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Abstract

The standard Dynamic Programming (DP) formulation can be used to solve Multi-Stage Optimization Problems (MSOP’s) with additively
separable objective functions. In this paper we consider a larger class of MSOP’s with monotonically backward separable objective
functions; additively separable functions being a special case of monotonically backward separable functions. We propose a necessary and
sufficient condition, utilizing a generalization of Bellman’s equation, for a solution of a MSOP, with a monotonically backward separable
cost function, to be optimal. Moreover, we show that this proposed condition can be used to efficiently compute optimal solutions for two
important MSOP’s; the optimal path for Dubin’s car with obstacle avoidance, and the maximal invariant set for discrete time systems.
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1 Introduction

Throughout Engineering, Economics, and Mathematics
many problems can be formulated as Multi-Stage Optimiza-
tion Problems (MSOP’s):

min
{

J(u(0), ...,u(T −1),x(0), ...,x(T ))
}

x(0) = x0, x(t +1) = f (x(t),u(t), t) for t = 0, ..,T −1
x(t) ∈ Xt ⊂ Rn, u(t) ∈U ⊂ Rm for t = 0, ..,T.

Such problems consist of 1) a cost function J : Rm×T ×
Rn×(T+1) → R, 2) an underlying discrete-time dynamical
system governed by the plant equation f : Rn×Rm×N→
Rn, 3) a state space Xt ⊂ Rn, 4) an admissible input space
U ⊂ Rm, and 5) a terminal time T > 0. Examples of such
optimization problems include: optimal battery scheduling
to minimize consumer electricity bills [11]; energy-optimal
speed planning for road vehicles [33]; optimal maintenance
of manufacturing systems [21]; etc.

MSOP’s are members of the class of constrained nonlin-
ear optimization problems. Such optimization problems can
be solved using nonlinear solvers such as SNOPT [8] over
small time horizons. However, the most commonly used
class of methods for solving MSOP’s is Dynamic Program-
ming (DP) [2]. DP methods exploit the structure of MSOP’s
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to decompose the optimization problem into lower dimen-
sional sub-problems that can be solved recursively to give
the solution to the original higher dimensional MSOP. Typi-
cally, DP is used to solve problems with cost functions of the
form J(u,x) = ∑

T−1
t=0 ct(x(t),u(t))+ cT (x(T )). These func-

tions (Defn. 2) are called additively separable functions, as
they can be additively separated into sub-functions, each of
which only depend on a single time-stage, t ∈ {0, ...,T}. In
the additively separable case it was shown in [1] that if we
can find a function F that satisfies Bellman’s Equation,

F(x,T ) = cT (x) for all x ∈ XT

F(x, t) = inf
u∈Γx,t

{
ct(x,u)+F( f (x,u, t), t +1)

}
for all x ∈ Xt , t ∈ {0, ..,T −1},

where Γx,t := {u ∈U : f (x,u, t) ∈ Xt}, then a necessary and
sufficient condition for a feasible input and state sequence,
u = (u(0), ...,u(T −1)) and x = (x(0), ...,x(T )), to be opti-
mal is

u(t) ∈ arg inf
u∈Γx(t),t

{
ct(x(t),u)+F( f (x(t),u, t), t +1)

}
for all t ∈ {0, ..,T −1}.

We consider MSOP’s with cost functions of the more general
form J(u,x)= φ0(x(0),u(0),φ1(x(1),u(1), . . .φT (x(T )) . . .)),
where maps φt : Xt ×U ×R→ R are monotonic in their
third argument for t = 0, · · ·T −1. Such functions are called
monotonically backward separable, defined in Definition
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3, and shown to contain the class of additively separable
functions in Lemma 4. For MSOP’s with monotonically
backward separable cost functions we show in Theorem 10
that if we can find a function V that satisfies

V (x,T ) = φT (x) for all x ∈ XT (1)

V (x, t) = inf
u∈Γx,t

{
φt(x,u,V ( f (x,u, t), t +1))

}
for all x ∈ Xt , t ∈ {0, ..,T −1},

where Γx,t := {u ∈ U : f (x,u, t) ∈ Xt}, then a necessary
and sufficient for a feasible input and state sequence, u =
(u(0), ...,u(T −1)) and x = (x(0), ...,x(T )), to be optimal is

u(t) ∈ arg inf
u∈Γx(t),t

{
φt (x(t),u,V ( f (x(t),u, t), t +1))

}
for all t ∈ {0, ..,T −1}.

Equation (1) can be thought of as a generalization of Bell-
man’s Equation; as it is shown in Corollary 11 that in the
special case when the cost function is additively separable
Equation (1) reduces to Bellman’s Equation. We therefore
refer to Equation (1) as the Generalized Bellman’s Equation
(GBE). Through several examples we show a solution, V , to
the GBE can be obtained numerically by recursively solv-
ing the GBE backwards in time for each element of Xt , the
same way Bellman’s Equation is solved, thereby extending
traditional DP methods to solve a larger class of MSOP’s
with non-additively separable cost functions. Moreover, in
Section 4 it is shown how Approximate Dynamic Program-
ming (ADP) methods can be modified to solve the GBE.

By recursively solving the GBE (1) it is possible to synthe-
size optimal input sequences for many important practical
problems. In this paper we consider two such problems;
path planning with obstacle avoidance and maximal invari-
ant sets. First, we define the path planning problem as the
search for a sequence of inputs that drives a dynamical
system to a target set in minimum time while avoiding
obstacles defined by subsets of the state-space. In Sec-
tion 5 we show that such problems can be formulated as
an MSOP with monotonically backward separable objec-
tive, of form J(u,x) = min{inf{t ∈ [0,T ] : x(t) ∈ S} ,T},
implying that the solution to the path planning prob-
lem can be found using the solution to the GBE. Sim-
ilarly, in Section 6 we show that computation of maxi-
mal invariant sets can be formulated as an MSOP with
monotonically backward separable objective of form
J(u,x) = max{max0≤k≤T−1{ck(u(k),x(k))},cT (x(T ))}.

Path planning with obstacle avoidance has been extensively
studied (see surveys [5] [7]) and has many applications; in-
cluding UAV surveillance [31]. In [25] the path planning
problem is separated into two separate problems: the “geo-
metric problem”, in which the shortest curve, x̃(t), between
the initial set and target set is calculated, and the “track-
ing problem”, in which a controller, u(t), is synthesized

so that ∑
T
t=0||x(t)− x̃(t)||22 is minimized, where x(t + 1) =

f (x(t),u(t), t) and ||·||2 is the Euclidean norm. Separat-
ing the path planning problem allows for the use of effi-
cient algorithms such as A∗-search or tangent graphs [22]
to solve the “geometric problem” and LQR control to solve
the “tracking problem”, however, there is no guaranteed that
this method will produce the true solution to the original
path planning problem. The same approach is used in [4],
where it is shown through numerical examples that a con-
troller closer to optimality can be derived when the state
space is augmented with historic trajectory information. Our
approach of using the GBE to solve the path planning does
not separate the problem into the “geometric or “tracking”
problem and thus does not require any state augmentation.
For systems described in continuous time (rather than the
discrete systems considered in this paper) with obstacles
that satisfy certain boundary curvature assumptions, assump-
tions not made in this paper, it has been shown in [27] that
a path planning sliding mode controller can be efficiently
computed. Furthermore, this sliding mode controller can be
used for effective path planning in unknown environments,
a case not considered in this paper.

The GBE can also be used in the application of computing
the Finite Time Horizon Maximal Invariant Set (FTHMIS),
defined as the largest set of initial conditions for a discrete
time process such that there exists a feasible input sequence
for which the state of the system never violates a time-
varying constraint. Knowledge of this set can be used to
design controllers that ensure the system never violates given
safety constraints. We show that FTHMIS’s are equivalent
to the sublevel set of solutions to the GBE. To the best of
the authors knowledge the problem of computing FTHMIS’s
has not previously been addressed in the literature. However,
a proposed methodology for computing maximal invariant
sets over infinite time horizons can be found in [32,6,30].
Similar continuous-time formulations of this problem can
be found in [15,14].

Substantial work on generalizations of Bellman’s Equation
for both infinite and finite time MSOP’s can be found in [3].
Our work differs from [3] as rather than attempting to gen-
eralize the ”Bellman’s operator“, as [3] does, we consider
a wider class of cost functions associated with MSOP’s, in-
troducing monotonically backward separable cost functions,
leading to a derivation of the GBE (1). Unlike in [3], we for-
malize the link between the cost function of an MSOP and
the GBE (1). Other examples in the literature of MSOP’s
with non-additively separable cost functions can be found
in the pioneering work of Li [20,19,18,17]. Li considered
MSOP’s with k-separable cost functions; functions of the
form J(u,x) = H(J1(u,x), ...,Jk(u,x)), where H : Rk→R is
strictly increasing and differentiable, and each of the func-
tions, Ji, are differentiable monotonically backward sepa-
rable functions. Li showed that for problems in this class
of MSOP, an equivalent multi-objective optimization prob-
lem with k-separable cost functions can be constructed. The
multi-objective optimization problem can then be analyti-
cally solved, using methods relying of the differentiability
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of the cost function, to find the optimal input sequence for
the MSOP. We do not assume, as in Li, that the cost function
is differentiable or k-separable and our solution does not re-
quire the solution of a multi-objective optimization problem.

In related work, coherent risk measures, from [29,28,26], re-
sult in MSOP’s with non-additively separable cost functions
of the form J(u,x) = c0(x(0),u(0)) + ρ1(c1(x(1),u(1)) +
ρ2(c2(x(2),u(2))+ ....+ρT (cT (x(T )))....)). Such MSOP’s
are solved recursively using a modified Bellman’s Equa-
tion. Coherent risk measure functions are a special case of
monotonically backward separable functions; in this case
our GBE reduces to the previously proposed modified Bell-
man’s equation.

2 Multi-Stage Optimization Problems With Backward
Separable Cost Functions

In this section we will introduce a class of general Multi-
Stage Optimization Problems (MSOP’s). We show this class
contains problems that classical DP theory is able to solve;
MSOP’s with additively separable cost functions (Eqn. (3)).
We then propose a more general class of cost functions called
monotonically backward separable functions (Eqn. (4)) that
contain the class of additively separable functions. Using
this framework we are then able to derive necessary and
sufficient conditions for an input sequence to solve an MSOP
with monotonically backward separable cost function. Such
conditions are shown to reduce to the classical conditions
proposed by Bellman [1] in the special case when the cost
function is additively separable.

Definition 1 For a given initial condition x0 ∈Rn, for every
tuple of the form {J, f ,{Xt}0≤t≤T ,U,T}, where J : Rm×T ×
Rn×(T+1)→ R, f : Rn×Rm×N→ Rn, Xt ⊂ Rn, U ⊂ Rm,
and T ∈ N, we associate a MSOP of the following form

(u∗,x∗)∈argmin
u,x

J(u,x) subject to: (2)

x(t +1) = f (x(t),u(t), t) for t = 0, ..,T −1
x(0) = x0, x(t) ∈ Xt ⊂ Rn for t = 0, ..,T
u(t) ∈U ⊂ Rm for t = 0, ..,T −1
u = (u(0), ...,u(T −1)) and x = (x(0), ...,x(T ))

Classical DP theory is concerned with the special case when
the cost function, J : Rm×T ×Rn×(T+1) → R, has an addi-
tively separable structure defined as follows.

Definition 2 The function J : UT ×ΠT
t=0Xt→R is said to be

additively separable if there exists functions, cT (x) : XT →R,
and ct : Xt ×U → R for t = 0, · · ·T −1 such that,

J(u,x) =
T−1

∑
t=0

ct(x(t),u(t))+ cT (x(T )), (3)

where u = (u(0), ...,u(T −1)) and x = (x(0), ...,x(T )).

We consider the class of “monotonic backward separable”
cost functions defined next. The definition of this class of
functions uses the image set of a function. Specifically,
for f : X → Y we denote the image set of the function as
Image{ f}:={y ∈ Y : there exists x ∈ X such that f (x) = y}.

Definition 3 The function J : UT ×ΠT
t=0Xt→R, where U ⊂

Rm and Xt ⊂Rn is said to be monotonically backward sep-
arable if there exists representation maps, φT : XT →R, and
φt : Xt×U× Image{φt+1}→R for t = 0, · · ·T −1 such that
the following holds:

(1) The function J can be expressed as the composition
of representation maps, {φt}T

t=0, ordered backwards in
time. That is J satisfies
J(u,x) = φ0(x(0),u(0),φ1(x(1),u(1), . . .φT (x(T )) . . .)), (4)

where u=(u(0), ...,u(T−1)) and x=(x(0), ...,x(T )).
(2) Each representation map, φt , is monotonic in its third

argument. That is if z,w ∈ Image{φt+1} are such that
z≥ w then

φt(x,u,z)≥ φt(x,u,w) for all (x,u) ∈ Xt ×U (5)

Moreover if J also satisfies the following properties than we
say J is naturally monotonically backward separable:

(1) Each representation map, φt , is upper semi-continuous
in its third argument. That is for any t ∈ {0, ..,T −
1}, x ∈ Xt , u ∈ U and any monotonically decreasing
sequence {zn}n∈N ⊂ Image{φt+1}, such that zn+1 ≤ zn
for all n ∈ N, then

lim
n→∞

φt(x,u,zn) = φt(x,u, lim
n→∞

zn). (6)

(2) Each representation map, φt , satisfies the following
boundedness property. For any t ∈ {0, ...,T − 1} and
(x,u,z) ∈ Xt ×U× Image{φt+1} we have |φt(x,u,z)|<
∞ and for all x ∈ XT we have |φT (x)|< ∞; that is for
each t ∈ {0, ...,T} there exists R > 0 such that

Image{φt} ⊂ {x ∈ R : |x|< R}. (7)

We show in Sec. 3 that monotonically backward separable
functions share a deep connection with Bellman’s Principle
of Optimality (Defn. 12). However, we also consider nat-
urally monotonically backward separable functions as the
added semi-continuity and boundedness properties are used
in the derivation of necessary and sufficient conditions for
an input sequence to solve an MSOP with naturally mono-
tonically backward separable cost function (Theorem 10).

We next show the class of MSOP’s with monotonically back-
ward separable cost functions includes the class of MSOP’s
with additively separable cost functions as a special case.

Lemma 4 Suppose J : UT ×ΠT
t=0Xt → R is an additively

separable function (Defn. 2), with associated cost functions
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{ct}T
t=0. Then J is a monotonically backward separable func-

tion (Defn. 3). Moreover, if the functions {ct}T
t=0 are bounded

over Xt×U then J is naturally monotonically backward sep-
arable function.

PROOF. Given an additively separable function, J, we
know there exists functions {ct}0≤t≤T such that Eqn. (3)
holds. To prove J is monotonically backward separable we
construct representation maps {φt}T

t=0 such that Eqns. (4)
and (5) hold. We define these representation maps as fol-
lows:

φi(x,u,z) = ci(x,u)+ z for i = 0, · · · ,T −1 (8)
φT (x,w) = cT (x).

Now, ∂φt (x,y,z)
∂ z = 1 > 0 for all t ∈ {0, ....,T −1}, x ∈ Xt and

u ∈U , implying the monotonicity property in Eqn. (5).

Now assuming the functions {ct}T
t=0 are bounded over Xt×

U it follows trivially that the representation maps {φt}T
t=0,

given in Eqn. (8), satisfy the semi-continuity and bounded-
ness properties given in Eqns. (6) and (7). Thus J is naturally
monotonically backward separable function. �

Further examples of monotonically backward separable
functions, including instances where the representation
maps are non-differentiable, are given in Section 2.3.

2.1 Exchanging The Order Of Composition And Infimum
For Monotonically Backward Separable Functions

As we will show in Lemma 6, monotonically backward sep-
arable functions have the special property that the order of
an infimum and composition of representation maps can be
interchanged. To show this we must use the monotonic con-
vergence theorem.

Theorem 5 (Monotone Convergence Theorem) Suppose
{zn}n∈N ⊂ R is a bounded sequence that is mono-
tonically decreasing, zn+1 ≤ zn for all n ∈ N. Then
limn→∞ zn = infn∈N zn.

Before proving in Lemma 6 we introduce notation for the
set of feasible controls. Given a tuple {J, f ,{Xt}0≤t≤T ,U,T}
for x ∈ Xt and s ∈ [0,T −1] we denote

Γx,s := {u ∈U : f (x,u,s) ∈ Xs+1}.

Moreover we say

(u(s), ...,u(T −1)) ∈ Γx0,[s,T−1] (9)

if u(t) ∈ Γx(t),t for all t ∈ {s, ...,T −1}, where x(s) = x0 and
x(k+1) = f (x(k),u(k),k) for k ∈ {s, ...,T −1}.

Lemma 6 Consider an MSOP of Form (2) associated with
{J, f ,{Xt}0≤t≤T ,U,T}. Suppose J : UT ×ΠT

t=0Xt → R is
a naturally monotonically backward separable function
(Defn. 3) with representation maps {φt}T

t=0 and Γx,t 6= /0 for
all (x, t) ∈ Xt ×{0, ...,T − 1}. Then for k ∈ {0, ...,T − 1}
and any x ∈ Xk we have

inf
u(k)∈Γx,k

{
φk

(
x(k),u(k), inf

(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

{
φk+1(

x(k+1),u(k+1),φk+2(x(k+2),u(k+2), ...φT (x(T ))...))
})}

= inf
(u(k),...,u(T−1))∈Γx,[k,T−1]

{
(10)

φk(x(k),u(k),φk+1(x(k+1),u(k+1), ...φT (x(T ))...))
}
,

where x(t + 1) = f (x(t),u(t), t) for t ∈ {k, ...,T − 1} and
x(k) = x.

PROOF. To show Eqn. (10) we will split the proof into two
parts. In Part 1 we will show the left hand side of Eqn. (10)
is less than or equal to the right hand side of Eqn. (10). In
Part 2 we will show the right hand side of Eqn. (10) is less
than or equal to the left hand side of Eqn. (10).

Part 1 of proof: By the definition of the infimum it follows
for all y ∈ Xk+1 that

inf
(u(k+1),...,u(T−1))∈Γy,[k+1,T−1]

φk+1(x(k+1),u(k+1), ...φT (x(T ))...)

≤ φk+1(x̃(k+1), ũ(k+1), ...φT (x̃(T ))...), (11)

for any (ũ(k + 1), ..., ũ(T − 1)) ∈ Γx(k+1),[k+1,T−1], where
x̃(t + 1) = f (x̃(t), ũ(t), t), x(t + 1) = f (x(t),u(t), t) for t ∈
{k+1, ...T −1}, and x(k+1) = x̃(k+1) = y.

Since φk is monotonic in its third argument (Eqn. (5)) it
follows from Eqn. (11) that for any (x,u) ∈ Xk×Γx,k that

φk(x(k),u(k), inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

{ (12)

φk+1(x(k+1),u(k+1), ...φT (x(T ))...)}
≤ φk(x(k),u(k),φk+1(x̃(k+1), ũ(k+1), ...φT (x̃(T ))...)),

for any (ũ(k + 1), ..., ũ(T − 1)) ∈ Γx(k+1),[k+1,T−1], where
x̃(t + 1) = f (x̃(t), ũ(t), t), x(t + 1) = f (x(t),u(t), t) for t ∈
{k, ...T −1}, x(k) = x̃(k) = x, and u(k) = u.

Now, since Eqn. (12) holds for any u ∈ Γx,k and (ũ(k +
1), ..., ũ(T − 1)) ∈ Γx(k+1),[k+1,T−1] we are able to take the
infimum over these in Eqn. (12), deducing the left hand side
of Eqn. (10) is less or than or equal to its right hand side.

Part 2 of proof: Let us fix (x,u)∈Xk×Γx(k),k. Since Γx,t 6= /0
for all (x, t)∈Xt×{0, ...,T−1} it follows from the definition
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of the infimum for all n∈N there exists (un(k+1), ...,un(T−
1)) ∈ Γx(k+1),[k+1,T−1] such that

inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k+1),u(k+1), ...φT (x(T ))...)

≤ φk+1(xn(k+1),un(k+1), ...φT (xn(T ))...) (13)

≤ inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k+1),u(k+1), ...φT (x(T ))...)+
1
n
,

where xn(t+1) = f (xn(t),un(t), t) for t ∈ {k+1, ...,T −1},
and xn(k+1) = x(k+1) = f (x,u,k).

Let an := φk+1(xn(k+ 1),un(k+ 1), ...φT (xn(T ))...). It fol-
lows from Eqn. (13) that

lim
n→∞

an = inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k+1),u(k+1), ...φT (x(T ))...).

an ≥ inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k+1),u(k+1), ...φT (x(T ))...),

for all n ∈ N.

Since {an}n∈N converges to some limit from above there
exists a monotonically decreasing subsequence {bn}n∈N ⊆
{an}n∈N such that bn+1 ≤ bn for n ∈ N. Using {bn}n∈N we
now define

zn := φk(x,u,bn).

Since φk is monotonic in its third argument (Eqn. (5)) and
bn+1 ≤ bn it follows zn+1 = φk(x,u,bn+1) ≤ φk(x,u,bn) ≤
zn. Hence {zn}n∈N is a monotonically decreasing sequence.
Moreover, since φk has the property that it is a bounded over
Xk ×U × Image{φk+1} (Eqn. (7)) it follows that {zn}n∈N
is a bounded sequence. Now by the monotone convergence
theorem (Theorem 5) we have that infn∈N zn = limn→∞ zn.

It now follows since φk is upper semi-continuous (Eqn. (6))
in its third argument that

inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k,T−1]

{ (14)

φk(x,u,φk+1(x(k+1),u(k+1), ...φT (x(T ))...))}
≤ inf

n∈N
φk(x,u,φk+1(xn(k+1),un(k+1), ...φT (xn(T ))...))

≤ inf
n∈N

zn = lim
n→∞

zn

= lim
n→∞

φk(x,u,bn) = φk(x,u, lim
n→∞

bn) = φk(x,u, lim
n→∞

an)

= φk(x,u, inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

{

φk+1(x(k+1),u(k+1), ...φT (x(T ))...)}.

Since Eqn. (14) holds for any arbitrarily selected (x,u) ∈
Xk×Γx,k we are able to take the infimum with respect to
u ∈ Γx,k, showing the right hand side of Eqn. (10) is less
than or equal to its left hand side.

In Part 1 of the proof we have shown that the left hand side
of Eqn. (10) is less than or equal to the right hand side of
Eqn. (10). In Part 2 of the proof we have shown that the right
hand side of Eqn. (10) is less than or equal to the left hand
side of Eqn. (10). Putting these two parts together we deduce
the left hand side must equal the right hand side, therefore
completing the proof and showing Eqn. (10) holds. �

2.2 Main Result: A Generalization Of Bellman’s Equation

When J is additively separable, the MSOP, given in Eqn. (2),
associated with the tuple {J, f ,{Xt}0≤t≤T ,U,T}, can be
solved recursively using Bellman’s Equation [1]. In this sec-
tion we show that a similar approach can be used to solve
MSOP’s with naturally monotonically backward separable
cost functions.

We next define conditions under which a function, V , is said
to be a value function for an associated MSOP.

Definition 7 Consider a monotonically backward separable
function J :Rm×T ×Rn×(T+1)→R with representation func-
tions {φt}0≤t≤T , f : Rn×Rm×N→ Rn, X ⊂ Rn, U ⊂ Rm,
and T ∈ N. We say the function V : Rn × [0,T ] → R is
a value function of the MSOP associated with the tuple
{J, f ,{Xt}0≤t≤T ,U,T} if for all x ∈ XT

V (x,T ) = φT (x), (15)

and for all x ∈ Xt and t ∈ [0,T −1]

V (x, t) = inf
u(t)∈Γx,t ,....,u(T−1)∈Γx(T−1),T−1

{
(16)

φt(x(t),u(t),φt+1(x(t +1),u(t +1), ...φT (x(T ))...))
}
,

where x(t) = x and x(k + 1) = f (x(k),u(k),k) for k ∈
{t, ...,T −1}.

We note that the value function has the special property that
V (x0,0) = J∗, where J∗ is the minimum value of the cost
function of the MSOP (2). In the special case when J is an
additively separable function the value function defined in
this way reduces to the optimal cost-to-go function.

Proposition 8 (Generalized Bellman’s Equation (GBE))
Consider an MSOP of Form (2) associated with
{J, f ,{Xt}0≤t≤T ,U,T}. Suppose J : UT ×ΠT

t=0Xt → R is
a naturally monotonically backward separable function
(Defn. 3) with representation maps {φt}T

t=0 and Γx,t 6= /0 for
all (x, t) ∈ Xt ×{0, ...,T − 1}. Then if F : Rn× [0,T ]→ R
satisfies

F(x,T ) = φT (x) for all x ∈ XT , and (17)

F(x, t) = inf
u∈Γx,t

{
φt(x,u,F( f (x,u, t), t +1))

}
for all x ∈ Xt , t ∈ {0, ..,T −1},

then F is a value function (Defn. 7) of the MSOP associated
with {J, f ,{Xt}0≤t≤T ,U,T}.

PROOF. Suppose F satisfies Eqn. (17). To show F is
a value function of the MSOP associated with the tuple
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{J, f ,{Xt}0≤t≤T ,U,T} we must show it satisfies Eqns. (15)
and (16). We prove this using backward induction in the
time variable of F . Clearly F satisfies Eqn. (15) for k = T .
Now, for our induction hypothesis, let us assume for some
k ∈ {0, ...,T − 1} that F satisfies Eqn. (16) at time-stage
k + 1 for all x ∈ Xk+1. We will now show that the induc-
tion hypothesis implies F must also satisfy Eqn. (16) at
time-stage k for all x ∈ Xk. Letting x ∈ Xk we have

F(x,k) = inf
u∈Γx,k

{
φk(x,u,F( f (x,u,k),k+1))

}
= inf

u∈Γx,k

{
φk

(
x,u, inf

u(k+1)∈Γx(k+1),k+1,....,u(T−1)∈Γx(T−1),T−1

{
φk+1(

x(k+1),u(k+1),φk+2(x(k+2),u(k+2), ...φT (x(T ))...))
})}

= inf
u(k)∈Γx,k ,....,u(T−1)∈Γx(T−1),T−1

{
φk(x(k),u(k),φk+1(x(k+1),u(k+1), ...φT (x(T ))...))

}
,

where x(k) = x and x(t + 1) = f (x(t),u(t), t) for t ∈
{k, ...,T − 1}. The first equality follows as F satisfies
Eqn. (17); the second equality follows from the induction
hypothesis; the third equality follows by Lemma 6.

Therefore, by backward induction, we conclude F satisfies
Eqns. (15) and (16) and hence is a value function for the
MSOP associated with the tuple {J, f ,{Xt}0≤t≤T ,U,T}. �

We next propose sufficient conditions showing an input se-
quence is optimal if it recursively minimizes the right hand
side of the GBE (17). Later in Theorem 10 we propose nec-
essary and sufficient conditions involving the GBE (17).

Proposition 9 (Sufficient conditions) Consider an MSOP
of Form (2) associated with {J, f ,{Xt}0≤t≤T ,U,T}. Sup-
pose J : UT ×ΠT

t=0Xt → R is a naturally monotonically
backward separable function (Defn. 3) with representation
maps {φt}T

t=0, Γx,t 6= /0 for all (x, t) ∈ Xt ×{0, ...,T − 1},
V : Rn× [0,T ]→ R satisfies the GBE (17), and the state
sequence x∗ = (x∗(0), ...,x∗(T )) and input sequence u∗ =
(u∗(0), ...,u∗(T −1)) satisfy

u∗(k) ∈ arg inf
u∈Γx∗(k),k

{
φt(x∗(k),u,V ( f (x∗(k),u,k),k+1))

}
for k ∈ {0, ...,T −1}. (18)

x∗(0) = x0, x∗(k+1) = f (x∗(k),u∗(k),k)
for k ∈ {0, ...,T −1}. (19)

Then (u∗,x∗) solve the MSOP given in Eqn. (2), associated
with the tuple {J, f ,{Xt}0≤t≤T ,U,T}.

PROOF. Suppose (u∗,x∗) satisfy Eqns. (18) and (19). It fol-
lows the pair (u∗,x∗) is a feasible solution for MSOP given in
Eqn. (2) since Eqn. (18) implies u∗(k)∈Γx∗(k),k, thus u∗(k)∈

U and, using Eqn. (19), x∗(k+1) = f (x∗(k),u∗(k),k)∈Xk+1
for all k ∈ {0, ...,T −1}.

By Eqn. (18) it follows for all k ∈ {0, ...,T −1} that

inf
u∈Γx∗(k),k

{
φk(x∗(k),u,V ( f (x∗(k),u,k),k+1))

}
(20)

= φk(x∗(k),u∗(k),V ( f (x∗(k),u∗(k),k),k+1)).

We will now show Eqn. (20) implies (u∗,x∗) solve the
MSOP.

inf
u∈Γx0 ,[0,T−1]

J(u,x) =V (x0,0)

= inf
u∈Γx∗(0),0

{
φ0(x∗(0),u,V ( f (x∗(0),u,0),1))

}
= φ0(x∗(0),u∗(0),V (x∗(1),1))

= φ0

(
x∗(0),u∗(0), inf

u∈Γx∗(1),1

{
φ1(x∗(1),u,V ( f (x∗(1),u,1),2))

})
...

= φ0(x∗(0),u∗(0), ...,φk(x
∗(k),u∗(k),

φk+1(x
∗(k+1),u∗(k+1), ....φT (x∗(T )))...)...)

= J(u∗,x∗),

where the first equality follows as it was shown in Prop. 8
that V is a value function of the MSOP, the second equality
follows since V satisfies the GBE (17) and using x∗(0) = x0,
the third equality follows by Eqn. (20), the fourth inequality
follows again using the GBE, and the fifth inequality follows
by recursively using the GBE together with Eqn. (20). Thus
if (u∗,x∗) satisfy Eqns. (19) and (18) then (u∗,x∗) solve the
MSOP given in Eqn. (2). �

Consider an MSOP associated with {J, f ,{Xt}0≤t≤T ,U,T},
where J is naturally monotonically backward separable
(Defn. 3). As we will show next, if the representation maps
{φt}T

t=0, associated with J are strictly monotonic (Eqn. (21))
then Eqns. (18) and (19) of Prop. 9 become sufficient and
necessary for optimality. In Sec. 2.3 we will give several
examples of naturally monotonically backward functions
with associated strictly monotonic representation maps.

Theorem 10 (Necessary and sufficient conditions)
Consider an MSOP of Form (2) associated with
{J, f ,{Xt}0≤t≤T ,U,T}. Suppose J : UT ×ΠT

t=0Xt → R is
a naturally monotonically backward separable function
(Defn. 3) with representation maps {φt}T

t=0, and Γx,t 6= /0
for all (x, t) ∈ Xt×{0, ...,T −1}. Furthermore, suppose the
representation maps are strictly monotonic in their third
argument. That is if z,w ∈ Image{φt+1} are such that z > w
then

φt(x,u,z)> φt(x,u,w) for all (x,u) ∈ Xt ×U. (21)

Then (u∗,x∗) solve the MSOP if and only if (u∗,x∗) satisfy
Eqns. (18) and (19).
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PROOF. If (u∗,x∗) satisfy Eqns. (18) and (19) then
Prop. 9 shows (u∗,x∗) solve the MSOP associated with
{J, f ,{Xt}0≤t≤T ,U,T}.

Now assume the representation maps {φt}T
t=0 are strictly

monotonic in their third argument (Eqn. (21)) and
(u∗,x∗) solve the MSOP associated with the tuple
{J, f ,{Xt}0≤t≤T ,U,T}. As we have assumed (u∗,x∗) is
a solution then it follows (u∗,x∗) is feasible and thus
Eqn. (19) is trivially satisfied. To prove Eqn. (18) is also
satisfied let us suppose for contradiction the negation of
Eqn. (18), that there exists k ∈ {0, ...,T −1} such that

u∗(k) /∈ arg inf
u∈Γx∗(k),k

{
φt(x∗(k),u,V ( f (x∗(k),u,k),k+1))

}
,

where V : Rn× [0,T ]→R satisfies the GBE (17), and hence
it follows

inf
u∈Γx,t

{
φk(x∗(k),u,V ( f (x∗(k),u,k),k+1))

}
(22)

< φk(x∗(k),u∗(k),V ( f (x∗(k),u∗(k),k),k+1)).

Using Eqn. (22) it follows,

J(u∗,x∗) = inf
u∈Γx0 ,[0,T−1]

J((u(0), ..,u(T −1)),(x(0), ...,x(T )))

≤ inf
w∈Γx∗(k),[k,T−1]

J((u∗(0), ..,u∗(k−1),w(k), ..,w(T −1)),

(x∗(0), ...,x∗(k),z(k+1), ...,z(T )))

= φ0

(
x∗(0),u∗(0), ..., inf

w(k)∈Γx∗(k),k

{
φk(x

∗(k),w(k),

inf
w∈Γ f (x∗(k),w(k),k),[k+1,T−1]

φk+1(z(k+1),w(k+1), ....φT (z(T ))...)
}
...

)
= φ0

(
x∗(0),u∗(0), ...,

inf
w(k)∈Γx∗(k),k

{
φk(x

∗(k),w(k),V ( f (x∗(k),w(k),k),k+1))
}
, ..,

)
< φ0(x∗(0),u∗(0), ...,

φk(x
∗(k),u∗(k),V ( f (x∗(k),u∗(k),k),k+1)), ..,)

= φ0

(
x∗(0),u∗(0), ...,φk

(
x∗(k),u∗(k), inf

w∈Γ f (x∗(k),w(k),k),[k+1,T−1]{
φk+1(z(k+1),w(k+1), ...φT (z(T )))...)

})
...

)
≤ φ0(x∗(0),u∗(0), ...,φk(x

∗(k),u∗(k),
φk+1(x

∗(k+1),u∗(k+1), ....φT (x∗(T )))...)...)
= J(u∗,x∗),

where the first equality follows as the pair (u∗x∗) is assumed
to solve the MSOP. The first inequality follows by taking the
infimum only over the input and state sequences from time
stage k+1 onwards and fixing the first k input and state se-
quences as (u∗(0), ..,u∗(k−1)) and (x∗(0), ...,x∗(k)) (which
are known to be feasible as the pair (u∗,x∗) is assumed to
solve the MSOP). The second equality follows by Lemma 6.
The third equality follows by Prop. 8 that shows V is the

value function. The second inequality follows from Eqn. (22)
and using the assumed strict monotonic property of the rep-
resentation maps (Eqn. (21)). The fourth equality follows
using Prop. 8, that shows V is the value function. The third
inequality follows by fixing the decision variables of the
infimum to (u∗(k), ...,u∗(T − 1)) and (x∗(k+ 1), ...,x∗(T ))
(which are known to be feasible as the pair (u∗,x∗) is as-
sumed to solve the MSOP) and using monotonic property
of the representation maps (Eqn. (5)).

We therefore get a contradiction, that J(u∗,x∗)< J(u∗,x∗);
showing if (u∗,x∗) solve the MSOP then Eqns. (19) and (18)
must hold. �

In the next corollary we show that when the cost function, J,
is additively separable, the GBE (17) reduces to Bellman’s
Equation (23); thus showing Bellman’s Equation is an impli-
cation of the GBE. Therefore we have generalized the nec-
essary and sufficient conditions for optimality encapsulated
in Bellman’s Equation to the GBE. The GBE provides opti-
mality conditions for a larger class of MSOP’s with mono-
tonically backward separable cost functions; that no longer
need be additively separable.

Corollary 11 (Bellman’s Equation) Consider an MSOP
of Form (2) associated with {J, f ,{Xt}0≤t≤T ,U,T}. Suppose
J : UT ×ΠT

t=0Xt → R is an additively separable function
(Defn. 2), with associated cost functions {ct}T

t=0 that are
bounded over Xt ×U. Then if F : Rn× [0,T ]→ R satisfies

F(x,T ) = cT (x) for all x ∈ XT , (23)

F(x, t) = inf
u∈Γx,t

{
ct(x,u)+F( f (x,u, t), t +1)

}
for all x ∈ Xt , t ∈ {0, ..,T −1},

then F is a value function for the MSOP associated with the
tuple {J, f ,{Xt}0≤t≤T ,U,T}.

Moreover, if Γx,t 6= /0 for all (x, t) ∈ Xt×{0, ...,T} then x∗ =
(x∗(0), ...,x∗(T )) and u∗ = (u∗(0), ...,u∗(T − 1)) solve the
MSOP if and only if the following is satisfied

u∗(k) ∈ arg inf
u∈Γx∗(k),k

{ck(x
∗(k),u)+F( f (x∗(k),u,k),k+1)}, (24)

x∗(0) = x0, x∗(k+1) = f (x∗(k),u∗(k),k) (25)
for k ∈ {0, ...,T −1}.

PROOF. By Lemma 4 it follows J is naturally monoton-
ically backward separable and can be written in Form (4)
using the representation maps given in Eqn. (8). Substitut-
ing the representation maps in Eqn (8) into the GBE (17),
we obtain Bellman’s Equation (23). Prop. 8 then shows F
is a value function for the MSOP, associated with the tuple
{J, f ,{Xt}0≤t≤T ,U,T}.
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Moreover as the representation maps in Eqn. (8) are clearly
strictly monotonic in their third argument (Eqn. (21)) it fol-
lows by Theorem 10 that (x∗,u∗) solve the MSOP if and
only if (x∗,u∗) satisfy Eqns. (24) and (25). �

2.3 Examples: Backward Separable Functions

In Subsection 2.2, we have shown that MSOP’s with cost
functions that are naturally monotonically backward separa-
ble (Defn. 3) can be solved efficiently using the GBE (17).
We now give examples of non-additively separable, yet
monotonically backward separable functions, which may
be of significant interest. This is not a complete list of
all monotonically backward separable functions. Currently
little is known about size and structure of the set of all
monotonically backward separable functions.

The first function we consider is the point-wise maximum
function. This function occurs in MSOP’s when demand
charges are present [12] and in maximal invariant set esti-
mation [32].

Example 1 (Point wise maximum function) Suppose
J : UT ×ΠT

t=0Xt → R is of the form

J(u,x) = max
{

max
0≤k≤T−1

{ck(x(k),u(k))},cT (x(T ))
}
,

where u= (u(0), ...,u(T−1)), x= (x(0), ...,x(T )), U ⊆Rm,
Xt ⊆Rn, ck : Xk×U→R and cT : XT →R. Then J is a mono-
tonically backward separable function. Moreover, if {ct}T

t=0
are bounded functions, then J is naturally monotonically
backward separable.

PROOF. We can write J in Form (4) using the representa-
tion functions

φT (x) = cT (x), (26)
φi(x,u,z) = max{ci(x,u),z} for all i ∈ {0, ..,T −1}.

The monotonicity property in Eqn. (5) follows since if y≥ z
then for all i ∈ {0, ..,T −1} we have that

φi(x,u,y) = max{ci(x,u),y} ≥max{ci(x,u),z}= φi(x,u,z),

where the above inequality follows by considering separately
the cases ci(x,u)≥ y and ci(x,u)< y.

Assuming {ct}T
t=0 are bounded functions the bounded-

ness property, given in Eqn. (7), is clearly satisfied by
the representation maps given in Eqn. (26) by induc-
tion on i ∈ {0, ...,T − 1}. The semi-continuity property
(Eqn. (6)) follow since the point-wise max function, ie
f (x) = max1≤i≤n{xi}, is Lipschitz continuous and hence
upper semi-continuous. �

In the next example we consider multiplicative costs. A
special case of this cost function, of the form J(u,x) =
Ew[exp(∑T−1

t=0 ct(x(t),u(t),w(t)) + cT (x(T ),w(t)))] :=∫
exp(∑T−1

t=0 ct(x(t),u(t),w(t)) + cT (x(T ),w(t)))p(w)dw,
where p(w) is the probability density function of w =
(w(0), ...,w(T )), has previously appeared [10] [9].

Example 2 (Multiplicative function) Suppose J : UT ×
ΠT

t=0Xt → R is of the form

J(u,x) = Ew[cT (x(T ),w(T ))ΠT−1
t=0 ct(x(t),u(t),w(t)))]

:=
∫

I0×..IT
cT (x(T ),w(T ))ΠT−1

t=0 ct(x(t),u(t),w(t)))

pT (x(T ),w(T ))ΠT−1
t=0 pt(x(t),u(t),w(t)))dw(0)...dw(T ),

where u = (u(0), ...,u(T − 1)), x = (x(0), ...,x(T )),
w = (w(0), ...,w(T )), U ⊂ Rm and Xt ⊂ Rn, It ⊂ Rk,
ct : Xt ×U × It → R+ for 0 ≤ t ≤ T −1, cT : XT × IT → R,
and pt : Xt ×U × It → R+, pT : XT × IT → R satisfy∫

It pt(x,u,w)dw= 1 and
∫

IT pT (x,w)dw= 1 for 0≤ t ≤ T−1
and any (x,u) ∈ Xt ×U. Then J is a monotonically back-
ward separable function. Moreover, if {ct}T

t=0 and {pt}T
t=0

are bounded functions, and sets {It}T
t=0 have finite mea-

sure, then J is naturally monotonically backward separa-
ble. Furthermore, if

∫
Ii pi(x,u,w)ci(x,u,w)dw 6= 0 for all

(x,u, i) ∈ Xi×U ×{0, ...,T − 1} then the associated repre-
sentation maps are strictly monotonic (Eqn. (21)).

PROOF. We can write J in Form (4) using the representa-
tion functions

φT (x) =
∫

IT
cT (x)pT (x,w)dw, (27)

φi(x,u,z) =
∫

Ii
zpi(x,u,w)ci(x,u,w)dw for i ∈ {0, ..,T −1}.

The monotonicity property (Eqn. (5)) follows as ci(x,u,w)≥
0 and pi(x,u,w)≥ 0 for all (x,u,w) ∈Rn×Rm×Rk and i ∈
{0, ...,T − 1}. Furthermore, if

∫
Ii pi(x,u,w)ci(x,u,w)dw 6=

0 for all (x,u, i) ∈ Xi×U ×{0, ...,T − 1}, then clearly the
representation maps are strictly monotonic (Eqn. (21)).

Assuming {ct}T
t=0 and {pt}T

t=0 are bounded functions, and
sets {It}T

t=0 have finite measure the representation maps in
Eqn. (27) clearly satisfy the boundedness property (Eqn. (7))
by induction on i ∈ {0, ...,T −1}. For fixed i ∈ {0, ..,T −1}
and (x,u) ∈ Xi×U it follows φi(x,u,z) = cz, where c ∈ R+

is some constant that depends on (x,u, i), is clearly upper
semi continuous (as in Eqn. (6)). �

In the next example we consider a function that can be
interpreted as the expectation of cumulative stochasti-
cally stopped additive costs, where at each time stage,
t ∈ {0, ...,T −1}, a cost ct(x(t),u(t)) is added and there is
an independent probability, pt(x(t),u(t)) ∈ [0,1], of stop-
ping and incurring no further future costs. For a state and
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input trajectory, (u,x) ∈ UT ×ΠT
t=0Xt , let us denote the

stopping time by T (u,x); it then follows the distribution of
this random variable is given as

P(T (u,x) = T ) = pT (x(T ))ΠT−1
i=1 (1− pi(x(i),u(i))),

and for all t ∈ N, (28)

P(T (u,x) = t) = pt(x(t),u(t))Πt−1
i=1(1− pi(x(i),u(i))),

where we slightly abuse notation to write Π
−1
i=1(1 −

pi(x(i),u(i))) = 1 so P(T (u,x) = 0) = p0(x(0),u(0)).

The stopped additive function is then given as

J(u,x) = ET (u,x)

[min{T (u,x),T−1}

∑
t=0

ct(x(t),u(t)) (29)

+1{(u,x)∈UT×ΠT
t=0Xt :T (u,x)=T}(u,x)cT (x(T ))

]
.

To show the function in Eqn. (29) is monotonically backward
separable we will assume the probability of the stopping time
occurring inside the finite time horizon {0, ...,T} is one; this
gives us the following “law of total probability“ equation
∑

T
t=0P(T (u,x) = t) = 1 for all (u,x)∈UT ×ΠT

t=0Xt , which
can be rewritten in terms of its probability density functions
as,

T−1

∑
t=0

pt(x(t),u(t))Πt−1
i=1(1− pi(x(i),u(i)))

+ pT (x(T ))ΠT−1
i=1 (1− pi(x(i),u(i)))≡ 1. (30)

Note, if pT (x(T )) ≡ 1 then it can be trivially shown that
Eqn. (30) holds for any functions pi : Xi×U → [0,1].

Assuming Eqn. (30) holds and using the law of total ex-
pectation, conditioning on the probability of each stopping
time, it follows

J(u,x) = ET (u,x)

[min{T (u,x),T−1}

∑
t=0

ct(x(t),u(t)) (31)

+1{(u,x)∈UT×ΠT
t=0Xt :T (u,x)=T}(u,x)cT (x(T ))

]
=

T−1

∑
t=0

( t

∑
s=0

cs(x(s),u(s))
)
P(T (u,x) = t)

+

( T

∑
s=0

cs(x(s),u(s))+ cT (x(T ))
)
P(T (u,x) = T )

=
T−1

∑
t=0

( t

∑
s=0

cs(x(s),u(s))
)

pt(x(t),u(t))Πt−1
i=0(1− pi(x(i),u(i)))

+

(T−1

∑
t=0

ct(x(t),u(t))+ cT (x(T ))
)

× pT (x(T ))ΠT−1
i=0 (1− pi(x(i),u(i))).

We next state and prove that the J given in Eqn. (31) is
monotonically backward separable.

Example 3 (Stochastically stopped additive cost) Suppose
J : UT ×ΠT

t=0Xt → R is of the form

J(u,x) = (32)
T−1

∑
t=1

( t

∑
s=0

cs(x(s),u(s))
)

pt(x(t),u(t))Πt−1
i=0(1− pi(x(i),u(i)))

+

(T−1

∑
t=0

ct(x(t),u(t))+ cT (x(T ))
)

× pT (x(T ))ΠT−1
i=0 (1− pi(x(i),u(i))),

where pk : Xk ×U → [0,1] and pT : XT → [0,1] satisfy
Eqn. (30), u = (u(0), ...,u(T −1)), x = (x(0), ...,x(T )), U ⊂
Rm and Xt ⊂Rn, ck : Xk×U →R and cT : XT →R. Then J
is a monotonically backward separable function. Moreover,
if {ct}T

t=0 are bounded functions, then J is naturally mono-
tonically backward separable. Furthermore, if pi(x,u) 6= 1
for all (x,u, i) ∈ Xi×U ×{0, ...,T −1} then the associated
representation maps are strictly monotonic (Eqn. (21)).

PROOF. Before writing J in the backward separable form
(Eqn. (4)) we first simplify J by switching the order of
the double summation in Eqn. (32). Let T (u,x) be a ran-
dom variable with distribution given in Eqn. (28). As it
is assumed {pt}0≤t≤T satisfy Eqn. (30) and each time-
stage has independent probability of stopping it follows
∑

T
t=sP(T (u,x) = t) = P(T (u,x) ≥ s) = P(∩s−1

i=0 T (u,x) 6=
s) = Π

s−1
i=0P(T (u,x) 6= s). Now,

J(u,x) =
T−1

∑
t=0

( T

∑
s=0

cs(x(s),u(s))
)
P(T (u,x) = t)

+

( t

∑
s=0

cs(x(s),u(s))+ cT (x(T ))
)
P(T (u,x) = T )

=
T−1

∑
s=0

cs(x(s),u(s))P(T (u,x)≥ s)+ cT (x(T ))P(T (u,x)≥ T )

=
T−1

∑
s=0

cs(x(s),u(s))Πs−1
i=0P(T (u,x) 6= i)

+ cT (x(T ))ΠT−1
i=0 P(T (u,x) 6= i)

=
T−1

∑
s=0

cs(x(s),u(s))Πs−1
i=0 (1− pi(x(i),u(i)))

+ cT (x(T ))pT (x(T ))ΠT−1
i=0 (1− pi(x(i),u(i))).

It then follows J satisfies Eqn. (4) using the representation
maps

φi(x,u,z) = ci(x,u)+ z(1− pi(x,u)) for i ∈ {0, ..,T −1},
φT (x) = cT (x)pT (x). (33)

The monotonicity property in Eqn. (5) follows as (1−
pi(x,u)) ≥ 0 for all (x,u) ∈ Xi×U and i ∈ {0, ...,T − 1}.
Strict monotonicity (Eqn. (21)) trivially follows when
pi(x,u) 6= 1 for all (x,u, i) ∈ Xi×U×{0, ...,T −1}.

Assuming {ct}T
t=0 are bounded functions the representa-

tion maps, given in Eqn. (33), clearly satisfy the bounded-
ness property (Eqn. (7)) by induction on i ∈ {0, ...,T − 1}.
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For fixed i ∈ {0, ..,T − 1} and (x,u) ∈ Xi ×U it follows
φi(x,u,z) = c0 +c1z, where c0,c1 ∈R are constants that de-
pends on (x,u, i), clearly satisfies the upper semi continuity
property (Eqn. (6)). �

In the next example we introduce a function representing
the number of time-steps a trajectory spends outside some
target set. Later, in Section 5, we will use this function as
the cost function for path planning problems.

Example 4 (Minimum time set entry function) Suppose
J : UT ×ΠT

t=0Xt → R is of the form

J(u,x) = min
{

inf
{

t ∈ [0,T ] : x(t) ∈ S
}
,T
}
, (34)

where u=(u(0), ...,u(T−1)), u(t)∈Rm, x=(x(0), ...,x(T )),
x(t) ∈ Rn, U ⊂ Rm and Xt ⊂ Rn, and S ⊂ Rn. If the set
{t ∈ [0,T ] : x(t) ∈ S} is empty, we define the infimum to
be infinity. Then J is a naturally monotonically backward
separable function.

PROOF. The function given in Eqn. (34) is actually a spe-
cial case of the function given in Eqn. (32) with

pT (x)≡ 1, pt(x,u) = 1S(x) for t ∈ {0, ...,T −1},
cT (x)≡ T, ct(x,u)≡ t.

Note, the functions {pk}0≤k≤T trivially satisfy Eqn. (30) as
pT (x)≡ 1. Moreover clearly {ct}T

t=0 are bounded functions.
Therefore J is naturally monotonically backward separable
by Example 3. �

3 The Principle Of Optimality: A Necessary Condition
For Monotonic Backward Separability

Given a function, J :Rm×T×Rn×(T+1)→R, there is no obvi-
ous way to determine whether J is monotonically backward
separable. Instead, in this section we will recall a necessary
condition proposed by Richard Bellman [1], called the Prin-
ciple of Optimality (Defn. 12), that we show all MSOP’s
with monotonically backward separable cost functions sat-
isfy (Prop. 13). Before recalling the definition of the Prin-
ciple of Optimality let us consider a family of MSOP’s, as-
sociated with the tuples {Jt0 , f ,{Xt}t0≤t≤T ,U,T}T

t0=0, each
initialized at (x0, t0) ∈ Rn×{0, ....,T}, and of the form:

(u∗,x∗)∈argmin
u,x

Jt0(u,x) subject to: (35)

x(t +1) = f (x(t),u(t), t) for t = t0, ..,T −1
x(t0) = x0, x(t) ∈ Xt ⊂ Rn for t = t0, ..,T
u(t) ∈U ⊂ Rm for t = t0, ..,T −1
u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T ))

Definition 12 We say the family of MSOP’s of Form (35)
satisfies the Principle of Optimality at x0 ∈ X0 if the follow-
ing holds. For any t with 0≤ t < T , if u=(u(0), ...,u(T−1))
and x = (x(0), ...,x(T )) solve the MSOP initialized at (x0,0)
then v = (u(t), ...,u(T − 1)) and h = (x(t), ...,x(T )) solve
the MSOP initialized at (x(t), t).

Proposition 13 Consider a family of MSOP’s of Form (35)
associated with {Jt , f ,{Xt}t≤s≤T ,U,T}T

t=0. Suppose the
MSOP’s initialized at (x0,0) has a unique solution and
Jt : UT−t ×ΠT

s=tXs → R is monotonically backward sepa-
rable (Defn. 3). Then the family of MSOP’s of Form (35)
associated with {Jt , f ,{Xt}t≤s≤T ,U,T}T

t=0 satisfies the
Principle of Optimality at x0 ∈ X0.

PROOF. Since Jt is monotonically backward separable
there exists representation maps {φt}0≤t≤T such that

Jt(u,x) = φt(x(t),u(t),φt+1(x(t +1),u(t +1), . . .φT (x(T )) . . .)).

Now, suppose u∗ = (u(0), ...,u(T − 1)) and x∗ =
(x(0), ...,x(T )) solve the MSOP initialized at (x0,0) of
Form (35) associated with {Jt , f ,{Xt}t≤s≤T ,U,T}T

t=0. Sup-
pose for contradiction that there exists some t ≥ 0 such that
0≤ t < T and v=(u(t), ...,u(T−1)) and h=(x(t), ...,x(T ))
do not solve MSOP initialized at (x(t), t). We will show that
this implies that the MSOP initialized at (x0,0) does not have
a unique solution, thus providing a contradiction and veri-
fying the conditions of the Principle of Optimality. If (v,h)
do not solve MSOP initialized at (x(t), t), then there exist
feasible w = (w(t), ...,w(T − 1)) and z = (z(t), ...,z(T ))
such that Jt(w,z)< Jt(v,h). i.e.

Jt(w,z) (36)
= φt(z(t),w(t),φt+1(z(t +1),w(t +1), . . .φT (z(T )) . . .))
< φt(x(t),u(t),φt+1(x(t +1),u(t +1), . . .φT (x(T )) . . .))
= Jt(v,h).

Now, consider the proposed feasible sequences û =
(u(0), ...,u(t−1),w(t), ...,w(T −1)) and x̂ = (x(0), ...,x(t−
1),z(t), ...,z(T − 1)). It follows using the monotonicity
property (Eqn. (5)) of monotonically backward separable
functions and Inequality (36), that

J0(û, x̂) = φ0(x(0),u(0),φ1(x(1),u(1),
. . .φt(z(t),w(t) . . .φT (z(T )) . . .)) . . .)

= φ0(x(0),u(0), . . .φt−1(x(t−1),u(t−1),Jt(w,z)) . . .)
≤ φ0(x(0),u(0), . . .φt−1(x(t−1),u(t−1),Jt(v,h)) . . .)
= J0(u∗,x∗),

which shows (û, x̂) is optimal contradicting that (u∗,x∗) is
the unique solution of the MSOP at (x0,0). �

Prop. 13 shows the Principle of Optimality (Defn. 12) is a
necessary condition that all families of MSOP’s with unique
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solutions and monotonically backward separable cost func-
tions must satisfy. We now conjecture a necessary and suffi-
cient condition. The following notation is used in this con-
jecture. Given Jt , {Xt}0≤t≤T and U let us denote the set F ,
where ( f ,x0) ∈F if x0 ∈ X0 and the MSOP associated with
{J0, f ,{Xt}0≤t≤T ,U,T} initialized at (x0,0) has a unique
solution.

Conjecture 14 Consider {Xt}0≤t≤T ⊂ Rn×T , U ⊂ Rm and
Jt :UT−t×ΠT

s=tXs→R. Then, for any ( f ,x0)∈F the family
of MSOP’s associated with {Jt , f ,{Xt}t≤s≤T ,U,T}T

t=0 sat-
isfy the Principle of Optimality at x0 ∈ X0 if and only if Jt
is monotonically backward separable.

Regardless of whether Conjecture 14 is true, Prop. 13 is
useful. Prop. 13 provides a way of proving a function Jt :
UT−t×ΠT

s=tXs→R is not monotonically backward separa-
ble. Rather than showing Jt does not satisfy Defn. 3 for every
family of representation maps {φs}T

s=t , for which there are
an uncountably many, we find any f for which the family
of MSOP’s associated with {Jt , f ,{Xs}t≤s≤T ,U,T}T

t=0 has a
unique solution for some initialization (x0,0) and does not
satisfy the Principle of Optimality. Then Prop. 13 shows Jt
is not monotonically backward separable. We demonstrate
this proof strategy in the following lemma.

Lemma 15 The function Jt : Rm×(T−t)×Rn×(T+1−t) → R,
defined as

Jt(u,x) :=
T−1

∑
s=t

cs(u(s))+ max
t≤s≤T

d(x(s)), (37)

is not monotonically backward separable (Defn. 3) for all
functions ck : Rm→ R and dk : Rn→ R.

PROOF. Let T = 3, n = 1 and m = 1. Consider the
cost functions c0(u) = −u, c1(u) = u, c2(u) = −u/2, and
d(x) = x. Consider the dynamics f (x,u, t) = x + u and
constraints Xt = [0,h] and U = {−h,0,h}, where h > 0.
Let us consider the MSOP of Form (35) associated with
{J0, f ,{Xt}0≤t≤3,U,3} and initialized at (x0, t0) = (0,0).
It can be shown there are 33 = 27 input sequences in
{−h,0,h}3, only 8 of which are feasible to the MSOP
initialized at (x0, t0) = (0,0). By calculating the cost of
each feasible input we can deduce the unique optimal in-
put sequence is u = (h,−h,h), yielding a unique optimal
trajectory of x = (0,h,0,h). Following the input sequence
to t = 2 we examine the MSOP of Form (35) initialized at
(x0, t0) = (0,2). For the MSOP initialized at (x0, t0) = (0,2)
there are only two feasible inputs: u(2) = 0 or u(2) = h. Of
these, the first is optimal (cost of 0 vs h/2). Thus although
u = (h,−h,h) and x = (0,h,0,h) solve the MSOP initialized
at (x0, t0) = (0,0), v = (h) and h = (0,h) do not solve the
MSOP initialized at (x0, t0) = (0,2). We conclude the fam-
ily of MSOP’s associated with {Jt , f ,{Xs}t≤s≤3,U,3}3

t=0
does not satisfy the Principle of Optimality at x0 = 0, al-
though the MSOP initialized at (x0, t0) = (0,0) does have

a unique solution. Therefore by Prop. 13 the function Jt is
not monotonically backward separable. �

Remark 16 The function given in Eqn. (37) can clearly be
expressed as the addition of two monotonically backward
separable functions, J1(u,x) = ∑

T−1
s=t cs(u(s)) (Lemma 4)

and J2(u,x) = maxt≤s≤T d(x(s)) (Example 1). Therefore,
Lemma 15 shows that the property of monotonically back-
ward separability is not preserved under addition.

4 Comparison With State Augmentation Methods

We proposed an alternative method for solving MSOP’s with
non-additively separable costs in [12]; where cost functions
are forward separable:

J(u,x) = ψT (x(T ),ψT−1(x(T −1),u(T −1),ψT−2(....,

ψ1(x(1),u(1),ψ0(x(0),u(0)))), ....,))), (38)

where ψ0 : X0×U → Rk, ψt : Xt ×U × Image{ψt−1}→ Rk

for t ∈ {1, ..,T −1}, and ψT : XT × Image{ψT−1}→ R.

It was shown that for {J, f ,{Xt}0≤t≤T ,U,T}, where J is
of the Form (38), an equivalent MSOP with additively
separable cost function, {J̃, f̃ ,{X̃t}0≤t≤T ,U,T}, can be
constructed, where J̃(u,x) = ψT (x(T )), f̃ ([x1,x2]

T ,u, t) =
[ f (x1,u, t),ψt(x1,u,x2)]

T , and X̃t = Xt × Image{ψt}. The
augmented MSOP, {J̃, f̃ ,{X̃t}0≤t≤T ,U,T}, can then be
solved using the classical Bellman Equation (23). This state
augmentation method is particularly useful when solving
MSOP’s with cost functions that are not monotonically
backward separable, for instance the function in Eqn. (37).
However, the augmented MSOP has a larger state space
dimension. Therefore, in the case when the cost function is
both forward separable, of Form (38), and monotonically
backward separable, of Form (4), it is computationally more
efficient to solve the GBE (17) rather than augmenting and
solving Bellman’s Equation (23). We now demonstrate this
in the following numerical example.

Consider the MSOP

min
u,x

√
x(0)+u(0)+

√
.....

√
x(T −1)+u(T −1)+

√
x(T )

subject to: (39)

x(t +1) =
{

2 if u = 0.5
1 if u = 1

for t = 0, ..,T,

x(0) = 2, x(t) ∈ {1,2} for t = 0, ..,T,
u(t) ∈ {0.5,1} for t = 0, ..,T −1.

The cost function in the above MSOP is naturally mono-
tonically backward separable and can be written in the Form
(4) with representation maps

φT (x) =
√

x, φt(x,u,z) =
√

x+u+ z for t ∈ {0, ..,T −1}.
(40)
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Fig. 1. Log log graph showing computation time for solving MSOP
(39) using state augmentation (red points), via exactly solving
GBE (green points), and via approximately solving the GBE using
the rollout (blue points) algorithm versus the terminal time of the
problem.

Moreover the cost function is also forward separable and
can be written in the Form (38) with representation maps

ψ0(x,u) = [x,u]T , ψt(x,u,z) = [z,x,u]T , (41)

ψT (x,z) =

√
z1 + z2 +

√
....

√
z2T−1 + z2T +

√
x.

We solved the MSOP in Eqn. (39) using both the GBE
and the state augmentation method, plotting the computa-
tion time results in Figure 1. The green points represent the
computation time required to construct the value function
by solving the GBE (17) with representation maps given in
Eqn. (40), and then to synthesize the optimal input sequence
using Eqn (18). The red points represent the computation
time required to construct the value function by solving Bell-
man’s Equation (23) for the state augmented MSOP and then
to construct the optimal input sequence. The green points
increases linearly as a function of the terminal time, T ∈N,
of order O(T ), whereas the red points increases exponen-
tially with respect to T , of order O(2T ) (due to the fact that
using representation maps, given in Eqn. (41), results in an
augmented state space of size 2T ). Moreover, Figure 1 also
includes blue dots representing computation times required
to solve the GBE approximately, as discussed in the next
section.

4.1 Approximate Dynamic Programming Using The GBE

Rather than solving the MSOP (39) exactly using the GBE,
as we did in the previous section, we now use an Approxi-
mate Dynamic Programming (ADP)/Reinforcement Learn-
ing (RL) algorithm to heuristically solve the MSOP and nu-
merically show these algorithms can result in lower com-
putational times when compared to methods that solve the

GBE exactly. This demonstrates that MSOP’s with mono-
tonically backward separable cost functions can be heuristi-
cally solved using the same methods developed in the ADP
literature with the aid of the methodology developed in this
paper.

Typically ADP methods use parametric function fitting (neu-
ral networks, linear combinations of basis functions, deci-
sion tree’s, etc) to approximate the value function from data.
The approximated value function is then used to synthesize
a sub-optimal input sequence. To see how this works, sup-
pose an ADP algorithm constructs some approximate value
function, denoted Ṽ (x, t), then an approximate optimal input
sequence, ũ = (ũ(0), ..., ũ(T )), can be constructed by solv-
ing

ũ(k) ∈ arg inf
u∈Γx̃(k),k

{
φt(x̃(k),u,Ṽ ( f (x̃(k),u,k),k+1))

}
for k ∈ {0, ...,T −1}.

x̃(0) = x0, x̃(k+1) = f (x̃(k), ũ(k),k)
for k ∈ {0, ...,T −1}. (42)

One way to obtain an approximate value function, Ṽ , is to
use the rollout algorithm found in the textbook [2]. This
algorithm supposes a base policy is known µbase : Rn×N→
U and approximates the value function as follows

Ṽ (x, t) =φt(x(t),u(t),φt+1(x(t +1),u(t +1), ...φT (x(T ))...)),
where x(t) = x and for all s ∈ {t, ...,T −1},
x(s+1) = f (x(s),u(s), t), u(s) = µbase(x(s),s).

Using the base policy µbase(x, t) =
{

1 if t/4 ∈ N
0.5 otherwise

we

used the rollout algorithm to solve the MSOP (39) for ter-
minal times T = 8 to 106. Computation times are plotted as
the blue points in Figure 1 showing better performance than
solving the GBE exactly or using state augmentation.

5 Application: Path Planning And Obstacle Avoidance

In this section we design a full state feedback controller
(Markov Policy) for a discrete time dynamical system with
the objective of reaching a target set in minimum time while
avoiding moving obstacles.

5.1 MSOP’s For Path Planning

We say the MSOP, associated with tuple {J, f ,{Xt}0≤t≤T ,U,T},
defines a Path Planning DP problem if

• J(u,x) = min
{

inf
{

t ∈ [0,T ] : x(t) ∈ S
}
,T
}

.

• S = {x ∈ Rn : g(x)< 0}, where g : Rn→ R.
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• Xt = Rn/(∪N
i=1Ot,i), where Ot,i = {x ∈ Rn : ht,i(x) < 0}

and ht,i : Rn→ R.
• There exits a feasible solution, (u,x), to the MSOP (2)

associated with the tuple {J, f ,{Xt}0≤t≤T ,U,T} such that
x(k) ∈ S for some k ∈ {0, ...,T}.

Clearly, solving the MSOP (2) associated with a path plan-
ning problem tuple, {J, f ,{Xt}0≤t≤T ,U,T}, is equivalent to
finding the input sequence that drives a discrete time system,
governed by the vector field f , to a target S in minimum time
while avoiding the moving obstacles, represented as sets
Ot,i ⊂Rn. Moreover, as shown in Example 4, the cost func-
tion J is a naturally forward separable function (Defn. 3).

5.2 Path Planning for Dubin’s Car

We now solve the path planning problem with dynamics as
defined in [23]; also known as the Dubin’s car dynamics.

f (x,u, t) =
[
x1 + vcos(x3),x2 + vsin(x3),x3 +

v
L

tan(u)
]T

,

(43)

where (x1,x2)∈R2 is the position of the car, x3 ∈R denotes
the angle the car is pointing, u∈R is the steering angle input,
v ∈R is the fixed speed of the car, and L is a parameter that
determines the turning radius of the car.

We solve the path planning problem using a discretization
scheme, similar to [12]; such discretization schemes are
known to be parallelizable [24]. The target set, obstacles,
state space, and input constraint sets are given by

S = {(x1,x2) ∈ R2 :−0.25 < x1−0.75 < 0.25,
−0.25 < x2 +0.75 < 0.25}

Ot,i = {(x1,x2) ∈ R2 : (x1−Xi)
2 +(x2−Yi)

2−R2
i < 0}

for i ∈ {1, ...,15} and t ∈ {0, ...,T}
Xt = [−1,1]2×R for t ∈ {0, ...,T}, U = [−1,1],

where X ,Y,R ∈ R15 are randomly generated vectors. The
parameters of the system are set to v = 0.1 and L = 1/6.

Figure 2 shows three approximately optimal state sequences
starting from different initial conditions. These state se-
quences are found by numerically solving the GBE (17),
where {φt}T

t=0 are as in Example 4. To numerically solve
the GBE (17) the state space, Xt ⊂ R3, is discretized as a
60× 60× 60-grid between [−1,1]2× [0,2π] and the input
space, U ⊂R, is discretized as 100 grid points within [−1,1].
The first state sequence was chosen to have initial condition
[−0.8,1,−0.55π]T ∈ R3 (the furthest of the three trajecto-
ries from the target) and took 25 steps to reach its goal. The
second state sequence was chosen to have initial condition
[0.275,0.25,0.75π]T ∈ R3; in this case as x3(0) = 0.75π

Dunbin’s car initially is directed towards the top left cor-
ner. The input sequence successfully turns the car down-
wards between two obstacles and into the target set, taking
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Trajectory  2

Trajectory  3

Target set
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Fig. 2. Graph showing approximate optimal trajectories, shown as
the gold, black and green curves, with dynamics given in Eqn. (43)
and the goal of reaching the target set, shown as the blue square,
while avoiding obstacles, shown as red circles.

Fig. 3. Graph showing approximate optimal trajectories, shown as
the green curves, with dynamics given in Eqn. (44) and the goal
of reaching the target set, shown as the blue cube, while avoiding
obstacles, shown as red spheres.

18 steps. The third trajectory was chosen to have initial con-
dition [−0.2,0.95,0.5π]T ∈ R3-starting very closely to an
obstacle facing upwards. This trajectory had to use the full
turning radius of the car to navigate around the obstacle to-
wards the target set and took 10 steps.

5.3 Path Planning in 3D

We now solve a three dimensional path planning problem
with dynamics given by

f (x,u, t) = [x1 +u1,x2 +u2,x3 +u3]
T . (44)
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The target set, obstacles, state space and input constraint set
were respectively are given by

S = {(x1,x2,x3) ∈ R2 :−0.25 < x1−0.75 < 0.25,
−0.25 < x2 +0.75 < 0.25,−0.25 < x2 +0.75 < 0.25}

Ot,i = {(x1,x2,x3) ∈ R3 : (x1−Ai−αit)2 +(x2−Bi−βit)2

+(x2−Ci− γit)2−R2
i < 0}for i ∈ {1, ...,35}, t ∈ {0, ...,T}

Xt − [−1,1]3 for t ∈ {0, ...,T}, U = [−0.05,0.05]3,

where A,B,C,α,β ,γ,R ∈ R35 are randomly generated vec-
tors. Note, when α,β ,γ are non-zero the center of the spher-
ical obstacles moves with time. For presentation purposes
in this paper we consider stationary obstacles, selecting
α = β = γ = 0, however, a downloadable .gif file showing
the numerical solution for moving obstacles can be found
at [16].

This path planning problem can be numerically solved by
computing the solution to the GBE (17) using {φt}T

t=0 as
given in Example 4. To numerically solve the GBE (17) we
discretized the state and input space, Xt ⊂ R and U ⊂ R3,
as a 40× 40× 40 uniform grid on [−1,1]3 and a 5× 5× 5
uniform grid on [−0.05,0.05]3 respectively. Figure 3 shows
four optimal state sequences, shown as green lines, starting
from various initial conditions. All trajectories successfully
avoid the obstacles, represented as red spheres, and reach
the target set, shown as a blue cube.

GPU Implementation All DP methods involving discretiza-
tion fall prey to the curse of dimensionality, where the num-
ber of points required to sample a space increases exponen-
tially with respect to the dimension of the space. For this
reason solving MSOP’s in dimensions greater than three can
be computationally challenging. Fortunately, our discretiza-
tion approach to solving the GBE (17), can be parallelized
at each time-step. To improve the scalability of the pro-
posed approach, we have therefore constructed in Matlab a
GPU accelerated DP algorithm for solving the 3D path plan-
ning problem. This code is available for download at Code
Ocean [13].

6 Application: Maximal Invariant Sets

The Finite Time Horizon Maximal Invariant Set (FTHMIS)
is the largest set of initial conditions such that there exists
an input sequence that produces a feasible state sequence
over a finite time period. Computation of the maximal ro-
bust invariant sets over infinite time horizons was considered
in [32]. Before we define the FTHMIS we introduce some
notation.

For f : Rn×Rm×N→ Rn we say the map ρ f : Rn×R×
Rm×(T−1)→Rn is the solution map associated with f if the
following holds for all (x0, t,u)∈Rn×{0, ...,T}×Rm×(T−1)

ρ f (x0, t,u) = x(t),

where u=(u(0), ...,u(T−1)), x(k+1)= f (x(k),u(k),k) for
all k ∈ {0, ..,k−1}, and x(0) = x0.

Definition 17 For f :Rn×Rm×N→Rn, Xt ⊆Rn, U ⊂Rm,
T ∈ N, and At ⊆ Rn we define the Finite Time Horizon
Maximal Invariant Set (FTHMIS), denoted by R, by

R :={x0 ∈ Rn : there exists u ∈ Γx0,[0,T−1] such that
ρ f (x0, t,u) ∈At for all t ∈ {0, ...,T}},

where the notation Γx0,[0,T−1] is as in Eqn. (9).

We next show that the sublevel set of the value function
associated with a certain MSOP can completely characterize
the FTHMIS.

Theorem 18 Consider the sets At = {x ∈ Rn : gt(x) < 0},
where gt : Rn→R. Suppose V is a value function associated
with the MSOP, defined by the tuple {J, f ,{Xt}0≤t≤T ,U,T},
where J(u,x) = max0≤k≤T gk(x(k)). Then

R = {x ∈ Rn : V (x,0)< 0}, (45)

where the set R ⊂ Rn is the FTHMIS as in Defn. 17.

PROOF. The function J(u,x) = max0≤k≤T gk(x(k)) is
monotonically backward separable as shown in Example 1
using representation maps given by

φi(x,u,z) = max{gi(x),z} for all i ∈ {0, ..,T −1}
φT (x) = gT (x).

Therefore by Defn. 7 any value function, V : Rn→R, asso-
ciated with {J, f ,{Xt}0≤t≤T ,U,T} satisfies

V (x,T ) = gT (x) for all x ∈ XT , (46)

and for all t ∈ {0,1, ..,T −1} and x ∈ Xt

V (x, t) = inf
u∈Γx,[0,T−1]

max
t≤k≤T

gk(ρ f (x,k,u)). (47)

We will first show that R ⊆ {x ∈ Rn : V (x,0) < 0}. Let
x0 ∈R then by Defn. 17 there exists u0 ∈ Γx0,[0,T−1] such
that

ρ f (x0, t,u0) ∈At for all t ∈ {0, ...,T}.

As At = {x ∈ Rn : gt(x) < 0} we deduce from the above
equation that

gt(ρ f (x0, t,u0))< 0 for all t ∈ {0, ...,T}. (48)

Therefore,

V (x0,0) = inf
u∈Γx0 ,[0,T−1]

max
0≤k≤T

gk(ρ f (x0,k,u))

≤ max
0≤k≤T

gk(ρ f (x0,k,u0))< 0,
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where the second inequality follows by Eqn. (48). We there-
fore deduce x0 ∈ {x∈Rn : V (x,0)< 0} and hence R ⊆ {x∈
Rn : V (x,0)< 0}.

We next show {x ∈ Rn : V (x,0) < 0} ⊆ R. Let x0 ∈ {x ∈
Rn : V (x,0)< 0} then,

inf
u∈Γx0 ,[0,T−1]

max
0≤k≤T

gk(ρ f (x0,k,u)) =V (x0,0)< 0.

Therefore as the above inequality is strict, there exists some
ε > 0 such that

inf
u∈Γx0

max
0≤k≤T

gk(ρ f (x0,k,u)) =V (x0,0)<−ε. (49)

By the definition of the infimum for any δ > 0 there exits
w ∈ Γx0,[0,T−1] such that

max
0≤k≤T

gk(ρ f (x0,k,w))< inf
u∈Γx0 ,[0,T−1]

max
0≤k≤T

gk(ρ f (x0,k,u))+δ .

(50)
Hence by letting 0 < δ < ε we get

max
0≤k≤T

gk(ρ f (x0,k,w))< inf
u∈Γx0 ,[0,T−1]

max
0≤k≤T

gk(ρ f (x0,k,u))+δ

<−ε +δ < 0, (51)

where the first inequality follows by Eqn. (50), the second
inequality follows from Eqn. (49), and the third inequality
follows from selecting δ < ε .

Therefore by Eqn. (51) there exists w ∈ Γx0,[0,T−1] such that
max0≤k≤T gk(ρ f (x0,k,w))< 0. We now deduce that for any
t ∈ {0, ...,T}

gt(ρ f (x0, t,w))≤ max
0≤k≤T

gk(ρ f (x0,k,w))< 0.

Thus ρ f (x0, t,u0) ∈ At , implying x0 ∈ R. Therefore {x ∈
Rn : V (x,0)< 0} ⊆R. �

6.1 Numerical Example: Maximal Invariant Sets

Value functions can characterize FTHMIS’s, as shown by
Theorem 18. We now approximate a FTHMIS by computing
a value function using a discretization scheme for solving
the GBE (17) using {φt}T

t=0 as given in Example 1. Let us
consider a discrete time switching system, whose Robust
Maximal Invariant Set (RMIS) was previously computed in
[32]:

f (x,u, t) =


[

x1

(0.5+u)x1−0.1x2

]
if 1− (x1−1)2− x2

2 ≤ 0[
x2

0.2x1− (0.1+u)x2 + x2
2

]
otherwise.

(52)

Fig. 4. Figure showing an approximation of
L(V,0) := {x ∈ Rn : V (x,0) ≤ 0}, shown in the shaded orange
region, where V is the value function of the MSOP associated
with Eqn. (52). The z-axis represents time and the black circular
lines represent the boundary of At for t = 1,2,3,4. Three sample
trajectories, shown in blue, start in L(V,0) and remain in the sets
At for the time-steps t = 1,2,3,4; giving numerical evidence that
L(V,0) is indeed an approximation of the FTHMIS.

We now compute the FTHMIS, denoted by R, associated
with

At = {x ∈ R2 : gt(x)≤ 0} for all t ∈ {0, ..,T},

gt(x) =
(

x1−
(t−1)

4

)2

+

(
x2−

(t +1)
4

)2

−1.5,

Xt = [−1,1]2 for all t ∈ {0, ..,T},
U = {u ∈ R : u2−0.01≤ 0}, T = 4.

Figure 4 shows the FTHMIS, R, found by using a discretiza-
tion scheme to solve the GBE (17) for 5×5 state grid points
in [−1,1]2. To represent R in R2, once the value function,
V , is found at each grid point a polynomial function is fit-
ted and its zero-sublevel set, shown as the orange shaded
region, approximately gives R.

7 Conclusion

For MSOP’s with monotonically backward separable cost
functions we have derived necessary and sufficient condi-
tions for solutions to be optimal. We have shown that by
solving the Generalized Bellman’s Equation (GBE) one can
derive an optimal input sequence. Furthermore, we have
demonstrated the GBE can be numerically solved using a
discretization scheme and Approximate Dynamic Program-
ing (ADP) techniques such as Rollout. We have shown our
numerical methods can solve current practical problems of
interest; such as path planning and the computation of max-
imal invariant sets.
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