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Abstract— In this work, we present a Linear Matrix Inequal-
ity (LMI) based method to synthesize an optimal H∞ estimator
for a large class of linear coupled partial differential equations
(PDEs) utilizing only finite dimensional measurements. Our ap-
proach extends the newly developed framework for representing
and analyzing distributed parameter systems using operators
on the space of square integrable functions that are equipped
with multipliers and kernels of semi-separable class. We show
that by redefining the state, the PDEs can be represented using
operators that embed the boundary conditions and input-output
relations explicitly. The optimal estimator synthesis problem
is formulated as a convex optimization subject to LMIs that
require no approximation or discretization. A scalable algo-
rithm is presented to synthesize the estimator. The algorithm
is illustrated by suitable examples.

I. INTRODUCTION

Partial differential equations (PDEs) are essential to model
dynamic processes where physical quantities not only evolve
over time but also over a spatial domain. Due to the infinite
dimensional nature of the such models, the problem of
synthesizing observers is difficult to solve and implement.
In practice, such processes are usually equipped with a finite
number of sensors. Therefore, it is a key problem to estimate
non-observed or non-measured variables of these systems on
the basis of (noise-corrupted) measurements inferred from
the sensors. This paper addresses the problem of synthesizing
an estimator for linear systems described by coupled PDEs.
The estimator causally maps sensor information to estimates
of the non-observed output (in many applications the non-
observed outputs coincide with the state of the system) and
achieves H∞ optimal performance such that the effect of
disturbances to the estimation error is bounded in H∞ sense.

Regarding synthesizing such an observer for a system
described by a set of coupled PDEs, the available methods
can be broadly classified into two approaches: a) early-
lumping and b) late-lumping. For the method of ealry-
lumping, the PDEs are approximated by a finite dimensional
model governed by a set of coupled ordinary differential
equations (ODEs). For more details see [1] and the references
therein. The synthesis of an H∞ optimal observer is then
carried out on the basis of the finite dimensional model.
Specifically, if the finite dimensional model is represented
as

ẋ = Ax+Bw, y = Cx+Dw, z = Ex,
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then the estimator is given by

˙̂x = Ax̂+ L(ŷ − y), ŷ = Cx̂, ẑ = Ex̂.

Here, matrices L = P−1Z with P � 0 and Z satisfy the
following Linear Matrix Inequalities (LMIs) for a suitable
and minimal performance level γPA+ ZC + (PA+ ZC)> −PB − ZD E>

−(PB + ZD)> −γ2I 0

E 0 I

 ≺ 0.

In that case, we achieve ||ẑ−z|| ≤ γ||w||. Key disadvantage
of early-lumping is discretization techniques for approximat-
ing an infinite-dimensional system with a finite-dimensional
model are prone to numerical instabilities. Moreover, in-
creased demands on accuracy require the dimension of
the system to be large which make them computationally
demanding. Furthermore, these finite-dimensional approxi-
mations of PDEs do not necessarily represent the behavior
of the original system to a quantified level of accuracy [2].
As a consequence, the performance level (e.g. in H∞ sense)
does not represent the achieved performance of the estimator
when interconnected with the system of PDEs, in fact, the
achieved performance is unknown a priori (c.f. [3], [4]).

On the other hand, the late-lumping approach directly
utilizes the original PDEs to synthesize estimator without
any discretization. Using spectral analysis optimal observers
for specific PDEs (e.g. wave equation, coupled heat-wave
equations, etc.) have been proposed in [5], [6]. Design
of interval observers without finite element approximations
have been proposed in [7] for non-homogeneous heat equa-
tion. Backstepping offers a systematic approach for observer
synthesis of PDEs without any approximation. Here, integral
transformations are typically used to convert the PDE model
to the target PDEs with desired stability properties. Using
backstepping, observers for parabolic PDEs in more than one
dimensions have been presented in [8]. For semilinear PDEs,
Luenberger type observers have been presented in [9]. Using
the extension of Lyapunov theory for infinite dimensional
space [10], Sum-of-Squares (SOS) optimization can be used
for synthesizing optimal observer and controller that matches
a specific performance criteria and does not depend on any
approximation. For time-delay systems an H∞ observer has
been designed in [11]. Similarly, in [12] an SOS optimization
based observer has been designed for parabolic PDEs in one
spatial dimension. It is important to note that most of the late-
lumping approaches are application-specific and not scalable.
A generic framework for the synthesis of H∞ optimal
estimators is, therefore, largely missing and a challenging
problem.
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In this paper, we establish a generic and scalable algorithm
for the synthesis of an H∞ optimal estimator that uses
finite measurements and does not require any discretization.
The estimator design involves solving a suitable set of
LMIs that translates to a convex optimization problem which
can be solved in a computationally effective manner. We
propose to utilize the infinite dimensional model of the PDEs
and develop a synthesis procedure for estimators that yield
explicit guarantees onH∞ performance of the interconnected
PDE-estimator system.

To this end, we consider the following class of linear PDEs
in one spatial dimension:

ẋ1(s, t)
ẋ2(s, t)
ẋ3(s, t)

 =A0(s)

x1(s, t)
x2(s, t)
x3(s, t)

+A1(s)
∂

∂s

[
x2(s, t)
x3(s, t)

]

+A2(s)
∂2

∂s2
[
x3(s, t)

]
+B1(s)w(t). (1)

Here, the state variables are partitioned so that we can
consider both parabolic and hyperbolic types of PDEs with
xi(s, t) : [a, b] × R+ → Rni . Uncertainty due to un-
modeled dynamics or noise is incorporated by the signal
w(t) ∈ Rm. Here, A0(s), A1(s), A2(s), B1(s) are matrix
valued polynomials of appropriate dimensions. The PDEs
satisfy the following boundary condition:

Bcxb(t) = 0. (2)

Here, xb(t) is defined by

col
(
x2(a, t), x2(b, t), x3(a, t), x3(b, t),

∂x3(a, t)

∂s
,
∂x3(b, t)

∂s

)
.

The PDE model is well-posed for a suitable matrix Bc ∈
R(n2+2n3)×2(n2+2n3) that has a full row-rank.

The measured output is finite dimensional and corrupted
by noise taking the following form:

y(t) =C1xb(t) +

b∫
a

Ca(s)

x1(s, t)
x2(s, t)
x3(s, t)

 ds

+

b∫
a

Cb(s)
∂

∂s

[
x2(s, t)
x3(s, t)

]
ds+D1w(t). (3)

The regulated (to-be-estimated) output is also finite dimen-
sional and of the following form:

z(t) =E1xb(t) +

b∫
a

Ea(s)

x1(s, t)
x2(s, t)
x3(s, t)

 ds

+

b∫
a

Eb(s)
∂

∂s

[
x2(s, t)
x3(s, t)

]
ds. (4)

Here, y(t) ∈ Rp and z(t) ∈ Rq , C1, D1, E1 are constant
matrices of appropriate dimensions. Ca(s), Cb(s), Ea(s) and
Eb(s) are matrix valued polynomials of appropriate dimen-
sions.

Illustrative Example: Consider a one dimensional string
of length L attached at one end and controlled via damping at
the other end. Based on [10], [13], the following hyperbolic

PDE model is given in terms of the wave displacement u(s, t)
over the domain [0, L]

∂2u(s, t)

∂t2
=
∂2u(s, t)

∂s2
+B1(s)w(t).

The boundary conditions are

u(0, t) = 0,
∂u(s, t)

∂s
|s=L= −∂u(s, t)

∂t
|s=L .

The noise corrupted measured output is y(t) =
b∫
a

∂u(s,t)
∂t ds+

D1w(t). The regulated output is z(t) = ∂u(s,t)
∂t |s=L.

From the boundary conditions, we choose the states to
be x2(s, t) := col

(
∂u(s,t)
∂s , ∂u(s,t)

∂t

)
. Based on the above

framework, we obtain

ẋ2(s, t) =

[
0 1
1 0

]
︸ ︷︷ ︸

:=A1

∂

∂s
[x2(s, t)] +B1(s)w(t).

Here, A0 = 0, A2 is void. The boundary conditions are[
0 1 0 0
0 0 1 1

]
︸ ︷︷ ︸

:=Bc

[
x2(0, t)
x2(L, t)

]
︸ ︷︷ ︸

xb(t)

= 0.

The measure output and the regulated output are

y(t) =

b∫
a

[
0 1

]︸ ︷︷ ︸
:=Ca

x2(s, t)ds+D1w(t),

z(t) =
[
0 0 0 1

]︸ ︷︷ ︸
:=E1

xb(t).

Moreover, C1, Cb, Ea, Eb are zeros of appropriate dimen-
sions. �

Using the PDE model and a finite dimensional measured
output y(t), we aim to synthesize an observation operator L
that corrects the deviation of the estimated output from the
measured output. The observer is of the following form:

 ˙̂x1(s, t)
˙̂x2(s, t)
˙̂x3(s, t)

 =A0(s)

x̂1(s, t)
x̂2(s, t)
x̂3(s, t)

+A1(s)
∂

∂s

[
x̂2(s, t)
x̂3(s, t)

]

+A2(s)
∂2

∂s2
[
x̂3(s, t)

]
+ L(ŷ(t)− y(t))︸ ︷︷ ︸,

Bcx̂b(t) =0. (5)

The measured and the regulated estimates are

ŷ(t) =C1x̂b(t) +

b∫
a

Ca(s)

x̂1(s, t)
x̂2(s, t)
x̂3(s, t)

 ds

+

b∫
a

Cb(s)
∂

∂s

[
x̂2(s, t)
x̂3(s, t)

]
ds, (6)

ẑ(t) =E1x̂b(t) +

b∫
a

Ea(s)

x̂1(s, t)
x̂2(s, t)
x̂3(s, t)

 ds

+

b∫
a

Eb(s)
∂

∂s

[
x̂2(s, t)
x̂3(s, t)

]
ds. (7)
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The aim will be to synthesize the operator L such that, for
estimation error ze = ẑ − z, the performance satisfies

sup
w∈L2

||ze||L2

||w||L2

< γ

with γ > 0 being sufficiently small.
In this paper, we show that instead of consider-

ing col(x1, x2, x3) as the state variables, the states
col(x1,

∂x2

∂s ,
∂2x3

∂s2 ) can uniquely represent the PDE model
in (1)-(3) while no additional constraint in terms of the
boundary conditions is necessary. The H∞ optimal estima-
tion problem can then be formulated in terms of these funda-
mental states col(x1,

∂x2

∂s ,
∂2x3

∂s2 ). Owing to this reformulation
of the estimation problem, features of the synthesis procedure
that we present are the following:
• The feasibility conditions are expressed as LMIs;
• The framework is generic to handle both parabolic and

hyperbolic linear PDEs with Dirichtlet, Neumann and
mixed boundary conditions;

• The conditions are prima facie provable and they are
certified using Lyapunov functionals that are parameter-
ized by bounded operators with multipliers and integral
kernels of semi-separable class;

• The design procedure includes an efficient numerical
scheme for implementation.

Remainder of this paper is organized as follows. Section II
provides a preliminary discussion on the notations, the class
of operators P{P,Q1, Q2

S,R1, R2
} and the PDE model. In Section

III, the concept of fundamental states is introduced and the
PDE model is reformulated with the help of the fundamental
states. Using the fundamental states based representation,
the H∞ estimation problem is formulated in Section IV
and using the LMI formulation on the positivity of the
class of operators P{P,Q1, Q2

S,R1, R2
} in Section V, LMI conditions

for synthesizing such estimators are derived Section VI. In
Section VII, a numerical method for real-time implemen-
tation of the designed estimator is explained. In Section
VIII, we numerically illustrate the methodology for example
PDE systems in MATLAB. At last, Section IX provides
conclusions and directions for future research.

II. PRELIMINARIES

A. Notation

For convenience, we denote xs := ∂x
∂s and xss := ∂2x

∂s2 . []
denotes empty matrices. Let N denote the field of integers.
We use Sm ⊂ Rm×m to denote the set of symmetric
matrices. We define the space of square integrable Rm-
valued functions on X as Lm2 (X). Lm2 (X) is equipped with
the inner product 〈x, y〉L2

=
∫ b
a
x>(s)y(s)ds and the norm

||x||L2
=
√∫ b

a
x>(s)x(s)ds. For denoting the Euclidean

inner product in Rn, we use 〈x, y〉Rn = x>y. Sobolov
spaces are denoted by W q,p

n (X) := {x ∈ Lnp (X) | ∂
kx
∂sk
∈

Lnp (X) for all k ≤ q}. For an inner product space X , an
operator P : X → X is called positive, if for all x ∈ X ,
we have 〈x,Px〉X ≥ 0. We use P < 0 to indicate that P is
a positive operator. We say that P : X → X is coercive if

there exists some ε > 0 such that 〈x,Px〉X ≥ ε‖x‖2X for all
x ∈ X .

B. A Class of Linear Operators

Let [a, b] denote the spatial manifold with a < b. A class of
linear operators P{P,Q1, Q2

S,R1, R2
} : Rm×Ln2 [a, b]→ Rm×Ln2 [a, b]

is parametrized by multiplier and kernels of semi-separable
class and takes the following form:(
P{P,Q1, Q2

S,R1, R2
}
[
x
z

])
(s) := (8)[
Px+

∫ b

a
Q1(s)z(s)ds

Q2(s)x+ S(s)z(s) +
∫ s

a
R1(s, η)z(η)dη +

∫ b

s
R2(s, η)z(η)dη

]
.

Here, P ∈ Rm×m is a matrix and Q1 : [a, b] → Rm×n,
Q2 : [a, b] → Rn×m, S : [a, b] → Rn×n, and R1, R2 :
[a, b] × [a, b] → Rn×n are matrix-valued polynomials with
x ∈ Rm and z ∈ Ln2 [a, b]. The formulae for composition and
adjoint of such operators can be found in [14] (pp. 4).

Note: We take the convention that P,Q1 and Q2 can be
void in the definition (8). In that case, we define follow-
ing subclass of operators that we denote as P{S,R1,R2} :
Ln2 [a, b]→ Ln2 [a, b].

[P{S,R1,R2}z](s) :=S(s)z(s) +

s∫
a

R1(s, η)z(η)dη

+

b∫
s

R2(s, η)z(η)dη. (9)

For convenience, we denote the composition of two
operators P{R0,R1,R2} = P{B0,B1,B2}P{N0,N1,N2} by
(R0, R1, R2) = (B0, B1, B2) × (N0, N1, N2). The adjoint
P∗{M1,N1,N2} is again of the form P{M̂1,N̂1,N̂2} and denoted
as (M̂, N̂1, N̂2) = (M,N1, N2)∗.

C. Linear Coupled PDE Systems

The class of systems described by coupled PDEs in (1)−
(4) can also be represented by the following equations

ẋp(t) = Axp(t) + Bw(t),

y(t) = Cxp(t) +Dw(t),

z(t) = Exp(t),

xp(0) = 0.

(10)

Here, xp := col(x1,x2,x3) with xi : [a, b]×R+ → Rni (i =
1, 2, 3), w : R+ → Rm, y : R+ → Rp and z : R+ → Rq . For
convenience, let nx := n1 + n2 + n3. The system operators
A : Lnx

2 [a, b] ⊃ DA → Lnx
2 [a, b], B : Rm → Lnx

2 [a, b],
C : Lnx

2 [a, b]→ Rp, D : Rm → Rp and E : Lnx
2 [a, b]→ Rq

are specified by the following definitions:

(Axp)(s) := A0(s)

x1(s)

x2(s)

x3(s)

+A1(s)

[
x2(s)

x3(s)

]
s

+A2(s)
[
x3(s)

]
ss

(Bw)(s) := B1(s)w, Dw := D1w, (11)

Cxp := C1xb +

b∫
a

Ca(s)

x1(s)

x2(s)

x3(s)

 ds+

b∫
a

Cb(s)

[
x2(s)

x3(s)

]
s

ds,
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Exp := E1xb +

b∫
a

Ea(s)

x1(s)

x2(s)

x3(s)

 ds+

b∫
a

Eb(s)

[
x2(s)

x3(s)

]
s

ds.

In (11), A0(s), A1(s), A2(s), B1(s), Ca(s), Cb(s) are matrix
valued functions of appropriate dimensions. D1, C1, E1 are
constant real-valued matrices of appropriate dimensions.

The domain of xp is

DA := {xp ∈ Ln1
2 [a, b]×W 1,2

n2
[a, b]×W 2,2

n3
[a, b] :

Bcxb = 0},
xb :=col

(
x2(a),x2(b),x3(a),x3(b),x3s(a),x3s(b)

)
.

(12)

Evidently, the solution to (10) with the given definitions
(11) and its domain (12) satisfy the PDEs in (1)-(4) and
vice-versa.

III. FUNDAMENTAL STATES AND
BOUNDARY-FREE REPRESENTATION OF PDE

SYSTEMS

The model in (10)-(12) is defined by the states xp :=
col(x1,x2,x3) which we refer to as the primal states. Using
the class of operators P{S,R1,R2}, the primal states can
be expressed in terms of the fundamental states xf :=
col(x1,x2s,x3ss) that belong to Lnx

2 [a, b] and do not require
the constraint (12).

Lemma 0.1: Suppose xp ∈ Ln1
2 [a, b] × W 1,2

n2
[a, b] ×

W 2,2
n3

[a, b] and Bcxb = 0 where xb is defined in (12) with
Bc of full row-rank. Then for xf := col(x1,x2s,x3ss) ∈
Lnx

2 [a, b], the solution to the following equations:

xp(t) = Fxf(t),

ẋp(t) = Afxf(t) + Bw(t),

y(t) = Cfxf(t) +Dw(t),

z(t) = Efxf(t),

xp(0) = 0

(13)

is also the solution to (10)-(12) as well as (1)-(4). Here,

F = P{G0,G1,G2},

Af = P{H0,H1,H2},

Cf = P{0,C2,C2},

Ef = P{0,E2,E2},

(Bw)(s) = B1(s)w, Dw = D1w,

(14)

with

(H0, H1, H2) =(A0, 0, 0)× (G0, G1, G2)

+ (A1, 0, 0)× (G3, G4, G5)

+ (
[
0 0 A2(s)

]
, 0, 0),

(0, C2, C2) =(0, C>a , C
>
a )∗ × (G0, G1, G2)

+ (0, C>b , C
>
b )∗ × (G3, G4, G5) + (C1, 0, 0)×

(−T, 0, 0)× (0, (BcT )−1BcQ, (BcT )−1BcQ)

+ (C1, 0, 0)× (0, Q,Q),

(0, E2, E2) =(0, E>a , E
>
a )∗ × (G0, G1, G2)

+ (0, E>b , E
>
b )∗ × (G3, G4, G5) + (E1, 0, 0)×

(−T, 0, 0)× (0, (BcT )−1BcQ, (BcT )−1BcQ)

+ (E1, 0, 0)× (0, Q,Q). (15)

Moreover,

G0(s) =

I 0 0
0 0 0
0 0 0

 , G3(s) =

[
0 I 0
0 0 0

]
,

G2(s, η) = −K(s)(BT )−1BQ(s, η),

G5(s, η) = −V (BT )−1BQ(s, η),

G1(s, η) =

0 0 0
0 I 0
0 0 (s− η)I

+G2(s, η),

G4(s, η) =

[
0 0 0
0 0 I

]
+G5(s, η),

K(s) =

0 0 0
I 0 0
0 I (s− a)I

 , V =

[
0 0 0
0 0 I

]

T =


I 0 0
I 0 0
0 I 0
0 I (b− a)I
0 0 I
0 0 I

 , Q(s, η) =


0 0 0
0 I 0
0 0 0
0 0 (b− η)I
0 0 0
0 0 I

 .
(16)

�
Proof: Using fundamental theorem of calculus ( [15],

pp. 3-4), the following identities can be proven:

xp = P{G0,G1,G2}xf, (17)
xh = P{G3,G4,G5}xf. (18)

Here, xp := col(x1,x2,x3), xh := col(x2s,x3s) and xf :=
col(x1,x2s,x3ss). The rest of the proof can be derived by
substituting (17)-(18) in the definitions specified in (11).

IV. H∞ ESTIMATOR SYNTHESIS ON
FUNDAMENTAL STATES

For any observation operator L : Rp → Lnx
2 [a, b] in (5),

the observer dynamics can also be represented in terms of
its fundamental state as

x̂p(t) = F x̂f(t)

˙̂xp(t) = Afx̂f(t) + L(Cfx̂f(t)− y(t)),

ẑ(t) = Efx̂f(t)

x̂p(0) = 0.

(19)

Defining the estimation error in primal state ep(t) =
x̂p(t) − xp(t), the estimation error in the fundamental state
ef(t) = x̂f(t) − xf(t) yields the following representation of
the error dynamics in terms of the fundamental states:

ep(t) = Fef(t),

ėp(t) = (Af + LCf)ef(t)− (B + LD)w(t),

ze(t) = Efef(t),

ep(0) = 0. (20)

TheH∞ estimation problem is then equivalently expressed
as the problem to find L in (20) such that

‖ze‖L2
≤ γ‖w‖L2
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for all square integrable function w and for γ > 0 being
sufficiently small. Now, we have the following result:

Theorem 1: Suppose there exists a coercive linear op-
erator T : Lnx

2 [a, b] → Lnx
2 [a, b] and a linear operator

Z : Rp → Lnx
2 [a, b] such that〈

(T Af + ZCf)ef,Fef

〉
L2

+
〈
Fef, (T Af + ZCf)ef

〉
L2

−
〈

(T B + ZD)w,Fef

〉
L2

−
〈
Fef, (T B + ZD)w

〉
L2

− γ2〈w,w〉Rm + 〈ze, ze〉Rq

≤ −ε〈ef, ef〉L2 (21)

for some ε > 0, for all ef ∈ Lnx
2 [a, b]. Then T −1 exists and

is a bounded linear operator. Moreover, for L = T −1Z and
any square integrable function w ∈ Rm, the solution to (20)
satisfies

|| ze ||L2
≤ γ || w ||L2

. (22)

�
Proof: Since T is coercive and T : Lnx

2 [a, b] →
Lnx

2 [a, b], T −1 exists and it is a bounded linear operator
with T −1 : Lnx

2 [a, b]→ Lnx
2 [a, b].

Let V (ep) := 〈ep, T ep〉L2
be the storage function. Since,

T is coercive, V (ep) ≥ δ〈ep, ep〉L2
for some δ > 0.

Differentiating the storage function with respect to time t
and using (20) we obtain:

V̇ (ep(t)) =〈
(T Af + ZCf)ef(t),Fef(t)

〉
L2

+
〈
Fef(t), (T Af + ZCf)ef(t)

〉
L2

−
〈
(T B + ZD)w(t),Fef(t)

〉
L2
−
〈
Fef(t), (T B + ZD)w(t)

〉
L2

The inequality (21) implies

V̇ (ep(t)) =〈
(T Af + ZCf)ef(t),Fef(t)

〉
L2

+
〈
Fef(t), (T Af + ZCf)ef(t)

〉
L2

−
〈
(T B + ZD)w(t),Fef(t)

〉
L2
−
〈
Fef(t), (T B + ZD)w(t)

〉
L2

< γ2〈w(t), w(t)〉Rm − 〈ze(t), ze(t)〉Rq

Integrating both sides of the above inequality with respect
to time t from 0 to ∞, we obtain
∞∫
0

(
V̇ (ep(t)) + 〈ze(t), ze(t)〉Rq − γ2〈w(t), w(t)〉Rm

)
dt < 0,

=⇒ V (ep(∞))− V (ep(0)) + ||ze||2L2
− γ2||w||2L2

< 0.

Since V (ep(t)) ≥ δ〈ep(t), ep(t)〉L2 for some δ > 0,
limt→∞ V (ep(t)) > 0. Also recall, ep(0) = 0, hence,
V (ep(0)) = 0. As a result, for γ > 0, we obtain (22).

Remark 1.1: Based on Lemma 0.1, the system definitions
in (13) and (11)-(12) as well as (1)-(4) are equivalent.
Therefore, any L : Rp → Lnx

2 [a, b] that satisfies Theorem
1 and achieves minimum γ-value for observer (19) also
achieves the minimum γ-value for the observer (5)-(7).

Lemma 1.1: Suppose there exists a coercive operator
P{M,N1,N2} : Lnx

2 [a, b] →: Lnx
2 [a, b] and a linear operator

P{Φ,0,0} : Rp → Lnx
2 [a, b] for matrix valued polynomial

functions M : [a, b] → Rnx×nx , N1, N2 : [a, b] × [a, b] →
Rnx×nx and Φ : [a, b]→ Rp×nx such that〈[

w
ef

]
,P{P,Q,Q>

S,R1, R2
}
[
w
ef

]〉
Rp×L2

≤ 0, (23)

with

P =− γ2I,

(S,R1, R2) =(H0, H1, H2)∗ × (M,N1, N2)× (G0, G1, G2)

+ (G0, G1, G2)∗ × (M,N1, N2)× (H0, H1, H2)

+ (0, C2, C2)∗ × (Φ, 0, 0)∗ × (G0, G1, G2)

+ (G0, G1, G2)∗ × (Φ, 0, 0)× (0, C2, C2)

+ (0, E2, E2)∗ × (0, E2, E2) + ε(I, 0, 0),

Q>(s) =−
s∫

a

W1(s, η)dη −
b∫

s

W2(s, η)dη,

(0,W1,W2) =(G0, G1, G2)∗ × (M,N1, N2)× (B1, 0, 0)

+ (G0, G1, G2)∗ × (Φ, 0, 0)× (D1, 0, 0).

Then for some ε > 0 and all ef ∈ Lnx
2 [a, b], P−1

{M,N1,N2}
exists and is a bounded linear operator. Moreover, for L :=
P−1
{M,N1,N2}P{Φ,0,0} and any square integrable function w ∈

Rm, the solution to (20) satisfies

|| ze ||L2
≤ γ || w ||L2

.

�
Proof: Notice, T := P{M,N1,N2} and Z := P{Φ,0,0}.

As a result, P−1
{M,N1,N2} : Lnx

2 [a, b] → Lnx
2 [a, b] exists and

it is a bounded linear operator.
Now, applying the composition formulae of the operators,

the inequality (21) in Theorem 1 can be rewritten as the
operator inequality (23).
As an outcome of the operator inequality (23) in Lemma 1.1,
the feasibility of solving the H∞ optimal observer design
amounts to verifying the Linear Operator Inequalities (LOIs)
P{M,N1,N2} � 0 and P{P,Q,Q>

S,R1, R2
} 4 0.

V. POSITIVITY OF OPERATORS

In this section, we formulate LMI conditions for verifying
positivity of the class of operators P{P,Q,Q>

S,R1, R2
}. We can then

reformulate the operator inequality (23) in terms of LMIs to
synthesize H∞ optimal observers for coupled PDEs.

Theorem 2: For any square integrable functions Z1 :
[a, b]→ Rd1×n, Z2 : [a, b]× [a, b]→ Rd2×n and g : [a, b]→
R+ define

P :=T11,

Q(s) :=g(s)T12Z1(s) +

∫ b

s

g(η)T13Z2(η, s)dη

+

∫ s

a

g(η)T14Z2(η, s)dη,

S(s) :=g(s)Z>1 (s)T22Z1(s),

R1(s, η) :=g(s)Z>1 (s)T23Z2(s, η) + g(η)Z>2 (η, s)T42Z
>
1 (η)

+

∫ b

s

g(θ)Z>2 (θ, s)T33Z2(θ, η)dθ

+

∫ s

η

g(θ)Z>2 (θ, s)T43Z2(θ, η)dθ

+

∫ η

a

g(θ)Z>2 (θ, s)T44Z2(θ, η)dθ,
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R2(s, η) :=g(s)Z>1 (s)T32Z2(s, η) + g(η)Z>2 (η, s)T24Z
>
1 (η)

+

∫ b

η

g(θ)Z>2 (θ, s)T33Z2(θ, η)dθ

+

∫ η

s

g(θ)Z>2 (θ, s)T34Z2(θ, η)dθ

+

∫ s

a

g(θ)Z>2 (θ, s)T44Z2(θ, η)dθ,

with

T :=


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 < 0.

Then, for all z ∈ Rm ×Ln2 [a, b] with appropriate dimension
of T ,

〈
z,P{P,Q,Q>

S,R1, R2
}z
〉
≥ 0. �

Proof: It can be easily shown that P{P,Q,Q>
S,R1, R2

} is self-
adjoint. Now, for any z ∈ Rm and x ∈ Ln2 [a, b], we choose:

(
Z
[
z
x

])
(s) :=



z√
g(s)Z1(s)x(s)

s∫
a

√
g(s)Z2(s, η)x(η)dη

b∫
s

√
g(s)Z2(s, η)x(η)dη

 .

Then 〈[
z
x

]
,P{P,Q,Q>

S,R1, R2
}
[
z
x

]〉
=

〈
Z
[
z
x

]
, TZ

[
z
x

]〉

=

〈
T

1
2Z
[
z
x

]
, T

1
2Z
[
z
x

]〉
≥ 0.

Note: We take the convention that P,Q1 and Q2 can be
void in the definition (8). In that case, the positivity for the
subclass of operators P{S,R1,R2} can still be proven using
Theorem 2 while considering the first row and column of
blocks in T empty.

Remark 2.1: The function Z1, Z2 will be referred to as
parametrized basis functions. For any choice of Z1, Z2, The-
orem 2 relates the positivity of P{P,Q,Q>

S,R1, R2
} to the positivity

of the matrix T . Hence, the verification of the conditions of
Theorem 2 can be translated into a feasibility test involving
LMIs. Here, a typical choice for Z1, Z2 is a vector of
monomials of degree d1, d2 respectively. For g(s), motivated
by Positivstellensatz-type results, we combine the choices of
g(s) = 1 and g(s) = (s− a)(b− s).

VI. LMI CONDITIONS FOR OPTIMAL H∞
ESTIMATOR SYNTHESIS

Definition 2.1: Let P ∈ Rm×m be a constant real-valued
matrix and Q : [a, b] → Rm×n, S : [a, b] → Rn×n, and
R1, R2 : [a, b]× [a, b]→ Rn×n be matrix-valued polynomi-
als. Then, the cone of the positive operators P{P,Q,Q>

S,R1, R2
} is

parametrized by

Ξd1,d2 :=
{

(P,Q,Q>, S,R1, R2) : the positivity condition

in Theorem 2 is satisfied with

Z1 : [a, b]→ Rd1×n, Z2 : [a, b]× [a, b]→ Rd2×n
}

(24)

Theorem 3: Suppose there exist δ > 0, d1, d2 ∈ N, M̂ :
[a, b] → Rnx×nx , N̂1, N̂2 : [a, b] × [a, b] → Rnx×nx , Φ̂ :
[a, b]→ Rp×nx and ρ̂ > 0 that satisfies

ρ̂ = arg min ρ, (25)

such that

([], [], [], M̂ − δI, N̂1, N̂2) ∈ Ξd1,d2 , (26)

−(P̂ , Q̂, Q̂>, Ŝ, R̂1, R̂2) ∈ Ξd1,d2 , (27)

where

P̂ =− ρ̂I,
(Ŝ, R̂1, R̂2) =(H0, H1, H2)∗ × (M̂, N̂1, N̂2)× (G0, G1, G2)

+ (G0, G1, G2)∗ × (M̂, N̂1, N̂2)× (H0, H1, H2)

+ (0, C2, C2)∗ × (Φ̂, 0, 0)∗ × (G0, G1, G2)

+ (G0, G1, G2)∗ × (Φ̂, 0, 0)× (0, C2, C2)

+ (0, E2, E2)∗ × (0, E2, E2) + ε(I, 0, 0),

Q̂>(s) =−
s∫

a

Ŵ1(s, η)dη −
b∫

s

Ŵ2(s, η)dη,

(0, Ŵ1, Ŵ2) =(G0, G1, G2)∗ × (M̂, N̂1, N̂2)× (B1, 0, 0)

+ (G0, G1, G2)∗ × (Φ̂, 0, 0)× (D1, 0, 0).

Then ρ̂ is the minimum value for which the observer
gain L := P−1

{M̂,N̂1,N̂2}
P{Φ̂,0,0} and any square integrable

function w ∈ Rm define the observer (19) as well as (5)-(6)
while satisfying

|| ze ||L2≤
√
ρ̂ || w ||L2

.

�

VII. IMPLEMENTATION

The optimization algorithm has been implemented in
MATLAB® using an adapted version of the freely available
package SOSTOOLS [16]. Given a user-defined PDE model
as specified in (1) − (4), the implemented algorithm tests
the feasibility and computes the optimal γ-value (i.e. ρ̂) for
the H∞ estimation problem without any discretization or
approximation of the PDEs. This yields a verifiable test for
the existence of an estimator that achieves ‖ze‖L2 ≤ γ‖w‖L2

for all w ∈ L2. However, the implementation of the resulting
observer (5)-(6) in digital hardware involves evaluation
of continuous functions and requires suitable discretization
schemes.

A. Numerical Discretization of the Estimator

Recall that, with L = T −1Z , the estimator is

˙̂xp(t) = Afx̂f(t) + T −1Z(Cfx̂f(t)− y(t)),

ẑ(t) = Efx̂f(t).
(28)

A closed form expression for the inverse of T :=
P{M,N1,N2} is not yet possible. Instead, using the invert-
ibility of T , we may reformulate the estimator by pre-
multiplying the both sides of (28) with T . This yields the
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equivalent estimator

T ˙̂xp(t) = T Afx̂f(t) + Z(Cfx̂f(t)− y(t)),

ẑ(t) = Efx̂f(t).
(29)

To actually process the measurements y(t) to the outputs
ẑ(t), we apply a numerical discretization scheme for (29).
To do so, we consider that the spatial domain is discretized in
N equidistant intervals with grid sample ∆s > 0. In (29), we
apply central difference at the sequence of points si ∈ Sd ⊂
[a, b], i ∈ {1, · · · , N+1} to approximate x̂f using x̂2s(si) ≈
x̂2(si+1)−x̂2(si−1)

2∆s
and x̂3ss(si) ≈ x̂3(si+1)−2x̂3(si)+x̂3(si−1)

(∆s)2 .
Based on the number of grid points, the discretization yields
the following finite dimensional state space model in terms
of x̂d := col(x̂(s2), · · · , x̂(si), · · · , x̂(sN )):

T̄ ˙̂xd =
(
T̄ Āf + Φ̄C̄f

)
L̄x̂d − Z̄1 yd,

ẑ = Ēx̂d. (30)

Here, T̄ , Āf ∈ Rn(N−1)×n(N−1) are the discretized ver-
sions of T and Af respectively. Φ̄ ∈ Rn(N−1)×p

and C̄f ∈ Rp×n(N−1) are discretized versions of Z
and Cf respectively. L̄ ∈ Rn(N−1)×n(N−1) contains the
coefficients due to the central difference of x2s and
x3ss. The input to the discretized estimator is yd :=
col(ym, x̂1(a), x̂2(a), x̂3(a), x̂1(b), x̂2(b), x̂3(b)) with Z̄1

being a matrix of appropriate dimension containing the dis-
cretized coefficients for the output. Here, ym is the measured
output and col(x̂1(a), x̂2(a), x̂3(a), x̂1(b), x̂2(b), x̂3(b)) are
evaluated from the boundary conditions. Ē ∈ Rq×n(N−1) is
the discretized Ef. As T is a positive operator, T̄ should be
invertible and (30) amounts to solving a set of linear finite
dimensional differential equations that can be efficiently
solved using any stable time-marching method.

B. Numerical Discretization of the Operators P{S,R1,R2}

The class of operators P{S,R1,R2} accepts the inner prod-
uct 〈x,P{S,R1,R2}x〉 for x ∈ Ln2 [a, b]. We evaluate the inner
product also at the sequence of points (si, ηj) ∈ Sd × Sd ⊂
[a, b] × [a, b], i ∈ {1, · · · , N + 1}, j ∈ {1, · · · , N + 1}. To
approximate the integration, we apply the following formula
for trapezoidal Reimann sum:

b∫
a

f(s)ds ≈ ∆s

2

N∑
i=1

(f(si) + f(si+1)). (31)

1) Approximating the Multiplier: The approximation of
〈x,P{S,[],[]}x〉L2

at the sequence of points si ∈ Sd ⊂ [a, b],
i ∈ {1, · · · , N + 1} yields:

b∫
a

x>(s)M(s)x(s)ds

≈∆s

2

N∑
i=1

x>(si)M(si)x(si)

+
∆s

2

N∑
i=1

x>(si+1)M(si+1)x(si+1).

2) Approximating the Kernels of Semi-separable Class:
The approximation of 〈x,P{[],R1,[]}x〉L2

at the sequence of
points (si, ηj) ∈ Sd×Sd ⊂ [a, b]×[a, b], i ∈ {1, · · · , N+1},
j ∈ {1, · · · , N + 1} yields:

b∫
a

x>(s)
[ s∫

a

R1(s, η)x(η)dη
]
ds

≈∆2
s

4

N∑
i=1

x>(si)

i−1∑
j=1

R1(si, ηj)x(ηj)

+
∆2

s

4

N∑
i=1

x>(si)

i−1∑
j=1

R1(si, ηj+1)x(ηj+1)

+
∆2

s

4

N∑
i=1

x>(si+1)

i∑
j=1

R1(si+1, ηj)x(ηj)

+
∆2

s

4

N∑
i=1

x>(si+1)

i∑
j=1

R1(si+1, ηj+1)x(ηj+1).

Similarly, we can approximate 〈x,P{[],[],R2}x〉L2 at the
sequence of points (si, ηj) ∈ Sd × Sd ⊂ [a, b] × [a, b],
i ∈ {1, · · · , N + 1}, j ∈ {1, · · · , N + 1}.

Combining them, we obtain an finite dimensional ap-
proximation of 〈x,P{S,R1,R2}x〉L2

as x̄>P̄ x̄. Here, x̄ :=
col(x(a), · · · ,x(si), · · · ,x(b)) and P̄ ∈ Rn(N+1)×n(N+1).
Note that, if the original P{S,R1,R2} is self-adjoint, its
discretization retains its symmetry.

Discussion: Due to the lack of analytic expression for
the inversion of T , approximating the inversion by dis-
cretization is essential. Such approximation causes additional
uncertainty on the accuracy of implementing the estimator.
However, such problem is solely an implementation related
aspect and by no means, offers any conservatism on either
synthesizing the operators T , Z or guaranteeing optimal
performance bound in terms of ρ̂-value in the original setting.

VIII. NUMERICAL ILLUSTRATIONS
In this section, we illustrate the H∞ estimator with a

hyperbolic and a parabolic PDE on the domain [0, 1].

A. Hyperbolic PDE: Wave Equation with Boundary Control
Here, we consider the one dimensional wave equation with

boundary feedback which has been discussed in Section I
as an illustrative example. Using the developed algorithm,
we obtain the minimum γ-value, ρ̂ = 0.164. After imple-
menting the discretized estimator on 50 grid points, Figure
1 shows the disturbance suppression on the evolution of the
discretized ze(t) := ẑ(t)− z(t) over time.

B. Parabolic PDE: Coupled Diffusion-Reaction Equation
Here, we consider the following coupled PDEs[
ẋ1(s, t)
ẋ2(s, t)

]
= λ

[
1 0.3

0.1 1

] [
x1(s, t)
x2(s, t)

]
+

[
1 0
0 1

] [
x1(s, t)
x2(s, t)

]
ss

+

[
s− s2

0

]
w(t),

y(t) =

b∫
a

[
0 1

] [x1(s, t)
x2(s, t)

]
ds, z(t) =

b∫
a

[
1 0
0 1

] [
x1(s, t)
x2(s, t)

]
ds.

(32)
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Fig. 1: For Example 1: Time evolution of ze(t) and w(t)
where w(t) is generated by using sinc function.

The boundary conditions are of Dirichlet type, i.e.[
x1(a, t)
x2(a, t)

]
=

[
0
0

]
,

[
x1(b, t)
x2(b, t)

]
=

[
0
0

]
. (33)

Here, we synthesize the estimator for two cases with λ = 5
and λ = 10. For λ = 10, the original model is unstable. The
algorithm yields estimators with minimum γ-value (i.e. ρ̂)
as well as the operators T and Z . The obtained ρ̂ values are
a) ρ̂ = 0.2886, for λ = 5, and b) ρ̂ = 0.4745 for λ = 10.

After implementing the discretized estimator on 100 grid
points, Figure 2 shows the disturbance suppression on the
evolution of the discretized ze(t) := ẑ(t) − z(t) over time
for λ = 5, 10.
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w
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ze;1(t);6 = 10
ze;2(t);6 = 10
ze;1(t);6 = 5
ze;2(t);6 = 5
w(t)

Fig. 2: For Example 2: Time evolution of ze(t) and w(t)
for λ = 5, 10 where w(t) is generated by damped sinusoidal
functions.

IX. CONCLUSIONS

In this paper, we have presented a LMI based framework
to design an H∞ optimal estimator for linear coupled PDE
systems. Instead of using the conventional state definition
for PDEs, a new set of fundamental states has been de-
fined that offers a generic framework to describe linear
PDEs of both parabolic and hyperbolic type without any
explicit dependency on boundary conditions. Using a class
of positive operators P{P,Q,Q>

S,R1, R2
} that are equipped with

multipliers and kernels of semi-separable class, scalable LMI
conditions have been derived that determine the optimal H∞
observer for coupled PDE systems with no approximation or
discretization. A scalable algorithm has been implemented
to synthesize the observer. By illustration, we have shown
that developed H∞ optimal estimator provides the desired
performance for both parabolic and hyperbolic type of PDEs.
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