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A Convex Sum-of-Squares Approach to Analysis,
State Feedback and Output Feedback

Control of Parabolic PDEs
Aditya Gahlawat and Matthew. M. Peet

Abstract—We present an optimization-based framework for
analysis and control of linear parabolic Partial Differential
Equations (PDEs) with spatially varying coefficients without
discretization or numerical approximation. For controller syn-
thesis, we consider both full-state feedback and point observation
(output feedback). The input occurs at the boundary (point
actuation). We use positive definite matrices to parameterize
positive Lyapunov functions and polynomials to parameterize
controller and observer gains. We use duality and an invertible
state variable transformation to convexify the controller synthesis
problem. Finally, we combine our synthesis condition with the
Luenberger observer framework to express the output feedback
controller synthesis problem as a set of LMI/SDP constraints.
We perform an extensive set of numerical experiments to
demonstrate accuracy of the conditions and to prove necessity
of the Lyapunov structures chosen. We provide numerical and
analytical comparisons with alternative approaches to control
including Sturm Liouville theory and backstepping. Finally we
use numerical tests to show that the method retains its accuracy
for alternative boundary conditions.

Index Terms—Distributed parameter systems, partial differen-
tial equations (PDEs), control design, sum of squares.

I. I NTRODUCTION

Partial Differential Equations (PDEs) are used to model
quantities which vary in both space and time with early
examples including the D’Alembert wave equation (1746);
the Euler-Bernoulli beam (1750); the Euler equations (1757);
and the Fourier heat equation (1822). Today, the use of PDE
models has expanded to include phenomena such as the mag-
netohydrodynamics of plasma in a fusion reactor [43], tumour
growth, infectious diseases, and ecological succession [25,
Chapter 11]. However, despite the variety of phenomena
modeled by PDEs, compared to the literature on Ordinary
Differential Equations (ODEs), our knowledge of how to
analyze and control PDEs remains incomplete.

Manuscript received March 16, 2016; revised June 21, 2016; accepted July
1, 2016. This research was supported by the Chateaubriand program and
NSF CAREER Grant CMMI-1151018. Recommended by Associate Editor
M. Opmeer.

Aditya Gahlawat is with the Department of Mechanical, Materials and
Aerospace Engineering at the Illinois Institute of Technology, Chicago, IL,
60616 USA e-mail: (agahlawa@hawk.iit.edu).

Matthew. M. Peet is with the School of Engineering of Matter,Transport
and Energy at Arizona State University, Tempe, AZ, 85287-6106 USA e-mail:
(mpeet@asu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2016.2593638

Consider the following class of scalar-valued anisotropic
parabolic PDEs with inputu(t) ∈ R,

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t), (1)

x ∈ [0, 1], t ≥ 0, which has outputv(t) = w(1, t) ∈ R and
mixed boundary conditions of the form

w(0, t) = 0, wx(1, t) = u(t), (2)

wherea, b and c are polynomials witha(x) ≥ α > 0, for
x ∈ [0, 1]. We assume the controller is parameterized by scalar
R1 and functionR2 asu(t) = R1ŵ(1, t)+

∫ 1

0
R2(x)ŵ(x, t)dx

where ŵ is an estimate ofw obtained from some set of
observer dynamics. The objective of the paper is to propose
an optimization-based method for determining controller gains
R1 and R2 and observer dynamics which minimize certain
closed-loop gains.

Control of PDE models is a challenging problem in that
slight variations in the type of PDE, boundary conditions, etc.
may dramatically alter properties of the solution [22]. The
model defined above is classified as an anisotropic parabolic
PDE with point inputs and point outputs. The term anisotropic
means that the values of the coefficientsa(x), b(x) and
c(x) depend on the spatial variablex ∈ [0, 1]. Examples
of anisotropic systems include heat conduction with non-
homogeneous conductive properties or a wave propagating
through a medium of varying density. The term point input
(boundary actuated) means that the control input determines
one of the boundary values and therefore has no direct mea-
surable effect on Equation (1). This is in contrast to the case
of distributed inputs, wherein the control effort is spreadover
some measurable subset of the domain. In a similar manner,
the term point output means that the sensor measures the state
at a single point in the domain and hence the output operator
is unbounded in theL2 induced norm.

Perhaps the most common approach to analysis and control
of PDEs is based on the use of discrete approximation. Such
approximation techniques typically use a model reduction
wherein the PDE is approximated by a set of ODEs. Finite-
dimensional linear control theory is then used to analyze
stability and design control laws for the finite-dimensional
approximations [24], [23]. Furthermore, results have been
obtained which show that as the order of the discrete approx-
imation increases, stability of the closed-loop approximations
will eventually imply stability of the closed-loop PDE. A
disadvantage of the discrete approach, however, is that the
required order of the approximation cannot be established a
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priori. Consequently, the stability of any particular approx-
imation is not guaranteed to imply stability of the actual
PDE. For this reason, among others, there has been some
interest in finding approaches to analysis and control which
can be applied directly to the PDE model without the use of
discretization or numerical approximation. Such methods are
sometimes termed direct or infinite-dimensional.

There has been significant progress in the use of direct
methods for control of PDE systems. One approach is to
express the control problem as the solution to a set of
operator-valued Riccati equations. This approach was applied
to distributed input/distributed output optimal control problems
in [41]. The problem of point actuation with full-state feedback
was considered in [21] (and related work) and extended in [20]
to output feedback controller synthesis through the use of a
Luenberger observer. An alternative Riccati-based approach
for static output feedback of a certain class of well-posed
operators can be found in [35], [36], [42]. A limitation of these
Riccati-based methods, however, is that they rely on finite-
dimensional numerical methods for obtaining the operator-
valued solution. While convergence of these approximations
has been demonstrated [21], for a given level of approxima-
tion, it is not possible to determine whether existence of a
solution implies the closed loop is stable when applied to the
original PDE.

Backstepping [18] is a popular and well-developed method
for boundary control of parabolic PDE systems. This approach
is based on the use of a boundary controller to transform
the PDE to a simpler model for which the existence of a
decreasing Lyapunov function has previously been established.
The backstepping approach is commonly used in the literature
and has been extended to many classes of PDE systems - see,
e.g. [17], [33], [34], [32]. A highlight of the backstepping
method is that for certain types of system, stabilizability
guarantees the existence of a backstepping transformation.
However, a drawback of the backstepping approach is that
it is not based on optimization, but rather typically requires
numerical integration of a PDE in order to obtain the stabi-
lizing controller - thereby making extensions to robust and
optimal control more difficult. Although a complete survey
the of the literature on direct control of PDEs is beyond
the scope of this paper, we do note some other significant
results on the use of Lyapunov functions for analysis and
control of infinite dimensional systems including: a rotating
beam [4]; quasilinear hyperbolic systems [3]; and control of
systems governed by conservation laws [5]. As an alternative
to Lyapunov-based methods, a classical spectral approach to
stability and stabilization is based on Sturm-Liouville theory.
In particular, the differential operators which define the PDEs
in this paper can be adapted to the Sturm-Liouville framework,
from whence one can attempt to determine stability and
designstatic output-feedback controllers. As is demonstrated
in Section XIII, however, the use of dynamic output feedback
offers considerable advantages over this classical framework.

The goal of this paper is to design stabilizing static state
feedback and dynamic output feedback controllers for PDE
systems. Our approach is inspired by the use of Linear Matrix
Inequalities (LMIs) and Semi-Definite Programming (SDP)

in control of ODEs. For stability analysis, as discussed in
Sections V and VI, we use positive definite matrices to createa
linear parametrization of a cone of Lyapunov functions which
are positive on the Hilbert spaceL2. Specifically, the Lyapunov
functions have the quadratic formV = 〈Z(w), PZ(w)〉L2

wherew ∈ L2 is the infinite-dimensional state,P is a positive
definite matrix andZ is a fixed vector of multiplication and
integral operators with monomial multipliers and kernels.The
derivative of the Lyapunov function is likewise constrained
to be a negative definite quadratic form. If such a Lyapunov
function exists it directly proves stability of the PDE - i.e. there
is no numerical approximation. For state-feedback controller
synthesis, the controller, as defined above, is parameterized by
a scalarR1 and a functionR2. Combining these gains with the
quadratic Lyapunov functions used for stability analysis yields
synthesis conditions which are bilinear in the design variables.
However, as described in Sections VII and VIII, by defining an
invertible state transformation and a variable substitution, we
derive synthesis conditions which are linear in the optimization
variables. Next, in Section IX we introduce a class of infinite-
dimensional Luenberger observers with observer gains, again
parameterized by the coefficients of polynomials. Again, using
the Lyapunov function from Section V and the invertible state
variable transformation from Section VII, we obtain SDP-
based observer synthesis conditions. Finally, in Section XI, we
verify the accuracy of the method with a series of numerical
tests which indicate that the proposed stability conditions are
accurate to several decimal places and suggest that for any
suitably controllable and observable system, the algorithm
will return an observer-based controller. This is followedby
Section XIII, wherein we include numerical and analytical
comparisons with other results in the literature, including
Sturm-Liouville and backstepping.

A significant contribution of the paper, in addition to a
new approach to analysis and control of PDEs, lies in the
flexibility of the optimization-based approach. Specifically, as
the use of LMIs for control of ODEs enabled the field of
robust control, so too does our LMI/Lyapunov-based approach
to control of PDEs allow the extension to analysis and control
of PDEs with parametric uncertainty, PDEs with nonlinearity,
multivariate PDEs and PDEs coupled with ODEs or delays.
Finally, we note that our approach is complementary to several
recent results in the use of LMIs for stability and control of
PDEs, including, e.g. our early work in [27], modeling and
control of nonlinear dynamic systems in [39], stability analysis
of semilinear parabolic and hyperbolic systems in [12] and the
numerous results contained in [26].

II. N OTATION

We denote the vector space ofm-by-n real matrices by
Rm×n and the subspace of symmetric matrices bySn ⊂
Rn×n where the multiplicative and additive identities are
denoted byIn ∈ Sn and 0m,n ∈ Rm×n, respectively. For
P ∈ Sn, P > 0 (P ≥ 0) denotes thatP is a positive
definite (positive semi-definite) matrix. The spaces ofn−times
continuously differentiable and infinitely differentiable func-
tions on an intervalW ⊂ R are denoted byCn(W ) and
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C∞(W ), respectively. In a similar manner,Cn,m(W1,W2)
represents the space ofn and m−times continuously dif-
ferentiable functions on intervalsW1 ⊂ R and W2 ⊂ R,
respectively. The shorthandux and ut denote the partial
derivative ofu with respect to independent variablesx and
t, respectively. For a bivariate function,f(x, y), we denote
D1f := fx andD2f := fy - i.e. D1 is differentiation with
respect to the first variable andD2 is differentiation with
respect to the second. In a similar manner,D2

1 := fxx and
D2

2 := fyy. Recall L2(W ) is the standard Hilbert space
of square Lebesgue integrable functions with standard norm
and inner product. We useHn(W ) to denote the Sobolev

subspaceHn(W ) :=
{

y ∈ L2(W ) : dny
dtn

∈ L2(W )
}

with

inner product〈x, y〉Hn =
∑n

m=0

〈
dmx
dtm

, dmy
dtm

〉

L2

. We occa-

sionally letL2(0, 1) := L2([0, 1]) andHn(0, 1) := Hn([0, 1]).
For normed spacesX and Y , L(X,Y ) denotes the Ba-
nach space of bounded linear operators fromX to Y with
induced norm‖G‖L := sup‖x‖X=1‖Gx‖Y and we denote
L(X) := L(X,X). We defineZd(x) ∈ Rd+1×1 to be the
column vector of all monomials in variablesx of degreed
or less arranged in increasing lexicographical order. We often
use the notationZd(x, y) := Zd([x; y]) to denote the vector
of monomials in bothx and y. For any functionT ∈ L2

we useMT : L2 → L2 to denote the multiplier operator
defined byT . i.e. (MTw)(x) = T (x)w(x). For any functions
M,K1,K2 ∈ C∞ we define
(
X{M,K1,K2}w

)
(x)

= M(x)w(x) +

∫ x

0

K1(x, ξ)w(ξ)dξ +

∫ 1

x

K2(x, ξ)w(ξ)dξ.

(3)

III. PROBLEM STATEMENT

For the system of Equations (1) - (2), the strict positivity of
a(x) implies that the differential operator defining the PDE
is uniformly elliptic [11, Section6.1]. This means thatw
diffuses from higher density to lower density, a property which
is representative of most physical systems. The choice of
sensor and actuator location is somewhat arbitrary. For the
heat equation, inputwx(1, t) = u(t) would represent heat
flow into the rod and the outputv(t) = w(1, t) represents the
temperature of the rod at that point. Note that the results of
this paper can be adapted to Dirichlet, Neuman and Robin
boundary conditions with only slight modifications to the
conditions and proofs. These extensions are addressed in
Section XIV.

The goal of this article is to design algorithms which resolve
the following problems:

1) Stability Analysis: Establish global exponential stability
of the trivial solutionw ≡ 0 of the autonomous system
u(t) = 0 and determine the exponential rate of decayδ.

2) State feedback control:If the autonomous system is
unstable, construct gainsR1 ∈ R andR2(x) ∈ C∞(0, 1)
such that if

u(t) = R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx, (4)

then the trivial solutionw ≡ 0 is globally exponentially
stable with some desired rate of decay,µ.

3) Output feedback control:If only output feedback is
available (v(t) = w(1, t)), construct gainsL1 ∈ C∞(0, 1)
andL2 ∈ R such that for stabilizing gainsR1 andR2, if

u(t) = R1ŵ(1, t) +

∫ 1

0

R2(x)ŵ(x, t)dx,

whereŵ satisfies

ŵt(x, t) =a(x)ŵxx(x, t) + b(x)ŵx(x, t)

+ c(x)ŵ(x, t) + L1(x) (v̂(t)− v(t)) ,
(5)

for v(t) = w(1, t) and v̂(t) = ŵ(1, t) with boundary
conditions

ŵ(0, t) = 0, ŵx(1, t) = u(t) + L2 (v̂(t)− v(t)) ,
(6)

then the trivial solutionw ≡ 0 of Equations (1) - (2) is
globally exponentially stable.

Note that if we consider only bounded linear operators, then
the structure of the controller in (4) is not restrictive, asany
bounded linear functional can be represented in this way using
only the integral form (second term). However, we also would
like to consider unbounded operators and hence we include
the termR1w(1, t) as well. If controllers of this form prove
inadequate, then one can generalize the structure further to
include terms such as

∫ 1

0
R3(x)wx(x, t)dx as in [15].

The choice for the structure of the Luenberger observer was
similarly determined in an ad-hoc manner through inclusionof
terms necessary to achieve separation of controller synthesis
and observer design objectives. That is, the goal of the
observer is to stabilize the dynamics of the estimation error
e = ŵ − w and the terms in Equations (5) - (6) were chosen
as the minimal necessary to achieve this objective. Again,
this structure mirrors the structure of observers found in the
backstepping approach.

A. Existence and Uniqueness

We now briefly discuss the uniqueness and existence of
solutions. Define the operator

A = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x). (7)

It is known that the operatorA restricted to space

D0 = {w ∈ H2(0, 1) : w(0) = wx(1) = 0}, (8)

generates a strongly-continuous semigroup, or aC0-
semigroup, onL2(0, 1) (see, e.g., [7, Section2.1]). More
precisely, one can representA as the negative of a Sturm-
Liouville operator onD0 and hence, using the spectral prop-
erties of a Sturm-Liouville operator, it can be proven thatA
restricted toD0 generates aC0-semigroup onL2(0, 1) [9].
Thus, using Theorems3.1.3 and3.1.7 in [7] we conclude that
in the autonomous case (u(t) = 0), for any initial condition
w0 ∈ D0 there exists a unique classical solution of (1) - (2).

For the state-feedback case, using a fixed point argument
similar to the one presented in [2] it can be shown that for
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R1 ∈ R andR2 ∈ L∞(0, 1), the closed loop system (1) - (2)
with

u(t) = R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx,

admits a unique local in time solutionw ∈ C1,2((0, T ), [0, 1]),
for T > 0 sufficiently small, for any initial conditionw0 ∈ D,
where

D = {w ∈ H2(0, 1): w(0) = 0 and

wx(1) = R1w(1) +

∫ 1

0

R2(x)w(x)dx}.
(9)

Thus if we can establish that any solution of the closed
loop system decays exponentially, then this implies the ex-
istence and uniqueness of a unique classical solutionw ∈
C1,2((0,∞), [0, 1]) for any w0 ∈ D. The proof of this state-
ment has been omitted, but follows the arguments presented
in [2, Section 6].

Finally, consider the observer-based controller as definedin
Equations (1) - (2) and (5) - (6). Define the estimator error as
e = ŵ − w, which is governed by

et(x, t) = a(x)exx(x, t)+b(x)ex(x, t)+c(x)e(x, t)+L1(x)e(1, t),
(10)

with boundary conditions

e(0, t) = 0, ex(1, t) = L2e(1, t). (11)

It has been established in [12, Section 2] that forL1 ∈
C1(0,∞) and L2 ∈ R, Equations (10) - (11), if expo-
nentially stable, admit a unique local in time solutione ∈
C1,2((0, T ), [0, 1]), for T > 0 sufficiently small, for any initial
conditione0 ∈ De, where

De = {w ∈ H2(0, 1): w(0) = 0 andwx(1) = L2w(1)}.
(12)

Therefore, if we can establish that any solution of the
coupled closed-loop dynamics decays exponentially, then the
local in time solution can be extended to a classical solution
e ∈ C1,2((0,∞), [0, 1]) for any initial conditione0 ∈ De.

IV. A F RAMEWORK FORSTABILITY ANALYSIS AND

CONTROL

Our approach is motivated by the use of LMIs for optimal
control of finite-dimensional systems. For example, consider
the autonomous finite-dimensional ODE

ẋ(t) = Ax(t),

wherex(t) ∈ Rn. This ODE is exponentially stable if and
only if there exists a positive definite matrixP ∈ Sn such that

ATP + PA < 0.

Feasibility of this LMI implies that the Lyapunov function
V (x) = xTPx is positive definite and its derivative along
solutions V̇ (x) = xT (ATP + PA)x is negative definite.
For stability of PDEs, our approach is to use positive ma-
trices to define positive quadratic Lyapunov functions, ex-
cept that instead ofV (x) = xTPx, we will use the form

V (w) = 〈Z(w), PZ(w)〉, whereZ : L2 → Rp is a vector
of bases for a subspace of linear operators onL2 (similar
to how x = [x1, · · · , xn]

T is a vector of bases for the
space of linear functions onRn). In our case, however,Z
parameterizes a subspace of multiplier and integral operators
with polynomial multipliers and semi-separable kernels. Then,
if P > ǫI, it has a symmetric square root and hence
V (w) =

〈

P
1
2Z(w), P

1
2Z(w)

〉

≥ ǫ‖w‖2. For the time

derivative, we will similarly requireV̇ (w(t)) + µV (w(t)) =
−〈Z(w(t)), QZ(w(t))〉, for some scalarµ > 0 andQ > 0
where here and throughout the paper we denote byV̇ the
function which satisfiesV̇ (w(t)) := d

dt
V (w(t)) for any

solution of the associated PDE - i.e. the derivative along
solutions or time-derivative. Existence of suchP,Q > 0
implies exponential stability of the system. As was done for
LMIs in finite-dimensional systems, this approach can then
be extended to controller and observer synthesis, as outlined
below.

a) Controller Synthesis:For controller synthesis, again
consider the LMI approach for the finite-dimensional system:

ẋ(t) = Ax(t) +Bu(t),

where x(t) ∈ Rn and u(t) ∈ Rm. For this system, there
exists a stabilizing state feedback controller of the formu(t) =
Rx(t) if and only if there exists a positive definite matrixP
andY ∈ Rm×n such that

(AP +BY ) + (AP +BY )T < 0.

If this LMI is feasible, then forR = Y P−1, the Lyapunov
function V (x) = xTP−1x is positive definite and has time
derivative

V̇ = xT (P−1A+ P−1BR +ATP−1 + (BR)TP−1)x

= (P−1x)T (AP +BRP + PAT + (BRP )T )(P−1x)

= yT (AP + BY + PAT + (BY )T )y < 0,

where y = P−1x. The extension of this LMI approach to
PDEs is to search for a positive definite operatorP = Z∗PZ
for someP > 0 and operatorY, defined by(Yz)(z) :=

Y1z(1) +
∫ 1

0
Y2(x)z(x)dx, such that ifu = Rw = YP−1w,

u(t) = R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx

= Y1(P−1w)(1, t) +

∫ 1

0

Y2(x)(P−1w)(x, t)dx,

then the Lyapunov functionV =
〈
w,P−1w

〉
=

〈
Z(P−1w), PZ(P−1w)

〉
satisfiesV̇ (w(t)) + 2µV (w(t)) =

−
〈
Z
(
P−1w

)
, QZ

(
P−1w

)〉
for some scalarµ > 0 and

Q > 0, which implies the closed-loop system is exponentially
stable. This is detailed in Section VIII.

b) Observer Synthesis:As mentioned previously, for
observer design, we use a Luenberger observer and a sep-
aration principle to decouple the error dynamics as defined
in Equations (10) - (11). For a finite-dimensional Luenberger
observer, where the output isv(t) = Cx(t), the estimator
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dynamics are defined using the controller gainF and observer
gainL as

˙̂x = (A+ LC)x̂− Lv(t) +Bu(t).

If u(t) = F x̂(t), then the error dynamics become

ė(t) = (A+ LC)e(t).

Existence of an observer gain which renders the error dynam-
ics stable is equivalent to the existence of aP > 0 andT such
that

PA+ TC +ATP + CTT T < 0.

If this LMI is feasible, then forL = P−1T , the Lyapunov
functionV (e) = eTPe is positive definite and has derivative

V̇ (e) = eT (PA+ PLC +ATP + CTLTP )e

= eT (PA+ TC +ATP + CTT T )e < 0.

For the infinite-dimensional PDE, we have two observer gains
which we construct as

L1(x) = P−1(T1(x) + T3(x)) and L2 = P−1(T2),

for some gainsT1, T2 and T3 and whereP = Z⋆PZ for
someP > 0. We then use the Lyapunov functionV (e) =
〈Z(e), PZ(e)〉 and search for aQ > 0 such thatV̇ (e) =
−〈Z(e), QZ(e)〉 ≤ −δV (e) < 0, for someδ > 0. This is
detailed in Section IX.

V. SUM-OF-SQUARES LYAPUNOV FUNCTIONS WITH

SEMI-SEPARABLE KERNELS

In this Section, we define the mapZ and show how this map
is used to construct Lyapunov functions of the formV (w) =
〈Z(w), PZ(w)〉. This approach is based on prior work, as
described in [28]. Specifically, we define

(Zw)(x) =





Zd1(x)w(x)∫ 1

x
Zd2(x, ξ)w(ξ)dξ∫ x

0
Zd2(x, ξ)w(ξ)dξ



 ,

where recallZd1(x) and Zd2(x, ξ) are the vectors of all
monomials of degreed1 andd2 or less, starting with1.

Theorem 1. Given d1, d2 ∈ N and ǫ > 0, ǫ ∈ R, let
Z1(x) = Zd1(x) and Z2(x, ξ) = Zd2(x, ξ), with n = d1 + 1
andm = 1

2
(d2+2)(d2+1) denoting the length of these vectors,

respectively. Suppose that there exists a matrixP ∈ Sn+2m

such that

P =







P11 −
[

ǫ 01,n−1

0n−1,1 0n−1,n−1

]

P12 P13

PT
12 P22 P23

PT
13 PT

23 P33






≥ 0,

(13)
wherePij is a partition ofP such thatP11 ∈ Sn, P22 ∈ Sm

andP33 ∈ S
m. Now let

M(x) = Z1(x)
TP11Z1(x), (14)

K1(x, ξ) = Z1(x)
TP12Z2(x, ξ) + Z2(ξ, x)

TP31Z1(ξ)

+

∫ ξ

0

Z2(η, x)
TP33Z2(η, ξ)dη

+

∫ x

ξ

Z2(η, x)
TP32Z2(η, ξ)dη

+

∫ 1

x

Z2(η, x)
TP22Z2(η, ξ)dη, (15)

K2(x, ξ) = K1(ξ, x). (16)

Then

V (w) =

∫ 1

0

w(x)M(x)w(x)dx

+

∫ 1

0

∫ x

0

w(x)K1(x, ξ)w(ξ)dξdx

+

∫ 1

0

∫ 1

x

w(x)K2(x, ξ)w(ξ)dξdx (17)

= 〈Z(w), PZ(w)〉 =
〈

P
1
2Z(w), P

1
2Z(w)

〉

≥ ǫ‖w‖2.

Proof: The proof follows directly from the definition of
Z and the Sum-of-Squares representation ofV .

The form of the Lyapunov function defined by Theorem 1 in
Equation (17) is somewhat atypical for the study of parabolic
PDEs. A more commonly used version would beV (w) =
∫ 1

0
w(x)M(x)w(x)dx or even yetV (w) =

∫ 1

0
w(x)Mw(x)dx

for M > 0. Such forms can be obtained as a special case
of Theorem 1 whenPij = 0 for i 6= j 6= 1. However, as
we discuss in Section XII, neglect of theK1 andK2 terms
results in significantly less accurate conditions for stability and
control.

For polynomialsM , K1 and K2, let X{M,K1,K2} be de-
fined as in (3). IfM , K1 and K2 satisfy the conditions
of Theorem 1, thenV (w) =

〈
w,X{M,K1,K2}w

〉
≥ ǫ‖w‖2,

which implies the operatorX{M,K1,K2} is positive definite
and furthermore, coercive. Moreover, sinceM , K1 andK2 are
polynomials, the operator is bounded, which implies that there
exists aθ > 0 such thatǫ‖w‖2 ≤ V (w) ≤ θ‖w‖2. Finally,
the constraint (16) in Theorem 1 implies that the operator
X{M,K1,K2} is self-adjoint.

As discussed in Section IV, Theorem 1 allows us to use
positive matrices to parameterize positive Lyapunov functions
of the Form (17). By expanding these forms, the coefficients
of the polynomialsM , K1 and K2 are linear combinations
of the elements ofP > 0. Furthermore, if we can express
the derivativeV̇ in the Form (17), where the coefficients are
again linear combinations of the elements ofP , then we can
enforce negativity of the derivative along the solutionsw by
using V̇ (w) = −〈Z(w), QZ(w)〉 to equate these coefficients
to those defined byQ > 0. Constructing the matrices which
relate the elements ofP and Q can be automated using
MATLAB toolboxes for polynomial manipulation such as
MULTIPOLY, contained in the package SOSTOOLS [29] and
further developed in our package DELAYTOOLS [28].

For polynomialsM , K1 andK2, we represent the constraint
〈
w,X{M,K1,K2}w

〉
= 〈Z(w), PZ(w)〉 for someP > 0 as

{M,K1,K2} ∈ Ξ{d1,d2,ǫ} where

Ξ{d1,d2,ǫ} := {M,K1,K2 : M,K1,K2 satisfy

Theorem 1 ford1, d2, ǫ}.
The constraint{M,K1,K2} ∈ Ξ{d1,d2,ǫ} is an LMI constraint
in the coefficients of the polynomialsM , K1 and K2 and
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the unknown matrixP > 0. In this way, the shorthand
{M,K1,K2} ∈ Ξ{d1,d2,ǫ} allows us to define LMI constraints
implicitly.

VI. A T EST FORSTABILITY

In this section, we use the results of the previous section
to test the existence of a Lyapunov function which establishes
stability of the scalar parabolic PDE defined in Equations (1) -
(2). Recall the autonomous (u(t) = 0) form of the PDE

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),
(18)

w(0, t) = 0, wx(1, t) = 0. (19)

The main technical contribution of this section is reformulating
the derivative of the Lyapunov functionV in (17) in the form
of Equation (17). This is achieved in the following theorem
wherein we obtain functionŝM , K̂1 andK̂2 such that

V̇ (w) ≤
∫ 1

0

w(x)M̂ (x)w(x)dx

+

∫ 1

0

∫ x

0

w(x)K̂1(x, ξ)w(ξ)dξdx

+

∫ 1

0

∫ 1

x

w(x)K̂2(x, ξ)w(ξ)dξdx.

Note that the inequality in this expression is deliberate, i.e.,
certain negative semidefinite terms have been left out ofM̂ ,
K̂1 andK̂2.

Before giving the main theorem, we define the following
linear map,Ωs, which relates functionsM , K1 andK2 to an
upper bound on the time-derivative of the Lyapunov function
defined by these functions. Specifically, we say that

{M̂, K̂1, K̂2} := Ωs(M,K1,K2), (20)

if

M̂(x) =
∂

∂x

[
∂

∂x
a(x)M(x) − b(x)M(x)

]

+ 2

[
∂

∂x
[a(x) (K1(x, ξ) −K2(x, ξ))]

]

ξ=x

+ 2M(x)c(x) − π2

2
αǫ, (21)

K̂1(x, ξ) =
∂

∂x

[
∂

∂x
[a(x)K1(x, ξ)] − b(x)K1(x, ξ)

]

+
∂

∂ξ

[
∂

∂ξ
[a(ξ)K1(x, ξ)]− b(ξ)K1(x, ξ)

]

+ (c(x) + c(ξ))K1(x, ξ), (22)

K̂2(x, ξ) =K̂1(ξ, x). (23)

Theorem 2. Suppose that there exist scalarsǫ, δ > 0,
d1, d2, d̂1, d̂2 ∈ N and polynomialsM , K1 andK2 such that

{M,K1,K2} ∈ Ξd1,d2,ǫ,

{−M̂ − 2δM,−K̂1 − 2δK1,−K̂2 − 2δK2} ∈ Ξ
d̂1,d̂2,0

,

(b(1)− ax(1))K1(1, x)− a(1)(D1K1)(1, x) = 0,

(b(1)− ax(1))M(1)− a(1)Mx(1) ≤ 0,

K2(0, x) = 0,

where{M̂, K̂1, K̂2} := Ωs(M,K1,K2). Then for any initial
conditionw(0) ∈ D0, there exists a scalarγ > 0 such that
the classical solutionw of (18) - (19) satisfies

‖w(t)‖ ≤ γ‖w(0)‖e−δt, t > 0,

whereD0 is defined in Equation(8).

Proof: Recall the operatorX{M,K1,K2} is as defined
in (3). As discussed in Section III, for anyw(0) ∈ D0 the
autonomous system admits a unique classical solution. By
Theorem 1, if{M,K1,K2} ∈ Ξd1,d2,ǫ, then

V (w) =
〈
w,X{M,K1,K2}w

〉
= 〈w,Pw〉 ,

satisfiesǫ‖w‖2 ≤ V (w) ≤ θ‖w‖2 for some θ > 0. The
calculation of the time derivativėV and its reformulation is
lengthy. It involves integration by parts, the Wirtinger inequal-
ity and the assumptiona(x) ≥ α. For this reason, we have
included this proof in the appendix as Lemma 3. Continuing,
by Lemma 3, for anyw which satisfies Equations (18) - (19),

V̇ (w(t)) ≤
〈

w(t),X{M̂,K̂1,K̂2}
w(t)

〉

.

Now, since{−M̂ − 2δM,−K̂1 − 2δK1,−K̂2 − 2δK2} ∈
Ξ
d̂1,d̂2,0

, we have thatX{M̂,K̂1,K̂2}
≤ −2δP and thus

−V̇ (w) − 2δV (w) ≥ 0. This implies that d
dt
V (w(t)) ≤

−2δV (w(t)) for all t ≥ 0. Thus,V (w(t)) ≤ V (w(0))e−2δt.
Concluding, we have that

‖w(t)‖ ≤ γ‖w(0)‖e−δt, γ =

√

θ

ǫ
.

Note that using the arguments in the proof of [7, Theo-
rem 5.1.3], the above result holds for weak/mild solutions
where the initial condition need only satisfyw0 ∈ L2(0, 1).

To test the conditions of Theorem 2, the variables are
the coefficients of the polynomialsM , K1 and K2. The
coefficients ofM̂ , K̂1 and K̂2 are then linear combinations
of these variables. Finally, the constraints∈ Ξd1,d2,ǫ are
LMI constraints, as discussed in Section V. Constructing the
matrices which map these coefficients can be automated using
SOSTOOLS or DelayTOOLs. The algorithm used can be
adapted from the algorithm presented for output feedback
controller in Section X. Application of the conditions of
Theorem 2 to several numerical examples can be found in
Section XI.

VII. I NVERSION AND STATE TRANSFORMATION

As discussed in Section IV, for controller synthesis, we
will use a state variable transformationz = P−1w so that
〈
Zh, PZ(P−1w)

〉
= 〈h,w〉. DefineP = X{M,K1,K2}, where

X{M,K1,K2} is as defined in (3). ThenP has the form

(Pz)(x)=M(x)z(x)+

∫ x

0

K1(x, ξ)z(ξ)dξ+

∫ 1

x

K2(x, ξ)z(ξ)dξ,

where if {M,K1,K2} ∈ Ξ{d1,d2,ǫ}, the operator is coercive
with 〈w,Pw〉 ≥ ǫ‖w‖2. Operators of this type are a com-
bination of a multiplier operator and two integral operators.
Furthermore, sinceK1 and K2 are polynomials, there exist
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polynomialsFi and Gi such thatK1(x, ξ) = F1(x)
TG1(ξ)

and K2(x, ξ) = F2(x)
TG2(ξ). This implies that the two

integral operators can be combined into a single integral
of the form

∫ 1

0
K(x, ξ)z(ξ)dξ where K is a kernel of the

semiseparable type. That is, there exist functionsFi andGi

such that

K(x, ξ) =

{

F1(x)
TG1(ξ), x ≥ ξ

F2(x)
TG2(ξ), otherwise

.

Integral operators with semiseparable kernels are used to repre-
sent the input-output map of well-posed Linear Time-Varying
(LTV) systems, as explored in [16, Section I.4, Theorem4.1].
These operators have certain properties which make them well-
suited for use in Lyapunov functions. Specifically, they arenot
trace-class, which means that their eigenvalues may not be
summable. Moreover, as discussed in [16, Section II.2], since
M(x) ≥ ǫ > 0, P−1 is a bounded linear operator and can
be calculated explicitly, as in the following theorem, which is
adapted from [16, Section II.3, Theorem3.1].

Theorem 3. Suppose that{M,K1,K2} ∈ Ξ{d1,d2,ǫ} for
some d1, d2, ǫ > 0 with K1(x, ξ) = F (x)TG(ξ) and
K2(x, ξ) = G(x)TF (ξ). Let P ∈ L(L2(0, 1)) be defined as
P = X{M,K1,K2}, whereX{M,K1,K2} is as defined in(3).
Define

B(x) =

[
G(x)
F (x)

]

, C(x) =
[
F (x)T −G(x)T

]
,

H = [N1 +N2U(1)]−1 N2U(1)

N1 =

[
I 0
0 0

]

, N2 =

[
0 0
0 I

]

,

andU(x) = limn→∞ Un(x), where

Un+1(x) = I −
∫ x

0

B(ξ)M(ξ)−1C(ξ)Un(ξ)dξ, (24)

andU1 = I. Then, the inverse of the operatorP is given by

(
P−1w

)
(x) =M(x)w(x) +

∫ x

0

K1(x, ξ)w(ξ)dξ

+

∫ 1

x

K2(x, ξ)w(ξ)dξ,

M(x) =M(x)−1,

K1(x, ξ) =M(x)−1C(x)U(x)(H − I)U(ξ)−1B(ξ)M(ξ)−1,

K2(x, ξ) =M(x)−1C(x)U(x)HU(ξ)−1B(ξ)M(ξ)−1.

Note that sinceM(ξ) ≥ ǫ, M(ξ)−1 is bounded and
continuous and hence the matrix of rational functions
B(ξ)M(ξ)−1C(ξ) is bounded and continuous. Therefore, it
follows from [8, Chapter3] that the uniform limit U(x)
exists and is non-singular forx ∈ [0, 1]. SinceU(x) is non-
singular on[0, 1], the matrixH is well defined. Therefore, by
construction M,K1,K2 ∈ C∞. Furthermore, note that since
P satisfiesǫ‖w‖2 ≤ 〈w,Pw〉 ≤ θ‖w‖2 for someθ > 0, then
1/θ‖w‖2 ≤

〈
w,P−1w

〉
≤ 1/ǫ‖w‖2.

Theorem 3 not only proves existence, but gives a practi-
cal method for constructing the state variable transformation
P−1 for which

〈
Zh, PZ(P−1w)

〉
= 〈h,w〉. Specifically, if

we truncate the sequenceUn and approximateM(x)−1 by

1 2 3 4 5
10

−5

10
−4

10
−3

10
−2

10
−1

m

w
(·
)
−

P
P

−
1

m
+
1
w

(·
)

Fig. 1: ‖w − PP−1
n+1w‖ as a function ofn.

a Chebyshev series, then construction of the functions M,
K1 and K2 is simply a matter of polynomial multiplication
and integration, which can be performed in MATLAB or
Mathematica. In practice, we have found thatUn converges
after only a few iterations. To illustrate, in Figure 1 we have
applied this approach to a given{M,K1,K2} ∈ Ξ1,1,1 and
plot ‖w − PP−1

n+1w‖ as a function ofn for the arbitrarily
chosen functionw(x) = x(x−0.4)(x−1). HereP−1

n+1 denotes
the construction forP−1 defined in Theorem 3 withU(x)
replaced byUn+1(x). In this case,n = 5 yields anL2 norm
error of ≈ 10−5. In this example, we approximatedM(ξ)−1

using the first five terms of its Chebyshev series.
Finally, we emphasize that construction ofP−1 is not part

of the optimization algorithm, but rather is performed after the
algorithm has solved the controller synthesis problem (to be
defined in the following section) and returned the polynomial
variablesM , K1, andK2.

VIII. S TATE-FEEDBACK CONTROLLER SYNTHESIS

Our approach to controller synthesis is based on the use
of a state variable transformationy = P−1w which, by
Theorem 3, is guaranteed to exist for anyP = X{M,K1,K2}

defined by{M,K1,K2} ∈ Ξ{d1,d2,ǫ}. Specifically, we will
use the Lyapunov functionV (w) =

〈
P−1w,w

〉
= 〈y,Py〉.

Ignoring the input for the moment and using the operatorA
defined in Equation (7), the time-derivative of this function
yields the dual stability condition

V̇ (w) = 2
〈
P−1w,Aw

〉
= 2 〈y,APy〉 ≤ 0,

which we must enforce for ally ∈ L2. The critical point
is that the operatorP−1 does not appear explicitly in the
stability condition. Rather its existence is only inferredfrom
the constraint onP that {M,K1,K2} ∈ Ξ{d1,d2,ǫ}. The next
step in our approach is to combine this dual stability condition
with a variable substitution through the use of a controllerof
the form

u(t) = Y1(P−1w)(1, t) +

∫ 1

0

Y2(x)(P−1w)(x, t)dx

= R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx,
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wherein we have replaced the original controller gainsR1 and
R2 with the new variablesY1 and Y2. OnceY1 and Y2 are
determined by the SOS solver, the actual gainsR1 and R2

can be recovered by computingP−1 and applying the formula
listed here.

Before giving the main theorem, we recall that the input
enters the dynamics as

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),
(25)

w(0, t) = 0, wx(1, t) = u(t). (26)

The goal, then, is to define conditions onP (which defines
M , K1 andK2) as well as onY1 and the polynomialY2 such
that the closed-loop system is exponentially stable.

To simplify exposition, we now define the following linear
map,Ωc, which relates functionsM , K1 andK2 to an upper
bound on the time-derivative of the Lyapunov function defined
by these functions for the controller dynamics. Specifically, we
say that

{M̂, K̂1, K̂2} := Ωc(M,K1,K2), (27)

if

M̂(x) = (axx(x) − bx(x))M(x) + b(x)Mx(x)

+ a(x)Mxx(x) + 2c(x)M(x) − π2

2
αǫ

+ a(x)

[

2
∂

∂x
[K1(x, ξ)−K2(x, ξ)]

]

ξ=x

,

(28)

K̂1(x, ξ) = a(x)(D2
1K1)(x, ξ) + b(x)(D1K1)(x, ξ)

+ a(ξ)(D2
2K1)(x, ξ) + b(ξ)(D2K1)(x, ξ)

+ (c(x) + c(ξ))K1(x, ξ), (29)

K̂2(x, ξ) = K̂1(ξ, x). (30)

Theorem 4. Suppose that there exist scalarsǫ, µ > 0,
d1, d2, d̂1, d̂2 ∈ N and polynomialsM , K1 andK2 such that

{M,K1,K2} ∈ Ξd1,d2,ǫ and K2(0, x) = 0.

Further suppose

{−M̂ − 2µM,−K̂1 − 2µK1,−K̂2 − 2µK2} ∈ Ξ
d̂1,d̂2,0

,

where{M̂, K̂1, K̂2} = Ωc(M,K1,K2). Let

Y1 <
Mx(1)

2
+
ax(1)− b(1)

2a(1)
M(1), Y2(x) = (D1K1)(1, x).

(31)
If the control inputu(t) is defined as

u(t) =Y1(P−1w)(1, t) +

∫ 1

0

Y2(x)(P−1w)(x, t)dx

=R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx, (32)

whereP−1 is as defined forP = X{M,K1,K2} in Theorem 3
andX{M,K1,K2} is as defined in(3), then there exists a scalar
γ > 0 such that for any initial conditionw(0) ∈ D (where

D is as in Equation(9)) the solutionw of (25) - (26) exists,
belongs toC1,2((0,∞), [0, 1]) and satisfies

‖w(t)‖ ≤ γ‖w(0)‖e−µt, t > 0.

Proof: We start the proof by observing that since
{M,K1,K2} ∈ Ξd1,d2,ǫ, as per Theorem 1, these polyno-
mials define a positive operatorP = X{M,K1,K2} such that
ǫ‖w‖2 ≤ 〈w,Pw〉 ≤ θ‖w‖2 for someθ > 0. Furthermore,
by Theorem 3, there exist bounded and continuously differen-
tiable functions M, K1 and K2 such thatP−1 = X{M,K1,K2}

satisfying 1/θ‖w‖2 ≤
〈
w,P−1w

〉
≤ 1/ǫ‖w‖2. We now

propose the Lyapunov function

V (w) =
〈
P−1w,w

〉
=
〈
P−1w,PP−1w

〉

=

∫ 1

0

(P−1w)(x)M(x)(P−1w)(x)dx

+

∫ 1

0

∫ x

0

(P−1w)(x)K1(x, ξ)(P−1w)(ξ)dξdx

+

∫ 1

0

∫ 1

x

(P−1w)(x)K2(x, ξ)(P−1w)(ξ)dξdx.

Let y = P−1w. Note that ifw ∈ H2(0, 1), theny = P−1w ∈
H2(0, 1). Now, since1/θ‖w‖2 ≤

〈
w,P−1w

〉
≤ 1/ǫ‖w‖2, we

have that the Lyapunov function is upper and lower bounded.
Now suppose that

u(t) = Y1(P−1w)(1, t) +

∫ 1

0

Y2(x)(P−1w)(x, t)dx

= R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx.

Since M,K1,K2 ∈ C∞(0, 1) andY2 is polynomial, we have
thatR2 ∈ C∞(0, 1). Therefore, as discussed in Section III, the
closed loop System (25) - (26) admits a solutionw ∈ H2(0, 1)
which impliesy = P−1w ∈ H2(0, 1). Again, the calculation
of the time derivativeV̇ and its reformulation is lengthy. It
involves integration by parts, the Wirtinger inequality and
the assumptiona(x) ≥ α. This proof is in the appendix as
Lemma 4 which establishes that for anyw which satisfies
Equations (25) - (26),

V̇ (w(t)) ≤
〈

y(t),X{M̂,K̂1,K̂2}
y(t)

〉

+ y(1, t)Ny(1, t) + 2y(1, t)a(1)M(1)yx(1, t),

where N = a(1)Mx(1) + (b(1) − ax(1))M(1). Now,
since {−M̂ − 2µM,−K̂1 − 2µK1,−K̂2 − 2µK2} ∈
Ξd1,d2,0, we have that X{M̂,K̂1,K̂2}

≤ −2µP and

hence
〈

y(t),X{M̂,K̂1,K̂2}
y(t)

〉

≤ −2µ 〈y(t),Py(t)〉 =

−2µ
〈
w(t),P−1w(t)

〉
. Applying this to the inequality, we get

V̇ (w(t)) ≤− 2µ
〈
w(t),P−1w(t)

〉

+ y(1, t)Ny(1, t) + 2y(1, t)a(1)M(1)yx(1, t).

A sufficient condition for stability, then, is that
2y(1)a(1)M(1)yx(1) ≤ −y(1)Ny(1). Unfortunately,
however, our control input enters viawx(1) and notyx(1).
To see the relationship betweenwx(1) andyx(1), we expand
the former and then solve for the latter as follows

wx(1, t) =Mx(1)y(1, t) +M(1)yx(1, t)
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+

∫ 1

0

(D1K1)(1, x)y(x, t)dx, (33)

where solving forM(1)yx(1) yields

M(1)yx(1, t) =wx(1, t)−Mx(1)y(1, t)

−
∫ 1

0

(D1K1)(1, x)y(x, t)dx. (34)

This implies that the Lyapunov function satisfies

V̇ (w(t)) ≤− 2µV (w(t)) + y(1, t)Ny(1, t)

+ 2y(1, t)a(1) (wx(1, t)−Mx(1)y(1, t))

− 2y(1, t)a(1)

∫ 1

0

(D1K1)(1, x)y(x, t)dx.

Now, examining the proposed controller, we obtain

wx(1, t) = u(t) = R1w(1, t) +

∫ 1

0

R2(x)w(x, t)dx

= R1(Py)(1, t) +

∫ 1

0

R2(x)(Py)(x, t)dx

= Y1y(1, t) +

∫ 1

0

Y2(x)y(x, t)dx,

which is expressed in the new optimization variablesY1 and
Y2. Now, pluggingwx(1) = Y1y(1) +

∫ 1

0
Y2(x)y(x)dx into

the time-derivative of the Lyapunov function, we get

V̇ (w(t)) ≤− 2µV (w(t))

+ y(1, t)2(N + 2a(1)Y1 − 2a(1)Mx(1))

+ 2y(1, t)a(1)

∫ 1

0

Y2(x)y(x, t)dx

− 2y(1, t)a(1)

∫ 1

0

(D1K1)(1, x)y(x, t)dx. (35)

By inspection, we see that the stability conditions are now

N + 2a(1)Y1 − 2a(1)Mx(1) < 0

andY2(x) = (D1K1)(1, x). This then implies thaṫV (w(t)) ≤
−2µV (w(t)) for all t ≥ 0 and henceV (w(t)) ≤
V (w(0))e−2µt. Since‖w‖2 ≤ θV (w), we have

‖w(t)‖ ≤
√

θV (w(t)) ≤
√

θV (w(0))e−µt

≤
√

θ/ǫ‖w(0)‖e−µt.

At this point, it is significant to note that given values for the
variablesY1, Y2, M , K1 andK2, the controller gainsR1 and
R2 can be found by calculating M, K1 and K2 via Theorem
3 and using the formula

R1w(1) +

∫ 1

0

R2(x)w(x)dx

= Y1y(1) +

∫ 1

0

Y2(x)y(x)dx

= Y1(P−1w)(1) +

∫ 1

0

Y2(x)(P−1w)(x)dx

= Y1M(1)w(1) +

∫ 1

0

Y1K1(1, x)w(x)dx

+

∫ 1

0

Y2(x)

(∫ x

0

K1(x, ξ)w(ξ)dξdx+

∫ 1

x

K2(x, ξ)w(ξ)dξ

)

dx

= Y1M(1)w(1) +

∫ 1

0

Y1K1(1, x)w(x)dx

+

∫ 1

0

(∫ 1

x

Y2(ξ)K1(ξ, x)dξ+

∫ x

0

Y2(ξ)K2(ξ, x)dξ

)

w(x)dx,

so that

R1 =Y1M(1), (36)

R2(x)=Y1K1(1, x)+

∫ 1

x

Y2(ξ)K1(ξ, x)dξ+

∫ x

0

Y2(ξ)K2(ξ, x)dξ,

(37)

where we have used the identity
∫ 1

0

∫ 1

x

f(x, ξ)dξdx =

∫ 1

0

∫ ξ

0

f(x, ξ)dxdξ =

∫ 1

0

∫ x

0

f(ξ, x)dξdx,

and the fact that K1(x, ξ) = K2(ξ, x).

IX. OBSERVERSYNTHESIS

In Section VIII, we described LMI conditions under which
one can obtain controller gainsR1 andR2(x) such that input
u(t) = R1w(1, t) +

∫ 1

0
R2(x)w(x, t)dx ensures exponentially

stability of the closed-loop system. However, this form of
controller requires measurement of the statew(x, t) at every
point x ∈ [0, 1] at all times. Implementation of such a
controller is problematic as such a distributed measurement
is unlikely to be readily available. A more common scenario
is one in which we may only measure the value ofw(x, t)
at discrete points in the domain. In particular, we assume
that only a single measurement is available at the boundary
of the domain, and in particular, atv(t) = w(1, t). As
discussed in Section III, in this scenario, we seek to find
an estimator/observer which will yield a real-time estimate
of the state of the system at all points and which, if used in
closed-loop, will ensure exponential stability of the closed-
loop. Specifically, our observer is a dynamic system with
input v(t) = w(1, t) and outputŵ(x, t), where ŵ(x, t) is
the estimate of the state at timet. We adopt the Luenberger
observer framework discussed previously, which implies that
the dynamics of the observer are given by

ŵt(x, t) = a(x)ŵxx(x, t) + b(x)ŵx(x, t)

+ c(x)ŵ(x, t) + L1(x) (v̂(t)− v(t)) , (38)

ŵ(0, t) = 0, ŵx(1, t) = u(t) + L2 (v̂(t)− v(t)) , (39)

wherev̂(t) = ŵ(1, t) is the predicted output and the scalarL2

and functionL1(x) are gains which map error in this predicted
output to the dynamics of the observer state. In the following
theorem, we seek conditions onL1 andL2 which ensure that
if R1 andR2 are as defined in Theorem 4 and the controller
is defined as

u(t) = R1ŵ(1, t) +

∫ 1

0

R2(x)ŵ(x, t)dx, (40)

then Equations (38) - (39) coupled with Equations (25) - (26)
and Equation (40) define an exponentially stable system.
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Our approach is based on the separation principle [7,
Chapter5], [18, Chapter5]. Specifically, we consider the error
dynamics of the PDE coupled with the observer dynamics
in Equations (38) - (39). That is, if we define the error as
e = ŵ − w, then this quantity satisfies

et(x, t) = a(x)exx(x, t) + b(x)ex(x, t) + c(x)e(x, t)

+ z1(x, t), (41)

e(0, t) = 0, ex(1, t) = z2(t), (42)

where the feedback signalsz1 andz2 are defined as

z1(x, t) := L1(x)e(1, t) and z2(t) := L2e(1, t). (43)

The key point is that the error dynamics do not depend on
the choice of controller gainsR1 and R2. In the following
theorem, this will allow us to choose observer gainsL1 and
L2 which stabilize the error dynamics. Then, in Theorem 6
we will show that if the controller gains are chosen as
per Theorem 4 and the observer gains are chosen as per
Theorem 5, then the coupled dynamics are stable in both the
state and state estimate. Unlike for controller synthesis,the
conditions for stabilization of the error dynamics are based
on the use of a simple Lyapunov functionV (e) = 〈e,Pe〉
where the operatorP = X{M,K1,K2} is defined by some
{M,K1,K2} ∈ Ξd1,d2,ǫ.

The following theorem is motivated by the LMI approach
as defined in Section IV, wherein as before the variablesM ,
K1 andK2 are defined by a positive definite matrixP and the
observer variables are scalarT2 and polynomialsT1 and T3

(defined by their vector of coefficients). Referring to the LMI
motivation, these observer variables are similar to the matrix
T and the observer gains are then recovered asL2 = P−1T2

andL1 = P−1(T1+T3), which is similar to the LMI observer
gain matrixL = P−1T .

Theorem 5. Suppose there exist scalarsǫ, δ > 0,
d1, d2, d̂1, d̂2 ∈ N and polynomialsM , K1 andK2 such that

{M,K1,K2} ∈ Ξd1,d2,ǫ, and K2(0, x) = 0.

Further suppose

{−M̂ − 2δM,−K̂1 − 2δK1,−K̂2 − 2δK2} ∈ Ξ
d̂1,d̂2,0

,

where{M̂, K̂1, K̂2} := Ωs(M,K1,K2). Let M, K1 and K2
defineX−1

{M,K1,K2}
= X{M,K1,K2}

as in Theorem 3 and

L2 :=(a(1)M(1))−1T2, (44)

L1(x) :=M(x)(T1(x) + T3(x))

+

∫ x

0

K1(x, ξ)(T1(ξ) + T3(ξ))dξ

+

∫ 1

x

K2(x, ξ)(T1(ξ) + T3(ξ))dξ, (45)

where

T1(x) = −0.5((b(1)− ax(1))K1(1, x)− a(1)(D1K1)(1, x)),
(46)

T2 < −0.5((b(1)− ax(1))M(1)− a(1)Mx(1)) (47)

T3(x) = −L2a(1)K1(1, x), (48)

andX{M,K1,K2} andX{M,K1,K2}
are as defined in(3). Then

for any e which satisfies(41) - (42) with initial condition
e(0) ∈ De (See Equation(12)), there exists a scalarγ > 0
such that

‖e(t)‖ ≤ γ‖e(0)‖e−δt, t > 0.

Proof: We start by observing that since{M,K1,K2} ∈
Ξd1,d2,ǫ, as per Theorem 1, these polynomials define a positive
operatorP = X{M,K1,K2} such thatǫ‖w‖2 ≤ 〈w,Pw〉 ≤
θ‖w‖2 for someθ > 0. Furthermore, by Theorem 3, there exist
bounded and continuously differentiable functions M, K1 and
K2 which define the positive operatorP−1 = X{M,K1,K2}

.
Therefore, sinceL1 ∈ C∞(0, 1), we have that the closed-loop
error dynamics (41) - (42) admit a local in time solutione for
any e0 ∈ De.

We now propose the Lyapunov function

V (e) = 〈e,Pe〉

=

∫ 1

0

e(x)M(x)e(x)dx

+

∫ 1

0

∫ x

0

e(x)K1(x, ξ)e(ξ)dξdx

+

∫ 1

0

∫ 1

x

e(x)K2(x, ξ)e(ξ)dξdx.

The derivative of this Lyapunov function is identical to the
one in Theorem 2 except for the presence of the termsz1 and
z2 defined in (43). Specifically, we have

V̇ (e) ≤
〈

e,X{M̂,K̂1,K̂2}
e
〉

+ 2 〈Pe, z1〉+ 2z2a(1)(Pe)(1)

+ 2 〈e,MR1e(1)〉+ e(1)R2e(1),

whereR1(x) = (b(1) − ax(1))K1(1, x) − a(1)(D1K1)(1, x)
andR2 = (b(1)− ax(1))M(1)− a(1)Mx(1). In the proof of
Theorem 2, we hadz1 = 0 andz2 = 0 and hence the stability
condition was thatR1 = R2 = 0 and thatX{M̂,K̂1,K̂2}

≤
−2δP . For the observer, we similarly requireX{M̂,K̂1,K̂2}

≤
−2δP . However, we now have the observer gainsz1(x) =
L1(x)e(1) and ex(1) = z2 = L2e(1) which the algorithm
can choose in order to cancel outR1 andR2. Unfortunately,
however, these gains depend onM and K1 and the gains
are currently bilinear with the operator variableP (and the
functionsM K1, andK2 which define it). Hence we would
like to perform a variable substitution. This is complicated,
however, by the fact that there are two observer gains - one at
the boundary and one directly injected into the dynamics. Let
us first examine the second gainz2 = L2e(1) which appears
in the term

z2a(1)(Pe)(1) = e(1)L2a(1)(Pe)(1)

= e(1)L2a(1)M(1)
︸ ︷︷ ︸

T2

e(1)

+

∫ 1

0

e(1)L2a(1)K1(1, x)e(x)dx

= e(1)T2e(1) +

∫ 1

0

e(1)L2a(1)K1(1, x)e(x)dx,
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where we have made the variable substitutionT2 =
L2a(1)M(1) which implies T2 is a scalar variable. The
variableL2 is thereby partially eliminated from the search.
However, sincea(x) > 0 andM(x) > 0, givenT2, the gainL2

can later be recovered asL2 = (a(1)M(1))−1T2. Of course,
this variable substitution has notcompletelyeliminated the
original variableL2. To completely eliminateL2 will require
assistance from the second gainL1. To see how this is done,
we examine the second term in whichz1 appears

〈Pe, z1〉=
〈

e, PML1
︸ ︷︷ ︸

MT1+MT3

e(1)

〉

=〈e,MT1e(1)〉+〈e,MT3e(1)〉 .

Here we have defined a new variableT1(x) which is de-
fined by T1(x) := M(x)L1(x) +

∫ x

0
K1(x, ξ)L1(ξ)dξ +

∫ 1

x
K2(x, ξ)L1(ξ)dξ − T3(x) for which MT1c = PML1c −

MT3c for any c ∈ R where T3 will be defined shortly.
Furthermore, for anyT3, the mapL1 7→ T1 is invertible with

L1(x) :=M(x)(T1(x) + T3(x))

+

∫ x

0

K1(x, ξ)(T1(ξ) + T3(ξ))dξ

+

∫ 1

x

K2(x, ξ)(T1(ξ) + T3(ξ))dξ

if P−1 = X{M,K1,K2}
. In this way, we eliminate the variable

L1 and replace it withT1 andT3. The next step, then, is to
chooseT3 so as to cancel the remaining term which contains
L2. This is done using〈e,MT3e(1)〉, which we expand to get

〈e,MT3e(1)〉 =
∫ 1

0

e(x)T3(x)e(1)dx,

which we would like to use to eliminate
∫ 1

0
e(1)L2a(1)K1(1, x)e(x)dx. Clearly, then, the appropriate

choice forT3 is

T3(x) = −L2a(1)K1(1, x).

Note that the dependence ofT3 on L2 is admissible because
T3 is not a free variable andL2 is computed directly fromT2.
This means that once feasible values forT1 andT2 have been
found, we then calculateL2 from T2, then useL2 to calculate
T3 and then useT1 andT3 to calculate the gainL1.

Concluding the proof, the time-derivative of the Lyapunov
function becomes

V̇ (e) ≤
〈

e,X{M̂,K̂1,K̂2}
e
〉

+ 2 〈e, (MT1 +MR1) e(1)〉+ e(1) (2T2 +R2) e(1).

Therefore, if T1 = −R1, 2T2 + R2 < 0 and {−M̂ −
2δM,−K̂1 − 2δK1,−K̂2 − 2δK2} ∈ Ξ

d̂1,d̂2,0
, we have that

V̇ (e) ≤ −2δV (e),

which, in a similar manner as Theorem 2 establishes exponen-
tial stability of the error dynamics with decay rateδ.

X. A N LMI CONDITION FOROUTPUT-FEEDBACK

STABILIZATION

In this section we briefly summarize the results of the
paper by giving an LMI formulation of the output-feedback
controller synthesis problem.

Theorem 6. Givend1, d2, d̂1, d̂2 ∈ N andǫ, δ, µ > 0, suppose
that there exist polynomialsM , N , K1, K2, S1 andS2 such
that

{M,K1,K2} ∈ Ξd1,d2,ǫ,

(49)

{−M̂ − 2µM,−K̂1 − 2µK1,−K̂2 − 2µK2} ∈ Ξ
d̂1,d̂2,0

,

(50)

K2(0, x) = 0, (51)

{N,S1, S2} ∈ Ξd1,d2,ǫ,
(52)

{−N̂ − 2δN,−Ŝ1 − 2δS1,−Ŝ2 − 2δS2} ∈ Ξ
d̂1,d̂2,0

,

(53)

S2(0, x) = 0, (54)

where {M̂, K̂1, K̂2} = Ωc(M,K1,K2), {N̂, Ŝ1, Ŝ2} =
Ωs(N,S1, S2) and 2d̂1 and 2d̂2 + 1 are the degrees ofM ,
N andK1, S1, respectively.

Then, there exist gainsR1, R2(x), L1(x) andL2 such that
if

u(t) = R1ŵ(1, t) +

∫ 1

0

R2(x)ŵ(x, t)dx, (55)

and w satisfies Equations(25) - (26) and ŵ satisfies Equa-
tions (38) - (39) with a zero initial condition then

‖w(t)‖ ≤ γ‖w(0)‖e−κt,

for someγ > 0 and anyκ satisfying0 < κ < min{µ, δ}.

Proof: If the conditions in (49) - (51) are satisfied,
then the polynomialsM , K1 andK2 satisfy the constraints
of Theorem 4. Therefore, we may constructR1 and R2(x)
using (36) - (37). Similarly, ifN , S1 andS2 satisfy (52) - (54),
then the conditions of Theorem 5 are satisfied withM = N ,
K1 = S1 andK2 = S2. Thus, we can construct observer gains
L1(x) andL2 using (44) - (45). Now, letPc = X{M,K1,K2},
P̂c = X{M̂,K̂1,K̂2}

, Po = X{N,S1,S2} and P̂o = X{N̂,Ŝ1,Ŝ2}
.

Therefore, the theorem conditions imply thatP̂c ≤ −2µPc

and P̂o ≤ −2δPo.
Using the proof of Theorem 5, there exists a scalarβ1 > 0

such that

V̇o(e) ≤ −2δVo(e)− β1e(1)
2, (56)

whereVo(e) = 〈e,Poe〉. Similarly, for the observer dynamics
in (38) - (39) with the input (55), using the proof of Theorem 4
one can prove that there exists a scalarβ2 > 0 such that

V̇c(ŵ) ≤− 2µVc(ŵ) + 2 〈ŷ, L1e(1)〉+ ŷ(1)(2a(1)L2)e(1)

− β2ŷ(1)
2, (57)
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where ŷ = P−1
c ŵ and Vc(ŵ) =

〈
ŵ,P−1

c ŵ
〉

= 〈ŷ,Pcŷ〉.
From (56) - (57) we infer that for anyr > 0 we have

rV̇o(e) + V̇c(ŵ) ≤ −2rδVo(e) +

〈



ŷ
ŷ(1)
e(1)



 ,U





ŷ
ŷ(1)
e(1)





〉

,

(58)

where

U =





−2µPc 0 L1

⋆ −β2 a(1)L2

⋆ ⋆ −rβ1



 ,

and the inner product is defined onL2(0, 1) × R × R. Now,
for any 0 < κ < min{δ, µ}, if we chooser > 0 sufficiently
large, it follows thatU ≤ diag(−2κPc, 0, 0). Thus, from (59)
we get that

rV̇o(e) + V̇c(ŵ) ≤− 2rδVo(e)− 2κVc(ŵ)

≤− 2κ (rVo(e) + Vc(ŵ)) .

Therefore definingV (ŵ, e) = rVo(e) + Vc(ŵ), we get that

V̇ (ŵ, e) ≤ −2κV (ŵ, e).

Integrating in time,

r 〈e,Poe〉+
〈
ŵ,P−1

c ŵ
〉
≤ e−2κtr 〈w(0),Pow(0)〉 , (59)

where we have used the fact thatŵ(0) = 0 and thuse(0) =
−w(0). Now, as discussed, there exist scalarsθ1, θ2 > 0 such
that

ǫ‖e‖2 ≤ 〈e,Poe〉 ≤ θ1‖e‖2,
1

θ2
‖ŵ‖2 ≤

〈
ŵ,P−1

c ŵ
〉
≤ 1

ǫ
‖ŵ‖2.

Therefore, using (59) we get

‖e‖2 + ‖ŵ‖2 ≤ rθ1
σ

‖w(0)‖2e−2κt,

whereσ = min(rǫ, 1/θ2). Thus,

‖e‖, ‖ŵ‖ ≤
√

rθ1
σ

‖w(0)‖e−κt.

Finally, using the fact that‖w‖ ≤ ‖ŵ‖+ ‖e‖ produces

‖w(t)‖ ≤ 2

√

rθ1
σ

‖w(0)‖e−κt.

The variables in Theorem 6 are polynomials which are
parameterized by vectors of coefficients associated to a prede-
termined monomial basis. There are two types of constraints
on these variables: equality constraints between polynomials;
and constraints of the form∈ Ξd1,d2,ǫ. To test the condi-
tions of Theorem 6, these variables and constraints must be
converted to a form recognized by an SDP solver such as
SeDuMi [37]. Many of these tasks have already been auto-
mated in SOSTOOLS [29] and our extended toolbox, Delay-
TOOLS [28]. Specifically, SOSTOOLS has functionality for
declaring polynomial variables and enforcing scalar equality
constraints. Furthermore, DelayTOOLS [28] allows the user
to declare matrix-valued equality constraints and create new
polynomial variables which satisfy∈ Ξd1,d2,ǫ. Furthermore,
the multipoly toolbox allows one to manipulate polynomial

variables in order to construct new dependent polynomials
such as in{M̂, K̂1, K̂2} = Ωc(M,K1,K2). Once all variables
and constraints have been declared, SOSTOOLS converts all
constraints and variables to a format which can be accepted
by SDP solvers such as SeDuMi, SDPT3 or MOSEK. The a-
posteriori polynomial manipulations such as operator inversion
can be performed using a combination of the multipoly toolbox
and Mupad. To help with understanding this process, we define
several subroutines which perform specific relevant tasks and
combine them in the pseudo code which would be used to
obtain the observer-based controllers.

[M,K1,K2]=mult_semisep(ǫ)

• Declares polynomial variablesM , K1 and K2 and
enforces the constraint{M,K1,K2} ∈ Ξd1,d2,ǫ.

[M̂,K̂1,K̂2]=omega_primal(M,K1,K2)

• ConstructsM̂ , K̂1 and K̂2 as defined by the mapΩs

in (20).

[M̂,K̂1,K̂2]=omega_dual(M,K1,K2)

• ConstructsM̂ , K̂1 and K̂2 as defined by the mapΩc

in (27).

eq_constr(F)

• Given a setF of univariate/bivariate polynomials,
declares element wise equality constraintF = 0.

[M,K1,K2]=inv_op(M,K1,K2)

• Given {M,K1,K2} = Ξd1,d2,ǫ calculates the inverse
multiplier M and kernels K1 and K2 by approximating
U(x) by performing the integration in (24) a finite
number of times and using a Chebyshev series approx-
imation ofM(x)−1.

[R1,R2]=controller_gains(M,K1,K1,M,K1,K2)

• The function definesY1 andY2(x) using (31). Conse-
quently,R1 andR2(x) are defined using (36) and (37),
respectively.

[L1,L2]=observer_gains(M,K1,K1,M,K1,K2)

• The function constructsT2 using (47) and setsL2 us-
ing (44). Then the function constructsT1(x) andT3(x)
using (46) and (48) and constructsL1(x) using (45).

A pseudo code for the SOSTOOLS implementation of the SDP
is presented in Algorithm 1.

XI. N UMERICAL RESULTS

In this section we test the conditions of Theorems 2, 4 and 5
by applying them to two parameterized instances of scalar
parabolic PDEs. The first instance is a variation of the classical
isotropic heat equation. Because this system is well-studied,
we are able to compare our results with a number of existing
results in the literature. The second system is an anisotropic
PDE with arbitrarily chosen coefficients. Both instances have
an instability term, parameterized by an instability factor,
λ. For both systems, we test stability, find controllers and
construct observer-based controllers.

Example 1:Our first system is defined as follows.

wt(x, t) = wxx(x, t) + λw(x, t), λ ∈ R, (60)
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Algorithm 1: Output-feedback controller synthesis.
Declaring optimization variables:

1) [M,K1,K2]=mult_semisep(ǫ)
2) [N,S1,S2]=mult_semisep(ǫ)

Constructing polynomials:
1) [M̂,K̂1,K̂2]=omega_dual(M,K1,K2)
2) [N̂,Ŝ1,Ŝ2]=omega_primal(N,S1,S2)

Declaring affine constraints:
1) eq_constr((-M̂-2µM,-K̂1-2µK1,-K̂2-2µK2)

-mult_semisep(0))
2) eq_constr((-N̂-2δN,-Ŝ1-2δS1,-Ŝ2-2δS2)

-mult_semisep(0))
3) eq_constr(K2(0,x))
4) eq_constr(S2(0,x))

if SOS problem is feasiblethen
Return outputs: M, K1, K2, N, S1, S2.

Calculating control gains:
1) [M,K1,K2]=inv_op(M,K1,K2)
2)

[R1,R2]=controller_gains(M,K1,K1,M,K1,K2)
Calculating observer gains:

1) [N,S1,S2]=inv_op(N,S1,S2)
2) [L1,L2]=observer_gains(N,S1,S1,N,S1,S2)

d = 3 4 5 6 7 analytic
λ = 0.59 2.19 2.457 2.46 2.461 2.467

TABLE I: Max. λ as a function ofd1 = d2 = d for which the
exp. stability conditions of Theorem 2 are feasible, implying
stability of PDE (60) withu(t) = 0.

with boundary conditions

w(0, t) = 0, wx(1, t) = u(t).

The output of the PDE isv(t) = w(1, t). For u(t) = 0, the
analytical solution of this PDE is given by

w(x, t) =
∞∑

n=1

eλnt 〈w0, φn〉φn(x),

where λn = λ − (2n − 1)2π2/4 and φn =
√
2 sin((2n −

1)πx/2). This implies that Equation (60) is unstable forλ >
π2/4 ≈ 2.467. To test the numerical accuracy of the stability
conditions in Theorem 2, we found the largestλ > 0 for which
the conditions of Theorem 2 are feasible as a function of the
parametersd1 andd2 which define the degree of the variables
M , K1 andK2. Table I presents these results forǫ, δ = 0.001.
Ford1 = d2 = 7, we can construct a Lyapunov function which
proves stability forλ = 2.461, which is99.74% of the stability
margin π2

4
≈ 2.4674.

To test the accuracy of the conditions in Theorem 4, we
find the largestλ for which the conditions of Theorem 4 are
feasible with ǫ = 0.001 and µ = 0.001, thereby implying
the existence of an exponentially stabilizing state-feedback
controller. Table II presents this maximumλ as a function
of the degreed1 = d2 = d. The results suggest that for

d = 7 8 9 10 11
λ = 14.3982 17.9626 22.8645 23.3093 27.1179

TABLE II: Max. λ as a function ofd1 = d2 = d for which
the conditions of Theorem 4 are feasible, thereby implying
the existence of an exp. stabilizing state-feedback controller
for PDE (60).

d = 7 8 9 10 11
λ = 14.5233 17.7643 23.4406 24.7772 27.8820

TABLE III: Max. λ as a function ofd1 = d2 = d for which
the conditions of Theorem 5 are feasible, thereby implying the
existence of an exp. stabilizing output-feedback controller for
PDE (60).

sufficiently high degree, a static state-feedback controller can
be constructed for any value ofλ > 0.

To test the accuracy of the conditions of Theorem 5, we
find the largestλ for which the conditions of Theorem 5 are
feasible with ǫ = 0.001 and δ = 0.001, thereby implying
the existence of an exponentially stabilizing dynamic output-
feedback controller with outputv(t) = w(1, t). Table III
presents this maximumλ as a function of the degreed1 =
d2 = d. The results suggest that for sufficiently high degree,
a dynamic output feedback controller can be constructed for
any value ofλ > 0.

Example 2: To illustrate the versatility of the proposed
method, we next consider the following arbitrarily chosen
anisotropic system

wt(x, t) = a(x)wxx(x, t)+ b(x)wx(x, t)+ c(x)w(x, t), (61)

wherea(x) = x3 − x2 + 2, b(x) = 3x2 − 2x and c(x) =
−0.5x3 + 1.3x2 − 1.5x+ 0.7 + λ with λ ∈ R. Although the
analytical solution to this PDE is not readily available, we
may use a finite-difference scheme to numerically simulate
the system and thereby estimate the range ofλ for which
the PDE (61) is stable. Specifically, we find that the system
is unstable forλ > 4.66. To determine the accuracy of the
conditions of Theorem 2, we find the largestλ for which the
conditions of Theorem 2 are feasible. Table IV lists the largest
suchλ usingǫ, δ = 0.001 as a function of polynomial degree
d1 = d2 = d. The maximumλ for which we can prove the
exponential stability for isλ = 4.62, which is 99.14% of
the predicted stability margin of4.66. The< 1% discrepancy
may be due to conservatism or inaccuracy in the predicted
maximumλ on account of inaccuracy in the discretization or
poor choice of initial conditions in the simulation.

To test the accuracy of the conditions in Theorem 4, we
again find the largestλ for which the conditions of Theorem 4

d = 3 4 5 6 7 simulation
λ = 4.37 4.61 4.61 4.62 4.62 4.66

TABLE IV: Max. λ as a function ofd1 = d2 = d for which the
exp. stability conditions of Theorem 2 are feasible, implying
stability of PDE (61) withu(t) = 0.
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d = 4 5 6 7 8
λ = 19.0216 36.1359 39.7247 43.5974 44.5219

TABLE V: Max. λ as a function ofd1 = d2 = d for which
the conditions of Theorem 4 are feasible, thereby implying
the existence of an exp. stabilizing state-feedback controller
for PDE (61).

d = 4 5 6 7 8
λ = 18.3090 36.0199 38.0478 40.5931 44.079

TABLE VI: Max. λ as a function ofd1 = d2 = d for which
the conditions of Theorem 5 are feasible, thereby implying the
existence of an exp. stabilizing output-feedback controller for
PDE (61).

are feasible withǫ = 0.001 andµ = 0.001, thereby implying
the existence of an exponentially stabilizing state-feedback
controller. Table V presents this maximumλ as a function
of the degreed1 = d2 = d. The results suggest that for
sufficiently high degree, a static state-feedback controller can
be constructed for any value ofλ > 0.

To test the accuracy of the conditions of Theorem 5, we
again find the largestλ for which the conditions of Theorem 5
are feasible withǫ = 0.001 andδ = 0.001, thereby implying
the existence of an exponentially stabilizing dynamic output-
feedback controller with outputv(t) = w(1, t). Table VI
presents this maximumλ as a function of the degreed1 =
d2 = d. The results suggest that for sufficiently high degree,
a dynamic output feedback controller can be constructed for
any value ofλ > 0.

We conclude with the conjecture that the proposed method
is asymptotically accurate in the sense that, for anyλ > 0,
if the PDE (1) - (2) is stable in the autonomous sense, then
the conditions of Theorem 2 will be feasible for sufficiently
high d1 and d2. Moreover, we conjecture that if the system
is observable and controllable for some suitable definition
of controllability and observability, then the conditionsof
Theorems 4 and 5 will be feasible for sufficiently highd1 and
d2. We emphasize, however, that this is only a conjecture and
additional work must be done in order to make this statement
rigorous and determine its veracity. A further caveat to these
results is the observation that the maximum degreed1 andd2
for which the conditions can be tested is a function of the
memory and processing speed of the computational platform
on which the experiments are performed. Specifically, the
number of optimization variables in the underlying SDP prob-
lem is determined by the number of polynomial coefficients
which scales asO(d2). To illustrate, all numerical experiments
presented in this paper were performed on a machine with
8 gigabytes of random access memory, which limited our
analysis to a maximum degree ofd1 = d2 = 11 for PDE (60)
andd1 = d2 = 8 for PDE (61).

In the following subsection, we illustrate the controllersand
observers which result from feasibility of the conditions of
Theorems 4 and 5 using numerical simulation.

d = 1 2 3 4 . . . 9 10 K1,K2 6= 0
Ex. 1 λ = 3.91 4.78 4.88 4.88 4.88 27.1179
Ex. 2 λ = 3.51 7.03 8.59 8.59 8.59 44.5219

TABLE VII: Re-evaluation of the results of Tables II and V
with added constraintK1 = K2 = 0.

A. Numerical Implementation of Observer-Based Controllers

To illustrate the observer-based controllers which result
from feasibility of the conditions of Theorems 4 and 5, we
take the anisotropic PDE (61) withλ = 35. This value ofλ
renders the autonomous system unstable. We then synthesize
controller and observer gains using the results of Theorems4
and 5 for d1 = d2 = 6, along with the inverse state
transformation defined in Theorem 3. For the inverse state
transformation,M(x)−1 is approximated using a sixth order
Chebyshev series approximation and 5 iterations are used to
defineU∞

∼= U5. The controllers are then applied to the state
and estimator dynamics, which are then discretized using a
trapezoidal approximation. The initial state is set to

w0(x) = e
− (x−0.3)2

2(0.07)2 − e
− (x−0.7)2

2(0.07)2 ,

while the initial observer state is set tôw(x, 0) = 0. Fig-
ures 2(a) - 2(c) illustrate the state evolution of the system,
observer and the control effort respectively. Finally, Figure 3
illustrates the integral control gainR2(x). Note that its behav-
ior at the boundaries is logical since atx = 0, the boundary
conditionw(0, t) = 0 ensures that no control effort is required.
Whereas, atx = 1, the control exerts maximum effort.

XII. N ECESSITY OFSEMI-SEPARABLE KERNELS IN THE

LYAPUNOV FUNCTION

Recall that the Lyapunov functions used in Theorems 2, 4,
and 5 all have the form

V (w) =

∫ 1

0

w(x)M(x)w(x)dx

+

∫ 1

0

w(x)

(∫ x

0

K1(x, ξ)w(ξ)dξ +

∫ 1

x

K2(x, ξ)w(ξ)dξ

)

dx.

As mentioned previously, this form is atypical in the study
of parabolic PDEs and the reader may question the neces-
sity of the termsK1 and K2 as their presence significantly
complicates the analysis and increases the complexity of the
stability conditions. Therefore, to illustrate the necessity of
including these terms, in this section we repeat the numerical
examples presented previously with the added restriction that
K1 = K2 = 0 (which translates toPij = 0 for i 6= j 6= 1 in
Theorem 1). Table VII illustrates these results for the controller
synthesis conditions of Theorem 4 using the same method-
ology as described in the previous section. These numerical
tests indicate that while inclusion ofK1 and K2 allows us
to control the PDE for anyλ > 0, when K1 = K2 = 0,
our method will fail for someλ, regardless of the polynomial
degreed1 = d1 = d. As indicated in Table VIII, the results are
similar for the observer synthesis conditions of Theorem 5.
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(a) Evolution of closed-loop statew(x, t).
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(b) Evolution of closed-loop state estimatêw(x, t).
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(c) Control inputwx(1, t) = u(t).

Fig. 2: Evolution of closed loop system for Example 2 withλ = 35 using controller from Theorem 4 and observer from
Theorem 5.

d = 1 2 3 4 . . . 9 10 K1,K2 6= 0
Ex. 1 λ = 3.89 4.79 4.88 4.88 4.88 27.8820
Ex. 2 λ = 3.51 7.12 8.43 8.43 8.43 44.079

TABLE VIII: Re-evaluation of the results of Tables III and VI
with added constraintK1 = K2 = 0.

XIII. C OMPARISON WITH AND RELATION TO EXISTING

RESULTS

In this section, we compare our numerical results with
several results in the literature which can be used for stability
analysis and control, including those based on Sturm-Liouville
theory and backstepping.

A. Static Controllers Using Sturm Liouville Theory

The output feedback controllers we construct are dynamic
in that they rely on an auxiliary set of estimator dynamics
which must be simulated in real-time. By contrast, static output
feedback controllers do not use an estimator and instead rely
only on a gain of the form, e.g.u(t) = −κv(t) = −κw(1, t).
Unfortunately, even for finite-dimensional systems the problem
of static output feedback design is unsolved whenB 6= I.
That is, there is no LMI or polynomial-time algorithm which
is guaranteed to find a stabilizing output feedback controller
if one exists [38], [13]. However, there are numerous results
which give sufficient conditions for the existence of such a
controller, often based on the use of a fixed Lyapunov function.
For the parabolic PDE which we consider, Sturm-Liouville
theory [10, Chapter 2] can be used to express conditions for
existence of static-output feedback controllers. Specfically, for
u(t) = −κw(1, t), the stability of (1) - (2) depends on the
first eigenvalue of the following Sturm-Liouville eigenvalue
problem

d

dx

(

p(x)
dw(x)

dx

)

+ q(x)w(x) = µσ(x)w(x), (62)

whereµ is the eigenvalue and

p(x) = e
∫ b(ξ)

a(ξ)
dξ, q(x) = c(x)

p(x)

a(x)
, σ(x) =

p(x)

a(x)
.

The boundary conditions for this eigenvalue problem are
w(0) = 0 and wx(1) + κw(1) = 0. For our system, using

the properties of the coefficientsa(x), b(x) and c(x) it can
be established thatp is continuously differentiable,q and σ
are continuous and there exist scalarsp0 and σ0 such that
p(x) ≥ p0 > 0 andσ(x) ≥ σ0 > 0. If µ1 is the first eigen-
value of (62), then it can be established using the Rayleigh
quotient thatµ1 ≤ µcc

1 , whereµcc
1 is the first eigenvalue of

the following constant coefficient Sturm-Liouville eigenvalue
problem

p0
d2w(x)

w(x)
+ q1w(x) = µccσ1w(x), (63)

subject to the boundary conditionsw(0) = 0 and wx(1) +
κw(1) = 0 and whereq1 andσ1 are scalars such that

q(x) ≤ q1 and σ(x) ≤ σ1.

Now let us first consider Numerical Example 1, as defined
in Equation (60) in Section XI. In this case, we have that
p0 = 1, q1 = λ and σ1 = 1. Therefore, estimating the first
eigenvalue of (63) we get thatµcc

1 ≈ λ−π2. Since, for stability
we requireµcc

1 < 0, for a large enoughκ > 0, a control
input of the formu(t) = −κw(1, t) can stabilize (60) for
λ < π2. This result is significantly more conservative than
the results described in Tables II-III which yield a stabilizing
controller for at leastλ < 27.1179. Of course this result is not
particularly surprising, as static output feedback controllers are
a subset of dynamic output feedback controllers.

Similarly, for Numerical Example 2 (Equation (61)) we have
p(x) = x3 − x2 +2, q(x) = −0.5x3+1.3x2− 1.5x+0.7+λ
andσ(x) = 1. Thusp0 = 50/27, q1 = 0.7 + λ andσ1 = 1.
Therefore, estimating the first eigenvalue of (63) we get that
µcc
1 ≈ λ − 17.58. As before, we requireµcc

1 < 0. Therefore
for a large enoughκ > 0, a control input of the formu(t) =
−κw(1, t) can stabilize (60) forλ < 17.58. Whereas, from
Tables V-VI we see that Theorems 4 and 5 yield a dynamic
output feedback controller for at leastλ < 44.079.

B. The Case WhenA+A⋆ ≤ 0

For some values of the coefficientsa(x), b(x) and c(x)
we may have thatA + A⋆ ≤ 0 on D0, where the operator
A is defined in (7) and the setD0 is defined in (8). The
output feedback stabilization of such systems, i.e. systems with
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d = 6 7 8 9 10 11
δ = 8.01 12.7 17.21 20.31 22.66 25.78

TABLE IX: Max. exp. decay rateδ as a function of polynomial
degree,d1 = d2 = d for Equations (1) - (2) withA as in
Equation (64) for which we can construct output feedback
controllers using Theorems 4 and 5.

A+A⋆ ≤ 0 and collocated control/observation, is considered
in [6]. The authors in [6] show that for such systems there
exists a scalarκ > 0 (possiblyκ = ∞) such that the control
u(t) = −κv(t) exponentially stabilizes the system. We wish
to see if our methodology offers a performance gain over the
controller proposed in [6]. If we choosea(x) = 1, b(x) = 0
andc(x) = π2/4, then

A =
d2

dx2
+

π2

4
. (64)

Applying integration by parts and Lemma 1, it can be estab-
lished thatA + A⋆ ≤ 0 on D0. If we apply a controller of
the form proposed in [6], thenu(t) = −κv(t) = −κw(1, t),
for someκ > 0. Using the theory in Subsection XIII-A it is
easily established that even for an arbitrarily largeκ > 0, the
closed loop system state will decay with a rate close to, but
less then3π2/4. Whereas, from Table IX we observe that for
d1 = d2 = 11 we can construct an output feedback controller
with a minimum exponential decay rate of25.78, a significant
improvement over3π2/4.
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Fig. 3: Control gainR2(x).

C. Backstepping

Backstepping is a well-known alternative for the construc-
tion of stabilizing controllers for parabolic PDEs. Specifically,
the backstepping approach defines a control law which, when
coupled with an invertible state transformation, convertsthe
controlled parabolic PDE to the form of a desired stable
PDE (the target system). Although backstepping is not an
optimization-based method and does not explicitly search for a
Lyapunov-based stability proof, it turns out that the existence
of a backstepping controller typically implies the existence of
a Lyapunov function of the Form (17), defined by a multiplier
M and semiseparable kernelsK1 andK2. To demonstrate the
existence of this Lyapunov function, let us consider the system
defined by Example 1,

wt(x, t) = wxx(x, t) + λw(x, t), (65)

w(0, t) = 0, wx(1, t) = u(t), (66)

whereλ > 0. Now define thetarget system

zt(x, t) = zxx(x, t), (67)

z(0, t) = 0, zx(1, t) = 0. (68)

The key backstepping result is that there exists a functionE
such that if

u(t) = E(1, 1)w(1, t) +

∫ 1

0

(D1E)(1, x)w(x, t)dx,

then for any solutionw of Equations (65) - (66),

z(x, t) = w(x, t) −
∫ x

0

E(x, ξ)w(ξ, t)dξ,

is a solution of the target system in Equations (67) - (68).
Furthermore, if the mapE : w 7→ z is invertible, then stability
of the target system implies stability of the original closed-
loop PDE. For the example problem given, thisE is obtained
as a solution of akernel-PDE and can be found explicitly
as [18]

E(x, ξ) = −λξ
I1

(√

λ (x2 − ξ2)
)

√

λ (x2 − ξ2)
, 0 ≤ ξ ≤ x ≤ 1, (69)

whereI1 is the first order modified Bessel function of the first
kind. Moreover,E has an inverse of the form

(
E−1z

)
(x) = z(x, t) +

∫ x

0

F (x, ξ)z(ξ, t)dξ, (70)

where

F (x, ξ) = −λξ
J1

(√

λ (x2 − ξ2)
)

√

λ (x2 − ξ2)
, 0 ≤ ξ ≤ x ≤ 1, (71)

whereJ1 is the first order Bessel function of the first kind.
Using properties of Bessel functions, it can be shown that both
kernelsE andF are bounded on the domain{(ξ, x) : 0 ≤
ξ ≤ x ≤ 1}. This implies that bothE andE−1 are bounded
with induced norms which we denote by‖E‖L and‖E−1‖L.

Now, to understand how this backstepping transformation
implies the existence of a Lyapunov function with semi-
separable kernels, we first note that stability of the target
system in Equations (67) - (68) is established using the simple
Lyapunov function

Vtarget(z) =

∫ 1

0

z(x)2dx = 〈z, z〉 ,

for which, using (67) - (68), integration by parts and Lemma 1,
we obtain

d

dt
Vtarget(z(t)) ≤ −ǫVtarget(z(t)), (72)

for any z which satisfies (67) - (68), whereǫ = π2

2
. This

implies

Vtarget(z(t)) ≤ e−ǫtVtarget(z(0)) ⇒ ‖z(x, t)‖ ≤ e−
ǫ
2 t‖z(x, 0)‖.

Now, for the original system we define the Lyapunov
function

Vplant(w) = 〈Ew, Ew〉 . (73)
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Now, since for any solution,w(t), of the original system,z =
Ew(t) is a solution of the target system, we have that

d

dt
Vplant(w(t)) =

d

dt
〈Ew(·, t), Ew(·, t)〉

=
d

dt
〈z(·, t), z(·, t)〉

=
d

dt
Vtarget(z(t)) ≤ −ǫVtarget(z(t))

= −ǫVtarget(Ew(t)) = −ǫ 〈Ew(t), Ew(t)〉
= −ǫVplant(w(t)).

Therefore,

Vplant(w(t)) ≤ e−ǫtVplant(w(0)),

which means

‖Ew(·, t)‖ ≤ e−
ǫ
2 t‖Ew(·, 0)‖. (74)

Boundedness ofE and E−1 now implies ‖w(t)‖ ≤
‖E−1‖L‖Ew(t)‖ and‖Ew(0)‖ ≤ ‖E‖L‖w(0)‖, which yields

‖w(t)‖ ≤ ‖E−1‖L‖E‖Le−
ǫ
2 t‖w(0)‖,

which proves thatVplant(w) = ‖Ew‖2 establishes exponential
stability of the original system.

We now show thatVplant(w) has a form consistent with
Theorem 4. Expanding

Vplant(w) = 〈Ew, Ew〉 ,

we get

Vplant(w) =

∫ 1

0

w(x)2 −
∫ 1

0

∫ x

0

w(x)E(x, ξ)w(ξ)dξdx

−
∫ 1

0

∫ 1

x

w(x)E(ξ, x)w(ξ)dξdx

+

∫ 1

0

∫ 1

x

∫ ξ

0

w(x)E(ξ, x)E(ξ, η)w(η)dηdξdx.

Changing the order of integration twice in the last integraland
collecting like terms, we obtain

Vplant(w) =

∫ 1

0

w(x)2dx

+

∫ 1

0

∫ x

0

w(x)H1(x, ξ)w(ξ)dξdx

+

∫ 1

0

∫ 1

x

w(x)H2(x, ξ)w(ξ)dξdx,

=
〈
w,X{I,H1,H2}w

〉
,

where

H1(x, ξ) =

∫ 1

x

E(η, x)E(η, ξ)dη − E(x, ξ),

H2(x, ξ) =

∫ 1

ξ

E(η, x)E(η, ξ)dη − E(ξ, x),

which has the form of a Lyapunov function consistent with
Equation (17) using a semi-separable kernel where we have

M(x) = 1, K1 = H1 andK2 = H2. In a similar manner, if
we defineP = X{I,G1,G2} where

G1(x, ξ) =

∫ 1

x

F (η, x)F (η, ξ)dη + F (x, ξ),

G2(x, ξ) =

∫ 1

ξ

F (η, x)F (η, ξ)dη + F (ξ, x),

thenP−1 = X{I,H1,H2} and hence

Vplant(w) =
〈
P−1w,PP−1w

〉
, (75)

which is a form consistent with Theorem 4. Thus we conclude
that for this class of systems, if we assume the functionF
may be approximated by polynomials, then the existence of a
backstepping controller implies the feasibility of Theorem 4
for some degree. Despite this similarity, there are, of course,
differences between the proposed method and backstepping.
Specifically, our approach is optimization based, whereas the
search for the backstepping transformation is not. Advantages
of the proposed method include the ability to analyze stability
of autonomous PDEs and simple extensions to robust control
of PDEs with parametric uncertainty via Positivstellensatz
results [30].

D. Finite-Dimensional Approximations

In this subsection we consider the merits of the SOS
approach with respect to finite-dimensional approximation.
That is, we consider whether there are advantages over model
reduction techniques wherein the PDE is reduced to a set of
coupled ODEs - as in, e.g. [1].

Before continuing, we note that establishing a suitable
metric for comparison of finite-dimensional and infinite-
dimensional approaches is complicated by the fact that that
the methods proposed in this paper are suboptimal. That is, we
are not seeking observer-based controllers which are optimal
in any sense. Rather, we simply seek observer-based con-
trollers which establish closed-loop stability. In this sense, our
methods are roughly equivalent to existing finite-dimensional
approaches in that for all numerical examples considered, we
are able to construct observer-based controllers for suitably
high polynomial degree. In a sense, then, one could argue
that finite-dimensional approaches are superior in that they are
able to go beyond stabilization and constructoptimalobserver-
based controllers using a suitably high level of discretization.
In practice, however, our experience has shown that there are
disadvantages to discretization-based methods such as pole-
placement. Specifically, we have seen that if the reduction
scheme is not carefully chosen, discretization may result in
loss of controllability or poorly conditioned controllability
matrices. To illustrate, consider the following model:

wt(x, t) = wxx(x, t) + 15w(x, t),

w(0, t) = 0, wx(1, t) = u(t).

One approach to reduction of this PDE to a system of ODEs
is to use a finite difference method to approximate the spatial
derivative as

wxx(x, t) ≈
2

∆x1 +∆x2

(
w(x +∆x2, t)− w(x, t)

∆x2

)
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m 5 10 20
cond(C(Am, Bm)) ≈ 107 1025 1063

TABLE X: Condition number ofC(Am, Bm) as a function of
order of reductionm.

− 2

∆x1 +∆x2

(
w(x, t) − w(x−∆x1, t)

∆x1

)

,

where∆x1 is the step size to the left ofx and∆x2 is the
step size to the right. Using this scheme we obtain an ODE
model of the form

ẇm(t) = Amwm(t) +Bmu(t), (76)

wherewm(t), Bm ∈ Rm×1 andAm ∈ Rm×m andm ∈ N is
the order of reduction. While relatively straightforward,this
approach creates significant technical challenges. For example:

a) Controllability of the Reduced Model:The reduced-
order model must be chosen so as to maintain the properties
of controllability and observability. In most cases, however,
there is no guarantee that a finite-difference approximation
scheme will preserve these properties. For example, for the
finite difference scheme defined above, it is known that if
the original system is controllable and a uniform grid size is
chosen, then the reduced system is also controllable. However,
if one were to chose a non-uniform grid, then controllability
is no longer guaranteed. For example if one were to chose
a logarithmic grid, form > 13 the reduced model is not
controllable (although it is still stabilizable). In such acase,
the performance of the closed loop system will be limited by
the location of the uncontrollable eigenvalues.

b) Ill-conditioned Controllability Matrix:Now suppose we
wish to perform pole placement by applying Ackermann’s
formula to the reduced order model. As mentioned, it can be
shown that the reduced order model in (76) is controllable
for any m ∈ N when derived using uniform step sizes
(∆x1 = ∆x2) as established by the Hautus test. However,
the pole placement problem (which is similar to our condition
for exponential stabilization with desired decay rate) relies on
inversion of the controllability matrixC(Am, Bm) - a step
which is numerically sensitive to conditioning ofC(Am, Bm).
This is problematic since, as seen in Table X, the controllabil-
ity matrix for this system is ill-conditioned and the condition
numberworsensas the level of disretizationm increases. This
implies that as the level of discretization increases, numerical
errors may dominate - potentially resulting in unstable or
unpredictable controllers. Naturally, these issues are well-
known and have been addressed in the literature through
methods such as robust place placement [40] or Galerkin
schemes [19]. The advantage of the SOS approach, however, is
that the controllers are provably stable at the pre-lumpingstage
and thus the only numerical concern is implementation, which
does not appear to be sensitive to issues such as condition
number.

XIV. A LTERNATIVE BOUNDARY CONDITIONS

The results of this paper may be readily adapted to other
types of boundary conditions. Specifically, the conditionsof

Boundary Condition Outputv(t)

Dirichlet
w(0, t) = 0

w(1, t) = u(t)
wx(1, t)

Neumann
wx(0, t) = 0

wx(1, t) = u(t)
w(1, t)

Robin
w(0, t) +wx(0, t) = 0

w(1, t) +wx(1, t) = u(t)
w(1, t)

TABLE XI: Alternative boundary conditions and outputs for
PDEs (60) and (61).

d = 8 9 10 11
Dirichlet λ = 17.7634 22.8645 23.3093 27.1179
Neumann 14.8163 17.1814 21.8781 21.8781
Robin 13.8367 16.6565 18.6050 18.9758

TABLE XII: Max. λ as a function of polynomial degree,
d1 = d2 = d for PDE (60) with boundary conditions as in
Table XI for which we can construct output-feedback boundary
controllers.

Theorems 2, 4 and 5 can be easily modified to consider
alternative boundary conditions. Although economy of space
prohibits us from presenting these conditions in full, in this
section we give the results of numerical tests performed
using Dirichlet, Neumann and Robin boundary conditions.
Specifically, for the two PDEs (60) and (61) which define
Examples1 and 2, respectively, in Section XI, we consider
the boundary conditions and the outputs as listed in Table XI.

Tables XII and XIII illustrate the maximumλ for which we
can construct output-feedback based controllers as a function
of d1 = d2 = d for PDEs (60) and (61), respectively, for the
boundary conditions listed in Table XI using exponential decay
rates ofδ = µ = 0.001. Similar to the observation made in
Section XI, the numerical results in this section suggest that
our methodology is asymptotically accurate for the considered
alternative boundary conditions, that is, given anyλ > 0, we
can construct controllers/observers by choosing a large enough
d1 = d2 = d. A more detailed study of alternative boundary
conditions can be found in the thesis work of [14].

XV. CONCLUSION AND FUTURE WORK

We have defined an algorithmic, polynomial-time approach
to the design of observer-based controllers for a general
class of scalar parabolic partial differential equations using
measurements and feedback at the boundary. The results use
polynomials and semidefinite programming to parameterize

d = 5 6 7 8
Dirichlet λ = 36.0199 38.0478 40.5930 44.079
Neumann 29.8492 31.1447 31.1447 34.1584
Robin 24.6490 27.8503 27.8503 29.4373

TABLE XIII: Max. λ as a function of polynomial degree,
d1 = d2 = d for PDE (61) with boundary conditions as in
Table XI for which we can construct output-feedback boundary
controllers.
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a convex set of positive Lyapunov functions on the Hilbert
spaceL2. By combining these Lyapunov functions with an
invertible state transformation, we obtain convex conditions
for stability, controller synthesis and Luenberger observer
design. Furthermore, we have tested our results using pa-
rameterized numerical examples in order to show that the
stability conditions are accurate to several significant figures
and the synthesis conditions yield controllers for a large class
of controllable and observable systems. Furthermore, we have
adapted the approach to three alternative classes of boundary
measurements and actuators. Finally, we have performed a
series of comparisons with existing results in the literature,
showing, e.g. that the method is analytically equivalent to
backstepping for controller synthesis and furthermore is nu-
merically competitive for the examples considered. By using
an optimization-based algorithm defined by polynomials, the
results presented here have the advantage that they may be
further extended to the problem of nonlinear stability analysis,
robust control, and control of coupled, multivariate, hyperbolic
and elliptic PDEs - topics of ongoing research.

APPENDIX

To facilitate presentation in this appendix, we use the
following lemmas. The first is simply a restatement of the
Wirtinger inequality

Lemma 1 ([31]). Let z ∈ H2(0, 1) be a scalar function. Then
∫ 1

0

(z(x)− z(0))2dx ≤ 4

π2

∫ 1

0

zx(x)
2dx.

The second lemma is accomplished by splitting the integral
in two parts and applying a change in the variable of integra-
tion to the second part.

Lemma 2. For any bivariate polynomialsK and P the
following identity holds for anyw ∈ L2(0, 1)
∫ 1

0

w(x)

(∫ x

0

K(x, ξ)w(ξ)dξ +

∫ 1

x

P (x, ξ)w(ξ)dξ

)

dx

=

∫ 1

0

∫ x

0

w(x)
1

2
[K(x, ξ) + P (ξ, x)]w(ξ)dξdx

+

∫ 1

0

∫ 1

x

w(x)
1

2
[P (x, ξ) +K(ξ, x)]w(ξ)dξdx.

Lemma 3 (Analysis). Given polynomialsa, b and c with
a(x) ≥ α > 0, for all x ∈ [0, 1], suppose that there exists
a scalarǫ > 0 and polynomialsM , K1 andK2 such that

{M,K1,K2} ∈ Ξd1,d2,ǫ,

(b(1)− ax(1))K1(1, x)− a(1)(D1K1)(1, x) = 0,

(b(1)− ax(1))M(1)− a(1)Mx(1) ≤ 0,

K2(0, x) = 0.

Let

V (w) =
〈
w,X{M,K1,K2}w

〉
,

whereX{M,K1,K2} is as defined in(3). Then, for anyw which
satisfies Equations(18) - (19),

V̇ (w(t)) ≤
〈

w(t),X{M̂ ,K̂1,K̂2}
w(t)

〉

,

where{M̂, K̂1, K̂2} = Ωs{M,K1,K2}.

Proof: Let P = X{M,K1,K2} so thatV (w) = 〈w,Pw〉.
If w satisfies (18) - (19), then taking the time derivative
of V (w(t)) and since{M,K1,K2} ∈ Ξd1,d2,ǫ implies P
is self-adjoint, we can writeV̇ (w(t)) = 2 〈wt,Pw〉. Using
Equation (18) we expand this out to get

V̇ (w(t)) = 2 〈wt,Pw〉 = 2

5∑

n=1

Γn, (77)

where

Γ1 =

∫ 1

0

wxx(x, t)a(x)M(x)w(x, t)dx,

Γ2 =

∫ 1

0

wx(x, t)b(x)M(x)w(x, t)dx,

Γ3 =

2∑

i=1

∫

∆i

wxx(x, t)a(x)Ki(x, ξ)w(ξ, t)dξdx,

Γ4 =

2∑

i=1

∫

∆i

wx(x, t)b(x)Ki(x, ξ)w(ξ, t)dξdx

Γ5 =

∫ 1

0

w(x, t)2M(x)c(x)dx

+
2∑

i=1

∫

∆i

w(x, t)c(x)Ki(x, ξ)w(ξ, t)dξdx,

where∆1 = {(ξ, x) : 0 ≤ ξ ≤ x ≤ 1} and∆2 = {(ξ, x) :
0 ≤ x ≤ ξ ≤ 1}. Applying integration by parts twice and
using the boundary conditionw(0, t) = wx(1, t) = 0 yields

Γ1 =−
∫ 1

0

wx(x, t)
2a(x)M(x)dx

+
1

2

∫ 1

0

∂2

∂x2
[a(x)M(x)]w(x, t)2dx

− 1

2
(ax(1)M(1) + a(1)Mx(1))w(1, t)

2.

Sincea(x) ≥ α > 0 and {M,K1,K2} ∈ Ξd1,d2,ǫ, we have
a(x)M(x) ≥ αǫ. Thus, by application of Lemma 1 we get

−
∫ 1

0

wx(x, t)
2a(x)M(x)dx ≤ −π2

4
αǫ

∫ 1

0

w(x, t)2dx.

Therefore, we conclude that

Γ1 ≤1

2

∫ 1

0

w(x, t)2
(

∂2

∂x2
[a(x)M(x)] − π2

2
αǫ

)

dx

− 1

2
(ax(1)M(1) + a(1)Mx(1))w(1, t)

2. (78)

Again, applying integration by parts once and usingw(0, t) =
0,

Γ2=−
1

2

∫ 1

0

w(x, t)2
∂

∂x
[b(x)M(x)] dx+

1

2
b(1)M(1)w(1, t)2.

(79)

Since{M,K1,K2} ∈ Ξd1,d2,ǫ, we haveK1(x, ξ) = K2(ξ, x)
and thusK1(x, x) = K2(x, x). Exploiting this property,
the constraintK2(0, x) = 0, and the boundary conditions
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w(0, t) = wx(1, t) = 0, we apply integration by parts twice
to obtain

Γ3 =

∫ 1

0

w(x, t)2

([
∂

∂x
[a(x)(K1(x, ξ)−K2(x, ξ))]

]

ξ=x

)

dx

+
2∑

i=1

∫

∆i

w(x, t)

(
∂2

∂x2
[a(x)Ki(x, ξ)]

)

w(ξ, t)dξdx

− w(1, t)

∫ 1

0

ax(1)K1(1, x)w(x, t)dx

− w(1, t)

∫ 1

0

a(1)(D1K1)(1, x)w(x, t)dx.

Applying Lemma 2 and usingK1(x, ξ) = K2(ξ, x), we get

Γ3=

∫ 1

0

w(x, t)2

([
∂

∂x
[a(x)(K1(x, ξ)−K2(x, ξ))]

]

ξ=x

)

dx

−w(1, t)
∫ 1

0

(ax(1)K1(1, x)+a(1)(D1K1)(1, x))w(x, t)dx

+
2∑

i=1

1

2

∫

∆i

w(x, t)

[
∂2

∂x2

∂2

∂ξ2

]T [
a(x)Ki(x, ξ)
a(ξ)Ki(x, ξ)

]

w(ξ, t)dξdx.

(80)

Applying integration by parts once and following the same
procedure as forΓ3, we get

Γ4 =−
2∑

i=1

1

2

∫

∆i

w(x, t)

[
∂
∂x
∂
∂ξ

]T [
b(x)Ki(x, ξ)
b(ξ)Ki(x, ξ)

]

w(ξ, t)dξdx

+ w(1, t)

∫ 1

0

b(1)K1(1, x)w(x, t)dx. (81)

Finally, employing Lemma 2 produces

Γ5 =

∫ 1

0

w(x, t)2M(x)c(x)dx

+

2∑

i=1

1

2

∫

∆i

w(x, t) ([c(x) + c(ξ)]Ki(x, ξ))w(ξ, t)dξdx.

(82)

Finally, we combine the terms (78) - (82) into the deriva-
tive (77) and use the constraints

(b(1)− ax(1))K1(1, x)− a(1)(D1K1)(1, x) = 0,

(b(1)− ax(1))M(1)− a(1)Mx(1) ≤ 0,

to eliminate extraneous terms, thereby completing the proof.

Lemma 4 (Controller Synthesis). Given polynomialsa, b and
c with a(x) ≥ α > 0, for all x ∈ [0, 1], suppose that there
exists a scalarǫ > 0 and polynomialsM , K1 and K2 such
that

{M,K1,K2} ∈ Ξd1,d2,ǫ, K2(0, x) = 0.

Let

V (w) =
〈
w,P−1w

〉
,

whereP = X{M,K1,K2} andX{M,K1,K2} is as defined in(3).
Then, for anyw which satisfies(25) - (26)

V̇ (w(t)) ≤
〈

y(t),X{M̂,K̂1,K̂2}
y(t)

〉

+ [a(1)Mx(1) + (b(1)− ax(1))M(1)] y(1, t)2

+ 2a(1)M(1)yx(1, t)y(1, t),

wherey = P−1w and {M̂, K̂1, K̂2} ∈ Ωc{M,K1,K2}.

Proof: Taking the time derivative ofV (w(t)) and since
P−1 is self-adjoint, we obtain

V̇ (w(t)) = 2
〈
wt,P−1w

〉

= 2
〈
a(·)wxx + b(·)wx + c(·)w,P−1w

〉

= 2

〈

a(·) ∂2

∂x2
(Py) + b(·) ∂

∂x
(Py) + c(·)Py, y

〉

= 2

5∑

n=1

Γn, (83)

wherey = P−1w and

Γ1 =

∫ 1

0

a(x)
∂2

∂x2
(M(x)y(x, t))y(x, t)dx,

Γ2 =

∫ 1

0

b(x)
∂

∂x
(M(x)y(x, t))y(x, t)dx,

Γ3 =

2∑

i=1

∫ 1

0

a(x)
∂2

∂x2

(∫

βi

Ki(x, ξ)y(ξ, t)dξ

)

y(x, t)dx,

Γ4 =

2∑

i=1

∫ 1

0

b(x)
∂

∂x

(∫

βi

Ki(x, ξ)y(ξ, t)dξ

)

y(x, t)dx,

Γ5 =

∫ 1

0

c(x)M(x)y(x, t)2dx

+

2∑

i=1

∫

∆i

y(x, t)c(x)Ki(x, ξ)y(ξ, t)dξdx,

where∆1 = {(ξ, x) : 0 ≤ ξ ≤ x ≤ 1}, ∆2 = {(ξ, x) : 0 ≤
x ≤ ξ ≤ 1}, β1 = [0, x] andβ2 = [x, 1]. Before proceeding
we calculatey(0, t). The definitiony = P−1w implies

w(0, t) = M(0)y(0, t) +

∫ 1

0

K2(0, x)y(x, t)dx.

Therefore, sincew(0, t) = 0 and K2(0, x) = 0, we get
y(0, t) = 0. Now, sinceM(x)a(x) ≥ αǫ and y(0, t) = 0,
applying integration by parts twice and using Lemma 1
produces

Γ1≤
1

2

∫ 1

0

(

axx(x)M(x)+a(x)Mxx(x)−
π2

2
αǫ

)

y(x, t)2dx

+
1

2

(
a(1)Mx(1)− ax(1)M(1)

)
y(1, t)2

+ a(1)M(1)yx(1, t)y(1, t). (84)

Similarly, applying integration by parts once yields

Γ2 =
1

2

∫ 1

0

(b(x)Mx(x)− bx(x)M(x)) y(x, t)2dx

+
1

2
b(1)M(1)y(1, t)2. (85)
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Applying integration by parts twice and Lemma 2 yields

Γ3 =

∫ 1

0

(

a(x)

[
∂

∂x
[K1(x, ξ)−K2(x, ξ)]

]

ξ=x

)

y(x, t)2dx

+

2∑

i=1

1

2

∫

∆i

y(x, t)

[

a(x) ∂2

∂x2

a(ξ) ∂2

∂ξ2

]T [
Ki(x, ξ)
Ki(x, ξ)

]

y(ξ, t)dξdx.

(86)

In a similar manner as forΓ3, we obtain

Γ4 =

2∑

i=1

1

2

∫

∆i

y(x, t)

[
b(x) ∂

∂x

b(ξ) ∂
∂ξ

]T [
Ki(x, ξ)
Ki(x, ξ)

]

y(ξ, t)dξdx.

(87)

Finally, applying Lemma 2 toΓ5 produces

Γ5 =

∫ 1

0

c(x)M(x)y(x, t)2dx

+
1

2

2∑

i=1

∫

∆i

y(x, t)(c(x) + c(ξ))Ki(x, ξ)y(ξ, t)dξdx.

(88)

Substituting Equations (84) - (88) into (83) completes the
proof.

REFERENCES

[1] M. Balas. Feedback control of linear diffusion processes. International
Journal of Control, 29:523–534, 1979.

[2] A. Balogh and M. Krstic. Stability of partial differenceequations
governing control gains in infinite-dimensional backstepping. Systems
and Control Letters, 51:151–164, 2004.

[3] J. M. Coron, G. Bastin, and B. d’Andrea-Novel. Dissipative boundary
conditions for one-dimensional nonlinear hyperbolic systems. SIAM
Journal on Control and Optimization, 47:1460–1498, 2008.

[4] J. M. Coron and B. d’Andrea-Novel. Stabilization of a rotating body
beam without damping. IEEE Transactions on Automatic Control,
43:608–618, 1998.

[5] J. M. Coron, B. d’Andrea-Novel, and G. Bastin. A strict Lyapunov
function for boundary control of hyperbolic systems of conservation
laws. IEEE Transactions on Automatic Control, 52:2–11, 2007.

[6] R. Curtain and G. Weiss. Exponential stabilization of well-posed systems
by colocated feedback.SIAM Journal on Control and Optimization,
45:273–297, 2006.

[7] R. F. Curtain and H. J. Zwart.An introduction to infinite-dimensional
linear systems theory. Springer, 1995.

[8] J. L. Daleckii and M. J. Krejn. Stability of solutions of differential
equations in Banach space. American Mathematical Society, 2002.

[9] C. Delattre, D. Dochain, and J. Winkin. Sturm-Liouvillesystems are
Riesz-spectral systems.International Journal of Applied Mathematics
and Computer Science, 13:481–484, 2003.

[10] Y. Egorov and V. Kondratiev.On spectral theory of elliptic operators,
Volume 89 of Operator Theory: Advances and Applications. Birkhäuser
Verlag Basel, 1996.

[11] L. C. Evans. Partial Differential Equations. American Mathematical
Society, 1998.

[12] E. Fridman and Y. Orlov. An LMI approach toH∞ boundary control
of semilinear parabolic and hyperbolic systems.Automatica, 45:2060–
2066, 2009.

[13] M. Fu. Pole placement via static output feedback is NP-hard. IEEE
Transactions on Automatic Control, 49:855–857, 2004.

[14] A. Gahlawat.Analysis and control of parabolic partial differential equa-
tions with application to Tokamaks using sum-of-squares polynomials.
PhD thesis, Illinois Institute of Technology, Universitéde Grenoble,
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