matrices which
€ 0111 relate the elements of and () can be automated using
P — 0p_11 On_1m1 Pz Pis MATLAB toolboxes for polynomial manipulation such as
P = p1T2 ’ Py, Pys >0, MULTIPOLY, contained in the package SOSTOOLS [29] and
PL Pl Psy further developed in our package DELAYTOOLS [28].

(13) For polynomialsM, K; and K5, we represent the constraint
where P;; is a partition of P such thatPi; € S*, Pyy € S™  (w, X{ar.x, 103 w) = (Z(w), PZ(w)) for someP > 0 as

and P33 € S™. Now let {M, K1, K2} € E¢4, a,,c; Where
M(z) = Zy(2)" P11 Z(z), (14)  E{dide,e} =AM, K1, Ky : M, Ky, K, satisfy
Ki(x,8) = Zy(2)T PiaZa(x,€) + Za(&,2)T P31 Z1(€) Theorem 1 ford,, da, €}

¢ The constrainf M, K1, K»} € 2 is an LMI constraint
T y A1, A2 —{dy,d2,€}
+/0 Za(n,x)" P33 Za(n,&)dn in the coefficients of the polynomiald/, K; and K, and



the unknown matrixP > 0. In this way, the shorthand where {M, K, K>} := Q,(M, K1, K5). Then for any initial
{M, Ky, K>} € E4, 4., allows us to define LMI constraints conditionw(0) € Dy, there exists a scalay > 0 such that
implicitly. the classical solutionv of (18) - (19) satisfies

—5t
VI. A TEST FORSTABILITY lo(®] < yw©)e™, >0,
In this section, we use the results of the previous sectighereD, is defined in Equatior8).
to test the existence of a Lyapunov function which estabBsh
stability of the scalar parabolic PDE defined in Equatlor)s(lIn (3). As discussed in Section Ill, for any(0) € D, the
(2). Recall the autonomous(¢) = 0) form of the PDE autonomous system admits a unique classical solution. By
wi(r,t) = a(T)Wwee (z,t) + b(2)wy (z,t) + c(x)w(w, t), Theorem 1, if{ M, K1, K2} € 24, 4,., then
18
(18) Viw) = <w X, Kl’Kz}w> = (w, Pw),
satisfiese|w||* < V(w) < 6|lw|* for somed > 0. The
The main technical contribution of this section is reforatilg  cajculation of the time derivativé’ and its reformulation is
the derivative of the Lyapunov functioii in (17) in the form |engthy. It involves integration by parts, the Wirtingeegual-
of Equation (17). This is achieved in the following theorenty and the assumption(z) > a. For this reason, we have
wherein we obtain functions/, K, and K such that included this proof in the appendix as Lemma 3. Continuing,
) 1 N by Lemma 3, for anyw which satisfies Equations (18) - (19),
V(w) S/ w(x)M (z)w(x)dx

V(w(t)) < {wlt), X i, ey 0®)) -

K déd y 2 3
/ / 1@, Qw(€)dde Now, since{—M —20M,—-K; — 20K, —K> — 20K»} €

Ei,d,00 We have thatX ;o o, < —20P and thus
/ / DEa(a, uw(©dede. 0N o5vm) > 0. This implies that LV (w(t) <
Note that the inequality in this expression is deliberate, i —20V (w(t)) for all ¢ > 0. Thus, V(w(?)) < V(w(0))e 2,
certain negative semidefinite terms have been left outiof COncluding, we have that
Kl and Kg. 0
Before giving the main theorem, we define the following lw(®)|| < Allw(0)]le™*, ~= o
linear map 2, which relates functiond/, K; and K5 to an
upper bound on the time-derivative of the Lyapunov function
defined by these functions. Specifically, we say that

Proof: Recall the operatotY,, x, k. iS as defined

w(0,t) =0, wy(1,t) = 0.

[ ]

Note that using the arguments in the proof of [7, Theo-

rem 5.1.3], the above result holds for weak/mild solutions

{M, K, Ky} := Q(M, Ky, K»), (20) where the initial condition need only satisfy, € L (0,1).

To test the conditions of Theorem 2, the variables are

the coefficients of the polynomiald/, K; and K,. The
M (z) = [Qa(x)M(I) _ b(x)]V[(x)} coefficients of M, K; and K, are then linear combinations

Oz of these variables. Finally, the constrainds =4, 4, are

9] LMI constraints, as discussed in Section V. Constructirgy th
+2 {% [a(z) (K1(2,€) — KQ(x’g))]L_z matrices which map these coefficients can be automated using
2 SOSTOOLS or DelayTOOLs. The algorithm used can be
+ 2M(x)e(x) — 5 o (21) adapted from the algorithm presented for output feedback
R ord controller in Section X. Application of the conditions of
Ki(z,8) =— | =— [a(z) K1(x,&)] — b(x)K1(x, &) Theorem 2 to several numerical examples can be found in
Oz | Ox :
019 Section XI.
+ 2| 2 O K091 - §O K 0.9)|
9¢ L0¢ VII.  NVERSION AND STATE TRANSFORMATION
A X + (@) + e(§) K (2, ), (22)  As discussed in Section IV, for controller synthesis, we
Ko (x,€) =K1(, @) (23) will use a state variable transformatian= P~'w so that

(Zh, PZ(P~'w)) = (h,w). DefineP = X( K, r,}, Where

Th 2. S that th ist I , . ) .
eorem uppose that there exist scalarso > 0 X K, K} IS as defined in (3). The® has the form

dl,dQ,cil,dg € N and polynomialsM, K; and K, such that
{M, Ky, K2} € gy dye (Pz)(x) / Ky(z,6)z d§+/ Ko(z,€)z(€)dE,

{—M — 26M, —Kl — 26K1, —Kg — 26K2} S EdAl 4.0

T where if {M, K1, K2} € Z¢q4,,4,,¢}, the operator is coercive
(b(1) = aa(1)) K1 (1, 2) = a(1)(D1 K1) (1, 2) = 0, with (w, Pw) > ¢|lw||>. Operators of this type are a com-
(b(1) = ax(1))M (1) — a(1)My(1) < 0, bination of a multiplier operator and two integral operator
K5(0,z) =0, Furthermore, since<; and K, are polynomials, there exist
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polynomials F; and G; such thatK;(x, &) = Fy(z)TG1(€)

and Kx(z,£&) = Fy(x)TGa(€). This implies that the two
integral operators can be combined into a single integral
of the form folK(x,g)z(g)dg where K is a kernel of the
semiseparable type. That is, there exist functidhsand G;

such that
_JFR@)"Gi(9),
Kee) = {F2(I)TG2(§),

Integral operators with semiseparable kernels are usexpte+
sent the input-output map of well-posed Linear Time-Vagyin
(LTV) systems, as explored in [16, Sectiod,ITheoreny.1].
These operators have certain properties which make them wel
suited for use in Lyapunov functions. Specifically, they moé¢
trace-class, which means that their eigenvalues may not be
summable. Moreover, as discussed in [16, Sectid}, Isince
M(z) > e > 0, P~! is a bounded linear operator and can ) _ _
be calculated explicitly, as in the following theorem, whis @ Chebyshev series, then construction of the functions M

r>§
otherwise

1 2 3 4
m

Fig. 1: |w — PP, ! w| as a function ofa.

adapted from [16, Section 8, Theorem3.1].

K, and K, is simply a matter of polynomial multiplication

Theorem 3. Suppose thaf{M, K;, Kx} € E{J‘jl’d%E} for

some di,dz, e > 0 with Ki(z,¢§) F(z)"G(¢) and

Ky(z,&) = G(z)TF(£). Let P € L(L2(0,1)) be defined as
P = Xim k. K.} Where Xk, i,y is as defined in(3).

Define

H =[Ny + NoU(1)] " NoU (1)
I 0 0 0
N = {o 0}’ N2 = {0 I]’
and U(z) = lim,,—,« U, (x), where
Unia() =1~ [ BOME ' COUM@E, (@4
0
and U; = I. Then, the inverse of the operat®ris given by

(P~u) (0) “M(@uo) + [ Ko (e

0

1
+ / Ky (2, E)u(€)de,

M(z) =M (z)~",
Ky(z,€) =M (2)"'Ca)U(2)(H — DUE) ™' BE)M (€)™,
Ky(z,€) =M (2) "' C2)U(x)HU(§) " B()M (&)

Note that sinceM(¢) > e, M(¢)~! is bounded and
continuous and hence the matrix of rational functio
B(&)M(€)~1C(¢) is bounded and continuous. Therefore,
follows from [8, Chapter3] that the uniform limit U(z)
exists and is non-singular far € [0, 1]. SinceU(z) is non-
singular on[0, 1], the matrixH is well defined. Therefore, by

construction_MK,,K, € C*. Furthermore, note that since,

P satisfiese||w||* < (w, Pw) < 0|jw|* for somed > 0, then
1/0]w|* < (w, P~'w) < 1/efw]?.

Theorem 3 not only proves existence, but gives a practi-

cal method for constructing the state variable transfoionat
P~ for which (Zh, PZ(P~'w)) = (h,w). Specifically, if
we truncate the sequendé, and approximatel/ (x)~! by

and integration, which can be performed in MATLAB or
Mathematica. In practice, we have found tliat converges
after only a few iterations. To illustrate, in Figure 1 we bav
applied this approach to a given\/, Ky, Ko} € Z1,1,; and
plot |w — PP, w| as a function ofn for the arbitrarily
chosen function(z) = z(z—0.4)(z—1). HereP, |, denotes
the construction forP~! defined in Theorem 3 with/(z)
replaced byU,,+1(z). In this casepn = 5 yields anLy norm
error of ~ 10~°. In this example, we approximated (¢) !
using the first five terms of its Chebyshev series.

Finally, we emphasize that construction®f ! is not part
of the optimization algorithm, but rather is performed afte
algorithm has solved the controller synthesis problem @o b
defined in the following section) and returned the polyndmia
variablesM, K, and K.

VIIl. STATE-FEEDBACK CONTROLLER SYNTHESIS

Our approach to controller synthesis is based on the use
of a state variable transformatiop = P~'w which, by
Theorem 3, is guaranteed to exist for aRy= X(ar k) K.}
defined by{M, K1, Ko} € E(q, 4,.c}- Specifically, we will
use the Lyapunov functiol (w) = (P~ 'w,w) = (y, Py).
Ignoring the input for the moment and using the operator
defined in Equation (7), the time-derivative of this funatio
yields the dual stability condition

V(w) =2(P 'w, Aw) = 2 (y, APy) <0,

M¥hich we must enforce for allj € L,. The critical point
i that the operatofP~! does not appear explicitly in the

stability condition. Rather its existence is only inferredm
the constraint orP that {M, K1, Ko} € E1q4, 4,,e3- The next
step in our approach is to combine this dual stability caodit
with a variable substitution through the use of a contradier
the form

u(t) = Y1 (P~ tw)(1,t) —|—/0 Ya(z) (P~ w)(x, t)da

= Ryw(1,t) —l—/o Ry (z)w(z, t)dx,



wherein we have replaced the original controller gaitisand D is as in Equation(9)) the solutionw of (25) - (26) exists,
Ry with the new variable®; andY,. OnceY; and Y2 are belongs toC!2((0, ), [0, 1]) and satisfies
determined by the SOS solver, the actual gaitisand R; ot
. . < ® .
can be recovered by computi®y * and applying the formula lw@l < Allw©)fle™, >0

listed here. Proof: We start the proof by observing that since
Before giving the main theorem, we recall that the inputM/, K1, K2} € Eg4, 4., @S per Theorem 1, these polyno-
enters the dynamics as mials define a positive operat@® = X,/ x, x,} such that
el|lw|]? < (w, Pw) < 0||w||* for somed > 0. Furthermore,
wi(x,t) = a(@)wea (7, 1) + b(x)wa (2, 1) + c(x)w(z, 1), by Theorem 3, there exist bounded and continuously differen
(25) tiable functions MK, and K, such thatP~! = XMK, K,
w(0,t) =0, we(1,t) = u(t). (26) satisfying 1/6||w||?* < (w,P~'w) < 1/e|w|®. We now

. ! . . . propose the Lyapunov function
The goal, then, is to define conditions @h (which defines

M, K; andK>) as well as or; and the polynomial, such V(w) = (P~ 'w,w) = (P~ w, PP w)
that the closed-loop system is exponentially stable. v .
To simplify exposition, we now define the following linear = /0 (P~ w)(x)M (2) (P~ w)(x)dz

map, 2., which relates functiond/, K; and K, to an upper 1 pz

bound on the time-derivative of the Lyapunov function define + / / (P~ w)(x) Ky (x, &) (P~ w)(¢)dédx

by these functions for the controller dynamics. Specificalie 0 70 -

sytat [ @k P )@
{]\/[,Kl,KQ} = QC(JV[,Kl,KQ), (27) 0 z

_ Lety = P~ w. Note that ifw € H?(0,1), theny = P~ 1w €

if H2(0,1). Now, sincel /8]|w||2 < (w, P~ w) < 1/e|jw]2, we

M(:v) = (Gaa (@) — by(2)) M (z) + b(x) My (z) have that the Lyapunov function is upper and lower bounded.

) Now suppose that
m

+ a(x) My, (z) + 2¢(x) M (z) — —ae 1
5 2 u(t) = Yi (P w)(1,t) —|—/ Ya(z) (P~ w)(x, t)dz
+alx) |25 [K1(2,6) - Ka(x,0))| . p
E=a = 1.t t)dz.
. Riw(L0) + [ Rofaju(a )iz
Ki(z,€) = a(z)(D?K1)(z, €) + b(z) (D1 K1) (z, €) Since MK,,K, € C*(0,1) andY> _is polynqmial, we have
D2K b(EV (DK that R, € C*°(0,1). Therefore, as discussed in Section Ill, the
T alO)(D2 K@, £) + b(e) (Do) (@, €) closed loop System (25) - (26) admits a solutio H2(0, 1)
) ) + (c(z) + ¢(§)) K1(z,8), (29 which impliesy = P~'w € H?(0,1). Again, the calculation
Ky(z,8) = Kq1(&, ). (30) of the time derivativel’ and its reformulation is lengthy. It
) involves integration by parts, the Wirtinger inequalitydan
Theorem 4. Suppose that there exist scalatsy > 0, the assumptiom(z) > . This proof is in the appendix as
dy,dy,d1,dz2 € N and polynomialsV/, K, and K such that | emma 4 which establishes that for amy which satisfies

(M, K|, K>} €40, and Ky(0,2) = 0. Equations (25) - (26),

. _ o
Further suppose V(w()) < <y(t)’ X{M7K1,K2}y(t)>
. R R +y(Lt)Ny(1,t) + 2y(1,t)a(1) M (1)y.(1,1),
{—M — QMM, —Ki — 2/LK1, —Ky — 2/,LK2} S E(il da.00
o where N = a(1)M,(1) + (b(1) — az(1))M(1). Now,
where {M, K1, K>} = Q.(M, K1, K,). Let since {—M — 2uM,—Ky — 2uKy,—K> — 2uK>} €

Mo(1) |, anll) = b(1)

Y
1S5 2a(1)

Ed,dp0, We have that Xy z 2, < —24P and
M(1), Yy(z)=(D:1K1)(1,z). hence <y(t),X{MJghf(2}y(t)§ < “2uyt), Py(t) =
(31) —2u(w(t), P~ w(t)). Applying this to the inequality, we get
V(w(t)) < =2 (w(®), P~ w(t))
+y(Lt)Ny(1,t) + 2y(1, t)a(1) M (1)y.(1, 1).

If the control inputu(t) is defined as

1
u(®) V(P )10 + [ Yaw)(P ), o
. 0 A sufficient condition for stability, then, is that
lew(l,t)—i—/ Ro(2)w(z, t)da, 32) 20(Da()M(1)y.(1) <  —y(1)Ny(1). Unfortunately,
0 however, our control input enters via, (1) and noty,(1).
To see the relationship between (1) andy. (1), we expand

1 . - .
where’P™" is as defined fof® = &y x, .} in Theorem 3 the former and then solve for the latter as follows

and X, i, k. IS as defined ir{3), then there exists a scalar
~ > 0 such that for any initial conditionv(0) € D (where wy(1,8) =M, (1)y(1,¢) + M (1)y.(1,¢)



+/ (D1 K1) (1, 2)y(z, t)d, (33)
0
where solving forM (1)y.(1) yields
M(1D)y(1,t) =w.(1,1) = Ma(1)y(1,1)
1
—/0 (D1 K1) (1, 2)y(x, t)dx.  (34)

This implies that the Lyapunov function satisfies

V(w(t)) < —2uV (w(t)) +y(1,t)Ny(1,1)
+2y(1,t)a(l) (ws (1, t) - Mm(l)y(lv t))

—2y(1,t)a(1)/0 (D1 K1) (1, 2)y(x, t)dx.

Now, examining the proposed controller, we obtain
wy(1,t) = u(t) = Riw(l,t) + /01 Ry (z)w(z, t)dx
= R1(Py)(1,t) + /01 Ry (z)(Py)(z, t)dz
= vyl + [ Vatwuto ),

which is expressed in the new optlmlzatlon variab‘iesand
Y2. Now, pluggingw, (1) = Yiy(1) + fo Yo (x)y(z)dz into
the time-derivative of the Lyapunov functlon we get

V(w(t)) < —2uV(w(t))
+y(1,8)%(N + 2a(1)Y7 — 2a(1)M,(1))

/ Vil
— 2y(1, t)a(1) / (DK ) (1, 2)y (. t)de. (35)

By inspection, we see that the stability conditions are now

N +2a(1)Y; — 2a(1)M,(1) < 0

+2y(1,t)a

andYs(z) = (D1 K;)(1,z). This then implies that (w(t)) <
—2uV(w(t)) for all ¢ > 0 and henceV(w(t)) <
V(w(0))e™2+t. Since|lw||* < 6V (w), we have
lw®)ll < VOV (w(t)) < v/OV (w(0))e
< VO/ew(0)|e".
]

At this point, it is significant to note that given values fhet
variablesYs, Y,, M, K; and K5, the controller gaind?; and
R» can be found by calculating MK; and K, via Theorem
3 and using the formula

1
le(l)—i—/o Ro(z)w(z)dx

1
+ / Ya (a)y(x)de

=Yi(P'w)(1) —|—/0 Ya(z) (P~ w)(z)dx

1
1 +/ YK, (1, 2)w(x)dx
0

=Yiy(1)

+/01 Ya(x) (/Z (2, &w (f)de:v—i—/l KQ(x,g)w(g)dg) de

=YiM / YK, (1, 2)w(x)dz
+/O ( / Ya(O)K, (€, 2) d5+/ Ya(©)K, (6, )d&)w(w)dw
so that
R —ViM(1), (36)
1
Rz<x>:m51<1,x>+/ SO, (6, d§+/ Ya(O)K, (€, 2)d,
(37)

where we have used the identity

/01/:f(:v,§)d§d:v = Al/oéf(x,g)dmg = /Ol/ozf(ﬁ,x)dgdx,

and the fact that K(z, &) = Ky (&, z).

IX. OBSERVERSYNTHESIS

In Section VIII, we described LMI conditions under which
one can obtain controller gai®; and R»(z) such that input
u(t) = Ryw(1,t) + fol Ry (z)w(z, t)dz ensures exponentially
stability of the closed-loop system. However, this form of
controller requires measurement of the state,t) at every
point x € [0,1] at all times. Implementation of such a
controller is problematic as such a distributed measurémen
is unlikely to be readily available. A more common scenario
is one in which we may only measure the valuewfr, t)
at discrete points in the domain. In particular, we assume
that only a single measurement is available at the boundary
of the domain, and in particular, at(t) = w(1,t). As
discussed in Section Ill, in this scenario, we seek to find
an estimator/observer which will yield a real-time estienat
of the state of the system at all points and which, if used in
closed-loop, will ensure exponential stability of the eds
loop. Specifically, our observer is a dynamic system with
input v(t) w(l,t) and outputw(z,t), where w(z,t) is
the estimate of the state at timeWe adopt the Luenberger
observer framework discussed previously, which impliest th
the dynamics of the observer are given by

We(x,t) = a(T)Wey (2, 1) + b(x) Wy (2, 1)
+ c(z)w(z,t) + Li(x) (0(t) — v(t)), (38)
w(0,t) =0, Wy (1,t) = u(t) + Lo (0(t) —v(t)), (39)

whered(t) = w(1,t) is the predicted output and the scalay
and functionZL; (x) are gains which map error in this predicted
output to the dynamics of the observer state. In the follgwin
theorem, we seek conditions dn and L, which ensure that

if R, and R, are as defined in Theorem 4 and the controller
is defined as

1
u(t) = Riw(1,t) —l—/o Ry (z)w(z, t)dx,

then Equations (38) - (39) coupled with Equations (25) - (26)
and Equation (40) define an exponentially stable system.

(40)
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Our approach is based on the separation principle [@nd Xy k, k,} and X;pm K K Ly areas defined irf3). Then
Chapters], [18, Chaptels]. Specifically, we consider the errorfor any e which sausﬁes(éfl) (42) with initial condition
dynamics of the PDE coupled with the observer dynamie$0) € D, (See Equatior{12)), there exists a scalay > 0
in Equations (38) - (39). That is, if we define the error asuch that

e = W — w, then this quantity satisfies le®)]| <~lle(0)]le™%, t>o0.
et(z,t) = a(r)ess (v,t) + b(z)ex (2, 1) + c(x)e(w, 1) Proof: We start by observing that sinde\/, K1, K} €
+ 21(, 1), (41) ZE4,,d.c, as per Theorem 1, these polynomials define a positive
e(0,8) =0,  en(1,t) = 25(t), (42) operatorP = Xk, k) such thate|w|? < (w,Pw) <
0||wl||? for somed > 0. Furthermore, by Theorem 3, there exist
where the feedback signats and 2, are defined as bounded and continuously differentiable functionsM and

K, which define the positive operatg?—' = X K, K.}
Therefore, sincd; € C*>(0,1), we have that the closed: -loop
The key point is that the error dynamics do not depend @mror dynamics (41) - (42) admit a local in time solutiefor
the choice of controller gain&; and R,. In the following anyeg € D..

theorem, this will allow us to choose observer gainsand We now propose the Lyapunov function

L, which stabilize the error dynamics. Then, in Theorem 6

we will show that if the controller gains are chosen as V(e) = (e, Pe)

z1(x,t) :== Li(x)e(1,t) and zo(t) := Loe(1,t). (43)

per Theorem 4 and the observer gains are chosen as per _/1 e(z)M (z)e(z)dz

Theorem 5, then the coupled dynamics are stable in both the o

state and state estimate. Unlike for controller synthesis,

conditions for stabilization of the error dynamics are lase / / z) K1 (z,§)e(§)dsdr

on the use of a simple Lyapunov functidn(e) = (e, Pe)
where the operatoP = Xy k, x,} IS defined by some / / z) Ky (z, &)e(€)deda.
{M, Ky, KQ} S Ed17d275.

The following theorem is motivated by the LMI approactThe derivative of this Lyapunov function is identical to the
as defined in Section IV, wherein as before the variaBlgs one in Theorem 2 except for the presence of the terjrend
K, andK> are defined by a positive definite matifixand the », defined in (43). Specifically, we have
observer variables are scal@s and polynomialsi; and T3 )

(defined by their vector of coefficients). Referring to the ILM Vi(e) < <6, X{M7fgl7lg2}e>

motivation, these observer variables are similar to theimat
! 2(P 2 1)(Pe)(1
T and the observer gains are then recoveredas P~ 'T; +2(Pe, 1) + 2z2a(1)(Pe) (1)
andL, = P~Y(T, +T3), which is similar to the LMI observer +2 (e, Mg, e(1)) + e(1) Ree(1),
gain matrixL = P~'T. where R, (z) = (b(1) — a.(1))K1(1,z) — a(1) (D1 K1)(1, z)

Theorem 5. Suppose there exist scalars,d > 0, andRs=(b(1)—ax(1))M(1)— a(1)Ms(1). In the proof of

di,ds,d1,d» € N and polynomialsV/, K, and K» such that Theorem 2, we had, = 0 andz; = 0 and hence the stability
condition was that?; = R, = 0 and thatX{MK Ko} S

{M, K1, K>} € Zay e, and K(0,2) = 0. —24P. For the observer, we similarly requirg ;; ;. z,, <
Further suppose —20P. However, we now have the observer gan{$x) =
R R R Li(x)e(l) and e, (1) = 2o = Loe(1) which the algorithm
{—M — 26M,—K; — 26K, —K3 — 26K5} € By do.00 can choose in order to cancel o{ and R,. Unfortunately,

however, these gains depend & and K; and the gains
are currently bilinear with the operator varial® (and the
functions M K;, and K, which define it). Hence we would

Where{M f(l,fQ} = O, (M, K, K,). Let M, K, and K,
defmeX{MK Ka} = {M7K17K2} as in Theorem 3 and

— - like to perform a variable substitution. This is complichte
Ly :=(a(1)M(1))"'T: 44
2 =(a(h)M(1)) " Tz, (44) however, by the fact that there are two observer gains - one at
Ly(z) =M(z)(T(2) + Ts(z)) the boundary and one directly injected into the dynamics. Le
+ /I K, (2, €)(T1(€) + T5(€))de us first examine the second gain = Lqe(1) which appears
0 in the term

1
+/ Ko (2, §)(T1(€) + T5(8))dE, (45) z2a(1)(Pe)(1) = e(1)Laa(1)(Pe)(1)
¥ =e(1) Loa(1)M (1) e(1)
where %/—/

Ty (x) = —0.5((b(1) —a. (1) K1(1,2) — a(1) (D1 K1)(1,2)), 1
1(2) ((b(1) — ag(1)) K1 (1, ) — a(1)(D1 K1)( (2{)5) +/0 (1) Lna(1) K, (1. 2)e()
Ty < —0.5((b(1) — ax(1))M(1) — a(1)M,(1)) (47) !
T2€ 1 —|—/
0

T3(z) = —Loa(1)K:1(1,2), (48) 1)L2a(1)K1(1, z)e(z)dz,
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where we have made the variable substitutith = X. AN LMI cONDITION FOROUTPUT-FEEDBACK
Loa(1)M (1) which implies Ty is a scalar variable. The STABILIZATION

variable L, is thereby partially eliminated from the search. ) ) ) ]

However, sincei(z) > 0 andM(z) > 0, givenTs, the gainL. In this section we briefly summarize the results of the
can later be recovered ds, = (a(1)M(1))~'T5. Of course, paper by giving an LMI formulation of the output-feedback
this variable substitution has nabmpletelyeliminated the Controller synthesis problem.

original variableL;. To completely eliminate., will require  Theorem 6. Givends, d», d1, d» € N ande, 6, i > 0, SUppoSe

assistance from the second gdip. To see how this is done, that there exist polynomiald?, N, K1, K>, S; and S» such
we examine the second term in whigh appears that

<’Pe,zl):<e, PMy, 6(1)>=<€,MT1€(1)>+<€,MT36(1)>. {M,K1,K2} € Zq, e
——

(49)
Mz +Mry « S S
{—]\/f — QMJV[, —-K; - 2/LK1, —Ky — 2/LK2} S E(il,dAQ,O’
Here we have defined a new variabilg(x) which is de- (50)
fiqed by Ti(z) = M(x)Li(x) + [y Ki(x,&)L1(€)dE + K»(0,2) =0, (51)
fz Kg(l‘,f)Ll(f)df — T3( ) for which MT]C = PML]C — {N7 Sla 52} € Sy dyes
Mpr,c for any ¢ € R where T3 will be defined shortly. v 2’(52)

Furthermore, for anyf’s, the maplL, — T3 is invertible with . N N
{—N — 25]\7, -5 — 2581, —S5 — 25S2} S Ezfl,tig,O’

Ly(2) :=M(2)(T: (2) + Ts(z)) (53)

z T) = 54
+ [ K@ om© + @) 0 =0, 69
0 1 where {M,Kl,KQ} = QC(M, Kl,Kg), {N,S’l,gg} =
+/ Ko (z, &) (T (&) + T5(£))d¢ Q,(N, S1,52) and 2d; and 2d, + 1 are the degrees of/,

@ N and K1, S1, respectively.

it P~ = XHM K, K,}- In this way, we eliminate the variable Then, there exist gain&:, Rz(x), L1(x) and L, such that

L, and replace it W|tHF1 and T5. The next step, then, is tolf
chooseTs so as to cancel the remaining term which contains
L. This is done usinge, Mr,e(1)), which we expand to get

1
u(t) = Ryw(1,t) —l—/o Ry (z)w(z, t)dx, (55)

1 and w satisfies Equation§25) - (26) and w satisfies Equa-
(e, Mrye(1)) = /0 e(x)Ts(z)e(1)dz, tions (38) - (39) with a zero initial condition then
WhICh we would like to use to eliminate [w(®)]| < [w(0)]le™",

fo 1)Loa(1)K1 (1, z)e(x)dz. Clearly, then, the appropriate o
choice forTs is for somey > 0 and anyx satisfying0 < x < min{yu, ¢}.

Proof: If the conditions in (49) - (51) are satisfied,
then the polynomials\/, K; and K, satisfy the constraints
of Theorem 4. Therefore, we may constru¢t and Ra(x)
using (36) - (37). Similarly, ifV, S; andS; satisfy (52) - (54),
then the conditions of Theorem 5 are satisfied with= N
K, = S; andKy = S». Thus, we can construct observer gains

Tg(I) = —LQQ(l)Kl(l, I)

Note that the dependence ®§ on L, is admissible because

T3 is not a free variable anfl; is computed directly fronTs.

This means that once feasible valuesTgrandT, have been

found, we then calculaté, from Ty, then uselL, to calculate . o

Ty and then usd} and T to calculate the gairL. 7L)1( z) and L, usmgp(44) X(45). Nowérizﬂ; - X){(M K Kb
Concluding the proof, the time-derivative of the Lyapunov ° RUBSPAY {N, 51,92} o7 N85}

function becomes Thgr;fore t;:;)theorem conditions imply tHt < —2uP,
an <
Vie) < <e, X{M,f(l,f(z}e> Sutlﬁi:lhga;[he proof of Theorem 5, there exists a sca@ar- 0

2 (e, (Mr, + Mpg,)e(1)) + e(1) (2Ts 4+ Ry) e(1). .
(e, (M, + Mr,) e(1)) +e(1) (275 + Ro) (1) Vo) < —28Vae) — rel1)2 (56)
Therefore, if 71 = —Rl, 275 +R2 < 0 and {- M —

90M, —K, — 2K N ATE we have that whereV,(e) = (e, P,e). Similarly, for the observer dynamics
1— 1, — 2 - 2 '—*d d ,0?

n (38) - (39) with the input (55), using the proof of Theorem 4
one can prove that there exists a scalar> 0 such that

which, in a similar manner as Theorem 2 establishes exponery( W) < = 2uVe(0) + 2 (g, Lae(1)) + §(1) (2a(1)L)e(1)

tial stability of the error dynamics with decay rate [ — Bay(1)?, (57)

V(e) S _25‘/(6)7
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where § = P 1w and V. () = <w,7>;1w> = (y,P.y). variables in order to construct new dependent polynomials

From (56) - (57) we infer that for any > 0 we have such as i M, Ky, Ky} = Q.(M, K1, K). Once all variables
. . and constraints have been declared, SOSTOOLS converts all
PV (e) + V() < —2r8V,(e) + A(yl) U Azll) constraints and variables to a format which can be accepted
° e = ° z(l) ’ Z(l) ’ by SDP solvers such as SeDuMi, SDPT3 or MOSEK. The a-

(58) posteriori polynomial manipulations such as operatorrisios
can be performed using a combination of the multipoly torlbo

where and Mupad. To help with understanding this process, we define
—2¢P. 0 Ly several subroutines which perform specific relevant tasks a
U= * —B2 a(l)La| combine them in the pseudo code which would be used to
* * b obtain the observer-based controllers.

and the inner product is defined dp(0,1) x R x R. Now, [M Ky, Ko] =nul t _seni sep(¢)
for any 0 < x < min{¢, u}, if we chooser > 0 sufficiently
large, it follows that/ < diag(—2xP.,0,0). Thus, from (59)
we get that

« Declares polynomial variabled/, K; and K, and
enforces the constraiftM, K1, K2} € Z4, ds,e-
[ M Ky, Ko] =onega_pri mal (M Kg, Ky)
rVy(e) + Vo() < — 216V, (e) — 26V, (D) « ConstructsM, K and K, as defined by the maf,
< =25k (rV,(e) + Vi()) . in (20).
[ M Ky, K;] =omega_dual (M Kg, Ko)
. « ConstructsM, K, and K, as defined by the mag,
V(w,e) < =2V (w,e). in (27).
eq_constr(F)
« Given a setF' of univariate/bivariate polynomials,

Therefore defining/ (w, e) = rV,(e) + V.(w), we get that

Integrating in time,

7 (e, Poe) + (w0, P ) < e 7 (w(0), Pow(0)),  (59) declares element wise equality constraihit= 0.
where we have used the fact that0) = 0 and thuse(0) = [M Ky, K] =i nv_op(M Ky, Kz)
—w(0). Now, as discussed, there exist scalarg, > 0 such » Given {M, K, Ky} = Eq, 4,,c Calculates the inverse
that multiplier M and kernels K and K, by approximating
1 L 1. U(x) by performing the integration in (24) a finite
cllell < {e, Poe) < tllell?, g”wH2 < (w, P ) < EHU’”Q- number of times and using a Chebyshev series approx-

imation of M (z)~!.

Therefore, using (59) we get [Re, Ro] =cont rol | er_gai ns(M Ki, Ko, M K,, K,)

lell? + ||@]? < r_91||w(0)”2672nt7 « The function definey; andY:(x) using (31). Conse-
g quently,R; and Ry (z) are defined using (36) and (37),
whereo = min(re, 1/65). Thus, respectively.
. 6, o [Li1, Lo] =observer _gai ns(M Ki, Ki, M Ky, K;)

lell, ll@ll < 4/ —=[lw(0)][e™"" « The function constructg} using (47) and set, us-

) ) . ing (44). Then the function constructs(z) andTs(x)

Finally, using the fact thatw|| < ||@w|| + ||e|| produces using (46) and (48) and construdts () using (45).

0, A pseudo code for the SOSTOOLS implementation of the SDP

—kt
lw®ll < 24/ —=[lw(0)]e™". is presented in Algorithm 1.

[ |

The variables in Theorem 6 are polynomials which are X|
parameterized by vectors of coefficients associated todepre
termined monomial basis. There are two types of constraintsin this section we test the conditions of Theorems 2, 4 and 5
on these variables: equality constraints between polyalsmi by applying them to two parameterized instances of scalar
and constraints of the forne Zg, 4, .. To test the condi- parabolic PDEs. The first instance is a variation of the @ass
tions of Theorem 6, these variables and constraints mustibetropic heat equation. Because this system is well-stdi
converted to a form recognized by an SDP solver such w# are able to compare our results with a number of existing
SeDuMi [37]. Many of these tasks have already been aut@sults in the literature. The second system is an anisietrop
mated in SOSTOOLS [29] and our extended toolbox, Dela»DE with arbitrarily chosen coefficients. Both instanceseha
TOOLS [28]. Specifically, SOSTOOLS has functionality foran instability term, parameterized by an instability facto
declaring polynomial variables and enforcing scalar eigual \. For both systems, we test stability, find controllers and
constraints. Furthermore, DelayTOOLS [28] allows the useobnstruct observer-based controllers.
to declare matrix-valued equality constraints and crea® n Example 1:Our first system is defined as follows.
polynomial variables which satisf¢ =;, 4, .. Furthermore,
the multipoly toolbox allows one to manipulate polynomial wi (T, 1) = Wep(x,t) + Mw(z,t), XETR, (60)

. NUMERICAL RESULTS
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Algorithm 1: Output-feedback controller synthesis. d=T7 8 9 10 11
g : g _p _ - y N = 143982 17.9626 22.8645 23.3003 27.1179
Declaring optimization variables:

1) [M Ky, Ko] =mul t _sem sep(¢) TABLE II: Max. \ as a function ofd; = dy = d for which
2) [N, S1, Sp] =mul t _semi sep(e) the conditions of Theorem 4 are feasible, thereby implying
Constructing polynomials: the existence of an exp. stabilizing state-feedback cbetro
1) [ M Ky, Kz] =onmega_dual (M K, Ky) for PDE (60).
2) [N, S, S;] =onega_primal (N, S, S;)
Declaring affine constraints: d=17 8 9 10 11
1) eq_constr ( (- M 2uM - Kq- 24K, - Ko- 21Ko) X\ =14.5233 17.7643 23.4406 24.7772 27.8820
-mult_sem sep(0)) ) ,
2) eq_const r ((- N 26N, - 8- 25y, - S5- 26S,) TABLE Ill: Max. A as a function ofd; = d> = d for which
-mult sem sep(0) )’ ’ the conditions of Theorem 5 are feasible, thereby implyireg t
3) eq const r (K2( 0, X)) existence of an exp. stabilizing output-feedback corgrdibr
4) eq:const r(Sz(0,x)) PDE (60).
if SOS problem is feasiblden
| Return outputs: M Ky, Kz, N, S, S,.
Calculating control gains: sufficiently high degree, a static state-feedback comtralan
_i be constructed for any value of > 0.
1 Ki, K] =inv_o Ki, K .
2; [ MK Kl —OP(M K1, Ko) To test the accuracy of the conditions of Theorem 5, we

[ R, Ro] =control | er_gai ns(M Ky, K1, M Ky, K, find _the Iar.gest/\ for which the conditions of Theo_rem S are

feasible withe = 0.001 and § = 0.001, thereby implying
the existence of an exponentially stabilizing dynamic atip
feedback controller with output(t) = w(1,t). Table IlI
presents this maximum as a function of the degreé, =
ds = d. The results suggest that for sufficiently high degree,
d=3 4 5 6 7 analytic a dynamic output feedback controller can be constructed for
A =0.59 2.19 2.457 2.46 2.461 2.467 any value Of)\ > 0.

Example 2:To illustrate the versatility of the proposed

TABLE I: Max. A as a function ofl; = d; = d for which the method, we next consider the following arbitrarily chosen
exp. stability conditions of Theorem 2 are feasible, impdyi anisotropic system

stability of PDE (60) withu(t) = 0.

Calculating observer gains:
1) [Nl §1! §2] :i nV_Op( Nl Sll SZ)
2) [ L1, Lo] =observer_gai ns(N, S;, S1, N, S;, S,)

i, 1) = a(@)wse (@, 6) + b(a)w, (@, 1) + c(@)u(z, ), (61)

wherea(z) = 23 — 2% + 2, b(z) = 322 — 2z and c¢(z) =
—0.52% + 1.32%2 — 1.52 + 0.7 + A with X € R. Although the
w(0,8) =0, wa(1,t) = u(t). analytical solution to this PDE is not readily available, we
may use a finite-difference scheme to numerically simulate
The output of the PDE i®(t) = w(1,t). Foru(t) = 0, the the system and thereby estimate the range\dbr which

with boundary conditions

analytical solution of this PDE is given by the PDE (61) is stable. Specifically, we find that the system
0o is unstable forA > 4.66. To determine the accuracy of the
w(z,t) = Z et (wo, dn) (), conditions of Theorem 2, we find the largesfor which the
n—1 conditions of Theorem 2 are feasible. Table 1V lists thedatg

such\ usinge, 6 = 0.001 as a function of polynomial degree

di = do = d. The maximum\ for which we can prove the

exponential stability for is\ = 4.62, which is 99.14% of

Yhe predicted stability margin of.66. The < 1% discrepancy

may be due to conservatism or inaccuracy in the predicted
aximumA on account of inaccuracy in the discretization or

?)oor choice of initial conditions in the simulation.

To test the accuracy of the conditions in Theorem 4, we

gain find the largest for which the conditions of Theorem 4

where \,, = XA — (2n — 1)?72/4 and ¢, = v/2sin((2n —
1)wz/2). This implies that Equation (60) is unstable for>
72 /4 =~ 2.467. To test the numerical accuracy of the stabilit
conditions in Theorem 2, we found the larg&st 0 for which
the conditions of Theorem 2 are feasible as a function of t
parametergl; andd, which define the degree of the variable
M, K; andK,. Table | presents these results o6 = 0.001.
Ford, = dy = 7, we can construct a Lyapunov function whicr"Lj1
proves stzability for\ = 2.461, which is99.74% of the stability
margin - ~ 2.4674.

To test the accuracy of the conditions in Theorem 4, we d=3 4 5 6 7 simulation
find the largest\ for which the conditions of Theorem 4 are A=437 461 461 462 4.62 4.66
feasible withe = 0.001 and x = 0.001, thereby implying . _
the existence of an exponentially stabilizing state-feettb TABLE IV: Max. A as afunction ofl; = dy = d for which the
controller. Table Il presents this maximumm as a function €XP- Stability conditions of Theorem 2 are feasible, implyi
of the degreed; — d» — d. The results suggest that forStability of PDE (61) withu(t) = 0.
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d=14 5 [§ 7 8 d=1 2 3 4...9 10 Ki,Ko #0
A =19.0216 36.1359  39.7247  43.5974  44.5219 Ex.1 A=391 478 4388 4.88 4.88 27.1179
Ex.2 A=351 7.03 8.59 8.59 8.59 44.5219

TABLE V: Max. A as a function ofd; = d; = d for which _

the conditions of Theorem 4 are feasible, thereby implyinf?BLE VII: Re-evaluation of the results of Tables Il and V
the existence of an exp. stabilizing state-feedback cbetro With added constraink’; = K, = 0.

for PDE (61).

A. Numerical Implementation of Observer-Based Contrsller

d=14 5 6 7 B _ :
N = 183090 36.0199 38.0478 405931 44.079 To illustrate the observer-based controllers which result

from feasibility of the conditions of Theorems 4 and 5, we
TABLE VI: Max. X\ as a function ofd; = dy = d for which take the anisotropic PDE (61) with = 35. This value of\
the conditions of Theorem 5 are feasible, thereby implyiwg t renders the autonomous system unstable. We then synthesize
existence of an exp. stabilizing output-feedback corgrdibr controller and observer gains using the results of Theorems
PDE (61). and 5 ford; = ds = 6, along with the inverse state
transformation defined in Theorem 3. For the inverse state
transformation,M (z)~! is approximated using a sixth order
. _ . ) Chebyshev series approximation and 5 iterations are used to
are feasible withe = 0.001 and = 0.001, thereby implying  yefiner7 = 1. The controllers are then applied to the state

the existence of an exponentially stabilizing state-f@@ttb o estimator dynamics, which are then discretized using a
controller. Table V presents this maximukas a function trapezoidal approximation. The initial state is set to

of the degreed; = d = d. The results suggest that for
sufficiently high degree, a static state-feedback comtralan wolz) = ¢ (;@.%'73))22 . <;;_‘(’)-77))22
be constructed for any value of> 0. o= ’

To test the accuracy of the conditions of Theorem 5, wehile the initial observer state is set ©(x,0) = 0. Fig-
again find the largest for which the conditions of Theorem 5ures 2(a) - 2(c) illustrate the state evolution of the system
are feasible with- = 0.001 andd = 0.001, thereby implying observer and the control effort respectively. Finally, Ui 3
the existence of an exponentially stabilizing dynamic atip illustrates the integral control gaiRR;(z). Note that its behav-
feedback controller with output(t) = w(1,¢). Table VI ior at the boundaries is logical since at= 0, the boundary
presents this maximum as a function of the degre®, = conditionw(0,¢) = 0 ensures that no control effort is required.
ds = d. The results suggest that for sufficiently high degre&/hereas, air = 1, the control exerts maximum effort.

a dynamic output feedback controller can be constructed for

any value ofA > 0_’ ) XIl. NECESSITY OFSEMI-SEPARABLE KERNELS IN THE
We conclude with the conjecture that the proposed method LYAPUNOV FUNCTION

is asymptotically accurate in the sense that, for any 0, ] .
if the PDE (1) - (2) is stable in the autonomous sense, thenRecall that the Lyapunov functions used in Theorems 2, 4,
the conditions of Theorem 2 will be feasible for sufficientiy@nd 5 all have the form
high d; and d,. Moreover, we conjecture that if the system 1
is observable and controllable for some suitable definitidh(w) Z/ w(z)M (v)w(z)dx
of controllability and observability, then the conditiornd 1 0 . 1
Theorems 4 and 5 will be feasible for sufficiently highand +/ w(x) (/ Ky (z,w(&)de +/ KQ(I,g)w(g)dg) dzr.
d2. We emphasize, however, that this is only a conjecture and /o 0 z
additional work must be done in order to make this statemeg§ mentioned previously, this form is atypical in the study
rigorous and determine its veracity. A further caveat tséheof parabolic PDEs and the reader may question the neces-
results is the observation that the maximum degteandd;  sjty of the termsk; and K, as their presence significantly
for which the conditions can be tested is a function of th&)mplicates the analysis and increases the complexityeof th
memory and processing speed of the computational platfoggapility conditions. Therefore, to illustrate the nedtyssf
on which the experiments are performed. Specifically, thgcluding these terms, in this section we repeat the nurakeric
number of optimization variables in the underlying SDP proksxamples presented previously with the added restrictian t
lem is determined by the number of polynomial coefficientg, — i, — o (which translates taP;; = 0 for i # j # 1 in
which scales a®)(d?). To illustrate, all numerical experimentstheorem 1). Table VI illustrates these results for the ouher
presented in this paper were performed on a machine wWi{inthesis conditions of Theorem 4 using the same method-
8 gigabytes of random access memory, which limited ology as described in the previous section. These numerical
analysis to a maximum degree @f = d, = 11 for PDE (60) tests indicate that while inclusion d&; and K> allows us
andd; = dy = 8 for PDE (61). to control the PDE for any\ > 0, when K; = K, = 0,

In the following subsection, we illustrate the controllared our method will fail for some\, regardless of the polynomial
observers which result from feasibility of the conditions odegreei; = d; = d. As indicated in Table VI, the results are
Theorems 4 and 5 using numerical simulation. similar for the observer synthesis conditions of Theorem 5.
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w(w,t)

time

0 0.2 04 0.6 0.8 1
time

(a) Evolution of closed-loop state(z,t). (b) Evolution of closed-loop state estimai€x, t). (c) Control inputw,(1,t) = u(t).

Fig. 2: Evolution of closed loop system for Example 2 with= 35 using controller from Theorem 4 and observer from
Theorem 5.

— /\d_:3189 4279 428 L ~8~89 415?8 K;v?[g;;go the properties of the coefficientsx), b(z) and c(z) it can
Ex 2 A—351 712 843 843 843 44.079 be established that is continuously differentiablegy and o

are continuous and there exist scalagsand oy such that
TABLE VIII: Re-evaluation of the results of Tables Il and VIP(z) = po > 0 ando(z) > oo > 0. If py is the first eigen-
with added constraink’; = Ky = 0. value of (62), then it can be established using the Rayleigh
quotient thatu; < p$¢, where u$© is the first eigenvalue of
the following constant coefficient Sturm-Liouville eigeve
XIll. CoMPARISONWITH AND RELATION TO EXISTING problem
_ _ RESULTS _ | Puw(x) .
In this section, we compare our numerical results with POW + qu(z) = porw(z), (63)

several results in the literature which can be used for liabi

analysis and control, including those based on Sturm-Lilleuv subject to the boundary conditions(0) = 0 and w(1) +
theory and backstepping. kw(1) = 0 and whereg; ando; are scalars such that

. . o q(z) <qr and o(z) < o1
A. Static Controllers Using Sturm Liouville Theory

The output feedback controllers we construct are dynanftoW let us first consider Numerical Example 1, as defined
in that they rely on an auxiliary set of estimator dynamid§ Equation (60) in Section XI. In this case, we have that
which must be simulated in real-time. By contrast, statipatt 70 = 1, @1 = A ando; = 1. Therefore, estimating the first
feedback controllers do not use an estimator and instegd rélgenvalue of (63) we get thag® ~ A—m?. Since, for stability
only on a gain of the form, e.gu(t) = —rv(t) = —kw(1,t). We requireu§® < 0, for a large enough: > 0, a control

Unfortunately, even for finite-dimensional systems theppem  InPUt of the formu(t) = —rw(1,?) can stabilize (60) for
of static output feedback design is unsolved whgn# 1. A < 72. This result is significantly more conservative than
That is, there is no LMI or polynomial-time algorithm whichthe results described in Tables II-1ll which yield a stabiig

is guaranteed to find a stabilizing output feedback C(),,Hm”cont.roller for at Igasn < 27.1179. Of course this result is not
if one exists [38], [13]. However, there are numerous resyfparticularly surprising, as static output feedback cdldrs are
which give sufficient conditions for the existence of such @& Subset of dynamic output feedback controllers.

controller, often based on the use of a fixed Lyapunov functio Similarly, for Numerical Example 2 (Equation (61)) we have
For the parabolic PDE which we consider, Sturm-Liouvil®@(®) = 2° —2?+2, q(2) = —0.52° +1.32° — 1.5z + 0.7+
theory [10, Chapter 2] can be used to express conditions fdo(z) = 1. _ThU_SPO = 50_/27' @ =0.7+A ando; = 1.
existence of static-output feedback controllers. Spelgfidar ~ 1herefore, estimating the first eigenvalue of (63) we get tha
u(t) = —kw(1,t), the stability of (1) - (2) depends on theti® = A — 17.58. As before, we requirgui® < 0. Therefore

first eigenvalue of the following Sturm-Liouville eigenual for & large enougl > 0, a control input of the formu(t) =
problem —rw(1,t) can stabilize (60) forx < 17.58. Whereas, from

p i Tables V-VI we see that Theorems 4 and 5 yield a dynamic
- <p(x) w(x)) +q(2)w(r) = po(z)w(x), (62) output feedback controller for at least< 44.079.
X

dx
where is the eigenvalue and B. The Case Whed - A* < 0
pla) =l oL g(z) = C@)@7 o(z) = @ For some values of the coefficienigz), b(z) and c(x)
a(r) a(z) we may have thaid + A* < 0 on Dy, where the operator

The boundary conditions for this eigenvalue problem arté is defined in (7) and the séb, is defined in (8). The
w(0) = 0 and w,(1) + kw(1) = 0. For our system, using output feedback stabilization of such systems, i.e. systeittn
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d=6 7 3 9 10 11 _ _
5=801 127 1721 2031 2266 25.78 w(0,8) =0, wx(l,t) = u(t), (66)

where X > 0. Now define thetarget system
TABLE IX: Max. exp. decay raté as a function of polynomial

degree,d; = d, = d for Equations (1) - (2) with4 as in 2(2,8) = 220(2, 1), (67)
Equation (64) for which we can construct output feedback 2(0,) =0, 2;(1,t) =0. (68)

controliers using Theorems 4 and 5. The key backstepping result is that there exists a funckon

such that if

1
A+ A* <0 and collocated control/observation, is considered  ,(4) = F(1,1)w(1, ) +/ (D1E)(1, z)w(z, t)dz,
in [6]. The authors in [6] show that for such systems there 0

exists a scalak > 0 (possiblyx = oco) such that the control then for any solutionv of Equations (65) - (66),

u(t) = —kv(t) exponentially stabilizes the system. We wish x
to see if our methodology offers a performance gain over the z(z,t) = w(x,t) — / E(z,&)w(E, t)d¢,
controller proposed in [6]. If we choosgz) = 1, b(z) =0 0
andc(z) = 72/4, then is a solution of the target system in Equations (67) - (68).
) ) Furthermore, if the mag : w — z is invertible, then stability
A= . + ~ (64) of the target system implies stability of the original cldse
dz? = 4 loop PDE. For the example problem given, tlfisis obtained

Applying integration by parts and Lemma 1, it can be estabs a solution of &ernel-PDEand can be found explicitly
lished thatA + A* < 0 on Dy. If we apply a controller of as [18]
the form proposed in [6], then(t) = —kv(t) = —rkw(1,1),

- - : A L (VAT =89
for somex > 0. Using the theory in Subsection XIII-A it is E(x,€) = —A¢
easily established that even for an arbitrarily large 0, the [ A (22 — £2)

closed IOOPQ system state will decay with a rate close to, bv%erell is the first order modified Bessel function of the first
less therB7~ /4. Whereas, from Table IX we observe that for . .

ind. Moreover,£ has an inverse of the form
d1 = dy = 11 we can construct an output feedback controller B
with a minimum exponential decay rate 2i.78, a significant (5—12) (z) = 2(z, 1) +/ F(x,€)2(€,t)de (70)
improvement oveBr? /4. ’ 0 ’ T

, 0<¢<e<1, (69)

where
20,

K (VA=)
Ax? = €2)
where J; is the first order Bessel function of the first kind.
Using properties of Bessel functions, it can be shown thtt bo
kernelsE and F are bounded on the domai{¢,z) : 0 <
¢ < x < 1}. This implies that boti€ and£~! are bounded
0 02 04 _ 06 08 1 with induced norms which we denote | . and||€7| ..
_ ] . Now, to understand how this backstepping transformation
Fig. 3: Control gainf(z). implies the existence of a Lyapunov function with semi-
separable kernels, we first note that stability of the target
system in Equations (67) - (68) is established using thelsimp
C. Backstepping Lyapunov function

F(z,§) = =X

, 0<gf<z<1, (71)

Backstepping is a well-known alternative for the construc- v B ! 2 —
tion of stabilizing controllers for parabolic PDEs. Spegifly, target(2) = ) 2(@) de = {z,2),
the backstepping approach defines a control law which, Wh%r? which, using (67) - (68), integration by parts and Lemma 1
coupled with an invertible state transformation, convents - ’

. . we obtain

controlled parabolic PDE to the form of a desired stable d
PDE _(thg target system). Although backstepping is not an EI/'t,wget(z(t)) < —eViarget(2(1)), (72)
optimization-based method and does not explicitly seawcha f ,
Lyapunov-based stability proof, it turns out that the extiste for any » which satisfies (67) - (68), where = Z-. This
of a backstepping controller typically implies the existerof implies
a Lyapunov function of the Form (17), defined by a multiplie et et
M and semiseparable kerndl§ and K. To demonstrate the {/t‘"get(z(t)) < € WViarger(2(0)) = |[z(@, D)l < 72" 2(x, 0)]].

existence of this Lyapunov function, let us consider theéesys  Now, for the original system we define the Lyapunov
defined by Example 1, function

wi(z,t) = wea(x, t) + Aw(z, t), (65) Vptant(w) = (Ew, Ew) . (73)
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Now, since for any solutiony(t), of the original system; = M(x) = 1, K1 = H; and K» = Hs. In a similar manner, if

Ew(t) is a solution of the target system, we have that we defineP = X(; q, q,} Where
d 1
E%lant(w(t)) dt <5w( )7gw(7t)> Gl(xag) :/ F(nvx)F(nag)dn—’—F(xag)a
d el
= g 00200 Ga(a,€) = /£ F(1,)F (0, €)dn + F(€, ),
d ,
gt Vtarget (2(1) < —€Viarger (2(1)) thenP~! = X1 u, u,} and hence
EV;Earqet(gw( ) = —€{Ew(t), Ew(t)) Vitant (w) = (P~ 1w, PP~ w), (75)
= —eVplam(w(t)). L . .
which is a form consistent with Theorem 4. Thus we conclude
Therefore, that for this class of systems, if we assume the function
. may be approximated by polynomials, then the existence of a
Viptant(w(t)) < €™ Viiant (w(0)), backstepping controller implies the feasibility of Theord

for some degree. Despite this similarity, there are, of seur
differences between the proposed method and backstepping.
[Ew(-,t)|| < e 5| Ew(-,0)]. (74) Specifically, our approach is optimization based, wherbas t
search for the backstepping transformation is not. Adgega
Boundedness of€ and £! now implies |w(t)] < of the proposed method include the ability to analyze stgbil
IE Y| 2 IIEw(t)|| and ||Ew(0)]| < ||€]|]|w(0)]|, which yields of autonomous PDEs and simple extensions to robust control
of PDEs with parametric uncertainty via Positivstellemsat
w(0)]l; results [30].

which proves that/,;,.+ (w) = ||Ewl|? establishes exponentiaID Finite-Di ional A N
stability of the original system. - Finite-Dimensional Approximations

We now show that/,;q,;(w) has a form consistent with In this subsection we consider the merits of the SOS
Theorem 4. Expanding approach with respect to finite-dimensional approximation

That is, we consider whether there are advantages over model
Vptant (W) = (Ew, Ew) , reduction techniques wherein the PDE is reduced to a set of
coupled ODEs - as in, e.g. [1].
Before continuing, we note that establishing a suitable
1 1z metric for comparison of finite-dimensional and infinite-
Vplant (U)) / / /

which means

€

@l < €7 cllEll e

we get

w(§)dEdx dimensional approaches is complicated by the fact that that

the methods proposed in this paper are suboptimal. Thatis, w
/ / Yw(€)deda are not seeking observer-based controllers which are aptim

in any sense. Rather, we simply seek observer-based con-

trollers which establish closed-loop stability. In thisise, our
/ / / VE(&, nyw(n)dndgdz. methods are roughly equivalent to existing finite-dimenalo
approaches in that for all numerical examples considered, w
are able to construct observer-based controllers for tdyita
high polynomial degree. In a sense, then, one could argue

Changing the order of integration twice in the last integurad
collecting like terms, we obtain

1 that finite-dimensional approaches are superior in that dine
Vplant(w) :/ w(x)*dz able to go beyond stabilization and constrogtimalobserver-
based controllers using a suitably high level of discreitza

/ / x)Hy (z,&)w(€)dédx In practice, however, our experience has shown that there ar

disadvantages to discretization-based methods such as pol
/ / 2)Ha (2, €)w(€)déd, placemer_n. Specifically, we have seen _tha_t if the reducuqn
scheme is not carefully chosen, discretization may result i
= <w,X{1 HI_H2}w>7 loss of controllability or poorly conditioned controlldiby
' matrices. To illustrate, consider the following model:

here
W . we(x,t) = wey(x,t) + 15w(a, t),
e One approach to reduction of this PDE to a system of ODEs
Hy(z,€) :/ E(n,z)E(n,&)dn — E(§, ), is to use a finite difference method to approximate the dpatia
£ derivative as

which has the form of a Lyapunov function consistent with ; 2 w(z + Aza, t) — w(z,t)
Equation (17) using a semi-separable kernel where we havgj”(x )~ Azi + Axo Azo
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m 5 10 20 Boundary Condition Output (t)

m m ~ 7 25 63 —
cond(C(A™,B™))~ 10 10 10 Dirichlet w(0,t) =0 wa(L, 1)
w(l,t) = u(t)
TABLE X: Conolmon number ofC(A™, B™) as a function of Neumann w(0,t) =0 w(l, 1)
order of reductionn. wz(1,1) = u(t)
Robin w(0,t) + wz(0,t) =0 w(l b)

w(l,t) + we(1,t) = u(t)

2 w(z,t) — w(x — Az, t)
Az + Az Az, ' TABLE XI: Alternative boundary conditions and outputs for
where Az, is the step size to the left of and Az, is the PDEs (60) and (61).

step size to the right. Using this scheme we obtain an ODE
model of the form

d=3 9 10 11

Dirichlet X = 17.7634  22.8645  23.3093  27.1179
@(E) = A (1) + B u(t), (76)  Rabin | 1asa6r  16.0s65 186050 189758
wherew™(t), B™ € R™*! and A™ € R™*™ andm € N is . .
the order of reduction. While relatively straightforwattjs TABLE XiI: Max. A as a fU!’lCtIOH of ponnom_lgl degreo,
approach creates significant technical challenges. Fongbea d = dy =d for PDE (60) with boundary conditions as in

a) Controllability of the Reduced ModelThe reduced- Table XI for which we can construct output-feedback boupdar
order model must be chosen so as to maintain the properﬁ'@gtro"ers‘
of controllability and observability. In most cases, hoeev
there is no guarantee that a finite-difference approximatig

scheme will preserve these properties. For example, for tha€0rems 2, 4 and 5 can be easily modified to consider

finite difference scheme defined above, it is known that ﬁlternative boundary conditions. Although economy of gpac

the original system is controllable and a uniform grid size PrOh,'b'ts us from presenting these cond_mons in full, isth
chosen, then the reduced system is also controllable. Hawegection we give the results of numerical tests performed
if one were to chose a non-uniform grid, then controllaioiIitus'ng_f_D'rl'lcmfet' Nheumann and Robin t()joundaryhoohn(jjm?ns.
is no longer guaranteed. For example if one were to chosBecifically, for the two PDEs (60) and (61) which define
a logarithmic grid, form > 13 the reduced model is not Examplesl and 2, _rospectlvely, in Section X_I' we_con3|der
controllable (although it is still stabilizable). In suchcase, the boundary conditions and the outputs as listed in Table XI

the performance of the closed loop system will be limited by
the location of the uncontrollable eigenvalues.

Tables XII and XIlII illustrate the maximum for which we

b) lll-conditioned Controllability Matrix:Now suppose we can construct output-feedback based controller§ as aifunct
wish to perform pole placement by applying Ackermann@f d1 = d2 = d for PDEs (60) and (61), respectively, for the
formula to the reduced order model. As mentioned, it can BQundary conditions listed in Table XI using exponentiaiale
shown that the reduced order model in (76) is controllabj@tes 0fd = p = 0.001. Similar to the observation made in
for any m € N when derived using uniform step sizes>ection Xi, the nomerlcal re_sults in this section suggez_;t th
(Az; — Az,) as established by the Hautus test. Howeveur methodology is asympFotlcaIIy acc_urato for the consde
the pole placement problem (which is similar to our conditio@lternative boundary conditions, that is, given any 0, we
for exponential stabilization with desired decay ratejegebn  C@N construct controllers/observers by choosing a largagm
inversion of the controllability matrixC(A™, B™) - a step dy = dy = d. A more detalled study_ of alternative boundary
which is numerically sensitive to conditioning 6tA™, Bm). ~ conditions can be found in the thesis work of [14].
This is problematic since, as seen in Table X, the contriflab
ity matrix for this system is ill-conditioned and the coridit XV. CONCLUSION AND FUTURE WORK

numberworsensas the level of disretizatiom increasesThis We have defined an algorithmic, polynomial-time approach
implies that as the level of discretization increases, mocak g the design of observer-based controllers for a general
errors may dominate - potentially resulting in unstable lass of scalar parabolic partial differential equatiosing
unpredictable controllers. Naturally, these issues ard- Wemeasurements and feedback at the boundary. The results use

known and have been addressed in the literature thro%ynomiajs and semidefinite programming to parameterize
methods such as robust place placement [40] or Galerkin

schemes [19]. The advantage of the SOS approach, however, is

that the controllers are provably stable at the pre-lumptage - . d=35 6 7 8

; o ; ; Dirichlet =36.0199 38.0478 40.5930  44.079
and thus the only numerical concern is implementation, bvhl_o Neumann 298492 311447 311447 341584
does not appear to be sensitive to issues such as condition Ropin 24.6490 27.8503  27.8503  29.4373
number.

TABLE Xlll: Max. A as a function of polynomial degree,
XIV. A LTERNATIVE BOUNDARY CONDITIONS d1 = dy = d for PDE (61) with boundary conditions as in

The results of this paper may be readily adapted to othEable Xl for which we can construct output-feedback boupdar
types of boundary conditions. Specifically, the conditiafis controllers.
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a convex set of positive Lyapunov functions on the Hilbewhere {M, K, Ky} = Q{M, K1, K, }.

spacelsy. By combining these Lyapunov functions with an ]

invertible state transformation, we obtain convex coodii i wpsrgggﬁléit 2318; _)({(]1”791’){175126]’”3?6‘}2?‘/&? ti_m<ew7d7;ﬁ)\2¢';1tive
for stability, controller synthesis and Luenberger obeerv . ' gl I

design. Furthermore, we have tested our results using 89:1 V(w(t)) and since{M, Ky, K} € Zayds e |mpl|es.7>
rameterized numerical examples in order to show that iR self-adjoint, we can W”té/( (t)) = 2 (wr, Pw). Using
stability conditions are accurate to several significanirég quation (18) we expand this out to get
and the synthesis conditions yield controllers for a largs< )
of controllable and observable systems. Furthermore, we ha V(w(t)) =2 (w, Pw) =2 Ty, (77
adapted the approach to three alternative classes of bogunda n=1

measurements and actuators. Finally, we have performegyigere

series of comparisons with existing results in the literatu 1

showing, e.g. that the method is analytically equivalent to T :/ Wae (7, t)a(z) M (z)w(x, t)dx,

backstepping for controller synthesis and furthermoreus n 0

merically competitive for the examples considered. By gsin r :/1 we (2, O)b(x) M (z)w(x, t)dz

an optimization-based algorithm defined by polynomials, th 0 ’

results presented here have the advantage that they may be 2
further extended to the problem of nonlinear stability siag), I's :Z/ Wee (x, t)a(x) K;(x, &)w(E, t)ddx,
robust control, and control of coupled, multivariate, hyqmdic i=1 7 A

and elliptic PDEs - topics of ongoing research.

APPENDIX =1
1

To facilitate presentation in this appendix, we use the p, :/ w(z, t)2 M (z)c(z)dw
following lemmas. The first is simply a restatement of the
Wirtinger inequality

Lemma 1 ([31]). Letz € H?(0, 1) be a scalar function. Then
1 1
0 72 J, 0 <z < & < 1}. Applying integration by parts twice and
The second lemma is accomplished by splitting the integfé$ing the boundary conditiom (0, ¢) = w,(1,?) = 0 yields

+ Z/Al w(z, t)e(z) K (z, & w(E, t)dEdx,

in two parts and applying a change in the variable of integra- 1
tion to the second part. I =— / wy (2, t)?a(x) M (z)dx
0
Lemma 2. For any bivariate polynomialsK’ and P the 1 1 p2 )
following identity holds for anyv € L (0,1) +t3 e la(x) M (z)] w(z,t) dx
1
/ ( / K (i, €)w(€)de + / (mw(s)dé) da — 5 (@ (MM + ()M (1) w1, 1)
Sincea(z) > a > 0 and {M, K1, K2} € Zq4, 4,,e, We have
/ / K(z,8) + P(§, 2)] w(§)dédz a(z)M(z) > ae. Thus, by application of Lemma 1 we get
1 2 1
/ / P(z,§) + K(§, z)] w(§)dédz. —/ wy (2, t)?a(z) M (z)dr < —%ae/ w(z,t)*dz.
0 0

Lemma 3 (AnaIyS|s) Given polynomialsa, b and ¢ with Therefore, we conclude that
a(z) > a > 0, for all z € [0,1], suppose that there exists
a scalare > 0 and polynomialsV/, K; and K> such that r <1 /1w(x 12 ( 0? w2 )d:c
1 >3 )
0

— [a(x)M ()] — —«e
—_ ? 2
{M,K1,K>} € Z4, dye o

(b(1) — 4 (1)K (1,2) — a(1)(DyK)(1,2) = 0, - 5 @M + aM () w07 (79
(b(1) = az(1))M (1) — a(1) M (1) < 0, Again, applying integration by parts once and using, t) =
KQ(O,SC) =0. 0,
Let RS 2 0 1 2
o= (oo e M=y /O w12 2 (o) M ()] d:v+§b(1)M(1)w(1,t()7.9)

whereX(,/ i, k.1 is as defined if3). Then, for anyw which
satisfies Equationgl8) - (19), Since{M, K1, K2} € Z4, d,,., We haveK,(z,§) = Ka(§, x)

) and thus Ky (z,2) = Kos(x,z). Exploiting this property,
V(w(t)) < <w(t),X{M7K17K2}w(t)>, the constraintk,(0,z) = 0, and the boundary conditions
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w(0,t) = w,(1,t) = 0, we apply integration by parts twicewhereP = X;y; k, k.1 and Xy k. x,} IS as defined ir(3).
to obtain Then, for anyw which satisfieg25) - (26)

1 |
o= [ w0 ([33 0(a) (s, €)Ri(. )] ) e V) < QO X iy v0)
0 ’ o oML + (D) ~ ax(D)M ], 07

2 62
+3 [ wien (@ [a(w)&-(w,g)]) w(E.t)dda * 2a(LM (L)L (L, 5),
i=17 A ) wherey = P~tw and {M, K1, K2} € Q.{M, K, K2}.
- w(l,t)/ a; () K1(1, 2)w(z, t)dz Proof: Taking the time derivative o¥/ (w(t)) and since
0 P~ is self-adjoint, we obtain
—w(l,lt)/O a(1)(D1K1)(1, z)w(z, t)dz. V(w(t) = 2 (we, P~ w)
= 2{a(")wae + b(")ws + c()w, P~ w)

Applying Lemma 2 and usind(; (z, &) = Ko(€, x), we get 52

= 2{a) 55 (PY) + 60 5= (Po) + <3Py )

/\/\

FSZ/ w(l’7t)2 ([% [a($)(K1($,§) - K2($,§))]:| ) dzx 5
0 1 b=e =2) Ty, (83)
—w(l,t)/ (ax(1)K1(1, 2)4+a(1)(D1K1)(1, 2)) w(z, t)dx n=1
0 wherey = P~ 1w and

~ 1 2] [a) K€ -
t2.3 ), vl l%z] R (g e r, [ o) s st )t 0,

(80) 1
ry— / b(a) - (M 2}y, 1)y e,

Applying integration by parts once and following the same

procedure as fol's, we get
s = / a£102</K gtdg)( t)dx,

S e [B] ORI e
; 2 Ai (z,t) {Z@j {b(f)Ki(x,f)} (& t)ded y :;/0 b(w)a—x (/ﬁ Ki(:v,ﬁ)y(faf)dg) y(x,t)dz
Ty = / )M ()12

1
+w(1,t)/0 b(1) K1 (1, z)w(z, t)dx. (81)

Finally, employing Lemma 2 produces 0
1 +Z / (v, (@) K, €)y(€, D) dede,
s = / w(zx, t)* M (z)c(zx)dx
0
2 1 WhereAlz{(S,:v) : 0§§§$§1}, AQZ{(f,,T) :0<

+> 5 [ w@t) (e(@) +e(§)] Kilz, ) w(€, t)dédr. 5 < ¢ <1}, By = [0,2] and B, = [z, 1]. Before proceeding
= (82) we calculatey(0,t). The definitiony = P~ 1w implies

1
Finally, we combine the terms (78) - (82) into the deriva- w(0,t) = M(0)y(0,1) +/ K>(0,2)y(z, t)dz.
tive (77) and use the constraints 0
Therefore, sincew(0,t) = 0 and K3(0,z) = 0, we get

(b(1) — ax (1)) K1(1,2) — a(1)(D1 K1) (1,2) = 0, y(0,t) = 0. Now, since M (z)a(x) > ae and y(0,t) = 0,
(b(1) — ax(1))M (1) — a(1)M,(1) <0, applying integration by parts twice and using Lemma 1
produces

to eliminate extraneous terms, thereby completing the fproo 9
™

e 1(am<x>M<x>+a<x>Mm<x>—7ae) y(a, 1)

Lemma 4 (Controller Synthesis)Given polynomials, b and 1 )

¢ with a(z) > a > 0, for all = € [0,1], suppose that there + §(a(1)Mw(1) —ax(1)M(1))y(1,t)

teri(i?ts a scalar > 0 and polynomialsM, K; and K> such +a()M(D)y,(1,8)y(1,t). (84)
a

Similarly, applying integration by parts once yields
1

Let Iy —5/0 (b(x) My (x) — by (z)M(x)) y(z, t)*dx
1

V(w) =(w,P 'w), + §b(1)M(1)y(1,t)2. (85)

{M, Kl,KQ} S Edl,dg,sv KQ(Ov'r) =0.



Applying integration by parts twice and Lemma 2 yields

1
o= [ (00 |0~ Kol ot o
Yy @ ' ] wendeas
= 2/a, ’ (f)aa—gz Ki(z,¢) ’
(86)
In a similar manner as faf';, we obtain
! b(@) 21" [Kile,€)
Ty —; 3 Al y(:v,t) L)(g)z%ﬂ {Kl(x,é)] y(f,t)dfd:v.
(87)

Finally, applying Lemma 2 td's; produces

T —/0 c(x)M (z)y(z,t)*da

2
+ %; /A i y(x,t)(c(x) + c(§)) Ki(z, §)y (&, t)déd.
(88)
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Substituting Equations (84) - (88) into (83) completes the

proof.
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