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Abstract— This paper proposes a Sum of Squares (SOS)
optimization technique for using multivariate data to estimate
the probability density function of a non-Gaussian generating
process. The class of distributions over which we optimize,
result from using a polynomial map to lift the data into a higher-
dimensional space, solving for an optimal Gaussian fit in this
space, and then projecting a polynomial slice of the resulting
joint density into physical space. The resulting distribution,
to be called Sliced Normal, is able to characterize multimodal
responses and strong parameter dependencies. We investigate
several formulations of the problem, first maximizing a log-
likelihood function, then a worst-case log-likelihood function,
and finally using a heuristic to increase sparsity within the
maximum log-likelihood formulation - thereby identifying in-
dependent subsets of the random variables. Using the optimal
density functions in each scenario, we then propose semi-
algebraic sets representing confidence regions, or “safe sets,” for
future data. Finally, we show numerically that these “safe sets”
are reliable and, hence, can be used for system identification,
fault detection, robustness analysis, and robust control design.

I. INTRODUCTION

The characterization of the uncertainty in measured data -
often representing model parameters - is of significance for
system identification, robust analysis, and robust controller
synthesis. Such variability arises from aleatory variation in
physical parameters, varying operating conditions, model-
form uncertainty, and measurement error. Here we tackle
the problem of estimating the distribution of an unknown
multivariate data-generating process based on samples, and
calculating semi-algebraic representations of minimal “safe”
regions of the parameter space where future data is likely to
fall. The accurate characterization of such parameter regions
can then be used to reduce the conservatism associated
with the more common use of ellipsoidal representation of
uncertainty [1]. Examples of work which use semialgebraic
representations of parametric uncertainty for control include
stability analysis of a model of Bacterial Heat Shock Re-
sponse [2], and methods for calculating upper bounds on
H∞ and H2 system norms of linear systems [3].

Consider a data-generating process for the continuous pa-
rameter δ ∈ Rn having an unknown structure. The main goal
of this article is to characterize the underlying distribution of
this process given the data sequence D = {δ(1), . . . , δ(m)}
comprised of IID samples.

For any µ ∈ Rn and positive matrix P � 0 ∈ Rn×n, the
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joint Probability Density Function (PDF) of a Gaussian is

fG(δ;µ, P ) =
e−

(δ−µ)T P (δ−µ)
2

(2π)n/2
√
|P−1|

. (1)

However, confidence regions associated with such a Gaussian
will necessarily be ellipsoidal. Furthermore, Gaussian distri-
butions fail to accurately describe skewed and multimodal
distributions that often occur in practice, e.g., see the data in
Figure 1 or 2. For this reason, we propose to parameterize
a set of Gaussian PDFs: not in the original parameter space
δ ∈ Rn, but in a lifted space Rq where q > n and the map
from Rn → Rq is given by Zd(δ), where Zd is the length-q
vector of monomials in variables δ of degree greater than 0
and less than d, where q =

(
n+d
n

)
− 1. We may then define

our class of generalized non-Gaussian PDFs as follows, for
any µ ∈ Rq and positive matrix P � 0 ∈ Rq×q , we define a
“candidate” PDF of the form

f(δ;µ, P ) =
e−

(Zd(δ)−µ)
>P (Zd(δ)−µ)
2

(2π)q/2
√
|P−1|

. (2)

Naturally, when d = 1, f(δ;µ, P ) reduces to the Gaussian
Normal distribution in Rn. For d > 1, however, f is not
a Gaussian distribution. Moreover, for a given PDF of the
form f(δ;µ, P ), while the generated random variables δ
do not have a Gaussian distribution, if we define a new
set of random variables, defined as z = Zd(δ), then these
new variables will have a Gaussian distribution. Note that
“candidate” PDFs of the form f(δ;µ, P ) do not integrate to
1 and hence require normalization in the original parameter
space - a topic which will be addressed. We refer to these
candidate distributions as “Sliced Normals”.

Now that we have defined our objective, we briefly intro-
duce our approach. Specifically, we need to define an opti-
mization problem which determines the function f(δ;µ, P )
that best fits the data. This problem is complicated by the
fact that f(δ;µ, P ) is a nonlinear function of P . For this
reason we turn to the class of optimization problem defined
by a log-likelihood objective function. Our first approach is
to maximize the log-likelihood in the lifted space Rq , of the
given finite collection of data points D ⊂ Rn. In this case
the objective function is given as the log of

Lf (D) =
∏
δ∈D

f(δ;µ, P ). (3)

Maximum likelihood approaches have been covered exten-
sively in work such as [4]. As applied to our formulation,
this approach has the advantage that the objective function
becomes convex in the variables P and furthermore, the com-
putational complexity of the resulting optimization problem
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does not depend on the size of the data set. Indeed, it can
be shown that there is an analytic solution to this problem.

Unfortunately, we found that while the use of a log-
likelihood objective yielded accurate representations of the
66% confidence regions of the underlying process, the more
restrictive 99% confidence regions were too conservative -
See Figure 2. For this reason, we propose an alternative
formulation of the problem based on worst-case likelihood.
Specifically, we propose to maximize the minimum likeli-
hood of any point, δ ∈ D, evaluated in the lifted space Rq .
Thus, the second method maximizes the log of the function

Wf (D) = min
δ∈D

f(δ;µ, P ). (4)

Empirically, we found that this objective function produced
confidence regions of smaller volume, leading to less con-
servatism in the representation of safe parameter regions.

In both cases, we use the resulting optimal PDF to obtain
semialgebraic representations of nested confidence regions
of the form

S(β) = {δ : (Zd(δ)− µ)>P (Zd(δ)− µ) ≤ β}, (5)

where, for a desired percentage α, β must be numerically
calculated (in a manner to be defined) such that α percent
of the data is contained in S(β). To analyze performance of
the proposed algorithms, we then use newly generated test
sets to determine the percentage of new data points generated
by G(δ) which are contained in a given confidence region.
These results are shown in Table I along with a metric for
volume of the resulting sets.

Finally, in Section V, we propose a heuristic for identi-
fication of independent variables within the log-likelihood
optimization framework. Identifying independent variables
allows us to, e.g. decouple independent parameters - thereby
reducing the complexity of the associated robust control
problem. Our approach to identification of independent sub-
sets of the data is to note that in our formulation P is
the inverse of the covariance matrix Σ of the Gaussian
PDF in the lifted q-dimensional space. Therefore, if we add
a weight to the objective function which rewards block-
diagonal structure of P , this will likewise result in a block-
diagonal structure to the covariance matrix Σ. For this reason,
we use an L1 constraint on the off-diagonal terms of P and
show that this increases the sparsity of P , thereby eliminating
weak parameter dependencies in the resulting distribution-
See Figure 4.

II. NOTATION

Denote by Sn and Sn+ the symmetric matrices and cone
of positive semi-definite matrices of size n× n respectively.
Furthermore, let the function Zd : Rn → Rq denote the
vector of monomials of degree less than d but greater than
0, where q =

(
n+d
n

)
− 1. Finally, we denote the ring of

multivariate polynomials with real coefficients as R[δ].

III. MAXIMUM LOG LIKELIHOOD

In this section, we formulate the max log-likelihood op-
timization problem and show it can be reformulated as a
Semidefinite Programming Problem (SDP) with an objec-
tive function which includes max log |P |. Such optimization
problems can then be solved using SDP solvers such as
SDPT3. Specifically, the log-likelihood optimization problem
is formulated as

max
P∈S+, µ∈Rq

 log
∏
δ∈D

e−
(Zd(δ)−µ)

>P (Zd(δ)−µ)
2

(2π)q/2
√
|P−1|

: P � 0

 .

(6)
This optimization problem is a special case of optimization

problems of the form

max
P∈S+, µ∈Rq

 log

m∏
i=1

e−
(hi−µ)

>P (hi−µ)
2

c
√
|P−1|

: P � 0

 . (7)

Such optimization problems admit an analytic solution,
as can be found in, e.g. [5]. Specifically, for a given data
sequence {h(i)}mi=1, the optimum is µ∗ = 1

m

∑m
i=1 h

(i) and
P ∗ = Σ−1, where Σ = 1

m

∑m
i=1(h(i) − µ∗)(h(i) − µ∗)>.

However, as we will see, maximizing log likelihood by
itself, even in a lifted space, does not result in an ideal fit
to the data. Furthermore, this analytic solution cannot be
readily modified for new objectives, additional constraints,
or regularity conditions. For this reason, we treat the log
likelihood problem explicitly in the optimization framework
and do not rely on the existence of analytic solutions.

To define the optimization more precisely, we use an
indexed data set D = {δ(i)}mi=1, and define the lifted data
points as zi = Zd(δ

(i)) − µ where we will use µ = µ∗ as
indicated in the analytic solution. Then we have that

log
∏
δ∈D

e−
(Zd(δ)−µ)

>P (Zd(δ)−µ)
2

(2π)q/2
√
|P−1|

,

= log

(
m∏
i=1

1

(2π)q/2
√
|P−1|

e−
1
2 z
>
i Pzi

)
,

=

m∑
i=1

log

(
1

(2π)q/2
√
|P−1|

e−
1
2 z
>
i Pzi

)
,

= mlog
1

(2π)q/2
√
|P−1|

−
m∑
i=1

1

2
z>i Pzi,

= −mlog((2π)q/2) +
m

2
log|P | − 1

2

m∑
i=1

z>i Pzi.

Since the leading term is independent of the decision
variable P , the optimal P ∗ for Optimization Problem (6)
is given by

P ∗ = arg max
P∈S+

{
mlog|P | −

m∑
i=1

z>i Pzi : P � 0

}
. (8)

This problem may be further simplified if we define zi(j) be
the j’th element of the vector zi ∈ Rq . Then the optimization

5379



Fig. 1. Fig. a (left) - Data (red crosses) and level sets of f(δ;µ, P ), Fig. b (middle) - upper view of the PDF of the Sliced Normal f(δ;µ, P ), and Fig.
c (right) - value of Zd(δ)>P ∗Zd(δ).

problem becomes

P ∗ = arg max
P∈S+

mlog|P | −
q∑

j,k=1

m∑
i=1

zi(j)zi(k)Pj,k :P � 0

,
(9)

which is the combination of a log detP term and a linear
combination of the elements of P . Problems consisting of
the log determinant of a positive semi-definite matrix P ,
and a linear combination of elements in P are convex with
respect to the decision variable P [6] and may be solved
efficiently with a suitable semi-definite optimization solver
such as SDPT3 [7].

Example 1: We consider a data set D = {δ(i)}mi=1, where
m = 500, drawn from an unknown data-generating process.
We solved Optimization Problem (8) using d = 5. Figure 1a
shows the distribution of the data, along with level sets of
the function f(δ;µ, P ). Clearly this data would be poorly
represented using a Gaussian fit with associated ellipsoidal
confidence regions. The proposed algorithm, meanwhile, is
able to accurately capture the strong dependency between δ1
and δ2. Figures 1b and 1c show the upper view of the Sliced
Normal PDF and of the argument of the exponential.

A. Computational Complexity Analysis

Optimization Problem (8) has an objective function whose
number of constraints and number of variables are inde-
pendent of the number of data points. This means that the
optimization problem is dependent solely on the degree of
the monomial basis, d, and the number of parameters, n.

In Fig. 3 we see the computation time for Optimization
Problem (8) for 1000 data points and several different
monomial degrees. Even for a degree 4 monomial basis we
see that the optimization problem can be completed in well
under one second.

IV. WORST-CASE LOG-LIKELIHOOD

In this section, we formulate the worst-case log-likelihood
optimization problem and show it can be reformulated as an
SDP with an objective function that includes max log |P |.
Such optimization problems can then be solved using stan-
dard SDP solvers such as SDPT3.

The worst-case log-likelihood optimization problem is
then formulated as

max
P∈S+, µ∈Rq

 min
δ∈D

log
e−

(Zd(δ)−µ)
>P (Zd(δ)−µ)
2

(2π)q/2
√
|P−1|

: P � 0

 .

(10)
As in the log-likelihood case, this problem can be simpli-

fied. Specifically, for a given indexed data set D = {δ(i)}mi=1,
define the lifted data points as zi = Zd(δ

(i))− µ, where we
must fix our variables µ. In this case, there is no analytic
solution. Therefore, in order to convexify the problem, we
relax the structure of the density slightly:

f(z;P ) :=
e−

[
1
z

]>
P

[
1
z

]
2

(2π)q/2
√
|P−1|

.

Then P is now of dimension (q+ 1)× (q+ 1) and we have
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Fig. 2. Data from three separate bivariate Gaussian distributions whose mean in δ1 is zero and in δ2 is −7, 0 and 7 respectively. Semi-algebraic sets
enclosing 66% and 99% of the generated data are superimposed, where Fig. 2(a) corresponds to the maximum likelihood formulation while Fig. 2(b)
corresponds to the worst-case likelihood formulation.

that

min
δ∈D

log

(
1

(2π)q/2
√
|P−1|

e−
1
2

[
1

Zd(δ)

]>
P
[

1
Zd(δ)

])
, (11)

= min
i

(
log

1

(2π)q/2
√
|P−1|

− 1

2

[
1
zi

]>
P
[

1
zi

])
,

= min
i

(
−log((2π)q/2) +

1

2
log|P | − 1

2

[
1
zi

]>
P
[

1
zi

])
.

As in the log likelihood case, since the leading term
is independent of the decision variable P , we may find
P ∗ which solves Optimization Problem (11) by solving the
following simplified optimization problem.

P ∗ = arg max
P∈S+

{
t : t ≤ log|P | −

[
1
zi

]>
P
[

1
zi

]
, P � 0

}
.

(12)

However, the SDP solver SDPT3 cannot solve problems with
log determinant terms in the constraints. We will instead
create a dummy variable v and solve,

P ∗=arg max
v≤0,P∈S+

{
v+log |P | :v ≤−

[
1
zi

]>
P
[

1
zi

]
, ∀i = 1, . . .m

}
,

(13)
where t∗ = v∗ + log|P ∗| and, thus, is equivalent to Opti-
mization Problem (12).

This problem may be further simplified if we define zi(j)
be the j’th element of the vector [1, zi]

> ∈ Rq+1. Then the
optimization problem becomes

P ∗ = arg max
v≤0,P∈S+

v + log|P |, (14)

such that v ≤ −
q+1∑
j,k=1

m∑
i=1

zi(j)zi(k)Pj,k ∀ i, P � 0,

which is the combination of a log detP term and a scalar
value, v with m constraints consisting of a linear combination
of the elements of P . Problems with the log determinant of a

positive semi-definite matrix P , and constraints that consist
of linear combinations of elements in P , are convex with
respect to the decision variable P [6] and may be solved
efficiently with a suitable semi-definite optimization solver
such as SDPT3 [7]. Note that, in contrast to the max log
likelihood formulation, no analytical solution to the worst-
case log likelihood formulation is known.

Example 2: We consider a data set D = {δ(i)}mi=1, where
m = 600, generated by a bivariate Gaussian mixture model
consisting of 3 weighted Gaussian PDFs. Figures 2(a) and
2(b) display the data set D. Figure 2(a) also shows data
enclosing sets, where P ∗ is the matrix which maximizes
the log likelihood in Optimization Problem (13). Figure 2(b)
shows the data enclosing sets of the form

S(β) =
{
δ ∈ Rn :

[
1

Zd(δ)

]>
P ∗
[

1
Zd(δ)

]
≤ β

}
,

where P ∗ is the matrix which maximizes the log likelihood
in Optimization Problem (8). Fig. 2(b) displays the same sets
but where P ∗ is obtained from Optimization Problem (13).
In both cases β is selected to contain 66% or 99% of the
data. Note that (13) yields a tighter set than (8). Tighter
data-enclosing sets enable reducing the conservatism in the
model by eliminating regions where future data is unlikely
to fall. Overly tight sets however, might lack the desired
generalization properties we want the solution to have when
future data occurs. The numerical complexity of the worst-
case log likelihood is studied next.

A. Computational Complexity

Optimization Problem (13) has the same number of vari-
ables as Optimization Problem (8), but has an additional m
linear constraints. This yields a moderate increase in compu-
tation time, still suitable for moderately sized problems with
thousands of data points. In Figure 3 we plot the average
time taken for a problem with 3 variates and 1000 points for
varying monomial degree basis. Both optimization problems
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Fig. 3. Average time taken to find P ∗ for either the max worse likelihood
problem or the max likelihood optimization problem for 10 trials.

finish in just a few seconds, but we do see that the additional
linear constraints cause (13) to take longer than (8).

In the numerical results section we will see that the volume
of sets generated by (13) is often significantly smaller than
that for sets based on (8). The increase in computational
complexity required by the worst-case likelihood formulation
may therefore be justifiable by the corresponding decrease
in the conservatism of the set.

V. PARAMETER DEPENDENCIES

In this section we propose a method for relaxing the degree
of dependence among the random variables of a Sliced-
Normal distribution. Furthermore, we propose a means to
penalize solutions that are optimal for the given data, D, but
perform poorly on future data - a phenomenon oftentimes
called overfitting.

To that end, we will modify the Optimization Problem
in (8) by adding a L1-norm constraint on the off-diagonal
elements of P :

max
P∈S+

mlog|P | −
m∑
i=1

V Ti PVi : P � 0,

q∑
i 6=j

|Pi,j | ≤ ε

 ,

(15)

where ε is a fixed constant prescribed in advance. By making
ε small we obtain a more sparse P , thereby eliminating weak
parameter interactions in the SOS. Some such interactions
might be the result of having independent parameters. The
rationale for evaluating the dependency between any pair of
parameters in δ is introduced next.

The key argument of the exponential of a Sliced Normal
is the sum of squares φ(δ;P ) = (z(δ) − µ)>P (z(δ) − µ),
which can be written as

φ(δ;P ) = φ(δ;U) + φ(δ;V ) + φ(δ;W ), (16)

where φ(δ;U) is not a function of a subset of δ, denoted δ`,
φ(δ;V ) is not a function of the remaining parameters δm,
and P = U + V + W is a matrix decomposition satisfying

Ui,jVi,j = 0, Ui,jWi,j = 0 and Vi,jWi,j = 0 for all
components of P . If W = 0 we can write the corresponding
n-variate Sliced Normal density as the product of two Sliced
Normal densities. Because one of them does not depend on
δ`, and the other one does not depend on δm, the parameters
δ` and δm of the sliced-normal are, therefore, independent.
For a fixed P , a measure of the level of dependency between
δ` and δm is given by ‖W‖1. As expected, there exists a
different matrix decomposition for each pair of parameters
in δ.

In the developments that follow, we solve Optimization
Problem (15) for a fixed value of ε, and use the above
developments to determine the degree of dependence among
all pairs of variables in δ. Assuming ε =∞ allows free de-
pendency modeling, whereas ε = 0 yields a model in which
all the parameters in z-space are independent (not the notion
of independence in δ-space we are interested in). The L1

constraint enables eliminating weak parameter interactions
caused by parameter dependencies and outliers. The resulting
sliced-normal is an acceptable uncertainty model when the
consideration of the constraint does not significantly lower
the likelihood of the data (so the dependence between the
chosen pair of parameters is weak), and the value of this
likelihood is high (so a sliced-normal is a good estimator
of the observations). By studying the dependence of the
likelihood of the data on ε, and progressively decreasing the
value of ε, weak and spurious interactions/dependencies are
systematically identified and eliminated from the model.

To avoid overfitting the training data in D, the value of ε
will be set according to the log likelihood of the test data
D̃. By finding a value of ε that maximizes the log likelihood
of a test set of data, we aim to find a distribution that will
perform well on future data. A framework for this analysis
is presented next.

Let D̃δ and Dδ be two sufficiently large data sequences
both drawn from the same probability distribution function.
To determine a suitable value for ε perform the following
steps:

1) Select a minimum, εL and a maximum value, εH for
the ε parameter as well as an increment ∆.

2) Generate a vector v of length nv that spans εL to εH
with increment ∆.

3) Use the data points in D to solve for P ∗i in Optimiza-
tion Problem (15) using ε = vi.

4) For each P ∗i matrix determine the log likelihood, Li,
of the data in the sequence D̃.

5) Choose ε = vi∗ where i∗ = arg maxi Li.
Figure 4 shows the likelihood of the test set of data for

varying values of ε for a data set, D, with n = 7 parameters
along with the optimal value of the objective function for
Optimization Problem (15)1.

1The underlying probability density function that generated D and D̃
is defined by 7 parameters, δi. Of these, (δ1, δ2) ∼ N (Σ, µ) for some
Σ, µ. Meanwhile, δ3 = p(δ1, δ2) where p ∈ R(δ) is a randomly generated
third degree polynomial function. Next (δ4, δ5) ∼ N (Σ, µ) for some other
Σ, µ. Finally, δ6, and δ7 are defined by a PDF uniformly distributed over
a circular ring.
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Fig. 4. The subplot on the left plots the log likelihood of the test data for a discrete set of ε values. The subplot on the right plots the objective value
of the optimization problem from which P ∗ is calculated for the same set of ε values. The blue dashed-line is the percent of dependent variables in the
resulting model with respect to the value of ε and is overlayed on both subplots.

Based on Fig. 4 we select ε = 141.41 for this data
set. Note that once ε is larger than the L1 norm of the
unconstrained optimal matrix P ∗, the L1 constraint no longer
effects the objective value of Optimization Problem (15).
We see that the objective function is, as one would expect,
maximized as fewer terms are forced to be independent, but
that the function performs best on the test set when only
approximately 20% of the terms are dependent.

For estimating whether two variables are dependent in
Fig. 4, we say that if any element of P ∗ corresponding
to monomials of the parameters δl, and δk is greater than
10−6, then the parameters are dependent. If no such element
of P ∗ exists, then δl and δk are independent. We calculate
the percentage of dependent parameters as being equal to
the number of unique dependent parameters, divided by the
number of unique parameter pairings. In the n = 7 case
there are 21 unique combinations of two variables, and in
this particular example 5 of these unique combinations are,
in fact, dependent. Using the matrix P ∗ derived from (15) for
ε = 141.41, we are correctly able to determine which of the
parameters are independent without a priori knowledge on
the probability distribution function that generated the data.

VI. NUMERICAL EXPERIMENTS

In this section we illustrate the ideas above by finding
semi-algebraic sets that tightly enclose the data, and by
seeking uncertainty models for which weak parameter de-
pendencies are eliminated.

A. Data-enclosing Sets

Next we generate data-enclosing sets given data sequences
drawn from several data-generating processes. The first
group of sets, called 11-Lin, has 100 data sequences, D,
drawn from an 11-dimensional multivariate normal distri-
bution having a random number of dependent parameters.
One of such sequences is shown in Figure 5. The second
group, called 4-Non, has 100 data sequences drawn from a 4-
dimensional random vector for which the first two parameters
are normally distributed whereas the other two are uniformly

distributed over a circular ring. Finally the last data set, called
2-Non, has 50 data sequences drawn from a 2-dimensional
vector uniformly distributed over a circular ring. Each data
sequence has m = 500 data points.

For each data set we find the optimal density function
using Optimization Problem (8) and (13) and the tightest
data-enclosing set S(β∗) where,

β∗ = min
δ∈D

(Zd(δ)− µ)>P (Zd(δ)− µ),

for Optimization Problem (8) and

β∗ = min
δ∈D

([
1

Zd(δ)

]>
P
[

1
Zd(δ)

])
,

for Optimization Problem (13).
We then generate a test set of 2000 data points from

the same probability distribution function and evaluate the
fraction of such points contained by S. In addition, we gen-
erate 500000 uniformly distributed points over the smallest
hyper-rectangle containing the test points. By evaluating the
percentage of these points which fall within S we have
an approximate metric proportional to the volume of the
set. Table I summarizes the results. There we see that for
the Gaussian multivariate data, a degree 2 polynomial set
performs well in both cases. The maximum log likelihood
formulation captures a larger number of test points, but its
area is almost 8 times larger than the worst case likelihood
formulation.

For the 4-Non dataset, the max log likelihood approach
of degree 4 had a larger approximate area and a smaller
percentage of correctly labeled test data than that of degree
2. The optimal worst-case log-likelihood function, however,
generated a semi-algebraic set which had significantly less
area, almost 4 times less, but also had a lower effectiveness
of predicting future points of 92.61%.

Finally, the 2-Non dataset demonstrated that a higher
degree polynomial can decrease the area of the set while
still retaining the same predictive capability. We see that the
maximum log likelihood formulation of degree 4 led to sets
that practically contained the same percentage of test points
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Fig. 5. Normalized data generated by an 11 variate Gaussian dataset
used for testing the accuracy of the parameter dependence method. Plots
along the diagonal of the figure are histograms of a parameter, off diagonal
plots are the scatterplot of two parameters. Here the first five variates are
linearly dependent on each other, the sixth and seventh variates are linearly
dependent and the eighth and ninth variates are linearly dependent. The
tenth and eleventh variate are independent of all other variates.

than that for the degree 2, but its volume estimate was almost
half that of the degree 2. Increasing the degree in this case
decreased the conservativeness of the set estimate.

TABLE I
ACCURACY OF THE PROPOSED METHOD FOR FINDING SEMI-ALGEBRAIC

SETS WITH HIGH LIKELIHOOD OF CONTAINING FUTURE POINTS. TESTS

WERE PERFORMED OVER A TEST SET OF 2000 DATA POINTS FOR A

MULTIVARIATE GAUSSIAN DATA SET AND A NUMBER OF DATA SETS

WITH NONLINEAR DEPENDENCIES.

Data Set Method Degree Test Set Correct Vol. Est.
11-Lin Max log like 2 99.58 % 0.39 %
11-Lin Worst-case like 2 90.04 % 0.05 %
4-Non Max log like 2 99.79 % 44.25 %
4-Non Worst-case like 2 97.90 % 34.21 %
4-Non Max log like 4 99.69 % 57.41 %
4-Non Worst-case like 4 92.61 % 10.39 %
2-Non Max log like 2 99.74 % 84.76 %
2-Non Worst-case like 2 99.29 % 80.23 %
2-Non Max log like 4 99.79 % 48.73 %
2-Non Worst-case like 4 97.63 % 34.31 %

B. Identifying Parameter Dependencies

Next we study the dependency among the parameters
by using the step-by-step procedure of Section V with
Optimization Problem (15) and d = 1. When d = 1 we
are fitting a Gaussian in the original parameter space, and
every off-diagonal term of P models a dependency between
parameters. Two groups of data sets were considered. For the
first group we draw 100 data sequences from a multivariate
Gaussian distribution of 11 variables. In each data sequence,
k, the number of groups of independent variables are ran-
domly varied between 2 and 8. We use only m = 200 points
in the training data set and 200 points in the testing data set.
The second group is comprised of 50 data sequences drawn

from a 7-variate random vector exhibiting non-Gaussian de-
pendencies. The groups of independent variables are 1, 2, 3,
4, 5; and 6, 7. We use 500 training and 500 testing points for
this case.

If we consider every unique pairing of parameters, then
Table II shows the percentage of independent parameters that
were correctly identified as being independent (True Positive)
as well as the percentage of dependent parameters that
were correctly identified as being dependent (True Negative).
In both cases, the proposed approach correctly identifies a
majority of the dominant dependencies.

TABLE II
ACCURACY OF THE PROPOSED METHOD FOR DETERMINING

INDEPENDENCE OF VARIABLES, 11-LIN IS A MULTIVARIATE GAUSSIAN

DATA SET WITH 11 VARIABLES AND 7-NON IS A 7 VARIABLE DATA SET

WITH NONLINEAR DEPENDENCE BETWEEN VARIABLES.

Data Set True Positive True Negative
11-Lin 99.66 % 77.41 %
7-Non 75.20% 96.75 %

VII. CONCLUSION

This paper proposes SOS optimization techniques for
creating computational models of multivariate data. The
proposed techniques can be used to model multimodal phe-
nomena exhibiting strong parameter dependencies as well
as to generate semi-algebraic sets that tightly enclose the
data. Furthermore, we present an approach that can be
used to quantify dependencies between variables using the
data, so that weak and spurious dependencies resulting from
small data sets or outliers can be systematically eliminated.
The proposed approach is based on identifying an optimal
Gaussian density in a higher-dimensional feature space, and
projecting a polynomial slice of the resulting density onto
physical space. As such, the resulting distribution is called
a Sliced Normal. Sliced Normals are a versatile family
of random variables which naturally characterize complex
parameter dependencies. The characterization of such de-
pendencies, usually omitted in practice, is instrumental in
reducing the considerable conservatism incurred in standard
practices in uncertainty quantification, system identification,
robust control analysis, and robust control design.
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