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Abstract—We consider a general class of Dynamic Program-
ming (DP) problems with non-separable objective functions.
We show that for any problem in this class, there exists an
augmented-state DP problem which satisfies the Principle of
Optimality and the solutions to which yield solutions to the
original problem. Furthermore, we identify a subclass of DP
problems with Naturally Forward Separable (NFS) objective
functions for which this state-augmentation scheme is tractable.
We extend this framework to stochastic DP problems, proposing
a suitable definition of the Principle of Optimality. We then
apply the resulting algorithms to the problem of optimal battery
scheduling with demand charges using a data-based stochastic
model for electricity usage and solar generation by the consumer.

I. INTRODUCTION

The optimal use of battery storage can be formulated as a
discrete time process combined with decision variables and
an objective function - a formulation commonly known as
Dynamic Programming (DP) [1]. DP is a class of algorithms
that break down complex optimization problems into simpler
sequential subproblems, each of which is solved using Bell-
man’s Equation. For DP to work, however, we require that the
optimization problem satisfies the Principle of Optimality [2]
(a.k.a time-consistency [3], [4]); from any point on an optimal
trajectory, the remaining portion of the optimal trajectory is
also optimal for the problem initiated at that point [5]. DP
problems commonly have an additively separable objective
function of the form J(u,x) = ∑

T−1
t=0 ct(x(t),u(t))+ cT (x(T )).

Problems of this form can be shown to satisfy the Principle
of Optimality. However in problems such as optimal battery
scheduling, we find non-additively separable objective func-
tions. For example, if the objective is of the form J(u,x) =
∑

T−1
t=0 ct(x(t),u(t))+maxt0≤k≤T dk(x(k)) then the problem does

not satisfy the Principle of Optimality. In this paper we
propose a method for solving DP problems with non-separable
objective functions by constructing equivalent DP problems
with additively separable objective functions. Such reformu-
lated problems then satisfy the Principle of Optimality and
can therefore be solved using Bellman’s Equation. Moreover,
we identify a class of problems, defined by Naturally For-
ward Separable (NFS) objectived, wherein state augmentation
method does not substantially increase the complexity of the
problem.

For stochastic DP we generalize our framework and pro-
pose a suitable definition of the Principle of Optimality. As
discussed in [6] such a definition is non trivial. Inspired

M. Jones is with the School for the Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, AZ, 85298 USA. e-mail:
morgan.c.jones@asu.edu

M. Peet is with the School for the Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, AZ, 85298 USA. e-mail:
mpeet@asu.edu

by [7], we construct probability measures on the sets the
state variable can take at each time stage induced by the
underlying random variables. We then say a stochastic problem
satisfies the Principle of Optimality if from any point on a
trajectory followed using an optimal policy, π , the policy π

is also optimal for the problem initiated from that point with
probability one.

Dynamic programming for problems which do not satisfy
the Principle of Optimality has received relatively little at-
tention. The only general approach to the problem seems
to be that taken in [8] which considered the use of multi-
objective optimization in the case where the objective function
is “backward separable”. Our approach differs from [8] as we
consider the class of “forward separable” objective functions.
In this paper we show that almost any objective function is
forward separable in a certain sense and that for such problems
there exists an additively separable augmented-state dynamic
programming problem that satisfies the Principle of Optimality
and from which solutions to the original forward separable
problem can be recovered - See Section III. However, the re-
sulting augmented-state DP problem has a higher dimensional
state space than the original DP problem - an issue that can
potentially render the augmented problem intractable due to
the “curse of dimensionality”. For this reason, we propose a
complexity metric for the forward separable representation and
show that in certain cases the dimensionality of the augmented
system does not significantly exceed the dimensionality of
the original problem - a case where Bellman’s equation can
be used effectively [9] and which we refer to as Naturally
Forward Separable (NFS).

Note that although state augmentation has been used in
the context of DP [10], [11], the only tractable use of state
augmentation to recover the Principle of Optimality appears to
be [12] and [13], who considered a DP problem with objective
function of the form J(u,x)=U(∑T−1

t=0 ct(x(t),u(t))); and [14],
who considered a DP problem with variance-type objective
function. Both these results can be considered special cases of
the NFS class of objective functions proposed in this paper.

In practice it is rare to be able to analytically solve
Bellman’s Equation. Therefore, once the augmented-state DP
problem is formulated we propose a map to an approximated
DP problem that can be analytically solved. Using an opti-
mal solution from the approximated DP problem a feasible
policy for the original problem is then constructed using a
discretization scheme based on [15] and [16]. We show that as
the number of discrete points increases, the resulting policies
converge to the optimal policy.

To illustrate the proposed methods, we consider battery
scheduling for mitigating the effect of variability in renewable
energy resources. Specifically, renewable energy sources are
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most accurately modeled as an uncontrollable Gauss-Markov
(G-M) process and the battery (for both consumers and
utilities) attempts to minimize energy costs based on time-
of-use while also minimizing the maximum rate of energy
consumption. Based on this model, we formulate the battery
storage problem as a DP with a non-separable objective func-
tion consisting of both integrated time-of-use charges and a
maximum term representing the demand charge. Furthermore,
we propose a model of solar generation as a G-M process and
minimize the expected value of the proposed objective. The
fundamental mathematical challenge with dynamic program-
ming problems of this form is that, as shown in Section II,
problems which include maximum terms in the objective do
not satisfy the Principle of Optimality and thus the recursive
solution of the Bellman equation ([1]) does not yield an
optimal policy. To overcome this difficulty, we show that the
battery scheduling problem is a special case of a forward
separable DP problem with an NFS objective function. We
then apply our state-augmentation technique to numerically
solve the deterministic battery scheduling problem for given
forecast solar data. In section IX-E we apply our approach to
the battery scheduling problem using a Gauss-Markov model
of solar generation extracted from data provided by local
utility SRP. Note that this result extends previous work which
considered a more limited non-separable DP framework as
applied to battery scheduling in [17].

Remarkably, almost no work has been done on optimal use
of batteries for reduction of demand charges. The exceptions
include the heuristic algorithms of [18] and the pioneering
work of [19] , which considered only a demand charge.
Recently this group used an ad-hoc algorithm to consider a
combined demand/consumption charge in [20] using detailed
models of cooling/load. Furthermore, in [21] a similar energy
storage problem is solved using optimized curtailment and
load shedding. An Lp approximation of the demand charge
was used in combination with multi-objective optimization
in [22] and, in addition, the optimal use of building mass for
energy storage was considered in [23], wherein a bisection
on the demand charges was used. We note that none of these
approaches resolve the fundamental mathematical problem of
DP with a non-separable cost function.

The paper is organized as follows. In Section II we introduce
a formal definition of the DP problem along with associated
notation and use this framework to define a Principle of
Optimality. Next, we consider a class of objective functions
we refer to as forward separable. In Section III, we show
that for any DP problem with forward separable objective,
there exists an augmented-state DP problem with separable
objective for which the Principle of Optimality holds and
from which solutions to the original DP with FS objective can
be recovered. In Section IV we define a class of objective
functions, termed Naturally Forward Separable (NFS). We
show DP problems with naturally forward separable objective
functions can be tractable solved using state augmentation.
In Section V we show how to approximate and numerically
solve augmented-state dynamic programming problems. Fur-
thermore, we extend our framework to stochastic DP problems
in Section VI and give a discretization scheme to solve

stochastic DP’s with additively separable objective functions
in Section VII. We summarize how state augmentation can be
used with discretization methods to solve DP problems with
NFS objective functions in Section VIII. In Section IX we
formulate and solve the battery scheduling problem as a DP
with NFS objective function.

II. BACKGROUND: DYNAMIC PROGRAMMING

In this paper, we propose a framework for representing
a general class of Dynamic Programming (DP) problems.
Specifically, we define a general DP problem as a sequence
of optimization problems G (t0,x0), indexed by t0 ∈ N, and
defined by an indexed sequence of objective functions Jt0 :
Rm×(T−t0)×Rn×(T−t0+1)→ R where we say that the state and
input sequence, u∗ ∈ Rm×(T−t0) and x∗ ∈ Rn×(T−t0+1), solve
G (t0,x0) if,

(u∗,x∗)∈argmin
u,x

Jt0(u,x) (1)

subject to:
x(t +1) = f (x(t),u(t), t) for t = t0, ..,T,

x(t0) = x0, x(t) ∈ Xt ⊂ Rn for t = t0, ..,T,

u(t) ∈U ⊂ Rm for t = t0, ..,T −1,
u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T )),

where f : Rn×Rm×N→ Rn, U ⊂ Rm and Xt ⊂ Rn for all t.
We denote J∗t0 = Jt0(u

∗,x∗).
We call {x(t)}t0≤t≤T the set of state variables and n the state

space dimension. Similarly we will call {u(t)}t0≤t≤T−1 the
input (control) variables and m = dim(U) the input (control)
space dimension. For cases where the dimension of the state
variable, x(t), varies with time, we slightly abuse notation and
define the state space dimension as maxt0≤t≤T dim(Xt).

Definition 1. The function Jt0 :Rm×(T−t0)×Rn×(T−t0+1)→ R is
said to be additively separable if there exist functions, cT (x) :
Rn→ R, and ct(x,u) : Rn×Rm→ R for t = t0, · · ·T −1 such
that,

Jt0(u,x) =
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T )), (2)

where u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T )).

To illustrate, we note that the average value of a function
at : Rn → R, defined as J(u,x) = 1

T ∑
T
t=0 at(x(t)), is clearly

an additively separable function. Variance type functions (11),
however, are not additively separable.

Definition 2. We say the sequence of inputs u =
(u(t0), ...,u(T −1)) ∈Rm×(T−t0) is feasible if u(t) ∈U for t =
t0, ..,T − 1 and for x(t + 1) = f (x(t),u(t), t) and x(t0) = x0,
then x(t) ∈ X for all t. For a given x, we denote by Γt,x, the
set u ∈ U such that f (x,u, t) ∈ Xt+1. In this paper we only
consider problems where Γt,x is nonempty for all x and t.

Note that for this class of DP problems, feasibility is
inherited. That is, if u = (u(t), ....,u(T −1)) is feasible with
x = (x(t), · · · ,x(T )) for G (t,x(t)) and v = (v(s), ....,v(T −1))
is feasible with h = (h(s), · · · ,h(T )) for G (s,x(s)) where
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s > t, then w = (u(t), · · · ,u(s − 1),v(s), ....,v(T −1)) with
z= (x(t), · · · ,x(s−1),h(s), · · · ,h(T )) is feasible for G (t,x(t)).

Definition 3. A (Markov) policy is any map from the present
state and time to a feasible input (x, t) 7→ u(t) ∈ Γx,t , as
u(t) = π(x, t). We denote the set of policies consistent with
some DP problem as Π. We say that π∗ is an optimal policy
for Problem (1) if

u∗ = (π∗(x0, t0), ....,π∗(x(T −1),T −1))

where x(t +1)∗ = f (x(t)∗,π∗(x(t)∗, t), t) for all t.

We now define a “Principle of Optimality” consistent with
our DP formulation and which provides a necessary condition
for such DP problems to be solvable using Bellman’s equation
(4). If a DP problem is solvable using Bellman’s equation, then
this equation yields an optimal policy.

Definition 4. We say a DP problem, G (t0,x0), of the Form (1)
satisfies the Principle of Optimality if the following holds. For
any s and t with t0 ≤ t < s < T , if u∗ = (u(t), ...,u(T −1)) and
x∗ = (x(t), ...,x(T )) solve G (t,x(t)) then v = (u(s), ...,u(T −
1)) and h = (x(s), ...,x(T )) solve G (s,x(s)).

The standard form of DP, equivalent to that defined in [1],
solves indexed DP problems of the Form (1) with an additively
separable objective function. We denote this class of DP
problems by P(t0,x0):

min
u,x

Jt0(u,x) =
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T )) (3)

subject to:
x(t +1) = f (x(t),u(t), t) for t = t0, ..,T,

x(t0) = x0, x(t) ∈ Xt ⊂ Rn for t = t0, ..,T,

u(t) ∈U ⊂ Rm for t = t0, ..,T −1,
u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T )).

Note that JT (x) = cT (x). We will refer to x0 ∈Rn as the initial
state, Jt0 is the objective function, ct : Rn×Rm→ R for t =
t0, ..,T −1, cT Rn→R are given functions and f : Rn×Rm×
N→ Rn is a given vector field. The following lemma shows
that this class of problems satisfies the proposed Principle of
Optimality.

Lemma 5. Any problem of form P(t0,x0) in (3) satisfies the
Principle of Optimality.

Proof. Suppose u∗ = (u(t), ...,u(T − 1)) and
x∗ = (x(t), ...,x(T )) solve P(t,x(t)) in (2). Now we
suppose by contradiction that there exists some s > t such that
v = (u(s), ...,u(T − 1)) and h = (x(s), ...,x(T )) do not solve
P(s,x(s)). We will show that this implies that u∗ and x∗ do
not solve P(t,x) in (2), thus verifying the conditions of the
Principle of Optimality. If v and h do not solve P(s,x(s)),
then there exist feasible w, z such that Js(w,z)< Js(v,h). i.e.

Js(w,z) =
T−1

∑
t=s

ct(z(t),w(t))+ cT (z(T ))

<
T−1

∑
t=s

ct(x(t),u(t))+ cT (x(T )) = Js(v,h)

Now consider the proposed feasible sequences û =
(u(t), ...,u(s− 1),w(s), ...,w(T − 1)) and x̂ = (x(t), ...,x(s−
1),z(s), ...,z(T −1)). It follows:

Jt(û, x̂)

=
s−1

∑
k=t

ck(x(k),u(k))+
T−1

∑
k=s

ck(z(k),w(k))+ cT (z(T ))

<
s−1

∑
k=t

ck(x(k),u(k))+
T−1

∑
k=s

ck(x(k),u(k))+ cT (x(T ))

= Jt(u∗,x∗)

which contradicts optimality of u∗,x∗. Therefore, this class of
problems satisfies the Principle of Optimality.

Proposition 6 ([24]). For DP problems of the form P(t,x) in
(3) with optimal objective, J∗t = Jt(u∗,x∗), define the function
F(x, t) = J∗t . Then the following holds.

F(x, t) = inf
u∈Γt,x
{ct(x,u)+F( f (x,u, t), t +1)} (4)

∀x ∈ Xt and ∀t ∈ {t0, ..,T −1},
F(x,T ) = cT (x) ∀x ∈ XT

Equation (4) is often referred to as Bellman’s equation and a
function F which satisfies Bellman’s equation is often referred
to as the “optimal cost-to-go” function. Prop. 6 shows that
problems of the Form P(t0,x0) define a solution to Bellman’s
equation which in turn indexes the optimal objective to the
problem. Furthermore, for problems P(t0,x0), the solution
to Bellman’s equation can be obtained recursively backwards
in time using a minimization on u. A solution to Bellman’s
equation provides a state-feedback law or optimal policy as
follows.

Corollary 7 ([24]). Consider P(t0,x0) in (3). Suppose F(x, t)
satisfies Equation (4) for P(t0,x0). Then if there exists a
policy such that,

θ(x, t)∈arg min
u∈Γt,x
{ct(x,u)+F( f (x,u, t), t +1)},

then θ is an optimal policy for the problem P(t0,x0).

Dynamic Programming with Maximum Terms In this paper
we consider the special class of indexed DP problems, denoted
by S (t0,x0) and given in (5). In contrast to problems of the
form P(t0,x0) in (1), class S (t0,x0) has maximum terms in
the objective. Specifically, these problems have the following
form:

min
u,x

Jt0(u,x) :=
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T ))+ max
t0≤k≤T

dk(x(k))

subject to: (5)
x(t +1) = f (x(t),u(t), t) for t = t0, ..,T,
x(t0) = x0, x(t) ∈ Xt ⊂ Rn for t = t0, ..,T,
u(t) ∈U ⊂ Rm for t = t0, ..,T −1,
u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T )),

where cT (x) : Rn → R; ct(x,u) : Rn×Rm → R for t0 ≤ t ≤
T −1; dt(x) : Rn→R for t = t0, · · ·T ; f : Rn×Rm×N→Rn.
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Table I
THIS TABLE SHOWS THE CORRESPONDING COST OF EACH FEASIBLE

POLICY USED IN THE COUNTER EXAMPLE IN LEMMA 1

feasible u objective value feasible u objective value
(0,0,0) 0 (h,0,−h) h/2
(0,0,h) h/2 (h,0,0) 0
(0,h,0) 2h (h,−h,0) -h
(0,h,−h) (5/2)h (h,−h,h) -(3/2)h

Counterexample 8. The class of DP problems of the form
S (t0,x0) in (5) does not satisfy the Principle of Optimality.

Proof. We give a counterexample. For h > 0, we consider the
following problem S (0,0):

min
u∈R3,x∈R4

2

∑
t=0

ct(u(t))+ max
0≤k≤3

x(k)

subject to: x(t +1) = x(t)+u(t),

x(0) = 0, 0≤ xt ≤ h, u(t) ∈ {−h,0,h},

where here we define c0(u(0)) = −u(0), c1(u(1)) = u(1),
c2(u(2)) =−u(2)/2.
Since u ∈ {−h,0,h}3, there are 27 input sequences, only 8
of which are feasible. In Table I, we calculate the objective
value of each feasible input sequence and deduce the optimal
input is u∗ = (h,−h,h), yielding an optimal trajectory of
x∗ = {0,h,0,h}. Following this input sequence until t = 2 we
examine the problem S (2,0).

min
u(2)∈R,0≤x(3)≤h

c2(u(2))+ max
2≤k≤3

x(k)

subject to: x(t +1) = x(t)+u(t),

x(2) = 0, 0≤ x(t)≤ h, u(t) ∈ {−h,0,h}.

For this sub-problem, there are two feasible inputs: u(2) ∈
{0,h}. Of these, the first is optimal (objective value 0 vs
h/2). Thus, although u∗= {h,−h,h} and x∗= {0,h,0,h} solve
S (0,0),v = {h} and h = {0,h} do not solve S (2,0).

III. CONVERTING FORWARD SEPARABLE DP TO
ADDITIVELY SEPARABLE DP

In this section we define the class of forward separable
objective functions. We will show that for dynamic program-
ming problems with a forward separable objective function,
augmenting the state variables allows us to use Bellman’s
equation to obtain an optimal policy.

Forward separable functions were first defined in [25].
Intuitively, this is the class of functions that can be separated
into a nested composition of maps ordered forward in time. In
the next definition we build upon the concept of forward sep-
arability by introducing the notion of augmented dimension.

Definition 9. The function J : Rm×(T−t0)×Rn×(T+1−t0) → R
is said to be forward separable if there exist representation
maps φt0 : Rn ×Rm → Rdt0 , φT : Rn ×RdT−1 → R, and φi :
Rn×Rm×Rdi−1 → Rdi for i = t0 +1, · · ·T −1 such that

J(u,x) = φT (x(T ),φT−1(x(T −1),u(T −1),φT−2(...., (6)
φt0+1(x(t0 +1),u(t0 +1),φt0(x(t0),u(t0)))), ....,))),

where u = (u(t0), ...,u(T −1)) ∈ Rm×(T−t0) and u(i) ∈ Rm for
i∈{t0, ...,T−1}; x=(x(t0), ...,x(T ))∈Rn×(T+1−t0) and x(i)∈
Rn for i ∈ {t0, ...,T}; di ∈ N for i ∈ {t0, ...,T −1}.

Moreover we say J(u,x) is forward separable and has a
representation dimension of l if there exists {φi} that satisfies
(6) and l = maxi∈{t0,...,T−1}{di} where di = dim(Im{φi}).

Note: The representation dimension of a forward separable
function is a property of the set {φi} chosen and not the
function. The representation dimension of a forward separable
function is not unique. Moreover, the forward separable prop-
erty of an objective function is independent of the DP problem
it is associated with; forward separability is solely a property
of the function only.

Clearly, any additively separable objective function of the
form J(u,x) = ∑

T−1
t=t0 ct(u(t),x(t))+cT (x(T )) is forward sepa-

rable and has a representation dimension of 1 using,

φt0(x,u) = ct0(x,u) (7)
φi(x,u,w) = ci(x,u)+w for i = t0 +1, · · · ,T −1
φT (x,w) = cT (x)+w.

A. How State Augmentation Solves Forward Separable DP
Problems

We now define the class of forward separable problems
H (t0,x0). Such problems are a special case of G (t0,x0) (1),
but not of P(t0,x0) (3). Specifically, H (t0,x0) has the form:

min
u,x

Jt0(u,x) (8)

subject to:
x(t +1) = f (x(t),u(t), t) for t = t0, ..,T,

x(t0) = x0, x(t) ∈ Xt ⊂ Rn for t = t0, ..,T,

u(t) ∈U ⊂ Rm for t = t0, ..,T −1,
u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T )),

where Jt0 is forward separable with associated representation
maps φi. For any forward separable DP problem H (t0,x0),
we may associate a new augmented-state DP problem of form
A (t0,x0), which is equivalent to H (t0,x0) and which satisfies
the Principle of Optimality. A (t0,x0) is defined as

min
u,z

Lt0(u,z) := z2(T +1) (9)

subject to:[
z1(t +1)
z2(t +1)

]
=

[
f (z1(t),u(t), t)

φt(z1(t),u(t),z2(t))

]
t0 ≤ t < T[

z1(T +1)
z2(T +1)

]
=

[
f (z1(T ),u(T ),T )
φT (z1(T ),z2(T ))

]
[

z1(t0)
z2(t0)

]
=

[
x0
0

]
, z1(t) ∈ Xt , u(t) ∈U for t = t0 +1, ..,T

u = (u(t0), ...,u(T −1)) and z =
([

z1(t0)
z2(t0)

]
, ...,

[
z1(T )
z2(T )

])
where f : Rn×Rm×N→ Rn, z1(t) ∈ Rn, z2(t) ∈ Rdt , dt =

dim(Im{φt−1}) and u(t) ∈ Rm for all t.

Lemma 10. Suppose Jt0 is the objective function for
the DP problem H (t0,x0) (8) and is forward separable
with associated representation maps φi. Consider the aug-
mented DP problem A (t0,x0) (9) and denote its objective
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function by Lt0 . Then J∗t0 = L∗t0 . Furthermore, suppose u
and x = (x(t0), ...,x(T )) solve H (t0,x0) and w and z =([

z1(t0)
z2(t0)

]
, ...,

[
z1(T )
z2(T )

])
solve A (t0,x0). Then u = w and

x(t) = z1(t) for all t.

Proof. Suppose w and z solve A (t0,x0). First we show that w
and z1 := (z1(t0), ...,z1(T )) are feasible for H (t0,x0). Clearly
w(t) ∈ U for all t and if we let u = w then x(0) = x0 and
x(t + 1) = f (x(t),u(t), t) for all t. Since likewise z1(t0) = x0
and z1(t + 1) = f (z1(t),u(t), t), we have x(t) = z1(t) ∈ Xt
for all t. Hence u and x = z1 are feasible for H (t0,x0).
Likewise, if u and x solve H (t0,x0), then if we let w =
u and z1 = x and define z2(t + 1) = φt(z1(t),u(t),z2(t)),
z2(t0 + 1) = φ0(z1(t0),u(t0)), z2(t0) = 0, then w and z are
feasible. Furthermore, since H (t0,x0) has a forward separable
objective function we have,

Jt0(u,x) = φT (z1(T ),φT−1(z1(T −1),w(T −1),φT−2(....,

φt0+1(z1(t0 +1),w(t0 +1),φt0(z1(t0),w(t0)))), ....,))).

However, we now observe

z2(T +1) = φT (z1(T ),z2(T ))
z2(T ) = φT−1(z1(T −1),u(T −1),z2(T −1))
...
z2(t0 +1) = φt0(z1(t0),u(t0)).
z2(t0) = 0.

Hence we have,

Lt0(w,z) = z2(T +1)
= φT (z1(T ),φT−1(z1(T −1),w(T −1),φT−2(....,

φt0+1(z1(t0 +1),w(t0 +1),φt0(z1(t0),w(t0)))), ....,))).
= Jt0(u,x).

Thus if w and z solve A (t0,x0) with objective L∗t0 = z2(T +1),
then w and z1 solve H (t0,x0) with objective value J∗t0 .

Proposition 11. The augmented DP problem A (t0,x0) in (9)
satisfies the Principle of Optimality.

Proof. A (t0,x0) is a special case of P(t0,x0) (3) where ci = 0
for i 6= T and cT ([z1z2]

T ) = z2. Lemma 5 shows DP problems
of the form P(t0,x0) satisfy the Principle of Optimality.

Lemma 10 tells us that for any DP problem with forward
separable objective, H (t0,x0) (8), there exists an equiva-
lent DP problem of the form A (t0,x0) (9). Furthermore
Proposition 11 shows that A (t0,x0) satisfies the Principle of
Optimality. Therefore a solution for H (t0,x0) can be found
by recursively solving Bellman’s equation (4) for A (t0,x0).

To understand the augmented approach intuitively, we note
that DP breaks a multi-period planning problem into sim-
pler sub-problems at each stage. However, for non-separable
problems, to make the correct decision at each stage we
need past information about the system. In this context, the
augmented state contains the information from the trajectory
history necessary to make the correct decision at the present
time. However by adding augmented states we increase the
state space dimension and the complexity of the DP problem.

Corollary 12. Suppose the forward separable function, J :
Rm×(T−t0)×Rn×(T+1−t0)→R, is the objective function for DP
problem H (t0,x0) (8) and has a representation dimension
of l. Then the associated augmented DP problem with this
representation, A (t0,x0) (9), has a state space of dimension
l +n and input space of dimension m.

Proof. From the definition of A (t0,x0) (9), the state space
dimension is n + maxt0≤t≤T , where dt = dim(Im{φt−1}).
From the definition of representation dimension, we have
maxt0≤t≤T dt = l and hence it follows that the state space
dimension is n+maxt0≤t≤T dt = n+ l.

IV. A CLASS OF DP FOR WHICH THE USE OF STATE
AUGMENTATION IS TRACTABLE

It is well known that discretization of the state space
combined with a solution of Bellman’s equation become
computationally intractable when the discretized dimension
increases; this is often called “the curse of dimensionality”.
In the previous Section, we proved that any non-separable DP
of state space dimension n can be converted to a separable
augmented DP with state-space dimension n+ l, where l is the
representation dimension of the objective function. However,
for some representations, l may increase as the time interval
increases - thus triggering the curse of dimensionality. To
address this problem, in this section, we define a class of for-
ward separable objective functions, called Naturally Forward
Separable (NFS) functions, with representation dimension, l,
which is independent of the number of time steps and the
dimension of the state and input space.

Before we define NFS functions we motivate this new
class of functions by showing that it is possible to represent
any function as a forward separable function. To do this
we introduce some additional notation. Specifically, for a
vector v = (v1, ...,vn)

T ∈ Rn we define [v] j
i = (vi, ...,v j) for

1≤ i < j ≤ n.

Lemma 13. Any function J : Rm×(T−t0) ×Rn×(T+1−t0) → R
is forward separable with a representation of dimension
l(n,m,T − t0) = (T − t0)(n+m).

Proof. Consider a function J : Rm×(T−t0)×Rn×(T+1−t0)→ R.
To show J is forward separable we define a forward separable
representation {φi}T

i=t0 which satisfy (6) as follows.
First, define φt0 : Rn×Rm→ Rn+m as

φt0(x,u) = [xT ,uT ] =
[
x1, ...,xn,u1, ...,um

]
.

For i ∈ {t0 + 1, ...T − 1} the define φi : Rn × Rm ×
R(i−t0)(n+m)→ R(i+1−t0)(n+m) as

φi(x,u,w) =
[
[w]n(i−t0)

1 ,xT , [w](i−t0)(n+m)
n(i−t0)+1 ,uT

]
.

Lastly, define φT : Rn×R(T−t0)(n+m)→ R as

φT (x,w) = J([[w]n(T−t0)
1 ,x], [w](n+m)(T−t0)

n(T−t0)+1 ).

Clearly, this definition of φi satisfies (6). Furthermore, it can
be seen that the maximum dimension of the images of the
maps {φi}T

i=t0 is (T−t0)(n+m) showing the dimension of this
representation of J is l(n,m,T − t0) = (T − t0)(n+m).

5



In the above approach to show that J(u,x) is forward
separable we naively took the strategy of using the functions
(φi)t0≤i≤T to act like memory functions; that is to store the
entire historic state trajectory and input sequence used. If
J(u,x) is the objective function for some DP problem of form
H (t0,x0) (8) then this approach would result in the asso-
ciated augmented DP problem, A (t0,x0) (9), having a very
large state space dimension. Specifically, Corollary 12 shows
that A (t0,x0) has state space dimension (T − t0)(n+m)+ n.
Clearly, for a large number of time-steps, T − t0, A (t0,x0)
is intractable. For this reason we next define a special class
of forward separable functions that have a representation with
dimension independent of the number of time-steps.

Definition 14. We say a function J : Rm×(T−t0) ×
Rn×(T+1−t0) → R is a Naturally Forward Separable (NFS)
function if there exists maps, {φi}T

i=t0 , that satisfy (6) with
representation dimension independent of n, m and T .

A. An Algebra Of Naturally Forward Separable Functions

Given a function, J : Rm×(T−t0)×Rn×(T+1−t0) → R, there
is no obvious way to determine whether J is NFS. Instead,
in this section, we show that the set of NFS functions form
an algebra closed under pointwise multiplication and which
is preserved under nonlinear transformation - implying that
simple NFS functions (‘building blocks’) can be combined to
construct new, more complex, NFS functions. In this way, one
might approach the problem of finding representation maps for
a function, J, by combining known NFS “building blocks”.
Several examples of such “building blocks” can be found in
Subsection IV-B. We first prove closure under addition and
pointwise multiplication.

Lemma 15. Consider the function U : R → R and the
NFS function, J1 : Rm1×(T1−t1) × Rn1×(T1+1−t1) → R and
J2 : Rm2×(T2−t2)×Rn2×(T2+1−t2) → R, with representation di-
mensions l1 and l2 respectively. The functions G1(u,x) =
J1(u,x)+J2(u,x), G2(u,x) = J1(u,x) ·J2(u,x) and G3(u,x) =
U (J1(u,x)) are NFS functions with representation dimension
less than or equal to l1 + l2, l1 + l2, and l1, receptively.

Proof. For simplicity let us consider the case where t1 = t2
and T1 = T2; other cases follow by the same argument. As J1
and J2 are forward separable functions there exist associated
representations {gi} and {hi} such that J1 and J2 can be written
in the form (6) and with associated representation dimensions
l1 and l2, respectively. We now show that G1 is forward
separable by defining the associate representation {φi} such
that G1 can be written in the form (6). Specifically, let

φt1(x,u) =
[

gt1(x,u)
ht1(x,u)

]
, (10)

φi(x,u,w) =

[
gi(x,u, [w]

di−1
1 )

hi(x,u, [w]
di−1+si−1
di−1+1 )

]
for i ∈ {t1 +1, ....,T1−1}

φT1(x,u,w) = gT (x,u, [w]
dT1−1
1 )+hT (x,u, [w]

dT1−1+sT1−1
dT1−1+1 ),

where di = dim(Im{gi}) and si = dim(Im{hi}) for i ∈
{t1, ...,T1−1}.

We conclude that G1 has a representation dimension, de-
noted lG1 , such that

lG1 = max
i∈{t1,...,T1−1}

{di + si}

≤ max
i∈{t0,...,T−1}

{di}+ max
i∈{t0,...,T−1}

{si}

= l1 + l2.

Furthermore, by a similar argument it can be shown that G2
and G3 are NFS with representation dimension less than or
equal to l1 + l2. We are able to show this using the same
representation maps {φi}t1≤i≤T1−1 from (10) with the terminal
representation map for G2 given by

φT1(x,u,w) = gT

(
x,u, [w]

dT1−1
1

)
·hT

(
x,u, [w]

dT1−1+sT1−1
dT1−1+1

)
,

and the terminal representation map for G3 given by

φT1(x,u,w) =U
(

gT

(
x,u, [w]

dT1−1
1

))
.

B. Simple Examples Of NFS Functions

The first example of a NFS function is found in problems
involving risk measures and certainty equivalents [12]. In
this case, we have the function U(x) = 1

γ
eγx and apply the

following:

Example 16. For any functions U :R→R and ct :Rn×Rm→
R,

J(u,x) =U

(
T−1

∑
t=t0

ct(x(t),u(t))

)
is NFS with representation dimension 1.

Proof. The additively separable function ∑
T−1
t=t0 ct(x(t),u(t)) is

NFS using the representation maps given in (7). It therefore
follows J is NFS by Lemma 15.

Example 17. The p-norm function given by

J(u,x) =

(
T−1

∑
t=t0

||x(t)||p2

) 1
p

,

where || · ||2 is the euclidean norm and p > 0, is NFS with
representation dimension 1.

Proof. Follows by Example 16 using U(x) = x
1
p and ct(x,u) =

||x||p2 .

We next give a NFS function that can be considered a
discrete time version of the Green measure; when used as an
objective function for a DP problem it measures the amount
of time the state and input spend in some set.

Example 18. Consider the function J : Rm×(T−t0) ×
Rn×(T+1−t0)→ R defined as

J(u,x) = |{i ∈ {t0, ...,T} : (x(i),u(i)) ∈ S}|

where u=(u(t0), ...,u(T−1)), u(t)∈Rm, x=(x(t0), ...,x(T )),
x(t)∈Rn, S⊂Rn×Rm and for B⊂N we denote |B| to be the
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cardinality of the set B. Then J is NFS and has a representation
of dimension 1.

Proof. We present functions such that J(u,x) that can be
written in the form of (6).

Define φt0 : Rn×Rm→ R as

φt0(x,u) =

{
1 if (x,u) ∈ S
0 otherwise

.

Define φt : Rn×Rm×R→ R for 1≤ t ≤ T −1 as

φt(x,u,w) =

{
w+1 if (x,u) ∈ S
w otherwise.

Define the function φT : Rn×R→ R as

φT (x,w) =

{
w+1 if (x,u) ∈ S
w otherwise.

This definition of φi satisfies (6). Moreover it can be seen that
the maximum dimension of the images of the maps {φi}T

i=t0
is 1 implying that the dimension of this representation of J is
1.

Example 19. Consider the variance type function, J : Rm×T ×
Rn×(T+1)→ R defined as

J(u,x) =
T

∑
t=0

[
at(x(t))−

1
T

T

∑
s=0

as(x(s))

]2

(11)

where u = (u(0), ...,u(T −1)), u(t) ∈Rm, x = (x(0), ...,x(T )),
x(t) ∈ Rn, and at : Rn → R. Then J is NFS and has a
representation dimension of 2.

Proof. Expanding the right hand side of (11) as in [14] we
get,

J(u,x)

=
T

∑
t=0

a2
t (x(t))−

2
T

at(x(t))
T

∑
s=0

as(x(s))+
1

T 2

(
T

∑
s=0

as(x(s))

)2


=
T

∑
t=0

a2
t (x(t))−

1
T

[
T

∑
s=0

as(x(s))

]2

.

We now present functions J(u,x) that can be written in the
form of (6). We define φt0 : Rn×Rm→ R2 as

φ0(x,u) =
[

a2
1(x)

a1(x)

]
.

We define φi : Rn×Rm×R2→ R2 as

φi(x,u, [w1,w2]
T ) =

[
w1 +a2

i (x)
w2 +ai(x)

]
for 1≤ i≤ T −1.

Finally, φT : Rn×R2→ R is given by,

φT (x, [w1,w2]
T ) = (w1 +a2

T (x))−
1
T
(w2 +aT (x))

2 .

This definition of φi satisfies (6). Moreover it can be seen that
the maximum dimension of the images of the maps {φi}T

i=t0 is
2 showing the dimension of this representation of J is 2.

We now show that the maximum function, that appears in
the objective function of the battery scheduling problem in
Section IX, is NFS.

Example 20. Consider the function J : Rm×T ×Rn×(T+1)→R
such that,

J(u,x) = max{ max
0≤k≤T−1

{ck(u(k),x(k))},cT (x(T ))}

where u = (u(0), ...,u(T −1)), u(t) ∈Rm, x = (x(0), ...,x(T )),
x(t)∈Rn, ck :Rm×Rn→R for 0≤ k≤ T−1 and cT :Rn→R.
Then J is NFS and has a representation dimension of 1.

Proof.

J(u,x) = max{ max
0≤k≤T−1

{ck(u(k),x(k))},cT (x(T ))}

= max{cT (x(T )),max{cT−1(u(T −1),x(T −1)), · · ·
max{..,max{c1(u(1),x(1)),max{c0(u(0),x(0))}}, ..}}.

It is now clear we can write J in the form of (6) as follows.
The function φt0 : Rn×Rm→ R is defined by,

φt0(x,u) = ct0(x,u).

The function φi : Rn×Rm×R→ R is defined by,

φi(x,u,w) = max(ci(x,u),w) for t0 +1≤ i≤ T −1.

The function φT : Rn×R→ R is defined by,

φT (x,w) = max(cT (x),w).

This definition of φi satisfies (6). Moreover it can be seen
that the maximum dimension of the images of the maps
{φi}T

i=t0 is 1 showing the dimension of this representation of
J is 1.

V. SOLVING DETERMINISTIC ADDITIVELY SEPARABLE DP
PROBLEMS

In Section III we showed that all forward separable prob-
lems of the form H (t0,x0) have an equivalent DP problem of
the form A (t0,x0). Problems of the form A (t0,x0) are special
cases of problems of the form P(t0,x0). In this section we
address the problem of implementation by numerically solving
problems of the form P(t0,x0).

For implementation, we use an approximation scheme that
maps our class of DP problems to a much simpler class of
DP problems with finite state and control spaces. It is known
for DP problems with finite state and control spaces that the
infimum in Bellman’s equation (4) is attained and the optimal
cost to go function, F(x, t), can be computed by enumeration.
Similar numerical schemes with convergence proofs can be
found in [16] and [15].

A. Construction Of Approximated Tractable DP Problems

Consider the DP problem P(t0,x0) (3) with compact state
and control spaces of the form X = [x, x̄]n and U = [u, ū]m.
For DP problems of this form it is not generally possible to
solve Bellman’s Equation (4). We thus need to consider a
sequence of “close” DP problems with countable state and
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control spaces. We define a sequence of approximated DP
problems indexed by k and denoted by Pk(t0,x0),

min
u,x

Jt0(u,x) =
T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T )) (12)

subject to:
x(t +1) = argminy∈Xk{||y− f (x(t),u(t), t)||2},
x(t0) = x0, x(t) ∈ Xk ⊂ Rn, u(t) ∈Uk ⊂ Rm for t = t0, ..,T,

u = (u(t0), ...,u(T −1)) and x = (x(t0), ...,x(T )),

where Xk = {x1, ...,xk}n such that x = x1 < x2 < ... < xk = x̄
and ||xi+1−xi||2 = x̄−x

k for 1≤ i≤ k−1, and Uk = {u1, ...,uk}m

such that u = u1 < u2 < ... < uk = ū and ||ui+1− ui||2 = ū−u
k

for 1≤ i≤ k−1.
Note that our approximation scheme is based on the dis-

cretization of the state and input space and as such is subject to
the “curse of dimensionality”. However, discretization-based
schemes for solving Bellman’s equation have efficient parallel
implementations - see [26]. Alternatively, other Approximate
Dynamic Programming (ADP) schemes such as [27] use grid
sampling and can be shown to converge with respect to
expected cost.

B. Constructing A Feasible Policy From The Solution Of The
Approximated DP Problem

By iteratively solving Bellman’s equation (4) we can find
an optimal solution to Pk(t0,x0) which we denote as (x∗k ,u

∗
k).

Because the vector fields that define the underlying dynamics
of P(t0,x0) and Pk(t0,x0) are different, the solution (x∗k ,u

∗
k)

is not necessarily feasible for P(t0,x0). However using an
optimal policy for Pk(t0,x0), π∗k , we can construct a feasible
policy for P(t0,x0) in the following way,

θk(x, t) = arg min
u∈Γt,x

||π∗k (argmin
y∈Xk
{||y− x||2}, t)−u||2 ∈Π (13)

where we recall Γt,x is the set of feasible inputs such that
if u ∈ Γt,x then u ∈U and f (x,u, t) ∈ X for the DP problem
P(t0,x0) (3).

C. Convergence Of Our Constructed Policy

Suppose θk(x, t), from (13), is a feasible policy for
P(t0,x0) constructed from an optimal policy of Pk(t0,x0)
using (13). Let uk = (θk(x0, t), ...,θk(xk(T − 1),T − 1))
and xk = (xk(t0), ...,xk(T )) where xk(t0) = x0, xk(t + 1) =
f (xk(t),θk(xk(t), t), t) and f is the vector field from Pk(t0,x0).
From Theorem 2 in [16] if P(t0,x0) satisfies certain continuity
assumptions then it is known that

lim
k→∞
||Jt0(uk,xk)− J∗t0 ||= 0, (14)

where Jt0(uk,xk) is the resulting value objective function of
P(t0,x0) when the policy θk is used and J∗t0 is the optimal
value of the objective function.

VI. STOCHASTIC DP AND OPTIMAL POLICIES

As shown in Counterexample 8 there exist non-separable
deterministic DP problems that do not satisfy the Principle of
Optimality as formulated in Definition 4. This Principle Of
Optimality stated that the optimality of an input sequence for
any instantiation of the sequence of DP problems is inherited
by every subsequent instantiation - implying that recursive use
of Bellman’s equation will eventually return an input which
solves the DP problem for every instantiation.

In the stochastic case, however, additively separable DP
problems may not satisfy this version of Principle of Optimal-
ity. Specifically, we show that even in the case of an additively
separable objective function, stochastic perturbations can drive
the system to a state wherein the original optimal input
sequence is no longer optimal. This implies that for problems
which include stochastic perturbations, a new criterion must be
proposed for the use of Bellman’s equation. This reformulation
of the Principle Of Optimality is non-trivial and requires us
to re-work our definitions of DP. Specifically, we formulate
the stochastic DP problem as a time-indexed sequence of DP
problems, wherein the variable is not the input sequence, but
is rather replaced by the policy. This policy is then used to
generate a set of possible trajectories and input sequences,
indexed by the set of possible instantiations of the random
variables.

Using this new formulation of the stochastic DP problem,
our definition of the Principle Of Optimality requires that opti-
mality of the policy is inherited by every possible instantiation
of the trajectory with probability one - i.e. the policy may be
sub-optimal, but only on a set of instantiations of measure
zero. We then show that the state-augmentation strategy we
propose for DP problems with stochastic perturbations and
NFS objective functions results in a stochastic DP problem for
which this revised the Principle Of Optimality holds. Finally,
we show how Bellman’s equation can be used in this case to
recover an optimal policy.

We begin by defining the map from a chosen policy (π),
initial condition (x0) and instantiation of the random variables
([v]T−1

t0 ) to the resulting trajectory, x; this will allow us to
state precisely which random variables the expectation in
the objective function is respect to. For simplicity we only
consider random variables with Gaussian distributions.

Definition 21. For a vector field f : Rn×Rm×N×Rq→Rn,
a set of optimal polices Π associated with some DP problem,
a starting time t0 ∈N, and terminal time T ∈N, let us denote
the state map by ψ f ,t0 : Π×Rn×N×Rq×(T−t0) → Rn. We
say that x = ψ f ,t0(π,x0,T, [v]T−1

t0 ) if x = x(T ) where x(T ) is
a solution to the following recursion equations x(t0) = x0,
x(t + 1) = f (x(t),π(x(t), t), t,v(t)) for t ∈ {t0, ...,T − 1} and
[v]T−1

t0 = [v(t0), ..,v(T −1)] ∈ Rq×(T−t0). We denote the image
of the state vector under a set of instantiations Y ⊂Rq×(T−t0)

by ψ f ,t0(π,x0,T,Y ) = {ψ f ,t0(π,x0,T, [v]T−1
t0 ) ∈ Rn : [v]T−1

t0 ∈
Y}.

We also denote the trajectory map by Φ f ,t0 : Π ×
Rn×N×Rq×(T−t0) → Rm×(T−t0)×Rn×(T−t0+1). We say that
(u,x) = Φ f ,t0(π,x0,T, [v]T−1

t0 ) if u = (π(x(t0), t0), ...,π(x(T −
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1),T − 1)), and x = (x(t0), ...,x(T )) is such that x(t) =
ψ f ,t0(π,x0, t, [v]T−1

t0 ) for t ∈ {t0, ...,T −1}.

We define the class of stochastic DP problems with forward
separable objective as Hs(t0,x0),

π
Hs∗ = arg min

π∈Π
E[v]T−1

t0

(
JHs

t0 (Φ f ,t0(π,x0,T, [v]T−1
t0 ))

)
(15)

subject to: ψ f ,t0(π,x0, t, [v]t−1
t0 ) ∈ Xt for t = t0, ..,T

π(x, t) ∈Ut and v(t) ∈ Rq ∼N (0, Iq×q) ∀x ∈ Xt ,∀t = t0, ..,T −1,

where JHs
t0 : Rm×(T−t0) × Rn×(T−t0+1) → R is a forward

separable function with associated representation {φi}T
i=t0 ; f

: Rn×Rm×N×Rq→ Rn; ψ f ,t0 is measurable and Φ f ,t0 are
the state and trajectory map respectively defined in Definition
21; Ui is assumed to be some compact subset of Rm×(i−t0);
Xi ⊂ Rn×(i−t0+1); [v]T−1

t0 = [v(t0), ..,v(t − 1)] ∈ Rq×(T−t0); Ev
is the expectation with respect to the random variable v.
Define JHs∗

t0 = E[v]T−1
t0

(
JHs

t0 (Φ f ,t0(π
Hs∗,x0,T, [v]T−1

t0 ))
)

as the
expected cost of using an optimal policy when applied to
Hs(t0,x0).

Change in Variables for Stochastic Problems: Unlike in
the deterministic case the solution to stochastic DP problems,
such as (15), is now a policy π ∈ Π and not a definite input
and state sequence u∗ ∈Rm×(T−t0) and x∗ ∈Rn×(T−t0+1), such
as in (1). This is because the optimal sequence of inputs,
u∗, that results in an optimal trajectory, x∗, will depend
on the instantiation of the random variables. This change
of notation demonstrates that the solution to DP problems
involving stochastic dynamics no longer belongs to some
finite dimensional space, (u∗,x∗) ∈ Rm×(T−t0)×Rn×(T−t0+1),
but rather an infinite dimensional functional space π∗ ∈Π.

A. Stochastic Additively Separable DP Problems
In the special case when the objective function of (15) is

an additively separable function, as per Definition 1, given as

JQ
t0 (u,x) =

T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T )), (16)

we denote the DP problem (15) by Q(t0,x0).
stochastic DP problems of form Q(t0,x0) are often referred

to as Markov Decision Processes (MDP), and are sometimes
denoted by the tuple {{Xt}T

t0 ,{Ut}T−1
t0 ,ψ,{Qt}T−1

t0 ,{c}T
t0};

where ψ(x,v, t) = {u ∈ Ut : f (x,u, t,v) ∈ Xt+1}, Qt(B|x,u) =∫
B1B( f (x,u, t,v))φ(v)dv, and φ(v) is the probability density

function of the random variable v.

B. The Principle Of Optimality For Stochastic Problems
As discussed in [6] the extension of the Principle of

Optimality to the stochastic case is non-trivial. We first give
an example from [28] of a stochastic DP problem which
shows that an optimal policy may not be optimal for every
instantiation of the random variables at future time steps.

Let us consider the following stochastic DP problem
W (0,x0),

π
∗ = argmin

π∈Π
Ev(0)

(
J0(Φ f ,0(π,x0,1, [v(0)]))

)
(17)

subject to: v(0)∼U [0,1], x(0) = x0.

Here Jt(u,x) = −∑
1
n=t u(n), f (x,u, t,v) = v, and π ∈ Π ⇐⇒

π(x, t) ∈ {0,1}∀x ∈ R, t = 0,1.

Counterexample 22. The policy π(x, t) =

{
1 if x ∈ [0,1)
0 if x = 1

is optimal for the problem W (0,0) (17) but not optimal for
the problem W (1,1).

Proof. Clearly J0(u,x)≥−2 for all (u,x) ∈ {0,1}2×R3 and
J0(u,x)=−2 is attainable using the input (u(0),u(1))= (1,1);
therefore any solution of W (0,0) will minimize the objective
function to a value of -2. Now using the law of total expecta-
tion we get,

Ev(0)
(
J0(Ψ f ,0(π,0,1, [v(0),v(1)]))

)
=−Ev(0) (π(0,0)+π(v(0),1))

=−π(0,0)−Ev(0) (π(v(0),1)|v(0) ∈ [0,1))Pv(0)(v(0) ∈ [0,1))

−Ev(0) (π(v(0),1)|v(0) = 0)Pv(0)(v(0) = 0)

=−2,

since the probability of a continuous random variable (such
as a uniformly distributed random variable) taking a particular
value is 0. Thus it follows the policy π is optimal for W (0,0).
Trivially π is not optimal for W (1,1) as the value of the
objective functions becomes 0 under π whereas the input
u(1)= 1 produces a smaller objective function value of -1.

Clearly, for the stochastic DP problems of form Hs(t0,x0)
(15), such as W (0,0) (17), any optimal policy π∗ does
not always result in the same trajectory x = (x(t0), ...,x(T ));
as this is dependent on the instantiations of the underlying
random variables, [v]T−1

t0 . As Counterexample 22 has shown
there exist stochastic DP problems, with additively separable
objective functions, that have optimal policies that are no
longer optimal for future timesteps if certain instantiations
of the underlying random variables are realized. Therefore,
it is too restrictive to extend Definition 4, the Principle of
Optimality for the deterministic case, to the stochastic case
by requiring stochastic DP problems satisfying the Principle
of Optimality to be such that their optimal policies are also
optimal for each instantiation at any future time step. With
this in mind and motivated by the work of [7] we now give
a probabilistic definition of the Principle of Optimality for
stochastic DP problems.

Definition 23. For a stochastic DP problem Hs(t0,x0) (15)
with an optimal policy π∗ ∈Π and associated state map ψ f ,t0 ,
defined in definition 21, let us denote the set indexed by k≥ t0,

Yk ={[v]k−1
t0 ∈ Rq×(k−t0) :

π
∗ does not solve Hs(k,ψ f ,t0(π

∗,x0,k, [v]k−1
t0 ))}

where [v]k−1
t0 = [v(t0), ...,v(k−1)]∈Rq×(k−t0). We say stochas-

tic DP problems of the form Hs(t0,x0) (15) satisfy the
Principle of Optimality if for any k ≥ t0 we have

P
[v]k−1

t0
([v]k−1

t0 ∈ Yk) = 0.

Here P
[v]k−1

t0
is the probability measure associated with the

random variable [v]k−1
t0 ∈Rq×(k−t0), v(t)∼N (0, Iq×q) for t ∈

{t0, ...,k−1}.

9



We next show that stochastic DP problems with additively
separable objective functions (MDP’s) satisfy the Principle of
Optimality as formulated in Definition 23.

Lemma 24. A stochastic DP problem of Form Q(t0,x0) (16)
satisfies the Principle of Optimality as formulated in Definition
23.

Proof. Suppose π∗ solves Q(t0,x0). For k > t0 and the state
map ψ f ,t0 associated with Q(t0,x0) let us recall the set defined
in Definition 23,

Yk := {[v]k−1
t0 ∈ Rq×(k−t0) : π

∗ does not solve Q(k,xπ∗([v]k−1
t0 ))}.

Here [v]k−1
t0 := [v(t0), ...,v(k−1)] ∈Rq×(k−t0), and we use the

short-hand xπ∗([v]k−1
t0 ) := ψ f ,t0(π

∗,x0,k, [v]k−1
t0 ).

Now for contradiction suppose there exists k ∈ {t0, ...,T}
such that P

[v]k−1
t0

([v]k−1
t0 ∈ Yk) > 0; where v(t) ∼ N (0, Iq×q)

for t ∈ {t0, ...,k− 1}. For [v]k−1
t0 ∈ Yk we know the policy π∗

is not optimal for Q(k,xπ∗([v]k−1
t0 )) and thus there exists a

feasible policy θ ∈Π such that,

E[v]T−1
t0

(
JQ

k (Φ f ,k(θ ,xπ∗([v]k−1
t0 ),T, [v]T−1

k ))

∣∣∣∣[v]k−1
t0 ∈ Yk

)
< (18)

E[v]T−1
t0

(
JQ

k (Φ f ,k(π
∗,xπ∗([v]k−1

t0 ),T, [v]T−1
k ))

∣∣∣∣[v]k−1
t0 ∈ Yk

)
.

Now let us consider the map,

π̂t([x(t0), ...,x(t)]) =

{
θ(x(t), t) if t ≥ k,x(k) ∈ ψ f ,t0(π

∗,x0,k,Yk)

π∗(x(t), t) otherwise .

(19)

Using Lemma 28, there exists a policy α ∈Π such that (36)
holds for {π̂t} defined in (19). We will now show the policy
α contradicts that π∗ be an optimal policy for Q(t0,x0). We
first note using (36) and the law of total probabilities,

E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(α,x0,T, [v]T−1
t0 ))

)
(20)

= E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(π̂,x0,T, [v]T−1
t0 ))

)
= E[v]T−1

t0

(
JQ

t0 (Φ f ,t0(π̂,x0,T, [v]T−1
t0 )|[v]k−1

t0 ∈ Yk

)
P
[v]k−1

t0
([v]k−1

t0 ∈ Yk)

+E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(π̂,x0,T, [v]T−1
t0 ))|[v]k−1

t0 /∈ Yk

)
P
[v]k−1

t0
([v]k−1

t0 /∈ Yk).

We recall the additive structure of JQ
t0

JQ
t0 (u,x) =

T−1

∑
t=t0

ct(x(t),u(t))+ cT (x(T )),

where u = (u(t0), ...,u(T − 1)) and x = (x(t0), ...,x(T )) and
cT (x) : Rn→ R, ct(x,u) : Rn×Rm→ R for t = t0, · · ·T −1.

Now using the fact π̂t([x(t0), ...,x(t)]) = π∗(x(t), t) for all
t < k, π̂t([x(t0), ...,x(t)]) = θ(x(t), t) if t ≥ k and x(k) ∈

ψ f ,t0(π
∗,x0,k,Yk), linearity of the expectation and the inequal-

ity (18) we have,

E[v]T−1
t0

(
JQ

t0 (Φ f ,k(π
∗,x0,T, [v]T−1

t0 ))

∣∣∣∣[v]k−1
t0 ∈ Yk

)
(21)

= E[v]T−1
t0

(
k−1

∑
t=t0

ct(xπ∗([v]t−1
t0 ),π∗(xπ∗([v]t−1

t0 ), t))
∣∣∣∣[v]k−1

t0 ∈ Yk

)

+E[v]T−1
t0

(
JQ

k (Φ f ,k(θ ,xπ∗([v]k−1
t0 ),T, [v]T−1

k ))

∣∣∣∣[v]k−1
t0 ∈ Yk

)
< E[v]T−1

t0

(
k−1

∑
t=t0

ct(xπ∗([v]t−1
t0 ),π∗(xπ∗([v]t−1

t0 ), t))
∣∣∣∣[v]k−1

t0 ∈ Yk

)

+E[v]T−1
t0

(
JQ

k (Φ f ,k(π
∗,xπ∗([v]k−1

t0 ),T, [v]T−1
k ))

∣∣∣∣[v]k−1
t0 ∈ Yk

)
= E[v]T−1

t0

(
JQ

t0 (Φ f ,t0(π
∗,x0,T, [v]Tt0))

∣∣∣∣[v]k−1
t0 ∈ Yk

)
.

Therefore using (20); the fact π̂t([x(t0), ...,x(t)]) = π∗(x(t), t)
if x(k) /∈ ψ f ,t0(π

∗,x0,k,Yk,π∗); the total law of probability;
the above inequality (21); and the assumption P

[v]k−1
t0

([v]k−1
t0 ∈

Yk)> 0 (so the inequality remains strict) we derive,

E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(α,x0,T, [v]T−1
t0 ))

)
(22)

< E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(π
∗,x0,T, [v]T−1

t0 ))
)
.

This contradicts the fact π∗ is an optimal policy for Q(t,x).
Therefore we conclude P

[v]k−1
t0

([v]k−1
t0 ∈ Yk) = 0 showing DP

problems of the form Q(t0,x0) satisfy Definition 23 and hence
satisfy the Principle of Optimality.

We will now state Bellman’s equation for stochastic DP
problems of the form Q(t,x).

Proposition 25 ([24]). For stochastic DP problems of the form
Q(t,x) in (16) with optimal objective values JQ∗

t , define the
function F(x, t) = JQ∗

t . Then the following hold for all x ∈ Xt ,

F(x, t) = inf
u
{ct(x,u)+Ev[F( f (x,u, t,v), t +1)]}. (23)

F(x,T ) = cT (x).

We see in the next corollary that if we are able to solve the
stochastic Bellman equation (23) then we are able to construct
an optimal policy that solves (16).

Corollary 26 ([24]). Consider a stochastic DP problem of the
form Q(t0,x0) in (16). Suppose F(x, t) satisfies Equation (23)
and suppose there exists a policy such that,

θ(x, t) ∈ arg min
u∈Γt,x
{ct(x,u)+Ev[F( f (x,u, t,v), t +1)]}.

Then the policy θ solves Q(t0,x0).

C. State Augmentation For Stochastic DP problems

Analogous to the deterministic case shown in Lemma 10,
for a stochastic DP problem of the form Hs(t0,x0) (15) we can
use the separable representation maps {φi}T

i=t0 of the objective
function JHs

t0 to construct an equivalent DP problem of form
Q(t0,x0) (16) by using state augmentation.

10



VII. NUMERICALLY SOLVING ADDITIVELY SEPARABLE
STOCHASTIC DP PROBLEMS

In Section VI, we proposed a state-augmentation scheme
for converting a stochastic forward separable DP problem, of
form Hs(t0,x0) (15), to an equivalent additively separable DP
problem, of form Q(t0,x0) (16). In this section we propose
a scheme to numerically solve stochastic additively separable
DP problems of the form Q(t0,x0) (16).

To numerically solve problems of the form Q(t0,x0), we
propose a discretization scheme similar to the one detailed
in Section V. However, unlike in the deterministic case, the
presence of random variables, v ∼ N (0,1), implies a non-
compact state space. This requires the use of state projection
onto appropriately constructed approximating compact sets.

A. Constructing An Approximated DP Problem With Compact
State Space

Consider the stochastic DP problem Q(t0,x0) with compact
control space U = [u, ū]m and underlying random variables v∼
N (0, Iq×q). As in [15], we assume ∀ε > 0 that there exists a
compact set Hε,t = [xε,t , x̄ε,t ]

n ⊂ X (that depends on ε and t)
such that x0 ∈ Hε,0 and,

sup
x∈Hε,t ,u∈U

Pv( f (x,u, t,v) /∈ Hε,t+1)< ε. (24)

We then construct the associated compact stochastic DP ap-
proximation to Q(t0,x0) denoted by Qε,k(t0,x0),

arg min
π∈Π

E[v]T−1
t0

(
JQ

t0 (Φ f̃ ,t0(π,x0,T, [v]T−1
t0 ))

)
(25)

subject to: ψ f̃ ,t0(π,x0, t, [v]t−1
t0 ) ∈ X̃ε,t,k for t = t0, ..,T,

π(x, t) ∈ Ũk and v(t) ∈ Rq ∼N (0, Iq×q)∀x ∈ Xt ,∀t = t0, ..,T −1,

where f̃ (x,u, t,v) = argminy∈Xε,t+1,k{||y − f (x,u, t,v)||2},
X̃ε,t,k = {x1,t , ...,xk,t}n such that xε,t = x1,t < x2,t < ... < xk,t =

x̄ε,t and ||xi+1,t − xi,t ||2 =
x̄ε,t−xε,t

k for 1 ≤ i ≤ k− 1, Ũk =
{u1, ...,uk}m such that u = u1 < u2 < ... < uk = ū and ||ui+1−
ui||2 = ū−u

k for 1≤ i≤ k−1, and [v]T−1
t0 = [v(t0), ..,v(T −1)]∈

Rq×(T−t0).
Analogous to the deterministic case, an optimal policy π∗

ε,k
for Qε,k(t0,x0) can be found exactly by iteratively solving
Bellman’s equation (23). One can then construct a feasible
policy for Q(t0,x0) using,

θε,k(x, t) = arg min
u∈Γt,x

||π∗ε,k(arg min
y∈Xε,t,k

{||y− x||2}, t)−u||2 ∈Π

(26)
where Γt,x is the set of feasible controls at time t ∈ {0, ...,T −
1} and state position x ∈Rn for Q(t0,x0) (16) and Xε,t,k is the
state grid constraint in the problem Qε,k(t0,x0) (25).

If Q(t0,x0) satisfies assumption (A1) to (A4) from Theorem
3.5 [15] then

lim
ε→0,k→∞

∣∣∣E[v]T−1
t0

(
JQ

t0 (Φ f̃ ,t0(θε,k,x0,T, [v]T−1
t0 ))

)
− JQ∗

t0

∣∣∣= 0, (27)

where JQ∗
t0 = E[v]T−1

t0

(
JQ

t0 (Φ f ,t0(π
Q∗,x0,T, [v]T−1

t0 ))
)

is the
expected cost of using an optimal policy when applied to
Q(t0,x0).

VIII. SUMMARY: SOLVING NFS DP PROBLEMS USING
AUGMENTATION AND DISCRETIZATION

Given a DP problem with a NFS objective function, with
known representation maps, we have shown in Section III
and Section VI how to construct equivalent DP problems
with additively separable objective functions. We have fur-
thermore proposed discretization schemes in Section V, for
the deterministic case, and Section VII-A, for the stochastic
case, to solve DP problems with additively separable objective
functions. We now summarize these results by proposing the
following steps for solving a non-separable DP problem. Given
a DP problem of the from H (t0,x0) (8), or Hs(t0,x0) (15) if
stochastic, we do the following:

1) Find a NFS representation of the objective function
(Eqn. (6)) with associated representation maps. One
approach to this is to use Section IV-A which details
how to combine known NFS functions, with known rep-
resentation maps, in order to find potential representation
maps for other NFS functions.

2) Construct the associated augmented DP problem of
form P(t0,x0) (3), if deterministic, or Q(t0,x0) (16),
if stochastic.

3) Use discretization to approximate the augmented DP
problem using Form Pk(t0,x0) (12), if deterministic, or
Qε,k(t0,x0) (25), if stochastic.

4) Numerically solve Pk(t0,x0) or Qε,k(t0,x0) for a suffi-
ciently large k ∈ N.

5) Construct a feasible policy for the original DP problem
from an optimal policy of Pk(t0,x0) or Qε,k(t0,x0)
using (13) or (26).

To illustrate how we use state augmentation and discretiza-
tion methods we consider the following DP problem from [8].

minJ = x(3)2[u(0)2 +u(1)2 +u(1)u(2)2]
1
2 (28)

+[u(0)2 +u(1)2 +u(1)u(2)2]2

subject to, x(t +1) =
x(t)
u(t)

for t ∈ {1,2,3}

x(0) = 10, u(0),u(1),u(2)≥ 0.

In [8] an analytic solution for (28) was found to be:

x∗ =


10

6.3943938
5.782475
3.8882658

 , u∗ =

1.5638699
1.105823

1.4871604

 , J∗ = 74.767439.

The objective function J in (28) is NFS and has a represen-
tation dimension of 2. This can be shown by writing J in the
form of (6) using the functions,

φ0(x,u) = u2, φ1 (x,u,w) =
[

w+u2

u

]
φ2

(
x,u,

[
w1
w2

])
= w1 +w2

2u2,

φ3 (x,w) = x2√w+w2.

11
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Figure 1. The trajectory the algorithm produces for randomly generated stochastic solar data. The supremun of the power is 1.05788(kw) and the cost is
$47.7211.

0 1 2 3

Timestep

3

4

5

6

7

8

9

10

V
a

lu
e

 o
f 

s
ta

te

k=5, J=85.6572

k=20, J=76.8755

k=100, J=75.5877

k=200, J=74.8083

Optimal Trajectory, J=74.767439

Figure 2. The resulting state trajectories from using the policy constructed
from Pk(t0,x0) in the DP Problem (28).

The DP Problem (28) can now be written in the form of
A (t0,x0) using state augmentation, as

minz3(4) (29)
subject to,

z1(t +1) =
z1(t)
u(t)

, z2(t +1) =

{
u(t) if t=1
0 otherwise

∀t ∈ {1,2,3},

z3(1) = u(1)2, z3(2) = z3(1)+u(1)2,

z3(3) = z3(2)+ z2(2)2u(2), z3(4) = z1(3)2
√

z3(3)+ z3(3)2,

z1(0) = 10, z2(0) = 0, z3(0) = 0 u(0),u(1),u(2)≥ 0.

The DP Problem (29) is now a special case of P(t0,x0) and
equivalent to the original DP Problem (28). The associated
approximated DP problem of the form Pk(t0,x0) (12) can now
be found by selecting appropriate compact state and control
spaces; X ⊂R3 and U ⊂R. A feasible policy for (28) is then
constructed from an optimal policy of the associated Pk(t0,x0)
using (13). Figure 2 shows the state trajectories by following
different constructed policies for various values of k. It is seen
that for k = 200 the algorithm produces a solution within three
significant figures of the analytic optimal objective function for
(28).

IX. APPLICATION TO THE ENERGY STORAGE PROBLEM

We apply our augmented DP methodology to the scheduling
of batteries in the presence of demand charges and show
that our proposed algorithm outperforms existing heuristics,
such as [22] (approximately $0.98 savings). To do this, we
propose a simple model for the dynamics of battery storage.
We then formulate the objective function using electricity
pricing plans which include demand charges. We see that the
system described becomes a DP problem of the form S (t0,x0)
(5); which can be tractably solved as it has a NFS objective
function. We will first solve the battery scheduling problem
in the deterministic case based on real historical solar data.
Later, we develop a stochastic Markov model that generates
similar solar data to that seen in Tempe, Az.

A. Battery Dynamics

We model the energy stored in the battery using the differ-
ence equation:

e(k+1) = α(e(k)+ηu(k)∆t), (30)

where e(k) denotes the energy stored in the battery at time step
k, α is the bleed rate of the battery, η is the efficiency of the
battery, u(k) denotes the charging/discharging (+/−) at time
step k and ∆t is the amount of time passed between each time
step. Moreover we denote the maximum charge and discharge
rate by ū and u respectively. Thus we have the constraint that
u(k)∈ [u, ū] :=U for all k. Similarly we also add the constraint
e(k) ∈ [e, ē] := X for all k where e and ē are the capacity
constraints of the battery (typically e = 0).

B. The Objective Function

Let us denote q(k) as the power supplied by the grid at time
step k.

q(k) = qa(k)−qs(k)+u(k), (31)
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where qa(k) and qs(k) are the power consumed by
HVAC/appliances and the power supplied by solar photo-
voltaics at time step k respectively. For now, it is assumed
that both are known a priori.

To define the cost of electricity we divide the day t ∈ [0,T ]
into on-peak and off-peak periods. We define an off peak
period starting from 12am till ton and toff till 12am. We define
an on-peak period between ton till toff. The Time-of-Use (TOU,
$ per kWh) electricity cost during on-peak and off-peak is
denoted by pon and poff respectively. We further simplify this
as pk = pon if k ∈ Ton and pk = po f f if k ∈ To f f where Ton and
To f f are the on-peak and off-peak hours, respectively. These
TOU charges define the first part of the objective function as:

JE(u,e) = poff

ton−1

∑
k=0

q(k)∆t + pon

toff−1

∑
k=ton

q(k)∆t + poff

T

∑
k=toff

q(k)∆t

= ∑
k∈[0,T ]

pk(qa(k)−qs(k))∆t + ∑
k∈[0,T ]

pku(k)∆t

where the daily terminal timestep is T = 24/∆t.
We also include a demand charge, which is a cost pro-

portional to the maximum rate of power taken from the grid
during on-peak times. This cost is determined by pd which is
the price in $ per kW. Thus it follows the demand charge will
be:

JD(u,e) = pd max
k∈{ton,....,toff−1}

{qa(k)−qs(k)+u(k)}.

C. 24 hr Optimal Residential Battery Storage Problem

We may now define the problem of optimal battery schedul-
ing in the presence of demand and Time-of-Use charges,
denoted D(0,e0).

min
u,e
{JE(u,e)+ JD(u,e)} subject to (32)

e(k+1) = α(e(k)+ηu(k)∆t) for k = 0, ...,T
e0 = e0 ,e(k) ∈ X , u(k) ∈U for k = 0, ...,T,
u = (u(0), ...,u(T −1)) and e = (e(0), ...,e(T ))

where recall U := [u, ū] and X := [e, ē].

Proposition 27. Problem D(0,e0) is a special case of
S (t0,x0) (5).

Proof. Let ci = pi(qa(i)−qs(i)+u(i))∆t

di =

{
pd(qa(k)−qs(k)+uk) k ∈ Ton

0 otherwise.

We conclude that our approach to solving NFS DP problems
can be applied to battery scheduling. That is, battery schedul-
ing can be represented as an augmented DP problem of Form
A (t0,x0).

D. Numerically Solving The Deterministic Battery Scheduling
Problem

Our proposed approximation scheme can be applied to solve
the battery scheduling problem, D(0,e0). This is done by
creating an augmented state variable based on the maximum
function in the objective function, as in Section III, and thus
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Figure 3. The resulting monthly cost from using the policy found by solving
the discretized problem, of form Pk(t0,x0), for optimal battery scheduling.
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Figure 4. The resulting maximum demand from using the policy found
by solving the discretized problem, of form Pk(t0,x0), for optimal battery
scheduling.

constructing an equivalent DP problem of the form A (0,x0)
(9); which is a special case of P(t0,x0). Figure 3 shows how
the monthly cost decreases when we use policies constructed
from the associated discretized DP problems, Pk(t0,x0), as
k is increased. Although we do not get a monotonically
decreasing sequence of costs, the error does decrease as k→∞.
Figure 4 also shows that augmenting and then following
our proposed discretization scheme for the battery scheduling
problem results in a policy that reduces the consumption
demand peak as k is increased. Figure 5 shows how the
computational time required to solve the discretized battery
scheduling problem appears to be of exponential nature with
respect to the number of grid points.

We used solar and usage data obtained by local utility Salt
River Project (SRP) in Tempe, AZ, for power variables qs
and qa. We also use pricing data from SRP for the parameters
pon, poff and pd . Battery data obtained for the Tesla Powerwall
was used to determine the parameters α , η , ū, u and ē. The
results of the simulation are shown in Figure 6. The policy
used for this simulation was created using our augmentation
and approximation scheme with k = 20. Interpolation was used
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Figure 5. The computational time in seconds required to solve the discretized
battery scheduling problem, of form Pk(t0,x0).

Table II
LIST OF CONSTANT VALUES (PRICES CORRESPOND TO SALT RIVER

PROJECT E21 PRICE PLAN)

Constant Value Constant Value
α 0.999791667 (W/h) toff 41
η 0.92 (%) pon 0.0633×10−3 ($/KWh)
ū 4000 (Wh) poff 0.0423×10−3 ($/KWh)
u -4000 (Wh) pd 0.2973 ($/KWh)
ē 8000 (Wh) ∆t 0.5 (h)
ton 27

to aid in solving Bellman’s equation (4) and decrease the
approximation error. These results show an improvement in
accuracy over results obtained for a similar problem in [22]
(approximately $0.98 savings). As expected, we see the battery
charges during off-peak and then discharges during on peak
times to reduce ToU charges, while maintaining a reserve
which it uses to keep consumption flat during on peak times,
thereby minimizing the demand charge. As a result the power
stabilizes during on peak times - becoming constant.

E. Solving The Stochastic Battery Scheduling Problem

To evaluate the effect of stochastic uncertainty on battery
scheduling, we identify a Gauss-Markov model of solar gener-
ation based on SRP data. We construct the battery scheduling
problem of the form Hs(t0,x0) (15) and then use our proposed
state augmentation approach to construct an equivalent DP
problem of form Q(t0,x0) (16). The problem of form Q(t0,x0)
is then solved approximately using the methodology of Section
VII-A.

F. Solar Generation Model

Our approach to modeling the dynamics of solar generation
is based on [29]. Our Markov type model can be used to
generate high resolution data over large time horizons. The
Markov property of the model results in deviation from the
mean being correlated time to time, helping represent the
physical phenomena of clouds gradually passing overhead
rather than instantaneously appearing.

Our model is a type of autoregressive-moving-average
model (ARMAX) [30]. In [31] it is seen ARMAX models
preform better than auto-regressive integrated moving average
(ARIMA) and in [32] it is shown ARMAX models can
produce data similar to real data for local sites in Califonia
and Colorado.

Exogenous variables, temperature and humidity, are in-
cluded as state variables in addition to the primary variable -
solar radiance. Cross correlations between state variables are
computed from data. Specifically, we take time-series data of
these quantities, denoted W(t) and normalize this data as,

wi(t) =
Wi(t)−µi(t)

σi(t)
,

where µi(t) is the average historic and clear-sky mean of the
variable Wi at time step t and σi(t) is the standard deviation
of variable Wi at time step t.
The generating process is then given by:

w(t) = Aw(t−1)+Bv(t−1) for t = 1, ..,T (33)

where w(t) ∈ R3,w(0) = 0
v(t)∼N (0, I3×3),

where the matrices A and B are chosen to preserve the lag
0 and lag 1 cross-correlations seen in the collected data.
Specifically, we can compute these matrices as ([29])

A = M1M−1
0 BBT = M0−M1M−1

0 MT
1 , (34)

where Mi is the i-lag cross correlation matrix. So (Mi)m,n =
ρi(m,n) where ρi(m,n) is the cross-correlation coefficient
between variables m and n with variable n lagged by i time
steps. Then, adding back in the mean and deviation, we obtain
the power supplied by solar at time step k as

qs(k) = w1(k)σ1(k)+µ1(k).
Figure 7 shows simulated irradiance data from our solar model
when compared to actual recorded irradiance data. For this
numerical implementation the mean and standard deviation,
(µi(t))0≤t≤T and (σi(t))0≤t≤T , were calculated using data from
Wunderground for a weather station in Tempe, AZ on October
the 15th 2014 for each state variable. Cross correlations
between the variables were also calculated from the same data
set and (34) was solved giving the matrices A and B in (33).
As seen in Figure 7 this solar generation model gives an output
similar to what is observed in real data. Next we incorporate
this model into our battery scheduling DP problems.
Stochastic Battery Scheduling We now modify Problem
D(0,e0) (32) to give a stochastic version of the battery
scheduling problem Ds(0, [e0,0]),

arg min
π∈Π

E[v]T−1
0

[
JE(Φ f ,0(π, [e0,0],T, [v]T−1

0 )) (35)

+ JD(Φ f ,0(π, [e0,0],T, [v]T−1
0 ))

]
subject to: ψ f ,0(π, [e0,0], t, [v]t−1

0 ) ∈ Et ×R3 for t = 0, ..,T

π(x, t) ∈Ut and v(t) ∈ R3 ∼N (0, I3×3)∀x ∈ Xt ,∀t = 0, ..,T −1,

where JE is the ToU cost function and JD is the demand charge

found in Section IX-A; f ([e,w],u, t,v) =
[

α(e+ηu∆t)
Aw+Bv

]
; Et =
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Figure 6. The trajectory the algorithm produces for deterministic solar data. The supremun of the power is 0.7033(kw) and the cost is $46.389.
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Figure 7. Solar data generated over 24 hours using data from Wunderground

[e, ē] and Ut = [u, ū] for all t ∈ {0, ...,T}; ψ f ,t0 and Φ f ,t0 are
the state and trajectory map respectively from Definition 21;
[v]T−1

0 = [v(0), ..,v(T − 1)] ∈ R3×(T ); matrices A and B are
calculated from weather data using equations (34); and all
constants are found in Table II.

G. Numerically Solving The Stochastic Battery Scheduling
Problem

Using the state augmentation procedure in Section III on the
stochastic battery scheduling problem Ds(0, [e0,0]) (35), we
may find a stochastic DP problem of the form Q(t0,x0) (16)
such that an optimal policy for Ds(0, [e0,0]) can be constructed
from an optimal policy of Q(t0,x0). We may then construct
the approximated stochastic DP problem Qε,k(t0,k) (25) and
solve it using Bellman’s equation (23). From an optimal policy
of Qε,k(t0,k) we then construct a feasible policy for Q(t0,x0)
using (26). Figure 1 demonstrates a simulation of using the
feasible policy obtained via augmenting and approximating
the stochastic battery scheduling problem with a reasonably
selected family of compact state spaces, {Hε,t}0≤t≤T , and

discretization level k = 10. To simplify computation we use a
one state version of our solar model (33) and use interpolation
while solving Bellman’s equation. As expected the battery
charges during the on peak times and conservatively discharges
during the off-peak times. The solar data generated from this
run are then used as input to the deterministic algorithm in or-
der to compare performance. As anticipated, the deterministic
case performs better than the stochastic case.

X. CONCLUSION

In this paper we propose a general formulation of the DP
problem. We show that if the objective function is forward
separable, DP problems may reformulated using state augmen-
tation as an equivalent DP problem with additively separable
objective function. Furthermore, we define a class of functions,
called naturally forward separable (NFS) functions, such that
DP problems with an objective function of this class can be
tractably solved using state augmentation. Moreover, we show
that the problem of optimal scheduling of battery storage in
the presence of combined demand and time-of-use charges is
a special case of this class of NFS DP problems. We further
extend these results to stochastic DP problems with a NFS
objective. The proposed algorithms are applied to a battery
scheduling problem using first a deterministic and then Gauss-
Markov model for solar generation and load.

Extensions of this work include the use of non-separable
input constraints (such as those considered in [33]) and algo-
rithms for finding the minimal dimension NFS representation
of a given objective function.

XI. APPENDIX

Lemma 28. Consider a DP problem of the form
Q(t0,x0) (16) with additively separable objective func-
tion JQ

t0 . For any family of functions of the form π̂ :
Rn×(t−t0+1) → Rm are such π̂t([(x(t0), ....,x(t))]) ∈ Ut and
f (x(t), π̂t([(x(t0), ....,x(t))]), t,v(t)) ∈ Xt+1 for all x(i) ∈ Xi,
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i∈{t0, ..., t}, v(t)∈Rq and t ∈{t0, ...,T−1} there exists α ∈Π

such that

E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(α,x0,T, [v]T−1
t0 ))

)
(36)

= E[v]T−1
t0

(
JQ

t0 (Φ f ,t0(π̂,x0,T, [v]T−1
t0 ))

)
where we make a small abuse of notation to extend the

trajectory map Φ f ,t0 to policies that use the entire state space
history.

Proof. Proposition 8.1 [34] or Theorem 6.2 [7].
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