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and Demand Charges with Thermal Energy Storage

and Optimal Pricing for Regulated Utilities
Reza Kamyar, Member, IEEE and Matthew M. Peet, Member, IEEE

Abstract—In this paper, we solve the optimal thermostat pro-
gramming problem for consumers with combined demand ($/kW)
and time-of-use ($/kWh) pricing plans. We account for energy
storage in interior floors and surfaces using a partial-differential
model of diffusion. We consider 2 types of thermostats: the first
can be programmed to vary continuously in time and the second
is limited to 4 constant set-points. Thermostat settings were
constrained to lie within a desired interval. Numerical testing
shows that the resulting algorithm can reduce monthly electricity
bills by up to 25% in the summer with average savings of 9.2%
over a variety of building models using prices from Arizona utility
Salt River Project (SRP). Furthermore, we examine how optimal
thermostat programming affects optimal electricity pricing by
using a simplified model of utility generation costs to determine
the optimal ratio of demand to time-of-use prices. Our results
show that pricing electricity at the marginal cost of generation
in this scenario is sub-optimal.

Index Terms—thermostat programming, thermal energy stor-
age, demand charges, dynamic programming.

I. INTRODUCTION

Growth in the US demand for electricity has plateaued [1]

and is expected to remain flat (less than 1% growth as

shown in Fig. 1.1) for the indefinite future. Flat demand

growth coupled with increasing use of solar/wind generation is

expected to reduce the amount of carbon-producing fossil fuels

used by electrical utility companies in coming years. Specif-

ically, according to the US Climate Action Report [2], the

amount of carbon-dioxide emissions from the energy sector

in 2020 is expected to drop by 8-12 percent below 2005

levels. While flat demand growth and increasing integration

of renewables will lead to a reduction in greenhouse gases,

these structural changes may also have a negative economic

impact on electrical utility companies. For example, as solar

generation by users increases, the total energy provided by

the utility will decrease - implying a reduction in revenue

for utility companies which charge users based on their total

energy consumption (Time-Of-Use (TOU) charges). However,

because solar generation peaks at ∼=12:00 and electricity

consumption typically peaks at ∼=17:00, the use of solar does

not significantly change the maximum power provided by the

utility over a 24 hr period. Because utilities must build and

maintain generation and distribution capacity as determined

by peak demand, the increasing use of solar will result in
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a decrease in revenue, but no decrease in expenses tied to

generation and distribution capacity. These structural changes

in consumption can be seen in an increase in the ratio of

demand peak to average demand (see Fig. 1.2) in recent years.

To maintain economic viability, Arizona utilities have re-

cently begun to recoup capacity and distribution costs from

commercial and residential consumers [4], [5] through the use

of a form of pricing which charges consumers not only based

on their total energy consumption ($/kWh) (TOU charges),

but also based on the maximum rate of consumption ($/kW)

(a demand charge). With demand charges, for example, a

single transient peak in consumption will significantly increase

the demand charge, while not substantially altering the TOU

charges. Demand charges are particularly significant for con-

sumers with rooftop solar since solar reduces total electricity

consumption (TOU charges), but typically has minimal effect

on late-day peaks at ∼=17:00 which determine the demand

charge. Moreover, while demand charges more accurately

align the costs of the utility and those of the consumer, there

is significant uncertainty in how a consumer can modify usage

in order to minimize such charges.

In this paper, we focus on the use of energy storage to

minimize the cost of electricity for consumers with both TOU

and demand charges. For example, if we imagine a consumer

with perfect knowledge of load and a sufficiently large battery

with no restrictions on charging rate, then by discharging

when load is above average and charging when load is below

average, one could achieve a demand charge precisely equal

to the average demand - an ideal scenario. Indeed, several

papers have recently studied the problem of optimal use of

battery storage in a TOU scenario, often including a portfolio

of appliances to dispatch [6], [7]. The disadvantage of this

approach, however, is that it requires a significant capital
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1.1: Percent/year of growth of electricity
demand and its trend-line in the US [1]
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Fig. 1. Demand growth and peak-to-average demand of electricity in the US
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investment from the consumer. While Li-Ion battery prices

have decreased in recent years, the cost of purchase and

installation of these devices significantly reduces the savings

gained from optimal scheduling.

An energy storage alternative to batteries which requires no

capital expense is the use of thermostat programming to store

thermal energy in interior surfaces such as floors and walls -

a strategy which has been validated experimentally [8], [9];

in-silico for office building in [10], [11]; and for residential

buildings in [12]. In this approach interior mass acts as a

thermal energy storage system where charging occurs by low-

ering interior temperatures when loads are light or electricity

is cheap - thereby gradually lowering the internal temperature

of the floors and walls through diffusion. Then, later in the

day, when demand peaks, one allows the interior temperature

to rise. However, because of the latency of thermal diffusion,

the thermal mass will continue to absorb heat for some time -

thereby reducing load on the HVAC system. Thermal storage

strategies such as this have been studied for some time, the

most well-known of which is pre-cooling [13], [14]. Note,

however, that ad-hoc strategies such as pre-cooling may not

significantly affect demand charges. This is because if the

building has a small thermal mass to size ratio, under a pre-

cooling strategy, the thermal energy stored in the structure will

have depleted by the end of day when demand peaks typically

occur.

In this paper, we use a Partial-Differential Equation (PDE)

model of thermal diffusion to create an algorithm which deter-

mines the thermostat settings which minimize the electricity

bill for a consumer with both TOU and demand charges.

These settings are based on: a range of acceptable inte-

rior temperatures (comfort zone); prediction data for exterior

temperature; and estimates of building’s thermal properties.

We pose the optimal thermostat programming for HVAC as

a constrained dynamic optimization problem and present a

Dynamic Programming (DP) algorithm which is guaranteed

to converge to the solution. This yields temperature set-points

which minimize the monthly electricity bill consisting of on-

peak, off-peak and demand costs to the residential customer.

Note that this result is unique in three ways. First, it uses a

PDE model to accurately capture the latency of the thermal

diffusion process - as opposed to simplified battery models

(linear ordinary differential equations) [12], [15]. Modeling

the latency of thermal diffusion is significant in that energy

which is stored deep inside the mass must diffuse to the

surface before it is available for use in reducing electricity

consumption. Several efforts have been made in recent years to

capture this effect, including the use of electric circuit models

and the concept of deep and shallow mass in [13] and the use

of a PDE model in [16]. Note, however, that the latter work

did not consider the problem of optimizing demand charges.

The second contribution of the paper is that it combines both

demand charges and TOU pricing for residential consumers -

a pricing strategy recently introduced by two of the largest

Arizona utility companies. To the best of our knowledge,

optimal thermostat combined ToU and demand pricing has

not been addressed in the thermostat programming and home

energy management literature1. Thermostat programming un-

der ToU pricing for residential customers has been addressed

using genetic algorithms in [19] and Lyapunov-based control

techniques in [20]. Reference [13] studied thermostat program-

ming when only demand charges are applied. Other studies

have focused on the broader problem of home energy man-

agement (optimal scheduling of home appliances including

HVAC) under real-time pricing (prices which are constantly

changing) using genetic algorithms [21], formal methods [22],

and hidden Markov model and sensing technology in [23] with

the primary focus on hardware implementation.

The third contribution of the paper is to consider the

problem of programming a 4 set-point thermostat. The ma-

jority of the existing programmable thermostats in the market

only allow four programming periods for each day, corre-

sponding to wake, leave, return and sleep. For the benefit

of the consumers who do not have access to continuously

adjustable thermostats, we consider the case of optimization of

four thermostat programming periods, wherein the algorithm

determines the 4 start/stop times and 4 constant temperature

settings corresponding to the intervals between those times.

This problem does not appear in existing literature.

The paper is structured as follows. In Sections II-A and II-B,

we develop our thermodynamic model for the energy stored

within the building’s structure. We will then use this model

to define our optimal thermostat programming problems for

continuously adjustable thermostats in Section II-C, and for 4

set-point thermostats in II-D. Next, in Section II-E, we use our

optimal thermostat program as a consumer model to define

a simplified cost minimization problem for the Arizona’s

regulated utility company SRP. In Section III, we present our

algorithms (DP and Nelder-Mead simplex) for solving our

thermostat programming problems, and the cost minimization

problem at the utility level. Finally, in Section IV, we apply

our algorithms to a number of scenarios defined by various

buildings and electricity rates, in order to quantify the benefits

of using optimal thermostat programming for a wide range of

residential customers. Moreover we investigate how optimal

electricity pricing (ToU and demand rates) can reduce the

generation costs to the utility company while maintaining an

acceptable range of comfort for the residential customers.

II. PROBLEM STATEMENT

In this section, we first define a model of the thermodynam-

ics which govern heating and cooling of the interior structures

of a building. We then use this model to pose our optimal

thermostat programming (consumer-level) problem in Subsec-

tions II-C and II-D as minimization of a monthly electricity bill

(with on/peak, off-peak and demand charges) subject to user-

defined constraints on the interior temperature of the building.

In Subsection II-E, we use our optimal thermostat program as

a model of a rational consumer to explore optimal pricing

strategies. In particular, we pose our utility-level problem

as optimization over on/peak, off-peak and demand prices

1However, see the conference version of this paper in [17] and new results
have now appeared in [18] which uses a circuit model for energy storage and
an MPC-based algorithm to solve the thermostat programming problem.
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to minimize a simplified model of generation, distribution

and capacity costs - assuming that the consumers respond

optimally to the prices.

A. A model for the building thermodynamics

In 1822, J. Fourier proposed a PDE to model the dynamics

of temperature and energy in a solid mass. Now known as the

classical one-dimensional unsteady heat conduction equation,

this PDE can be applied to an interior wall as

∂T (t,x)

∂ t
= α

∂ 2T (t,x)

∂x2
, (1)

where T : R+× [0,Lin]→R represents the temperature distri-

bution in the interior walls/floor with nominal width Lin, and

where α = kin/(ρCp) is the coefficient of thermal diffusivity.

Here kin is the coefficient of thermal conductivity, ρ is the

density and Cp is the specific heat capacity. The wall is coupled

to the interior air temperature using Dirichlet boundary condi-

tions, i.e., T (t,0) = T (t,Lin) = u(t) for all t ∈R
+, where u(t)

represents the interior temperature which we assume can be

controlled instantaneously by the thermostat. This assumption

was based on the observation that the time-scale of heat

convection in the interior air is significantly shorter than the

time-scale of the heat conduction through the interior walls.

In the Fourier model, the heat/energy flux through the surface

of the interior walls is modelled as

qin(T (t,x)) := 2Cin

∂T

∂x
(t,0), (2)

where Cin = kinAin is the thermal capacitance of the interior

walls and Ain is the nominal area of the interior walls. We

assume that all energy storage occurs in the interior walls and

surfaces and that energy transport through exterior walls can

be modelled using a steady-state version of the heat equation.

This implies that the heat flux qloss through the exterior walls

is the linear sink

qloss(t,u(t)) :=
Te(t)− u(t)

Re

, (3)

where Te(t) is the outside temperature and Re = Le/(keAe) is

the thermal resistance of the exterior walls, where Le is the

nominal width of exterior walls, ke is the coefficient of thermal

conductivity and Ae is the nominal area of the exterior walls.

By conservation of energy, the power required from the HVAC

to maintain the interior air temperature is

q(t,u(t),T (t,x)) = qloss(u(t),Te(t))+ qin(T (x, t)). (4)

See Fig. 2 for an illustration of the model.

Eqn. (1) is a PDE. For optimization purposes, we discretize

(1) in space, using T (t) ∈ R
M to replace T (t,x) ∈ R, where

Ti(t) denotes T (t, i∆x), where ∆x := Lin
M+1 . Then

Ṫ (t) = AT (t)+Bu(t), (5)

where A =
α

∆x2
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Fig. 2. A schematic view of our thermal mass model

We then discretize in time, using Ṫ (t)≈ (T (t+∆t)−T (t))/∆t
to rewrite Equation (5) as a difference equation.

T k+1 =







T k+1
1
...

T k+1
M






= f (T k,uk)=







f1(T
k,uk)
...

fM(T k,uk)






= (I +A∆ t)T k +B∆t uk

(6)

for k = 0, · · · ,N f − 1, where T k = T (k ∆t) and uk = u(k ∆t).

B. Calibrating the thermodynamics model

To find empirical values for the parameters α,Cin,Re and

Lin in the thermodynamic model in Section II-A, we collected

data from a 4600 sq ft residential building in Scottsdale,

Arizona. The building was equipped with a 5 ton two-stage

and three 2.5 ton single-stage RHEEM/RUUD heat pumps,

4-setpoint thermostats, and 5-min data metering for energy

consumption and interior and exterior temperature. In this

experiment, we applied two different thermostat programming

sequences for two non-consecutive summer days. The sum-

mer days experienced minimum temperatures of 28oC and

30oC, and maximum temperatures of 45oC and 47oC. On

the first day, we applied a pre-cooling strategy which lowers

the interior temperature to 23.9◦C during the off-peak hours

and allows the temperature to increase to 27.8◦C during the

on-peak hours 12:00 PM to 7:00 PM. On the second day,

we applied the same pre-cooling strategy except that the

temperature is again lowered to 23.9◦C between 2:00 PM and

4:00 PM. We considered these settings to be reasonably close

to optimal temperature settings when ToU and demand charges

are applied. We then used Matlab’s least squares optimization

algorithm to optimize the parameters such that the root-mean-

squared error between the measured power consumption and

the simulated power consumption (using Eqn. (4)) during the

entire two days is minimized. The result was the following

parameter values for near optimal scenarios: Lin = 0.4(m),
α = 8.3×10−7(m2/s), Re = 0.0015(K/W), Cin = 45(Wm/K).
In Fig. 3, we have compared the resulting simulated and

measured consumed power for the entire two days. The R2

measure for the fits shown the left and right figures are 0.78

and 0.71 respectively.

C. Consumer-level problem I: optimal thermostat program

In this section, we define the problem of optimal thermostat

programming for residential consumers. We first divide each

day into three periods: off-peak hours from 12 AM to ton with
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Fig. 3. Simulated and measured power consumptions

electricity price poff ($/kWh); on-peak hours beginning at ton

and ending at toff > ton with electricity price pon ($/kWh);
and off-peak hours from toff to 12 AM with electricity price

poff ($/kWh). In addition to the on-peak and off-peak charges,

we consider a monthly charge which is proportional to the

maximum rate of consumption during on-peak hours. The

proportionality constant is called the demand price pd ($/kW ).
Given p := [pon, poff, pd ], the total cost of consumption (daily

electricity bill) is divided as

Jt(u,T1, p) = Je(u,T1, pon, poff)+ Jd(u,T1, pd), (7)

where Je is the energy cost, Jd is the demand cost and

u := [u0, · · · ,uN f −1] ∈ R
N f

is the vector temperature settings. The energy cost is

Je(u,T1, pon, poff) =
(

poff ∑
k∈Soff

g(k,uk,T
k

1 )+ pon ∑
k∈Son

g(k,uk,T
k

1 )
)

∆t,

where k ∈ Son if k ∆t ∈ [ton, toff] and k ∈ Soff otherwise. That

is, Son and Soff correspond to the set of on-peak and off-peak

sampling times, respectively. The function g is a discretized

version of q (in Eqn. (4)), i.e., g is the power consumed by

the HVAC at time-step k:

g(k,uk,T
k

1 ) :=
T k

e − uk

Re

+ 2Cin

T k
1 − uk

∆x
, (8)

where T k
e denotes the external temperature at time-step k. If

demand charges are calculated monthly, the demand cost, Jd ,

for a single day can be considered as

Jd(u,T1, pd) :=
pd

30
max
k∈Son

g(k,uk,T
k

1 ). (9)

We now define the optimal thermostat programming

(consumer-level) problem as minimization of the total cost of

consumption, Je+Jd , as defined in (7), subject to the building

thermodynamics in (6) and interior temperature constraints:

J⋆(p) = min
uk,γ∈R,T

k∈RM
Je(u,T1, pon, poff)+

pd

30
γ

subject to g(k,uk,T
k

1 )≤ γ for k ∈ Son

T k+1 = f (T k,uk) for k ∈ Son ∪Soff

Tmin ≤ uk ≤ Tmax for k ∈ Son ∪Soff

T 0 = [Tinit(∆x), · · · ,Tinit(M ∆x)]T , (10)

where Tmin,Tmax are the acceptable bounds on interior temper-

ature. In general, these bounds can be time-varying and can

change day to day depending on user preferences. Note that

the decision variable γ in (10) serves as an upper-bound on

the power consumption.

D. Consumer-level problem II: 4-setpoint thermostat program

Many commercially available programmable thermostats

allow only four programming periods per-day, each period

maintaining a constant temperature. In this section, we account

for this constraint. First, we partition the day into programming

periods: Pi := [ti−1, ti], i = 1, · · · ,4 such that

4
⋃

i=1

Pi = [0,24], ti−1 ≤ ti, t0 = 0 and t4 = 24.

We call t0, · · · , t4 switching times. Similar to the previous

model, ui ∈ [Tmin,Tmax] denotes the temperature setting cor-

responding to the programming period Pi. See Fig. 4 for an

illustration of the programming periods and switching times.

To simplify the mathematical formulation of our 4-setpoint

thermostat programming problem, we assume that the switch-

ing times are multiples of the time-step ∆t. Furthermore, let us

define the set Si by k ∈ Si if k∆t ∈Pi. Then, the daily consump-

tion charge is It(u,T1, p) = Ie(u,T1, pon, poff) + Id(u,T1, pd),
where Ie is the energy cost

Ie(u,T1, pon, poff) =
4

∑
i=1

(

∑
k∈Si

r(k)g(k,ui,T
k

1 )∆t

)

, (11)

and Id is the daily demand cost (prorated from a month)

Id(u,T1, pd) =
pd

30
max
k∈Son

g(k,u,T k
1 ),

where r is defined as

r(k) :=

{

pon toff ≤ k ∆t < ton

poff otherwise.

Given a time-step ∆t ∈ R, we then define the 4-setpoint

thermostat programming problem as

min
u1,··· ,u4∈R,γ∈R

t1,t2,t3:
ti
∆t ∈N

Ie(u,T1, pon, poff)+
pd

30
γ subject to

g(k,ui,T
k

1 )≤ γ for k ∈ Son, i ∈ {1,2,3,4}

T k+1 = f (T k,ui) for k ∈ Si and i ∈ {1,2,3,4}

Tmin ≤ ui ≤ Tmax for i ∈ {1,2,3,4}

0 ≤ ti−1 ≤ ti ≤ 24 for i ∈ {1,2,3,4}

T 0 = [Tinit(∆x), · · · ,Tinit(M ∆x)]T , (12)

where t0 = 0 and t4 = 24.

E. A simplified utility-level optimization problem

In this section, we use the rational consumer model in

Section II-C to define a map from ToU and demand prices

to generation costs for a regulated utility. This map is used

to optimize TOU and demand prices in order to minimize

generation costs to the utility. Specifically, regulated utilities
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Fig. 4. An illustration for the programming periods of the 4-Setpoint
thermostat problem, the switching times ti and pricing function r.

must meet expected load while maintaining a balance between

revenue and costs. Therefore, we define a simple utility

optimization problem as minimization of the total cost of

generation, transmission and distribution of electricity such

that generation is equal to consumption, and the total cost

is a fixed percentage of the revenue of the utility company.

Note that in this paper, we solely focus on vertically-integrated

utility companies - meaning that the company provides all

aspects of electric services including generation, transmission,

distribution, metering and billing services as a single firm.

Therefore, we preclude the role of local distributors and market

competition. Let s(t) be the amount of electricity produced as a

function of time and let s := [s0, · · · ,sN f −1], where sk = s(k ∆t).
The vector s is determined by the electricity consumed by the

consumers, which we model as a small number of consumer

groups which are lumped according to different building

models, temperature limits, and solar generating capacity so

that aggregate consumer group i has Ni members. Next, we

define u
⋆,i
k (p) to be the minimizing temperature setting for

consumer group i at time k using prices p, and T
i,⋆,k
j (p) to

be the minimizing interior wall temperatures for consumer

group i at time k and discretization point j for prices p. The

minimization is with respect to the consumer-level problem

defined in (10). Then the model of electricity consumption

by the rational consumer group i at time-step k for prices p

is given by g(k,u⋆,i
k
(p),T ⋆,k,i

1 (p)), where g is defined in (8).

Thus the constraint that production equals consumption at all

time implies

sk =∑
i

Nig(k,u
⋆,i
k (p),T i,⋆,k

1 (p)) for all k= 0, · · · ,N f −1. (13)

Now, since utility’s revenue equals the amount paid by the

consumers, the model for revenue from rational consumer

i becomes Jt(u
⋆,i(p),T i,⋆

1 (p), p), where Jt is defined in (7).

We may now define the utility-level optimization problem as

minimization of the total cost subject to equality of generation

and consumption and proportionality of revenue and costs.

min
pon,poff,pd∈R

C(s)

s.t. sk = ∑
i

Ni g(k,u⋆,ik (p),T i,⋆,k
1 (p)) k = 0, · · · ,N f − 1

C(s) = λ ∑
i

Ni Jt(u
⋆,i(p),T i,⋆

1 (p), p), (14)

where λ ≤ 1 is usually determined by the company’s assets,

accumulated depreciation and allowed rate of return. We refer

to the minimizers p⋆on, p⋆off, p⋆d which solve Problem (14) as

optimal electricity prices.

To model the total cost, C(s), to the vertically-integrated

utility company, we use a quadratic term to represent fuel costs

and a linear representation of capacity costs. The quadratic

term reflects the increasing fuel costs associated with the

required use of older, less-efficient generators when demand

increases.

C(s) := τ
(

∑
k∈Son∪Soff

sk ∆t
)2

+ν ∑
k∈Son∪Soff

sk ∆t + b max
k∈Son

sk (15)

This model was calibrated using artificially modified fuel,

operation and maintenance data provided by SRP, yielding

estimated τ =0.00401 $/(MWh)2 and ν =4.54351 $/(MWh).

III. SOLVING CONSUMER- & UTILITY-LEVEL PROBLEMS

First, we solve the optimal thermostat programming prob-

lem using a variant of dynamic programming. This yields con-

sumption as a function of prices pon, poff, pd . Next, we embed

this implicit function in the Nelder-Mead simplex algorithm

in order to find prices which minimize the generation cost in

the utility-level optimization problem as formulated in (14).

We start the consumer-level problem by fixing the variable

γ ∈ R
+ and defining a cost-to-go function, Vk. At the final

time N f ∆t = 24, we have

VN f
(x) := pd/30 · γ. (16)

Here for simplicity, we use x = T ∈ R
M to represent the

discretized temperature distribution in the wall. We define

the dilated vector of prices by p j = poff if j ∈ Soff and

p j = pon otherwise. Then, we construct the cost-to-go function

inductively as

V j−1(x) := min
u∈Wγ, j−1(x)

(

p j−1 g( j− 1,u,x1)∆t +V j( f (x,u))
)

(17)

for j = 1, · · · ,N f , where Wγ, j(x) is the set of allowable inputs

(interior air temperatures) at time j and state x:

Wγ, j(x) :=

{

{u ∈ R : Tmin ≤ u ≤ Tmax,g( j,u,x1)≤ γ}, j ∈ Son

{u ∈ R : Tmin ≤ u ≤ Tmax}, j ∈ Soff.

Now we present the main result.

Theorem 1. Given γ ∈ R
+, suppose that Vi satisfies (16)

and (17). Then V0(T
0) = J⋆(p), where

J⋆(p) = min
u∈R

Nf ,T k∈RM

Je(u,T1, pon, poff)+
pd

30
γ

subject to g(k,uk,T
k

1 )≤ γ for k ∈ Son

T k+1 = f (T k,uk) for k ∈ Son ∪Soff

Tmin ≤ uk ≤ Tmax for k ∈ Son ∪Soff

T 0 = [Tinit(∆x), · · · ,Tinit(M ∆x)]T . (18)

Proof. The proof has been omitted but can be found in

conference form in [17].

The optimal temperature set-points for Problem (18) can

be found as the sequence of minimizing arguments in the
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value function (17). However, this is not a solution to the

original consumer-level optimization problem in (10), as the

solution only applies for a fixed consumption bound, γ .

However, as this consumption bound is scalar, we may apply

a bisection on γ to solve the original optimization problem as

formulated in (10). Details are presented in Algorithm 1. The

computational complexity of this algorithm is proportional to

N f ·n
M
s ·nu, where N f is the number of discretization points in

time, M is the state-space dimension of the discretized system

in (6), ns is the number of possible discrete values for each

state, T and nu is the number of possible discrete values for

the control input (interior air temperature). In all of the case

studies in Section IV, we use N f = 73,M = 3,ns = nu = 13.

The execution time of our Matlab implementation of Algo-

rithm 1 for solving the three-day consumer-level problem on

a Core i7 processor with 8 GB of RAM was < 4.5 minutes.

Finding a solution to the 4-Setpoint thermostat program-

ming problem (12) is significantly more difficult due to the

presence of the switching times t1, t2, t3 as decision variables.

However, for this specific problem, a simple approach is to use

Algorithm 1 as an inner loop for fixed ti and then use a Monte

Carlo search over ti. For fixed ti, our Matlab implementation

for Algorithm 1 solves the 4-Setpoint thermostat programming

problem in less than 17 seconds on a Core i7 processor with

8 GB of RAM. Our experiments on the same machine show

that the total execution time for a Monte Carlo search over

300 valid (i.e., ti ≤ ti+1) random combinations of t1, t2, t3 is

less than 1.41 hours.

To solve the utility-level problem in (14), we used Al-

gorithm 1 as an inner loop for the Nelder-Mead simplex

algorithm [24]. The Nelder-Mead simplex algorithm is a

heuristic optimization algorithm which is typically applied to

problems where the derivatives of the objective function and/or

constraint functions are unknown. Each iteration is defined

by a reflection step and possibly a contraction or expansion

step. The reflection begins by evaluation of the inner loop

(Algorithm 1) at each of 4 vertices of a polytope. The polytope

is then reflected about the hyperplane defined by the vertices

with the best three objective values. The polytope is then either

dilated or contracted depending on the objective value of the

new vertex. In all of our case studies in Section IV, this hybrid

algorithm achieved an error convergence of < 10−4 in less than

15 iterations. Using a Core i7 machine with 8 GB of RAM,

the execution time of the algorithm for solving the utility-level

problem was less than 2.25 hours.

IV. NUMERICAL TESTING AND ANALYSIS

In this section, we evaluate and apply the algorithms in

Section III using three case studies. In Case I, we compare our

optimal thermostat program with other HVAC programming

strategies to determine the average reduction in consumer

electricity bills using APS and SRP rates. In Case II, we apply

the Nelder-Mead simplex algorithm to the utility-level problem

defined in (14) to determine optimal electricity prices using a

simplified model of generation costs. In Case III, we study the

effect of the presence of solar consumers on optimal electricity

prices using the same model of generation costs.

Algorithm 1: A bisection/dynamic programming algo-

rithm for optimal thermostat programming

Inputs: pon, poff, pd, Te, ton,toff, Re, Cin, Tinit, ∆t, ∆x, Tmin,Tmax ,
maximum number of bisection iterations bmax, lower bound γl and
upper bound γu for bisection search.

Main loop:
Set k = 0.
while k < bmax do

Set γ = γu+γl
2 .

if V0 in (17) exists then
Calculate u0, · · · ,uN f −1 as the minimizers of the RHS of (17)
using a policy iteration technique.
Set γu = γ . Set u⋆i = ui for i = 0, · · · ,N f−1 .

else
Set γl = γ .

Set k = k+1.

Outputs: Optimal interior temperature setting: u⋆0, · · · ,u
⋆
N f −1.
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Fig. 5. External temperature of three typical summer days in Phoenix,
Arizona. Shaded areas correspond to on-peak hours.

In all cases, the algorithm was applied to three consecutive

days with demand charge prorated from a one month billing

cycle. We used a time-step of ∆t = 1 hr, spatial-step ∆x= 0.1 m

and, unless otherwise indicated, we used building parameters

as listed in Section II-B. We used an external temperature

profile for three typical summer days in Phoenix, Arizona (see

Fig. 5) with data obtained from Wunderground [25]. For each

day, the on-peak period starts at 12 PM and ends at 7 PM. We

used min and max interior temperatures as Tmin = 22◦C and

Tmax = 28◦C. We note that, in practice, one requires forecast

data for external temperature to use the algorithm. However,5-

min forecast data is also readily available out to 7 days on sites

such as Wunderground.

A. Case I: Effect of Optimal Thermostat Programming on Bills

In this case, we first applied Algorithm 1 to the continuous

and 4-Setpoint thermostat programming problems (See (10)

and (12)) for a non-solar consumer using electricity prices

for Arizona utility APS [5] (poff = 0.044 $
kWh

, pon = 0.089 $
kWh

and pd = 13.50 $
kW

). The resulting electricity bills are given in

Table I as the total cost paid for three days with demand charge

prorated from a one month billing cycle with the external

temperature profile shown in Fig. 5. That is, we reduce the

period as defined in Problems (10) and (12) to three days and

reduce the demand price by a factor of 1
10 to 1

10 pd = 1.35 $
kW

.

A period of 3 days is used to simplify the presentation of

results. To obtain the expected monthly savings, all costs and

savings should be multiplied by a factor of 10. We compare the

results to a naive strategy of setting the thermostat to Tmax at

all times and to a simple pre-cooling strategy with thermostat

setting: u = 25◦C from 12 AM to 8 AM; u = Tmin = 22◦C
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from 8 AM to 12 PM; u = Tmax = 28◦C from 12 PM to 8

PM; u = 25◦C from 8 PM to 12 AM. As can be seen from

Table I, our algorithm offers significant improvement over

pre-cooling and constant strategies (more than $28 saving per

month). The power consumption and the temperature setting as

a function of time for each strategy can be found in Fig. 6. For

convenience, the on-peak and off-peak intervals are indicated

on the figure.

To more rigorously evaluate the algorithm across a range

of building types, we applied Algorithm 1 to 147 scenarios

using a wide range of building parameters and several different

levels of solar generation. The range of parameter values can

be found in Table II. Prices are SRP summer peak prices [4]:

poff = 0.0423 $
kWh

, pon = 0.0633 $
kWh

and pd = 17.82 $
kW

. The

results show that the algorithm can reduce the monthly bill by

up to 25% (corresponding to the case where the building has

the largest int. thermal mass) as compared to the constant 28◦C

strategy. On average, the algorithm reduces the bill by 9.2%.

To examine the impact of changes in the demand charge

on peak demand, we compared three pricing policies corre-

sponding to high, medium and low demand charges. Again, in

each case, the results (optimal and 4-setpoint) are compared

to a pre-cooling strategy. The results are summarized in

Table III. For each pricing strategy, the smallest utility cost

and associated demand peak are listed in bold. The power

consumption and the temperature settings as a function of

time for the optimal and 4-Setpoint strategies can be found

in Figs. 8 and 7. The results show that by increasing the

demand charge, the demand peak can be reduced by at least

29% with respect to the naive strategy. However this policy

may be suboptimal at reducing costs to the utility.

TABLE I
CASE I: COMPARISON OF ELECTRICITY BILLS (FOR THREE DAYS ONLY)

USING APS PRICES (MULTIPLY BY 10X FOR THE MONTHLY BILL).

Temperature setting Electricity bill ($) Demand peak (kW )

Optimal (Theorem 1) 36.58 9.222
4-Setpoint (Theorem 1) 37.82 9.409

Pre-cooling 39.23 8.803
Constant 39.42 10.462
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Fig. 6. CASE I: Comparison of power consumption and temperature settings
for optimal (using APS rates) and heuristic strategies.

TABLE II
CASE I: RANGE OF BUILDING PARAMETERS AND SOLAR GENERATION.

PARAMETERS ARE DEFINED IN SECTION II-A.

Parameter Interval Range Parameter Interval Range

Le(m) [0.2, 0.7] ke(W/mK) [1.75, 4.5]

Ain(m
2) [40, 200] ρ(kg/m3) [300, 2000]

Ae(m) [50, 150] Cp(J/kg◦C) [500, 2300]
kin(W/mK) [0.1, 1] Peak solar (kW ) [0, 10.2]

TABLE III
CASE I: UTILITY COST AND PEAK DEMAND OVER 3 DAYS FOR 3

DIFFERENT LEVELS OF DEMAND CHARGE. UTILITY COSTS ARE

CALCULATED USING THE SRP MODEL DEFINED IN SECTION II-E

Prices [poff, pon, pd ] Demand Charge Utility costs Demand peak

[0.015,0.0214,29.177] high 46.78$ (0.086 $
kWh

) 7.4132 kW

O
p
ti

m
al

[0.015,0.045,13.573] medium 51.56$ (0.116 $
kWh

) 8.2898 kW

[0.015,0.0219,3.1092] low 59.42$ (0.168 $
kWh

) 9.6749 kW

Prices [poff, pon, pd ] Demand Charge Utility costs Demand peak

[0.015,0.0214,29.177] high 53.66$ (0.116 $
kWh

) 8.5950 kW

4
-S

et
p
o
in

t

[0.015,0.045,13.573] medium 55.31$ (0.133 $
kWh

) 8.918 kW

[0.015,0.0219,3.1092] low 61.29$ (0.169 $
kWh

) 9.975 kW

Prices [poff, pon, pd ] Demand Charge Utility costs Demand peak

[0.015,0.0214,29.177] high 54.75$ (0.116 $
kWh

) 8.8031 kW

P
re

co
o
li

n
g

[0.015,0.045,13.573] medium 54.75$ (0.116 $
kWh

) 8.8031 kW

[0.015,0.0219,3.1092] low 54.75$ (0.116 $
kWh

) 8.8031 kW

B. Case II: optimal thermostat programming with optimized

electricity prices

In this case, we consider the quadratic model of the fuel

cost provided by SRP and defined in Section II-E. A typical

pricing strategy for SRP and other utilities is to set prices

proportional to marginal generation costs. SRP estimates the

mean marginal fuel cost at a = 0.0814$/kWh. Linearizing the

quadratic model of fuel cost and equating to this estimate of

the marginal cost yields an estimate of the mean load. Dividing

this mean load by the aggregate consumer defined in Case I

yields an estimate of the mean number of consumers of this

class at N = 24,405.

To compare the marginal pricing strategy with the optimal

pricing strategy, we use this mean number of consumers in

the utility optimization problem under the assumption that

the building parameters in Section II-B represent a single

aggregate rational consumer. The resulting optimal prices,

associated generation cost, and associated peak demand are

listed in Table IV. For comparison, we also include in Table IV

the generation cost and demand peak for the same rational

consumer subject to prices based solely on the marginal costs.

Note that, as discussed in Section II-E, the prices are scaled

so that revenue equals a fixed fraction of total costs. However,

this scaling factor does not affect utility costs or demand peak.

From Table IV, optimized pricing results in a slight reduc-

tion ($27,402 per day) in generation costs. The discrepancy

between optimal prices and marginal costs may be surprising

given that both the consumer and utility are trying to minimize

the cost of electricity. However, there are several reasons for

this difference. The first and most obvious reason is that the

price structure for the consumer and the cost structure for the

utility are not perfectly aligned. In the first place, the utility
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Fig. 7. CASE I: Power consumption and temperature settings for high,
medium and low demand penalties using 4-Setpoint thermostat programming.

TABLE IV
CASE II: GENERATION COSTS (FOR THREE DAYS) AND DEMAND PEAKS

ASSOCIATED WITH REGULATED OPTIMAL PRICES AND PRICES FROM SRP.

Strategy [poff(
$

kWh ), pon(
$

kWh ), pd(
$

kW )] Utility costs Demand peak

Optimal [0.0564,0.0667,51.1859] 1,595,309 $ 195.607 MW

SRP [0.0668,0.0668,49.0018] 1,677,516 $ 211.79 MW

has a quadratic in consumption model for costs, where the

consumer has a linear model. The second misalignment is that

the capacity cost for the utility is calculated as a maximum

over 24 hours and the demand charge for the consumer is

calculated only during peak hours. A more fundamental reason

that marginal costs are not optimal is nonlinearity of the

cost function and heterogeneity of the consumers. To see

this, suppose that cost function exactly equaled the price

function for each consumer. The problem in this case is that

the sum of the individual bills is NOT equal to the total

generation cost. This can be seen in the demand charge, where

supx f (x)+ supx g(x) 6= supx( f (x)+ g(x)).
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Fig. 8. CASE I: Power consumption & optimal temperature settings for high,
medium and low demand penalties. Shaded areas correspond to on-peak hours.

C. Case III: Impact of solar power on non-solar consumers

We now study the impact of solar integration on the bills

of non-solar consumers in a regulated electricity market. We

consider a network consisting of a utility company and two

aggregate consumers - one solar and one non-solar. For the

non-solar consumer, we define optimal thermostat program-

ming as in (10). For the solar consumer, the optimal thermostat
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Fig. 9. CASE III: Power consumption, solar generated power and optimal
temperature settings for the non-solar and solar consumers.

TABLE V
CASE III: OPTIMAL ELECTRICITY PRICES, BILLS (FOR THREE DAYS) AND

DEMAND PEAKS FOR VARIOUS CONSUMERS.

Consumers [p⋆off(
$

kWh
), p⋆on(

$
kWh

), p⋆d(
$

kW
)] Elect. Bill Demand peak

Solar &
[0.089,0.115,51.988]

$ 50.052 6.1947 kW

Non-solar $ 84.717 8.6787 kW

Single Non-solar [0.081,0.108,54.004] $ 83.333 8.3008 kW

Single Solar [0.088,0.118,58.556] $ 54.311 6.1916 kW

programming problem is as defined in (10), where we have

now redefined the consumption function as

g(k,uk,T
k

1 ) :=
T k

e − uk

Re

+ 2Cin

T k
1 − uk

∆x
−Qk, (19)

where Qk is the power supplied locally by solar panels. We

assume that solar penetration is 50%, so that both aggregate

consumers contribute equally to revenue and costs to the

utility. For Qk, we used data generated on June 4-7 from a

typical 13kW south-facing rooftop PV array in Scottsdale,

AZ. We assume that when g(k,uk,T
k

1 ) is negative, the unused

power generated by the solar panels is sold back to the grid

for the same $/kWh as in the pricing plan (net-metering).

We applied our hybrid Nelder-Mead DP algorithm separately

to each consumer, while considering (15) as the utility cost

model. The results are presented in Table V. For comparison,

we have also included optimal prices, prorated electricity bills

over three days and demand peaks for the cases where all

of the consumers are either solar or non-solar. From Table V

we observe that the increase in price of the electricity bill

of a non-solar consumer is ∼= 2%. It is also interesting

to note that under optimized pricing, the monthly bill for

a solar consumer decreases by ∼= 8%. The corresponding

utility-generated power, solar-generated power and optimal

temperature settings are shown in Fig. 9.
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V. CONCLUSION

We proposed a dynamic-programming-based algorithm for

solving the optimal control problem associated with thermostat

programming in the presence of thermal energy storage for

consumers with both time-of-use and demand charges using

both continuously variable and 4-setpoint thermostats. Our

model of thermal storage is based on a discretized version of

the heat equation (a PDE) and captures the latency inherent

in thermal diffusion processes. We applied this algorithm to

a variety of building types to obtain an average cost savings

of 9.6% for consumers. We also proposed a simple algorithm

for optimizing electricity prices and demonstrated that optimal

thermostat programming implies that current strategies of

pricing based on marginal costs may be sub-optimal. Finally,

our analysis suggests that when: demand charges are present;

consumers are rational; and prices are optimal, solar con-

sumers (even at 50% penetration) only increase the monthly

bill of non-solar consumers by ∼= 2%.
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