
APartial IntegralEquation (PIE)Representation ofCoupled

LinearPDEs andScalable StabilityAnalysis usingLMIs

MatthewM. Peet a,

aSchool for the Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85298
USA.

Abstract

We present a new Partial Integral Equation (PIE) representation of Partial Differential Equations (PDEs) in which it is possible
to use convex optimization to perform stability analysis with little or no conservatism. The first result gives a standardized
representation for coupled linear PDEs in a single spatial variable and shows that any such PDE, suitably well-posed, admits
an equivalent PIE representation, defined by the given conversion formulae. This leads to a new prima facie representation of
the dynamics without the implicit constraints on system state imposed by boundary conditions. The second result is to show
that for systems in this PIE representation, convex optimization may be used to verify stability without discretization. The
resulting algorithms are implemented in the Matlab toolbox PIETOOLS, tested on several illustrative examples, compared
with previous results, and the code has been posted on Code Ocean. Scalability testing indicates the algorithm can analyze
systems of up to 40 coupled PDEs on a desktop computer.

Key words: PDEs, PIEs, LMIs, Lyapunov Stability

1 Introduction

Partial Differential Equations (PDEs) are used to model
systems where the state depends continuously on both
time and secondary independent variables. Common ex-
amples of such secondary dependence include space; as
in flexible structures (Bernoulli-Euler beams) and fluid
flow (Navier-Stokes); or maturation, as in cell popula-
tions and predator-prey dynamics.

The most common method for computational analysis
of PDEs is to project the infinite-dimensional state onto
a finite-dimensional vector space using, e.g. [1–3] and
to use the extensive literature on control of Ordinary
Differential Equations (ODEs) to test stability of, and
design controllers for, the resulting finite-dimensional
system. However, such discretization approaches are
prone to instability (e.g. in the case of hyperbolic bal-
ance laws [4]), numerical ill-conditioning, and large-
dimensional state-spaces. Furthermore, representation
of PDEs using ODEs inevitably neglects higher-order
modes, modes which can be inadvertently excited by
feedback control via the well-known spillover effect [5].

Work on computational methods for analysis and con-

Email address: mpeet@asu.edu (Matthew M. Peet).
1 This work was supported by grants NSF # CNS-1739990,
CMMI-1935453 and ONR #N000014-17-1-2117.

trol of PDEs which does not rely on discretization has
been more limited. Perhaps the most well-known compu-
tational method for stabilization of PDEs without dis-
cretization is the backstepping approach to controller
synthesis [6–8]. This approach is not optimization-based,
however, and not typically used for stability analysis
(An exception being [9]). Recently, there has been some
work on the use of Linear Matrix Inequalities (LMIs) to
find Lyapunov functions for linear and nonlinear PDEs -
See [10–13]. However, because most of these works focus
on the nonlinear case, the Lyapunov functions proposed
therein are relatively simple and the resulting stability
conditions conservative. An extension of the IQC frame-
work to PDEs can be found in [14].

Numerous analytic (non-computational) methods have
been proposed over the years for analysis of PDEs,
including the well-developed literature on Semigroup
theory [15–17,4,18,19] and the literature on Port-
Hamiltonian systems [20] for selecting boundary inputs.
However, these methods are typically ad-hoc - relying
on the expertise of the user to propose and test energy
metrics.

Recently, Sum-of-Squares (SOS) has been used for anal-
ysis and control of PDEs and examples can be found
in [21–24] and [25–29]. While these SOS-based works are
relatively accurate, they: 1) Are mostly limited to scalar
PDEs; 2) Suffer from high computational complexity; 3)

Preprint submitted to Automatica 14 December 2020

Are mostly ad-hoc, requiring significant effort to extend
the results to new PDEs. For example, these methods
have never been able to analyze stability of beam or wave
equations. The source of the difficulty in using LMIs and
SOS for stability analysis of PDEs is that the solution of
a PDE is required to satisfy three sets of constraints: the
differential equation; the boundary conditions; and con-
tinuity constraints. This is in contrast to ODEs, which
are defined by bounded linear operators (matrices) and
solutions to which need only satisfy a single differential
equation.

The Goal of the Paper is to create, for PDEs, an
equivalent of the LMI framework developed for ODEs.
Historically, PDEs (as old as Newton) are defined by two
conflicting sets of equations: the PDE itself, which moves
the state; and the Boundary Conditions (BCs), which
implicitly constrain the motion of the state. We want
to unify these conflicting constraints into a new state-
space representation of PDEs, defined by an algebra of
bounded linear operators, and which directly incorpo-
rates: the PDE, the BCs, and the continuity constraints
– thereby eliminating issues of well-posedness and obvi-
ating the need to account for implicit constraints on the
state.

This approach is fundamentally different than previous
work using SOS or LMI-based methods. These previous
efforts used SOS or positive matrices to propose candi-
date Lyapunov functions and then attempted to inte-
grate the effect of boundary conditions into the deriva-
tive using, e.g. integration by parts. By contrast, our ap-
proach is to integrate the effect of boundary conditions
into the dynamics - thereby obviating the need to ac-
count for them in the stability analysis. As a result, our
algorithms have no obvious source of conservatism and
scale to systems of up to 40 coupled PDEs.

Approach: In this paper, we propose the Partial Inte-
gral Equation (PIE) representation of PDEs. PIEs are
infinite-dimensional state-space systems of the form

T ẋ(t) = Ax(t),

x(0) = x0 ∈ Ln2 [a, b], (1)

where the state, x(t) is inLn2 [a, b], and the system param-
eters (T ,A) are Partial Integral (3-PI) operators. 3-PI
refers to the 3 matrix-valued parameters, {N0, N1, N2}
which define every such operator P{Ni} : L2[a, b] →
L2[a, b] as(
P{N0,N1,N2}x

)
(s) := N0(s)x(s)ds

+

∫ s

a

N1(s, θ)x(θ)dθ +

∫ b

s

N2(s, θ)x(θ)dθ.

As shown in Section 4, all 3-PI operators areL2-bounded
and together, they form an algebra (closed under addi-
tion, composition, scalar multiplication). Because they
are algebraic, 3-PI operators inherit many of the prop-
erties of matrices and there is now a Matlab toolbox,

PIETOOLS (using SOSTOOLS as a model), which al-
lows for manipulation of 3-PI operators using matrix
syntax and which can solve Linear PI Inequality (LPI)
constrained optimization problems using the YALMIP
syntax for LMIs.

Converting PDE state to PIE state: The first con-
tribution of the paper (extending the results in [30]) is to
show that the solutions to a broad class of PDEs can be
represented using PIEs. For this result, we propose an
alternative state-space. To explain this change of state,
we consider the following standardized representation
of coupled linear PDEs in a single spatial variable, pre-
sented in Section 3.

ẋ0(t, s)

ẋ1(t, s)

ẋ2(t, s)

 = A0(s)


x0(t, s)

x1(t, s)

x2(t, s)


︸ ︷︷ ︸

x∈X

+A1(s)

[
x1(t, s)

x2(t, s)

]
s

+A2(s)
[
x2(t, s)

]
ss

with associated state-space

X =




x0

x1

x2

 ∈ Ln0
2 ×H

n1
1 ×H

n2
2 : B



x1(a)

x1(b)

x2(a)

x2(b)

x2s(a)

x2s(b)


= 0


.

Most 1D PDEs can be formulated using this standard-
ized representation.

For example, if we consider the damped wave equation

ü(t, s) = uss(t, s)−2au̇(t, s)−a2u(t, s), s ∈ [0, 1]

u(t, 0) = 0, us(t, 1) = −ku̇(t, 1).

Then, setting u1 = u̇ and u2 = u, we have[
u̇1(t, s)

u̇2(t, s)

]
=

[
−2a −a2

1 0

]
︸ ︷︷ ︸

A0

[
u1(t, s)

u2(t, s)

]
+

[
1

0

]
︸︷︷︸
A2

u2ss(t, s)

with BCs u2(0) = 0, u1(0) = 0, and u2s(1) = −ku1(1)
so that

X =



[
u1

u2

]
∈ H1

1 ×H1
2 :


0 0 1 0 0 0

1 0 0 0 0 0

0 k 0 0 0 1


︸ ︷︷ ︸

B



u1(0)

u1(1)

u2(0)

u2(1)

u2s(0)

u2s(1)


= 0


.

The Fundamental State-Space A reasonable defi-
nition of state is the minimal amount of information

2

needed to forward-propagate the solution. By this mea-
sure, and referring to the example, defining the state
of a PDE as u(t) ∈ H1 × H2 is not minimal, as this
function contains redundant information regarding the
boundary values. We propose, then, that for a PDE de-
fined by Ai and X, the correct definition of state is the
so-called fundamental state, where for x ∈ X, we define

xf =


x0

x1s

x2ss

 =


I

∂s

∂2s

x ∈ Ln0+n1+n2
2 .

In Section 6, we show that if the PDE is suit-
ably well-posed, there exists a unitary 3-PI operator
T : Ln0+n1+n2

2 → X such that x = T xf .

Equivalence of PIE and PDE: In Section 7, equipped
with the unitary operator, T , we propose a 3-PI opera-
tor A such that for any solution xf (t) ∈ L2 of the PIE
in Eqn. (1), x(t) = T xf (t) satisfies the PDE defined by
Ai, X and that, conversely, for any solution of the PDE,
x, the fundamental state xf (t) = diag(I, ∂s, ∂

2
s)x(t)

satisfies the PIE. We further show that exponential
stability of the PIE and PDE are equivalent.

An Linear PI Inequality (LPI) for Stability:
Aside from have a minimal state-space, the advantage
of the PIE representation of a PDE is computational.
Recall that our goal is to create a framework akin to
LMIs which can be used to study PDEs. Because PIEs
do not have BCs, all information needed to define the
solution is contained in the fundamental state, xf ∈ L2.
Therefore, unlike PDEs, where the effect of the BCs
needs to be “brought in” using integration by parts,
Poincare inequalities, etc., PIEs are a prima facie rep-
resentation of the dynamics. This allows us to pose the
stability test for PIEs as a convex optimization problem
of the following form:

FindP=P{Ni}
: P ≥ εI,

T ∗PA+A∗PT ≤ −δT ∗T .
This LPI, then, is a straightforward generalization of
the Lyapunov LMI: P > 0, ATP + PA < 0. Further-
more, again motivated by the efficient Matlab parser
YALMIP [31], we have recently developed the Mat-
lab toolbox PIETOOLS [32] allows us to manipulate
3-PI operators using matrix syntax and solve Linear
PI Inequality (LPI) constrained optimization problems.
Thus, if {T ,A} are as defined in Section 7, then our
stability test reduces to 3 lines of Matlab code

[X,P] = poslpivar(X,n,I,d);

D = -epneg*T’*T-A’*P*T-T’*P*A;

X = lpi ineq(X,D);

where the functions poslpivar and lpi ineq are de-
fined in Subsection 9.3 and in [32]. We emphasize that
this code applies to any PDE in standardized format and

since there is no need to bring in the boundary condi-
tions, there is no obvious source of conservatism. Specif-
ically, in Section 11, we apply the algorithm to beam
and wave equations for which there are no previous LMI-
based stability conditions. Furthermore, the lack of con-
servatism is verified in Section 10 by comparing against
known stability margins taken from the literature.

Finally, computational complexity depends on the de-
gree of the polynomial parameters in the 3-PI variable P
(corresponding to the complexity of the candidate Lya-
punov funtion). However, most problems only require
very simple Lyapunov functions. In this case, the scala-
bility of the method is comparable to the complexity of
discretization-based analysis. Specifically, if we choose
the polynomial parameters to have degree 2, then the
algorithm can analyze stability of more than 40 coupled
PDEs on a desktop computer.

In the following two illustrations, we attempt to further
introduce our BC free PIE representation by: 1) showing
that the BCs cannot be ignored by convex optimization
algorithms and 2) showing that the PDE can be refor-
mulated in a way where the BCs can be ignored.

1.1 BCs Cannot Be Ignored

The goal of the paper is to find a representation of PDEs
which can be interpreted as we would interpret an ODE
- without implicit constraints on the solution imposed
by BCs or continuity. Such a representation, then, allows
us to use convex optimization tools to analyze the sys-
tem and, in particular, to prove stability. In this context,
let us consider what happens when we try to use con-
vex optimization to study the PDE, and in particular,
let us illustrate what happens when that optimization
tool treats the PDE like an ODE - i.e. without consid-
ering continuity constraints or boundary conditions. To
this end, suppose we are given a PDE, parameterized by
A0, A1, A2 as follows.

ẋ(t, s) = A0(s)x(t, s) +A1(s)xs(t, s) +A2(s)xss(t, s)

An obvious class of candidate Lyapunov functions for
this system is parameterized by M as

V (x) =
〈
x,P{M,0,0}x

〉
L2

=

∫ b

a

x(s)TM(s)x(s)ds.

As would be the case for an ODE, V (x) ≥ ε ‖x‖2 if
M(s) ≥ εI for all s and some ε > 0 - a constraint which
is easy to enforce using, e.g. SOS. However, if we now
take the derivative of this candidate Lyapunov function
we obtain

V̇ (x) =

b∫
a


x(s)

xs(s)

xss(s)


T

D(s)


x(s)

xs(s)

xss(s)

 ds

D(s) :=

A0(s)TM(s) + M(s)A0(s) M(s)A1(s) M(s)A2(s)

A1(s)TM(s) 0 0

A2(s)TM(s) 0 0

.

3

Now, if we were to propose a convex optimization al-
gorithm which treats the system like an ODE (with-
out considering the BCs and continuity constraints), we
would constrain D(s) ≤ 0 and this would imply stabil-
ity. Unfortunately, however, D(s) 6≤ 0 for ANY choice
of M,A1, A2 6= 0. The problem, of course, is that the
differentiation operator branches x into xs and xss, nei-
ther of which are independent of x. Moreover, the in-
formation which determines the relationship between x,
xs and xss is not embedded in the differential equation.
Rather, this information is implicit in the BCs and con-
tinuity constraints. At this point, of course, an intelli-
gent user would “bring in” the boundary and continuity
properties to obtain a new stability condition using, e.g.
integration by parts or Stokes Theorem. However, such
secondary steps are not easily incorporated in a convex
optimization algorithm. The goal of this paper, then, is
to find a prima facie representation of the PDE with no
implicit constraints on continuity and BCs, and wherein
we may develop a computational framework which mir-
rors that of LMIs for ODEs.

1.2 BCs Can Be Moved Into The Dynamics

Having argued that BCs cannot be ignored, let us show
that the BCs can be brought into the dynamics in a way
which may be more suitable for tools based on convex
optimization. Specifically, in this subsection, we consider
an example of how the incorporation of BCs and conti-
nuity can take a system (wherein the dynamics do not
explicitly depend on the partial derivatives), and trans-
form it into a system with explicit dependence on the
partial derivatives and inputs. Consider the following
non-partial-differential, yet distributed-parameter sys-
tem.

u̇(t, s) = u(t, s), u(t, 0) = w1(t), us(t, 0) = w2(t).

To allow for the specified BCs, we restrict continuity of
u as u(t) ∈ H1

2 . Note that if we ignore the BCs and
continuity constraints, the system does not appear to be
a PDE since the dynamics are identical at every point
in the domain. However, if we now combine the funda-
mental theorem of calculus with integration by parts,
we obtain a very different, yet equivalent, set of dynam-
ics - dynamics with explicit dependence on the partial
derivatives.

u̇(t, s) = sw1(t) + w2(t) +

∫ s

0

(s− η)uηη(t, η)dη

This formulation of the same system directly incorpo-
rates BCs and continuity into the dynamics - which are
now expressed using the partial derivative uss. In addi-
tion, while the original formulation was spatially decou-
pled, with w1, w2 only acting at the boundary, the new
formulation shows that the exogenous inputs w1, w2 are
felt instantaneously at every point in the domain. In con-
trast to the original representation of the dynamics, the
integral formulation of the same system is more suitable
for convex optimization since the effect of the BCs and
continuity is explicitly included in the dynamics (and

hence the BCs and continuity can now be ignored by the
algorithm).

The first goal of this paper, then, is: 1) to show that a
broad class of PDEs can be reformulated in a way which
specifies precisely how the BCs affect the dynamics (the
PIE representation) and 2) to provide universal formulae
for constructing such a representation.

2 Notation

We defineL2[a, b]n to be space of Rn-valued Lesbegue in-
tegrable functions defined on [a, b] and equipped with the
standard inner product. We useW k,p[a, b]n to denote the
Sobolev subspace of Lp[a, b]

n defined as {u ∈ Lp[a, b]n :
∂q

∂xq u ∈ Lp for all q ≤ k}. Hk[a, b] := W k,2[a, b] and
Hn
k [a, b] =

∏n
i=1Hk[a, b]. For efficiency, we typically

omit the domain, so that, e.g.Hn
k := Hn

k [a, b] unless oth-
erwise stated. In ∈ Rn×n and 0n1×n2 ∈ Rn1×n2 are used
to denote the identity and zero matrices and the sub-
scripts are omitted when the dimension of the matrices
is clear from context. I denotes the indicator function
I : R→ {0, 1}, defined as

I(s) =

{
1, if s > 0

0, otherwise.

3 A Standardized PDE Representation

The two primary contributions of this paper are: a for-
mula for conversion of PDEs to PIEs; and an LPI frame-
work for Lyapunov stability analysis of PIEs (Section 8).
The significance of the latter result clearly depends on
the set of PDEs which can be converted to PIEs. In this
section, we propose a standardized framework for rep-
resentation of PDEs. In Section 7, we will show that for
any such PDE, there exists a PIE for which a solution to
the PIE yields a solution to the PDE and vice-versa. The
class of PDEs considered here is not exhaustive, however.
That is, there exist PDEs not listed here which may be
converted to PIEs. Furthermore, there exist PIEs which
do not have a coupled PDE representation.

We consider coupled PDEs of the form
ẋ0(t, s)

ẋ1(t, s)

ẋ2(t, s)

 = A0(s)


x0(t, s)

x1(t, s)

x2(t, s)

+A1(s)

[
∂sx1(t, s)

∂sx2(t, s)

]

+A2(s)
[
∂2sx2(t, s)

]
(2)

and with solution restricted to the domain

X :=




x0

x1

x2

 ∈ Ln0
2 ×H

n1
1 ×H

n2
2 : B



x1(a)

x1(b)

x2(a)

x2(b)

x2s(a)

x2s(b)


= 0


(3)

4

where

B



In1
0 0

In1
0 0

0 In2 0

0 In2
(b− a)In2

0 0 In2

0 0 In2


is invertible. (4)

Specifically, given x0 ∈ X, we say that x satisfies the
PDE defined by {Ai, X} if x is Frechét differentiable,
x(0) = x0, x(t) ∈ X and Equation (2) is satisfied for all
t ≥ 0.

3.1 A Guide to Partition of States

The partition of states in Equation (2) is not overly re-
strictive and there is no special structure to this gen-
erator. The partition is purely organizational and de-
fined by the domain restriction x ∈ Ln0

2 ×H
n1
1 ×H

n2
2 .

States with no restrictions on continuity are assigned to
be an element of the vector x0(t) ∈ L2[a, b]n0 . If a state
has no continuity properties, then these states cannot
be differentiated and it is not possible to assign bound-
ary conditions, as the limits x0(a), x0(b) do not exist.
States which are continuous, but not continuously dif-
ferentiable are assigned to x1(t) ∈ Hn1

1 . The continuity
property of these states allow for boundary conditions,
as x1(a), x1(b) exist. However, since ∂sx1 ∈ L2[a, b]n1 is
not continuous, we cannot assign boundary conditions
which involve x1s(a) or x1s(b), as these limits do not
exist. Finally, states which are required to be continu-
ously differentiable are assigned to x2(t) ∈ Hn2

2 and ad-
mit boundary conditions involving x2s(a) or x2s(b) and
second-order spatial derivatives, ∂2sx2. This standard-
ized representation specifically excludes states in Hn

k
where k > 2. Although the results of the paper can be
extended to such systems, such an extension is not con-
sidered here.

3.2 A Guide to Boundary Conditions

In this subsection, we propose restrictions on the matrix
B which are equivalent to Equation (4). Specifically, we
require that the row rank of B must be n1 + 2n2 and
that B contains no boundary conditions of a given pro-
hibited form. Note that the rank condition on B is not
overly restrictive as, to the best of our knowledge, it is
a necessary condition for existence of a unique solution
for any PDE in standardized form.

3.2.1 Prohibited Boundary Conditions

A necessary and sufficient condition for B to satisfy
Equation (4) is for B ∈ R(n1+2n2)×(2n1+4n2) to have row
rank n1+2n2 and to define no boundary conditions con-
sisting of a linear combination of x1(a) − x1(b) = 0,
x2(a)+(b−a)x2s(a)−x2(b) = 0, or x2s(a)−x2s(b) = 0.

Lemma 1 Suppose B ∈ R(n1+2n2)×(2n1+4n2). Define

T⊥ :=


In1
−In1

0 0 0 0

0 0 In2 −In2 In2(b− a) 0

0 0 0 0 In2
−In2

 .
Equation (4) is satisfied if and only ifB ∈ R(n1+2n2)×(2n1+4n2),
has row rank n1 + 2n2 and the row space of B and the
row space of T⊥ has trivial intersection.

PROOF. Let the T matrix from Eqn. (4) be as
defined in Eqn. (8). Now suppose BT is invert-
ible. Since T ∈ R(2n1+4n2)×(n1+2n2), we require
B ∈ R(n1+2n2)×(2n1+4n2) in order for BT to exist and
be square. Since BT ∈ R(n1+2n2)×(n1+2n2), B must also
have row rank n1 + 2n2. Now, since T has column rank
n1 + 2n2, its row rank is also n1 + 2n2. Now T⊥ has
row rank n1 + 2n2 and T⊥T = 0. Thus the row space
of T⊥ lies in Im(T)⊥ and since Im(T)⊥ is of dimension
n1 + 2n2, the row space of T⊥ is Im(T)⊥. Therefore
xTBT = 0 for some x 6= 0, if and only if the intersec-
tion of the row space of B and that of T⊥ is non-trivial.
This establishes necessity. For sufficiency, we assume
B ∈ R(n1+2n2)×(2n1+4n2) and has row rank n1 + 2n2. As
shown, the row space of B has trivial intersection with
Im(T)⊥. Again, we have that xTBT = 0 implies x = 0,
from which we conclude invertibility. �

Note 1 The restriction on prohibited boundary condi-
tion is subtle. For example, x2(a) = x2(b) is permit-
ted, except if combined with x2s(a) = 0 (combining with
x2s(b) = 0 is still OK). Meanwhile, x1(a) = x1(b) and
x2s(a) = x2s(b) are never OK. Additionally, x2s(a) = 0
is OK, unless combined with x2(a) = x2(b) or x2s(b) = 0.
Of course, the most reliable way to check if certain bound-
ary conditions are permitted is to simply construct B and
check the rank of BT . The PIETOOLS implementation
described in Subsection 9.3 will do this automatically and
generate an error if BT is not invertible.

3.2.2 A Note on Necessity of Equation (4)

Boundary conditions of the form x1(a) = x1(b) are pe-
riodic and imply ∫ b

a

x1s(s)ds = 0.

Likewise x2s(a) = x2s(b) implies∫ b

a

x2ss(s)ds = 0,

and x2(a) + (b− a)x2s(a) = x2(b) implies∫ b

a

∫ s

a

x2ηη(η)dηds = 0.

In this way, the prohibited BCs represent integral con-
straints on the respective PIE (fundamental) states,
x1s ∈ L2 and x2ss ∈ L2, meaning these PIE states are
not minimal (dynamics expressed using these states

5

have implicit constraints). One option in these cases
may be to redefine the PIE states modulo an integral
constraint, however this extension is left for future work.

3.3 Euler-Bernoulli Beam Example

In order to better understand how to write a PDE in the
standardized PDE form of Eqn. (2), let us consider the
cantilevered Euler-Bernoulli beam:

ü(t, s) = −cussss(t, s), where

u(0) = us(0) = uss(L) = usss(L) = 0.

We wish to construct a standardized PDE representation
of this classic diffusive model. Following the approach in,
e.g. [20] (from which we also get the Timoshenko beam
model in Section 11), we first introduce the augmented
state u1 = u̇ - a choice which leads to “natural” BCs
for which the system is well-posed [19]. This choice also
eliminates the second order time-derivative, ü. Since u ∈
H4, we eliminate the fourth-order spatial derivative by
creating the augmented state u2 = uss. Taking the time-
derivative of these states, we obtain

u̇1 = ü = −cussss = −cu2ss
u̇2 = ∂t∂

2
su = ∂2s u̇ = u1ss.

These equations are now in the standardized form

ẋ(t) =

[
0 −c
1 0

]
︸ ︷︷ ︸

A2

xss(t)

where A0 = A1 = 0, n2 = 2, and n0 = n1 = 0. We now
examine the boundary conditions using these states:

uss(L) = u2(L) = 0 and usss(L) = u2s(L) = 0.

These boundary conditions are insufficient, as the result-
ing rank is 2. However, we may include the “natural”
BCs by differentiating in time to obtain

u̇(0) = u1(0) = 0 and u̇s(0) = u1s(0) = 0.

We now have 4 boundary conditions, which we use to
construct the B matrix as


1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

B



u1(0)

u2(0)

u1(L)

u2(L)

u1s(0)

u2s(0)

u1s(L)

u2s(L)


= 0.

The B matrix is now of rank 4 = n1 + 2n2 and satisfies
Equation (4).

Now, if u satisfies the E-B beam equation for some initial
condition, we have that u1 = u̇, u2 = uss satisfy the
standardized PDE model. However, conversely, if u1, u2

satisfy the standardized PDE for some initial condition,
then in order to construct a solution to the original PDE,
we must integrate u1 in time. However, this requires
knowledge of u(0). Thus we find that some information
on the system solution has been lost in the standardized
representation. Note, however, that we could retain this
information by including a third state, u3 = u, so that
u̇3 = u1 and then the solutions would be equivalent.

3.4 Exponential Stability of Coupled PDE Systems

In this subsection, we define two notions of exponential
stability with respect to the standardized PDE repre-
sentation - stability in the X norm and stability in the
L2 norm. In Section 5, we will define the notion of ex-
ponential stability for PIEs. In Section 8, we will show
that exponential stability of a PIE representation of a
standardized PDE is equivalent to exponential stability
of the original standardized PDE in the X norm.

Definition 2 We say the PDE defined by {Ai, X} is
exponentially stable inX if there exist constantsK, γ > 0
such that for any x0 ∈ X, any solution x of the PDE
defined by {Ai, X} satisfies

‖x(t)‖Ln0
2 ×H

n1
1 ×H

n2
2
≤ K ‖x0‖Ln0

2 ×H
n1
1 ×H

n2
2
e−γt.

Definition 3 We say the PDE defined by {Ai, X} is
exponentially stable in L2 if there exist constants K, γ >
0 such that for any x0 ∈ X, any solution x of the PDE
defined by {Ai, X} satisfies

‖x(t)‖
L

n0+n1+n2
2

≤ K ‖x0‖Ln0+n1+n2
2

e−γt.

Note 2 Exponential stability in X implies exponential
stability in L2, since ‖x‖L2

≤ ‖x‖Hk
for any x ∈ Hk and

k ≥ 0. Furthermore, our definitions of exponential sta-
bility imply that all states in x must be exponentially de-
creasing in the given norm. Because not all standardized
PDE representations of a given scalar high-order PDE
necessarily use the same set of first-order states (See,
e.g. the E-B beam example), this raises the possibility one
standardized PDE representation may be exponentially
stable, while another may not.

Note that in the case where the X or L2 stability defi-
nition holds with γ = 0, we say that the system is Lya-
punov stable or neutrally stable.

4 3-PI Operators Form an Algebra

In Section 7, we will show how to construct an equiva-
lent PIE representation of any PDE in the standardized
form described in Section 3. PIEs, as will be defined in
Section 5, have the advantage that they are parameter-
ized by the class of 3-PI operators, which are bounded
on L2 and form an algebra. Furthermore, candidate Lya-
punov functions can be parameterized using 3-PI opera-
tors. The algebraic nature of 3-PI operators significantly
simplifies the problem of analysis and control of PIEs.

Formally, we say that an operator P is 3-PI if there exist
3 bounded matrix-valued functions N0 : [a, b] → Rn×n,
N1 : [a, b]2 → Rn×n, and N2 : [a, b]2 → Rn×n such that

6

(Px)(s) :=
(
P{N0,N1,N2}x

)
(s) := N0(s)x(s)

+

∫ s

a

N1(s, θ)x(θ)dθ +

∫ b

s

N2(s, θ)x(θ)dθ,

whereN0 defines a multiplier operator andN1, N2 define
the kernel of an integral operator.

For given N0, N1, N2, we use P{N0,N1,N2} : Ln2 → Ln2 to
denote the corresponding PI operator. When clear from
context, we use the shorthand notationP{Ni} to indicate
P{N0,N1,N2}.

One may interpret 3-PI operators to be an extension of
matrices, wherein N0 defines the diagonal of the matrix,
N1 contains the sub-diagonal terms, andN2 contains the
terms above the diagonal.

In the following subsections, we show that this class of
bounded linear operators is closed under composition
and adjoint (closure under addition and scalar multi-
plication follows immediately from addition and scalar
multiplication of parameters). Furthermore, these re-
sults show that if we define the set of 3-PI operators
with polynomial parameters N0, N1, and N2, then this
set forms a sub-algebra.

4.1 Composition of 3-PI operators

In this subsection, we derive an analytic formula for the
composition 3-PI operators. Specifically, we have the fol-
lowing.

Lemma 4 For any bounded functions B0, N0 : [a, b] →
Rn×n, B1, B2, N1, N2 : [a, b]2 → Rn×n, we have

P{Ri} = P{Bi}P{Ni}
where

R0(s) = B0(s)N0(s), (5)

R1(s, θ) = B0(s)N1(s, θ) +B1(s, θ)N0(θ)

+

∫ θ

a

B1(s, ξ)N2(ξ, θ)dξ +

∫ s

θ

B1(s, ξ)N1(ξ, θ)dξ

+

∫ b

s

B2(s, ξ)N1(ξ, θ)dξ,

R2(s, θ) = B0(s)N2(s, θ) +B2(s, θ)N0(θ)

+

∫ s

a

B1(s, ξ)N2(ξ, θ)dξ +

∫ θ

s

B2(s, ξ)N2(ξ, θ)dξ

+

∫ b

θ

B2(s, ξ)N1(ξ, θ)dξ.

PROOF. See the extended paper in [33] for a proof.

This lemma proves that the class of 3-PI operators is
closed under composition.

Corollary 5 Suppose that {Bi} and {Ni} are matrices
of polynomials. Then if P{Ri} = P{Bi}P{Ni}, {Ri} are
matrices of polynomials.

PROOF. The algebra of polynomials is closed under
multiplication and integration. Therefore, the proof fol-
lows from the expressions for {Ri} given in Lemma 4.�

This corollary implies that the subset of 3-PI opera-
tors with polynomial parameters is likewise closed under
composition and therefore forms a subalgebra.

4.2 The Adjoint of 3-PI operators

Next, we give a formula for the adjoint of a 3-PI operator.

Lemma 6 For any bounded functions N0 : [a, b] →
Rn×n, N1, N2 : [a, b]2 → Rn×n and any x,y ∈ Ln2 [a, b],
we have 〈

P{Ni}x,y
〉
L2

=
〈
x,P{N̂i}y

〉
L2

where

N̂0(s) = N0(s)T , N̂1(s, η) = N2(η, s)T ,

N̂2(s, η) = N1(η, s)T . (6)

PROOF. See the extended paper in [33] for a proof.

The following Corollary follows immediately from
Lemma 6.

Corollary 7 Suppose that {Ni} are matrices of poly-
nomials. Then, using the adjoint with respect to L2, if
P{N̂i} = P∗{Ni}, {N̂i} are matrices of polynomials.

5 Partial Integral Equations (PIEs)

In this section, we give the autonomous form of a Partial
Integral Equation (PIE) and define notions of solution
and exponential stability. Specifically, for given 3-PI op-
erators A, T , we say, for an initial condition, x0 ∈ Ln2 ,
that x : R+ → Ln2 satisfies the PIE defined by {A, T } if
x(0) = x0, x is Frechét differentiable for all t ≥ 0 and

T ẋ(t) = Ax(t) (7)
for all t ≥ 0.

Note that not all PIEs are well-posed in the sense of
Hadamard and at present we propose no direct con-
ditions on the PIE which allows us to conclude well-
posedness. However, we will show in Section 7 that if
a well-posed PDE is in standardized form (satisfying
Eqn. (4)), and the PIE is generated from that standard-
ized PDE using the formulae in Section 7, then the PIE
is well-posed.

5.1 Exponential Stability of PIEs

Having defined PIE’s, we now define the notion of expo-
nential stability we will use.

Definition 8 We say the PIE defined by the 3-PI opera-
tors {A, T } is exponentially stable if there exist constants
K and γ > 0 such that for x(0) ∈ Ln2 , any solution x
satisfies ‖x(t)‖L2

≤ K ‖x(0)‖L2
e−γt.

7

In the case where the exponential stability definition
holds with γ = 0, we say the PIE is stable in the sense
of Lyapunov or neutrally stable.

6 A Unitary map from X to L2

In this section, we show equivalence between the Hilbert
space Ln0+n1+n2

2 and the space

X =




x0

x1

x2

 ∈ Ln0
2 ×H

n1
1 ×H

n2
2 : B



x1(a)

x1(b)

x2(a)

x2(b)

x2s(a)

x2s(b)


= 0


where B satisfies Equation (4) and X is equipped with
the inner product

〈x,y〉X = 〈x0, y0〉L2
+ 〈∂sx1, ∂sy1〉L2

+
〈
∂2sx2, ∂

2
sy2
〉
L2
.

Specifically, in this section, we

• Construct a unitary map T : Ln0+n1+n2
2 → X where

T is a 3-PI operator.
• Show 〈·, ·〉X is an inner product and X is Hilbert with

this inner product.
• Show that for x ∈ X, the norm ‖·‖X is equivalent to

the norm ‖·‖L2×H1×H2
where recall

‖x‖L2×H1×H2 = ‖x0‖L2
+ ‖x1‖H1

+ ‖x2‖H2
.

6.1 The Unitary Map, T
In this subsection, we define the 3-PI operator T =
P{Gi} such that if

x ∈ X and x̂ ∈ Ln0+n1+n2
2

then

x = T


I

∂s

∂2s

x and x̂ =


I

∂s

∂2s

 T x̂.

First, we first show that a PDE state x ∈ H2 can be
represented using the PIE state, ∂2sx ∈ L2 and a set of
‘core’ boundary conditions (x(a), xs(a)).

Lemma 9 Suppose that x ∈ Hn
2 [a, b]. Then for any s ∈

[a, b],

x(s) = x(a) +

∫ s

a

xs(η)dη

xs(s) = xs(a) +

∫ s

a

xss(η)dη

x(s) = x(a) + xs(a)(s− a) +

∫ s

a

(s− η)xss(η)dη.

PROOF. The first two identities are the fundamental
theorem of calculus. The third identity is a repeated ap-
plication of the fundamental theorem of calculus, com-
bined with a change of variables. That is, for any s ∈
[a, b],

x(s) = x(a) +

∫ s

a

xs(η)dη

= x(a) +

∫ s

a

xs(a)ds+

∫ s

a

∫ η

a

xss(ζ)dζdη.

Examining the 3rd term, where recall I(s) is the indica-
tor function,∫ s

a

∫ η

a

xss(ζ)dζdη =

∫ b

a

∫ b

a

I(s− η)I(η − ζ)xss(ζ)dζdη

=

∫ b

a

(∫ b

a

I(s− η)I(η − ζ)dη

)
xss(ζ)dζ

=

∫ b

a

I(s− ζ)

(∫ ζ

s

dη

)
xss(ζ)dζ =

∫ s

a

(s− ζ)xss(ζ)dζ

which is the desired result.�

As an obvious corollary, we have

x(b) = x(a) +

∫ b

a

xs(η)dη

xs(b) = xs(a) +

∫ b

a

xss(η)dη

x(b) = x(a) + xs(a)(b− a) +

∫ b

a

(b− η)xss(η)dη.

The implication is that any boundary value can be ex-
pressed using two other boundary identities. In the stan-
dardized PDE representation, we have a generic set of
boundary conditions defined by the matrix B. In the fol-
lowing theorem, we generalize Lemma 9 in order to ex-
press the PDE state x ∈ X in terms of the PIE state,
x̂ ∈ Ln0+n1+n2

2 , and generalized BCs (which are equal
to zero). This allows us to define the map T .

Theorem 10 Let T = P{G0,G1,G2} with Gi as defined
in Equations (8). Then for any x ∈ X,

x = T


I

∂s

∂2s

x.

Furthermore, for any x̂, ŷ ∈ Ln0+n1+n2
2 , T x̂, T ŷ ∈ X

and 〈T x̂, T ŷ〉X = 〈x̂, ŷ〉L2
.

PROOF. See the extended paper in [33] for a proof.

Corollary 11 Let H = P{G3,G4,G5} with Gi as defined
in Equations (8). Then for any x ∈ X,

[
0 ∂s 0

0 0 ∂s

]
x = H


I

∂s

∂2s

x.

8

G0(s) =


In0

0 0

0 0 0

0 0 0

 , G1(s, θ) =


0 0 0

0 In1 0

0 0 (s− θ)In2

+G2(s, θ), G2(s, θ) = −K(s)(BT)−1BQ(s, θ),

G3(s) =

[
0 In1

0

0 0 0

]
, G4(s, θ) =

[
0 0 0

0 0 In2

]
+G5(s, θ), G5(s, θ) = −V (BT)−1BQ(s, θ),

T =



In1
0 0

In1 0 0

0 In2
0

0 In2
(b− a)In2

0 0 In2

0 0 In2


, Q(s, θ) =



0 0 0

0 In1 0

0 0 0

0 0 (b− θ)In2

0 0 0

0 0 In2


, K(s) =


0 0 0

In1
0 0

0 In2 (s− a)In2

 , V =

[
0 0 0

0 0 In2

]
.

(8)

PROOF. By Theorem 10,

x = T


I

∂s

∂2s

x.

Now, for any x̂ ∈ Ln0+n1+n2
2 , it can be readily verified

through differentiation that[
0 ∂s 0

0 0 ∂s

]
T x̂ = Hx̂

which completes the proof. �

Corollary 12 The operator T = P{G0,G1,G2} :

Ln0+n1+n2
2 → X is unitary.

PROOF. Theorem 10 shows that for any x ∈ X, there
exists some x̂ ∈ L2 such that x = T x̂ (surjective). Fur-
thermore, for any x̂, ŷ ∈ L2, 〈T x̂, T ŷ〉X = 〈x̂, ŷ〉L2

,
which concludes the proof. �

Because Ln0+n1+n2
2 is a Hilbert space and T is unitary,

Corollary 12 implies X is a Hilbert space.

6.2 Equivalence of Norms

In this subsection, we briefly show that the norms ‖·‖X
and ‖·‖L2×H1×H2

are equivalent.

Lemma 13 For any x ∈ X, ‖x‖X ≤ ‖x‖L2×H1×H2
and

there exists a constant c > 0 such that ‖x‖L2×H1×H2
≤

c ‖x‖X .

PROOF. First, we note that

‖x‖L2×H1×H2
=

∥∥∥∥∥∥∥∥


0

x1

x2


∥∥∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥∥∥


0

0

x2s


∥∥∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥∥∥

x0

x1s

x2ss


∥∥∥∥∥∥∥∥
L2

=

∥∥∥∥∥∥∥∥


0

x1

x2


∥∥∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥∥∥


0

0

x2s


∥∥∥∥∥∥∥∥
L2

+ ‖x‖X

and hence ‖x‖X ≤ ‖x‖L2×H1×H2
. Now, since Gi, Hi ∈

L∞[a, b], there exist c1, c2 > 0 such that∥∥∥∥∥∥∥∥


0

x1

x2


∥∥∥∥∥∥∥∥
L2

≤ ‖x‖L2
=

∥∥∥∥∥∥∥∥T

I

∂s

∂2s

x

∥∥∥∥∥∥∥∥
L2

≤ c1

∥∥∥∥∥∥∥∥

I

∂s

∂2s

x

∥∥∥∥∥∥∥∥
L2

= c1 ‖x‖X

and∥∥∥∥∥∥∥∥


0

0

x2s


∥∥∥∥∥∥∥∥
L2

≤

∥∥∥∥∥∥∥∥


0

x1s

x2s


∥∥∥∥∥∥∥∥
L2

=

∥∥∥∥∥∥∥∥H

I

∂s

∂2s

x

∥∥∥∥∥∥∥∥
L2

≤ c2

∥∥∥∥∥∥∥∥

I

∂s

∂2s

x

∥∥∥∥∥∥∥∥
L2

= c2 ‖x‖X .

Therefore, we conclude that

‖x‖L2×H1×H2
≤ (1 + c1 + c2) ‖x‖X

as desired.�

9

This result shows that for PDE systems in standardized
form, stability in ‖·‖X and ‖·‖L2×H1×H2

are equivalent.

7 Converting PDEs to PIEs

In this section, we show that for any PDE in standard-
ized form, there exists a PIE for which any solution to
the PDE defines a solution to the PIE and any solution
to the PIE defines a solution to the PDE. We further
show that this result implies that exponential stability
of the PIE is equivalent to exponential stability of the
PDE in X.

7.1 Equivalence of Solutions for PDEs and PIEs

Now that we have the unitary 3-PI operator T :=
P{G0,G1,G2} where

x = T


I

∂s

∂2s

x

for any x ∈ X, conversion of the PDE to a PIE (Eqn. (7))
is direct.

Lemma 14 Given x̂0(t) ∈ Ln0+n1+n2
2 , the function

x̂(t) ∈ Ln0+n1+n2
2 satisfies the PIE defined by {T ,A}

if and only if for x0 = T x̂0, the function x(t) = T x̂(t)
satisfies the PDE defined by {Ai, X} where

T := P{G0,G1,G2}, A := P{Hi}

H0(s) = A0(s)G0(s) +A1(s)G3(s) +A20(s)

H1(s, θ) = A0(s)G1(s, θ) +A1(s)G4(s, θ),

H2(s, θ) = A0(s)G2(s, θ) +A1(s)G5(s, θ),

A20(s) =
[
0 0 A2(s)

]
(9)

where the Gi are as defined in Eqns. (8).

PROOF. DefineH := P{G3,G4,G5}. Suppose x satisfies
the PDE. Define

D1 :=


I

∂s

∂2s

 , D2 :=

[
0 ∂s 0

0 0 ∂s

]

and x̂(t) = D1x(t). By Theorem 10 and Lemma 4 and
the definition of the Gi, we have

ẋ(t) = P{A0,0,0}x(t) + P{A1,0,0}D2x(t) + P{A20,0,0}D1x(t)

= P{A0,0,0}T x̂(t) + P{A1,0,0}Hx̂(t) + P{A20,0,0}x̂(t)

= P{A0G0,A0G1,A0G2}x̂(t)

+ P{A1G3,A1G4,A1G5}x̂(t) + P{A20,0,0}x̂(t)

= P{H0,H1,H2}x̂(t) = Ax̂(t).

Finally, ẋ(t) = T ˙̂x(t) and x̂(0) = D1x(0) = D1x0 =
D1T x̂0 = x̂0.

Conversely, suppose x̂(t) solves the PIE. Define x(t) =
T x̂(t). Then by Theorem 10, x(t) ∈ X and

ẋ(t) = T ˙̂x(t) = Ax̂(t)

= P{A0,0,0}T x̂(t) + P{A1,0,0}Hx̂(t) + P{A20,0,0}x̂(t)

= P{A0,0,0}x(t) + P{A1,0,0}D2x(t) + P{A20,0,0}D1x(t)

as desired. Furthermore, x(0) = T x̂(0) = T x̂0 = x0. �

Note 3 While the conversion formulae in Eqns. 8 are
relatively complex, this is because they encompass a very
large class of PDEs and must account for every case. In-
dividual PIE representations of specific PDEs, by con-
trast are typically rather simple. In the following subsec-
tion, we demonstrate one such representation.

7.2 PIE Representation of the E-B Beam

To illustrate the PIE representation, we again consider
the Euler-Bernoulli beam model, using the standardized
PDE representation of Subsection 3.3. Applying the for-
mulae in Eqns. (8), we obtain the PIE {T ,A} where

T : = P{Ni}, A : = P{Ri} (10)

N0 = 0, N1 =

[
s− θ 0

0 0

]
, N2 =

[
0 0

0 θ − s

]
,

R0 =

[
0 −c
1 0

]
, R1 = 0, R2 = 0.

7.3 Stability Equivalence for PDEs and PIEs

The following result uses the unitary property of the
state transformation, T , to show equivalence between
stability of PDEs and PIEs in a certain sense.

Lemma 15 The PDE defined by {Ai, X} is exponen-
tially stable in X with constants K, γ > 0 if and only if
the PIE defined by {T ,A}, where {T ,A} are as defined in
Eqn. (9), is exponentially stable with constants K, γ > 0.

PROOF. Suppose the PDE defined by {Ai, X} is ex-
ponentially stable with constants K, γ > 0. Then for
any x0 ∈ X, any solution x of the PDE defined by
{Ai, X} satisfies ‖x(t)‖X ≤ K ‖x0‖X e−γt. Now for x̂0 ∈
Ln0+n1+n2
2 , let x̂ be a solution of the PIE defined by
{T ,A}. Define x0 := T x̂0 ∈ X and x(t) := T x̂(t). Then
by Lemma 14, x(t) satisfies the PDE defined by {Ai, X}
with initial condition x0. Therefore, by Theorem 10,

‖x̂(t)‖L2
= ‖T x̂(t)‖X = ‖x(t)‖X
≤ K ‖x0‖X e

−γt = K ‖T x̂0‖X e
−γt

= K ‖x̂0‖L2
e−γt.

Conversely, suppose the PIE defined by {T ,A} is expo-
nentially stable with constants K, γ > 0. Then for any
x̂0 ∈ L2, any solution x̂ of the PIE defined by {T ,A}
satisfies ‖x̂(t)‖L2

≤ K ‖x̂0‖L2
e−γt. Now for x0 ∈ X, let

x be a solution of the PDE defined by {Ai, X}. Define

10

x̂0 :=


I

∂s

∂2s

x0 ∈ L2, x̂(t) :=


I

∂s

∂2s

x(t) ∈ L2.

Then by Lemma 14, x(t) = T x̂(t) and x̂(t) satisfies the
PIE defined by {T ,A} with initial condition x̂0. There-
fore, by Theorem 10,

‖x(t)‖X = ‖T x̂(t)‖X = ‖x̂(t)‖L2

≤ K ‖x̂0‖L2
e−γt = K ‖T x̂0‖X e

−γt

= K ‖x0‖X e
−γt.

�

Having shown that stability of a PIE is equivalent to that
of a PDE in a precisely defined sense, we now proceed
to define a Linear PI Inequality (LPI), whose feasibility
guarantees exponential stability of a PDE in standard-
ized form.

8 Lyapunov Stability as an LPI

Using the 3-PI algebra, we may now succinctly repre-
sent our Lyapunov stability conditions. The procedure
is relatively straightforward.

Theorem 16 Suppose there exist α, δ > 0, N0 : [a, b]→
Rn×n, N1, N2 : [a, b]2 → Rn×n such that for P :=
P{N0,N1,N2}, P = P∗ ≥ αI and

A∗PT + T ∗PA ≤ −δT ∗T

where T and A are as defined in Eqn. (9). Then any
solution, x(t) of the PDE defined by {Ai, X} satisfies

‖x(t)‖L2
≤ ζ

α
‖x(0)‖2L2

e−δ/ζt.

where ζ = ‖P‖L(L2)
.

PROOF. Suppose x̂ solves the PIE defined by {T ,A}
for some x̂0. Consider the candidate Lyapunov function
defined as

V (x̂) = 〈x̂(t), T ∗PT x̂(t)〉L2
≥ α ‖T x̂‖2L2

.

The derivative of V along solution x̂ is

V̇ (x̂(t)) =
〈
T ˙̂x(t),PT x̂(t)

〉
L2

+
〈
x̂(t),PT ˙̂x(t)

〉
L2

= 〈Ax̂(t),PT x̂(t)〉L2
+ 〈T x̂(t),PAx̂(t)〉L2

= 〈x̂(t), (A∗PT + T ∗PA) x̂(t)〉L2

≤ −δ ‖T x̂(t)‖2L2
.

Recall ‖P‖L(L2)
= ζ. Then by a standard application of

Gronwall-Bellman, we have

‖T x̂(t)‖2L2
≤ ζ

α
‖T x̂0‖2L2

e−δ/ζt.

Now for any solution, x of the PDE defined by {Ai, X}
with initial condition x0, we have x(t) = T x̂(t) where x̂
is a solution of the PIE with initial condition x̂0 where
x0 = T x̂0. Thus

‖x(t)‖2L2
≤ ζ

α
‖x0‖2L2

e−δ/ζt.

�

Note 4 Theorem 16 proves exponential stability of the
PDE with respect to the L2 norm and not the X-norm.
While it is possible to formulate a PIE for stability in the
X-norm, this would differ from most existing results and
the literature and hence is omitted. Note, however, that
for any x ∈ L2, T x = 0 if and only if x = 0 (modulo a
set of zero measure).

Note 5 Theorem 16 is equivalent to the Lyapunov in-
equality for PDEs with the restriction that the Lyapunov
operator be a PI operator. This, in turn, may be inter-
preted as a dissipativity condition on the generator. Such
conditions are sometimes enforced using multiplier ap-
proaches as in, e.g. [19], and have been shown to be nec-
essary and sufficient for stability of infinite-dimensional
systems, as in [34,16]. Note that the constraint that the
operator P be self-adjoint is not conservative as any Lya-
punov function defined by a non-self-adjoint operator ad-
mits a representation using a self-adjoint operator.

Theorem 16 poses a convex optimization problem, whose
feasibility implies stability of solutions of a coupled lin-
ear PDE. We refer to such optimization problems as Lin-
ear PI Inequalities (LPIs). Solving an LPI requires pa-
rameterizing the 3-PI operator P using polynomials and
enforcing the inequalities using LMIs. In the following
section, we briefly introduce a method of enforcing pos-
itivity of a 3-PI operator using LMI constraints.

9 Solving the Stability LPI via PIETOOLS

In Section 8, we formulated the question of Lyapunov
stability as an LPI. In this section, we will we propose
a general form of LPI and show how these convex opti-
mization problems can be solved under the assumption
that all 3-PI operators are parameterized by polynomi-
als.

For given 3-PI operators {Eij ,Fij ,Gi} and linear opera-
tor L, a Linear PI Inequality (LPI) is a convex optimiza-
tion of the form

min
N0i,N1i,N2i

L({Nij}) (11)

K∑
j=1

E∗ijP{N1i,N2i,N3i}Fij + Gi ≥ 0 i = 1, · · · , L.

LPIs of the form of Eqn. (11) can be solved directly using
PIETOOLS [32]. Composition and adjoint are algebraic
operations on the 3-PI parameters and are computed
using the formulae in Section 4. Positivity is enforced
using an LMI constraint as described in the following
subsection.

11

9.1 Enforcing Positivity of 3-PI Operators

In this subsection, for a given self-adjoint 3-PI oper-
ator with polynomial parameters ({Ni}), we given an
LMI constraint on the coefficients of the polynomials
{Ni} which enforces a constraint of the form P{Ni} ≥ 0.
Specifically, the following proposition (a slight modifica-
tion of the result in [35]) gives necessary and sufficient
conditions for a 3-PI operator to have a 3-PI square root.

Proposition 17 For any bounded functions Z(s),
Z(s, θ), and g, where g is scalar and g(s) ≥ 0 for all
s ∈ [a, b] and

N0(s) = g(s)Z(s)TP11Z(s),

N1(s, θ) = g(s)Z(s)TP12Z(s, θ) + g(θ)Z(θ, s)TP31Z(θ)

+

∫ θ

a

g(ν)Z(ν, s)TP33Z(ν, θ)dν

+

∫ s

θ

g(ν)Z(ν, s)TP32Z(ν, θ)dν

+

∫ L

s

g(ν)Z(ν, s)TP22Z(ν, θ)dν,

N2(s, θ) = g(s)Z(s)TP13Z(s, θ) + g(θ)Z(θ, s)TP21Z(θ)

+

∫ s

a

g(ν)Z(ν, s)TP33Z(ν, θ)dν

+

∫ θ

s

g(ν)Z(ν, s)TP23Z(ν, θ)dν

+

∫ L

θ

g(ν)Z(ν, s)TP22Z(ν, θ)dν,

where

P = PT =


P11 P12 P13

P21 P22 P23

P31 P32 P33

 ≥ 0,

we have P∗{Ni} = P{Ni} and
〈
x,P{Ni}x

〉
L2
≥ 0 for all

x ∈ L2[a, b].

PROOF. It is relatively easy to show that {Ni} satisfy

Equation (6) with {N̂i} = {Ni}. Therefore, by Lemma 6
P{Ni} is self adjoint. Now define the operator

(Zx) (s) =


√
g(s)Z(s)x(s)∫ s

a

√
g(s)Z(s, θ)x(θ)dθ∫ b

s

√
g(s)Z(s, θ)x(θ)dθ

 .
Then by expanding out the composition formulae, we

find P{Ni} = Z∗PZ and since P ≥ 0, P = (P
1
2)TP

1
2

for some P
1
2 . Thus〈

x,P{Ni}x
〉
L2

= 〈Zx, PZx〉L2

=

〈
P

1
2Zx, P

1
2Zx

〉
L2

≥ 0.

�

Note that Prop. 17 does not ensure that P{Ni} is coer-
cive. To obtain a coercive operator, one must add a co-
ercive term of the form P{αI,0,0} for some α > 0.

When we desire the {Ni} to be polynomial, we may
choose Z to be the vector of monomials of bounded de-
gree, d. For g(s) = 1, the operators are positive on any
domain. However, for g(s) = (s− a)(b− s) the operator
is only positive on the given domain [a, b]. For the most
accurate results, we combine both choices of g. For nota-
tional convenience, we define the set of functions which
satisfy Prop. 17 in this way. Specifically, we denote Zd(x)
as the matrix whose rows are a vector monomial basis
for the vector-valued polynomials of degree d or less and
define the cone of positive operators with polynomial
multipliers and kernels associated with degree d as

Ωd := {P{Ni} + P{Mi} : {Ni} and {Mi} satisfy

the conditions of Prop. 17 with Z = Zd and

where g(s) = 1 and g(s) = (s− a)(b− s), resp.}
The dimension of the matrices Mi and Ni should be
clear from context. The constraint P{Ri} ∈ Ωd is then
an LMI constraint on the coefficients of the polynomials
{Ri} and guarantees that P{Ri} ≥ 0. A Matlab toolbox
(PIETOOLS) for setting up and solving LPIs based on
Prop. 17 has recently been proposed and is discussed in
Subsection 9.3.

9.2 The Degree-Bounded Stability Test

By restricting the degree of the polynomial parameters,
{Ni}, we obtain a PIETOOLS-based LMI which enforces
the LPI conditions of Theorem 16.

Theorem 18 For any d ∈ N, suppose there exist α, δ >
0, and polynomialsN0 : [a, b]→ Rn×n,N1, N2 : [a, b]2 →
Rn×n such that

P := P{N0−αI,N1,N2} ∈ Ωd
and −δT ∗T − A∗PT − T ∗PA ∈ Ωd
where T and A are as defined in Eqn. (9). Then any so-
lution the PDE defined by {Ai, X} is exponentially stable
in L2.

Note that as mentioned in the previous subsection, the
constraint ∈ Ωd is an LMI constraint.

9.3 PIETOOLS Implementation

In this subsection, we give sample code using the
PIETOOLS 2020 toolbox which verifies that the condi-
tions of Theorem 18 are satisfied.

A detailed manual for the PIETOOLS 2020 toolbox can
be found in [32]. This toolbox allows for declaration and
manipulation of 3-PI operators and 3-PI decision vari-
ables and enforcement of LPI constraints. PIETOOLS
uses aspects of the SOSTOOLS LMI conversion process
and pvar polynomial objects as defined in MULTIPOLY.
PIETOOLS defines the opvar class of PI operators and
overloads the multiplication (*), addition (+) and ad-
joint (’) operations using the formulae in Lemma 4 and

12

Lemma 6. Concatenation, and scalar multiplication are
likewise defined so that 3-PI operators can be treated in
a similar manner to matrices.

To facilitate implementation of the conditions of The-
orem 18, we have created the script PIETOOLS PDE,
which is distributed with the PIETOOLS 2020 tool-
box. To use this script only requires the user to de-
fine the standardized form of the PDE - as illustrated
in Step (3) below. Specifically, the user must define
n0,n1,n2,A0,A1,A2,B, although A2 may be omitted if
n2=0. The user specifies that a stability test is desired
by setting stability=1 and can specify the desired ac-
curacy through settings PIETOOLS scripts, although
by default we use the settings PIETOOLS light script,
which corresponds to d = 1. An overview of the steps
included in the PIETOOLS PDE script is provided below
along with a brief description of each step.

(1) Define independent polynomial variables. These are
the spatial variables in the PDE.

pvar s,th;

(2) Initialize an optimization problem structure, X.

X = sosprogram([s,th]);

(3) Define the standardized PDE representation and
use the provided script (convert PIETOOLS pde) to
construct T andA using the formulae in Lemma 14.

stability=1;

n1=..;n2=..;n3=..;

A0=..;A1=..;A2=..;B=..;

convert PIETOOLS pde;

(4) Declare the positive 3-PI operator P and add in-
equality constraints. Prop. 17 is used to construct
P and enforce the constraint A∗PT + T ∗PA ≤
−δT ∗T in Thm. 16. Transpose and composition in
the term A∗PT are performed using the formulae
in Lemmas 6 and 4. If feasible, these steps thus en-
force the conditions in Thm. 16 where δ is deter-
mined by the user choice of epneg (default value
is δ = 0). In this code, n is state dimension, I is
the interval [a, b], and d is the degree of the polyno-
mial parameters in P. This step is executed auto-
matically (using executive PIETOOLS stability)
if the user has declared the option stability=1.

[X,P] = poslpivar(X,n,I,d);

D = -epneg*T’*T-A’*P*T-T’*P*A;

X = lpi ineq(X,D);

(5) Call the SDP solver.

X = sossolve(X);

(6) Get the solution. P s is the 3-PI operator, P.

P s = sosgetsol opvar(X,P);

We conclude that if PIETOOLS finds the LPI is feasible
for δ = 0, the system is stable as per Thm. 16. If δ > 0,

we conclude exponential stability. Note that the degree,
d, enters at Step (4) and is defined in the settings script,
which defaults to settings PIETOOLS light (d = 1).
If higher degree is required, the setting may be changed
manually or using the settings PIETOOLS heavy (d =
2) script. Instructions for declaring the PDE in form of
Eqn. (2) are included in the header to PIETOOLS PDE.

10 Numerical Tests of Accuracy and Scalability

In this section, we examine the accuracy and compu-
tational complexity (scalability) of the proposed sta-
bility analysis algorithm by applying Theorem 18 to
several well-studied and relatively trivial test cases.
The algorithms are implemented using the PIETOOLS
toolbox described in the previous section, and use the
settings PIETOOLS light (d = 1) option. All compu-
tation times are listed for an Intel i7-6950x processor
with 64GB RAM and only account for time taken to
solve the resulting LMI using Sedumi, excluding time
taken for problem setup and polynomial manipulations.
In cases where the limiting value of a parameter is listed
for which the system is stable, the limiting value was
determined using a bisection on that parameter.

Example 1: We begin with several variations of the
diffusion equation. The first is adapted from [26],

ẋ(t, s) = λx(t, s) + xss(t, s)

where x(0) = x(1) = 0 and which is known to be stable
if and only if λ < π2 = 9.869604 · · · . For the choice of
d = 1 in Thm. 18, the algorithm is able to prove stability
for λ ≤ 9.8696 with a computation time of .54s.

Example 2: The second example from [27] is the same,
but changes the boundary conditions to x(0) = 0 and
xs(1) = 0 and is unstable for λ > 2.467. For d = 1, the
algorithm is able to prove stability for λ ≤ 2.467 with
identical computation time.

Example 3: The third example from [22] is not homo-
geneous

ẋ(t, s) = (−.5s3 + 1.3s2 − 1.5s+ .7 + λ)x(t, s)

+ (3s2 − 2s)xs(t, s) + (s3 − s2 + 2)xss(t, s)

where x(0) = 0 and xs(1) = 0 and was estimated nu-
merically to be unstable for λ > 4.65. For d = 1, the
algorithm is able to prove stability for λ ≤ 4.65 with
similar computation time (compare to λ = 4.62 in [22]).

Example 4: In this example from [27], we have

ẋ(t, s) =


0 0 0

s 0 0

s2 −s3 0

x(t, s) +R−1xss(t, s)

with x(0) = 0 and xs(1) = 0. In this case, using d = 1,
we were able to prove stability for any tested value of R
(vs. R ≤ 21 in [27]) with a computation time of 4.06s.
No upper limit was found.

13

n 1 5 10 20 30 40

sec .504 1.907 71.63 2706 23920 103700

Table 1
Number of PDEs vs. Computation Time for Stability Test

Example 5: For our last numerical comparison, we con-
sider some of the recent literature on coupled linear hy-
perbolic systems [36,37,9], often representing conserva-
tion or balance laws. Although there are several varia-
tions of the problem formulation, we consider the recent
work of [9], as it seems to contain the most accurate re-
sults. Consider

ẋ(t, s) =

[
0 σ1

σ2 0

]
︸ ︷︷ ︸

A0

x(t, s) +

[
− 1
r1

0

0 1
r2

]
︸ ︷︷ ︸

A1

xs(t, s)

with boundary conditions x1(0) = qx2(0) and x2(1) =
ρx1(1). In this case, we have

B =

[
1 −q 0 0

0 0 −ρ 1

]
.

Using d = 1, r1 = 0, r2 = 1.1, σ1 = 1, q = 1.2, by grid-
ding the parameters σ2 and ρ, we are able to verify sta-
bility for all stable parameter values indicated in Figure
5 in [9]. For example, at ρ = −.4, we were able to prove
stability for σ2 ≤ 1.048.

Example 6 (Scalability): Finally, we explore compu-
tational complexity using a simple n-dimensional diffu-
sion equation

ẋ(t, s) = x(t, s) + xss(t, s)

where x(t, s) ∈ Rn. We then evaluate the computation
time to perform the feasibility test for different size prob-
lems, from n = 1 to n = 40, choosing d = 1 - See Table 1.
Note that no factors other than d influence computation
time and the result is always stability.

11 Illustrations of Beam and Wave Equations

In Section 10, we demonstrated that the proposed stabil-
ity test has no obvious conservatism by finding parame-
ter values corresponding to the stability limit for several
well-studied examples. However, the representation of
these PDEs in the generalized PDE form of Eqn. (2) was
straightforward. In this section, we provide some guid-
ance on how the user might identify the Ai and B matri-
ces in Eqn. (2) for several less obvious examples - focus-
ing on four well-known wave and beam examples. The
beam examples are particularly interesting in that (to
the best of our knowledge) they have not previously been
analyzed using LMI-based methods. As we proceed, we
call particular attention to the following two questions.

• What are the states?
• What are the boundary conditions?

Choice of State: Prior to the introduction of state-
space, ODEs would often be represented using scalar
equations. For example, the spring-mass:

mẍ(t) = −cẋ(t)− kx(t) + F (t)

is a scalar ODE. To represent this in the vector-valued
state-space framework, we use x1 and define an auxil-
iary state x2 = ẋ. Similarly, PDEs are often represented
as scalar equations using higher-order time derivatives
(e.g. The wave equation is ẅ = wxx). The standard-
ized PDE representation in Eqn. (2), however, uses only
first-order time derivatives. Furthermore, as discussed in
Subsection 3.3, the use of the standardized representa-
tion occasionally involves loss of some state information
and may affect the question of stability. Specifically, the
exponential stability criterion in Theorem 18 implies all
states decay exponentially. For example, If a PDE is L2-
stable in u, but not us, then if us is included in the stan-
dardized representation, the PIE stability analysis will
not be able to verify stability.

Boundary Conditions: Identification of a sufficient
number of boundary conditions in the universal frame-
work is particularly important. For theB matrix to have
sufficient rank, the solution must be uniquely defined
(which may prohibit periodic boundary conditions).
One consideration to be aware of is that when we in-
troduce additional variables to eliminate higher-order
time-derivatives, these new variables must also have as-
sociated boundary conditions. This is typically solved by
differentiating the original boundary conditions in time
to obtain boundary conditions for the new variables.

In the following examples, we illustrate the process of
choosing state and constructing the Ai and B matrices.

11.1 Beam Equation Examples

We first consider both the Euler-Bernoulli (E-B) and
Timoshenko (T) beam equations. This case is particu-
larly interesting, as the E-B model is fundamentally dif-
fusive and the T model has hyperbolic character. Fur-
thermore, both these models are known to be energy-
conserving[19], meaning that they are stable, but not
exponentially stable.

Euler-Bernoulli: In this first case, we simply recall our
formulation of the cantilevered E-B beam from Subsec-
tion 3.3:

ẋ(t) =

[
0 −c
1 0

]
︸ ︷︷ ︸

A2

xss(t)

where A0 = A1 = 0, n2 = 2, and n0 = n1 = 0. The
boundary conditions take the form


1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1


︸ ︷︷ ︸

B



u1(0)

u2(0)

u1(L)

u2(L)

u1s(0)

u2s(0)

u1s(L)

u2s(L)


= 0.

14

Entering {Ai, B} into the script PIETOOLS PDE, and ap-
plying the results of Subsection 9.3 for epneg=0, we con-
clude the E-B beam is stable (using δ = 0 in Thm. 18) for
any tested value of c > 0. However, when epneg=.0001,
we have δ > 0, and PIETOOLS is unable to find a Lya-
punov function, indicating this formulation is not expo-
nentially stable (as expected).

Timoshenko Beam We now consider the Timoshenko
beam model where, for simplicity, we set ρ = E = I =
κ = G = 1:

ẅ = ∂s(ws − φ) = −φs + wss

φ̈ = φss + (ws − φ) = −φ+ ws + φss

with boundary conditions of the form

φ(0) = 0, w(0) = 0,

φs(L) = 0, ws(L)− φ(L) = 0.

Our first step is to eliminate the second-order time-
derivatives, and hence we choose u1 = ẇ and u3 = φ̇.
Using the boundary conditions as a guide, we choose the
remaining states as u2 = ws−φ and u4 = φs. Note that
this choice of states is a natural set of coordinates as the
Timoschenko beam is known to be energy conserving
with respect to these states [19]. In summary, we have

u1

u2

u3

u4

 =


ẇ

ws − φ
φ̇

φs

 .
This gives us 4 first order boundary conditions

u1(0) = 0, u3(0) = 0, u4(L) = 0, u2(L) = 0.

Reconstructing the dynamics, we now have

u̇1 = u2s, u̇2 = u1s − u3
u̇3 = u4s + u2, u̇4 = u3s.

Expressing this in our standard form we have the purely
hyperbolic construction

u̇1

u̇2

u̇3

u̇4

=


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


︸ ︷︷ ︸

A0


u1

u2

u3

u4

+


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


︸ ︷︷ ︸

A1


u1s

u2s

u3s

u4s


where A2 = [] and n0 = n2 = 0 and n1 = 4. The B
matrix is then

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0


︸ ︷︷ ︸

B



u1(0)

u2(0)

u3(0)

u4(0)

u1(L)

u2(L)

u3(L)

u4(L)


= 0

where B has row rank n1 = 4 and satisfies Eqn. (4).
The script PIETOOLS PDE indicates this system is stable
(using δ = 0 in Thm. 18 and epneg=0 in PIETOOLS).
However, when δ > 0, the code is unable to find a Lya-
punov function, indicating this formulation is not expo-
nentially stable (as expected).

11.2 Wave Equation with Boundary Feedback Examples

In this subsection, we consider wave equations attached
at one end and free at the other with damping at the free
end. This is a well-studied problem for which numerous
stability results are available in the literature [38,39].
The simplest formulation is

ü(t, s) = uss(t, s)

u(t, 0) = 0 us(t, L) = −ku̇(t, L).

As with the beam examples, this has a purely hyper-
bolic formulation. Guided by the boundary conditions,
we choose

u1(t, s) = u̇(t, s), u2(t, s) = us(t, s).

This yields [
u̇1

u̇2

]
=

[
0 1

1 0

]
︸ ︷︷ ︸
A1

[
u1s

u2s

]

where A0 = 0, A2 = [] n1 = n2 = 0 and n1 = 2. The
boundary conditions are now[

0 1 0 0

0 0 k 1

]
︸ ︷︷ ︸

B

[
u(0)

u(L)

]
= 0.

This formulation is computed to be exponentially stable
(using δ = .1 in Thm. 16 or epneg=.1 in PIETOOLS)
in the given state ut, us for any tested value of k > 0.
We now consider a variation on this formulation.

Diffusive Formulation As a variation, we consider a
non-diffusive formulation from [38] which was shown to
be asymptotically stable in the state u for a2 + k2 > 0.

ü(t, s) = uss(t, s)−2au̇(t, s)−a2u(t, s), s ∈ [0, 1]

u(t, 0) = 0, us(t, 1) = −ku̇(t, 1)

In this case, we are forced to choose the variables u1 = ut
and u2 = u yielding the diffusive formulation[

u̇1

u̇2

]
=

[
−2a −a2

1 0

]
︸ ︷︷ ︸

A0

[
u1

u2

]
+

[
1

0

]
︸︷︷︸
A2

u2ss

where A1 = 0, n0 = 0, n1 = 1, and n2 = 1. Note in
this case that the boundary conditions on u1 force us to
consider this a hyperbolic state and the boundary condi-
tions on u2 make this a diffusive state! These boundary
conditions are now expressed as

15


0 0 1 0 0 0

1 0 0 0 0 0

0 k 0 0 0 1





u1(0)

u1(L)

u2(0)

u2(L)

u2s(0)

u2s(L)


= 0.

Computation indicates this model is neutrally stable,
but not exponentially stable in the given state - a result
confirmed in [38,39].

12 Conclusion

In this paper, we have shown how to use LMIs to ac-
curately test stability of a large class of coupled linear
PDEs. To achieve this result, we have defined a unitary
state transformation which allows us to convert well-
posed coupled linear PDEs - defined on state xp ∈ X,
with associated boundary conditions and continuity con-
straints - to Partial-Integral Equations (PIEs) with state
xf ∈ L2 - a formulation which is defined using the alge-
bra of 3-PI partial-integral operators and which does not
require boundary conditions or continuity constraints on
xf . We have shown that stability of PDEs can be refor-
mulated as a Linear PI Inequality (LPI) expressed us-
ing 3-PI operators and operator positivity constraints.
We have shown how to parameterize 3-PI operators us-
ing polynomials and how to enforce positivity of 3-PI
operators using LMI constraints on the coefficients of
these polynomials. We have used the Matlab toolbox
PIETOOLS to solve the resulting LPIs and applied the
results to a variety of numerical examples. The numerical
results indicate little or no conservatism in the resulting
stability conditions to several significant figures even for
low polynomial degree. By conversion of LMIs developed
for ODEs to LPIs, it is possible that these results can
be extended to: PDEs with uncertainty; H∞-gain anal-
ysis of PDEs; H∞-optimal observer synthesis for PDEs;
and H∞-optimal control of PDEs. In addition, it is pos-
sible that the framework may be extended to multiple
spatial dimensions using the multivariate representation
proposed in [40].

References

[1] M. Marion and R. Temam, “Nonlinear Galerkin methods,”
SIAM Journal on numerical analysis, vol. 26, no. 5, pp. 1139–
1157, 1989.

[2] S. Ravindran, “A reduced-order approach for optimal
control of fluids using proper orthogonal decomposition,”
International journal for numerical methods in fluids, vol. 34,
no. 5, pp. 425–448, 2000.

[3] C. Rowley, “Model reduction for fluids, using balanced
proper orthogonal decomposition,” International Journal of
Bifurcation and Chaos, vol. 15, no. 03, pp. 997–1013, 2005.

[4] I. Karafyllis and M. Krstic, Input-to-state stability for PDEs.
Springer, 2019.

[5] M. Balas, “Active control of flexible systems,” Journal of
Optimization theory and Applications, vol. 25, no. 3, pp. 415–
436, 1978.

[6] M. Krstic and A. Smyshlyaev, Boundary control of PDEs: A
course on backstepping designs. SIAM, 2008, vol. 16.

[7] A. Smyshlyaev and M. Krstic, “Backstepping observers for a
class of parabolic PDEs,” Systems & Control Letters, vol. 54,
no. 7, pp. 613–625, 2005.

[8] O. Aamo, “Disturbance rejection in 2 x 2 linear hyperbolic
systems,” IEEE Transactions on Automatic Control, vol. 58,
no. 5, pp. 1095–1106, 2013.

[9] D. Saba, F. Argomedo, J. Auriol, M. D. Loreto, and F. D.
Meglio, “Stability analysis for a class of linear 2x2 hyperbolic
PDEs using a backstepping transform,” IEEE Transactions
on Automatic Control, 2019.

[10] E. Fridman and Y. Orlov, “An LMI approach to H∞
boundary control of semilinear parabolic and hyperbolic
systems,” Automatica, vol. 45, no. 9, pp. 2060–2066, 2009.

[11] E. Fridman and M. Terushkin, “New stability and exact
observability conditions for semilinear wave equations,”
Automatica, vol. 63, pp. 1–10, 2016.

[12] O. Solomon and E. Fridman, “Stability and passivity analysis
of semilinear diffusion PDEs with time-delays,” International
Journal of Control, vol. 88, no. 1, pp. 180–192, 2015.

[13] O. Gaye, L. Autrique, Y. Orlov, E. Moulay, S. Brémond, and
R. Nouailletas, “H∞ stabilization of the current profile in
tokamak plasmas via an LMI approach,” Automatica, vol. 49,
no. 9, pp. 2795–2804, 2013.

[14] M. Barreau, C. Scherer, F. Gouaisbaut, and A. Seuret,
“Integral quadratic constraints on linear infinite-dimensional
systems for robust stability analysis,” arXiv preprint
arXiv:2003.06283, 2020.

[15] I. Lasiecka and R. Triggiani, Control theory for partial
differential equations: Volume 1, Abstract parabolic systems:
Continuous and approximation theories. Cambridge
University Press, 2000.

[16] R. Curtain and H. Zwart, An Introduction to Infinite-
Dimensional Linear Systems Theory. Springer-Verlag, 1995.

[17] A. Bensoussan, G. D. Prato, M. C. Delfour, and S. K. Mitter,
Representation and Control of Infinite Dimensional Systems
Volume I. Birkhäuser, 1992.

[18] G. Bastin and J.-M. Coron, Stability and boundary
stabilization of 1-d hyperbolic systems. Springer, 2016,
vol. 88.

[19] Z.-H. Luo, B.-Z. Guo, and O. Morgül, Stability
and stabilization of infinite dimensional systems with
applications. Springer Science & Business Media, 2012.

[20] J. Villegas, “A port-Hamiltonian approach to distributed
parameter systems,” Ph.D. dissertation, 2007.

[21] M. Safi, L. Baudouin, and A. Seuret, “Tractable sufficient
stability conditions for a system coupling linear transport
and differential equations,” Systems & Control Letters, vol.
110, pp. 1–8, 2017.

[22] A. Gahlawat and M. Peet, “A convex sum-of-squares
approach to analysis, state feedback and output feedback
control of parabolic PDEs,” IEEE Transactions on
Automatic Control, vol. 62, no. 4, pp. 1636–1651, 2017.

[23] ——, “Optimal state feedback boundary control of parabolic
PDEs using SOS polynomials,” in Proceedings of the
American Control Conference, 2016.

[24] ——, “Output feedback control of inhomogeneous parabolic
PDEs with point actuation and point measurement using

16

SOS and semi-separable kernels,” in Proceedings of the IEEE
Conference on Decision and Control, 2015.

[25] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou,
“Dissipation inequalities for the analysis of a class of PDEs,”
Automatica, vol. 66, pp. 163–171, 2016.

[26] G. Valmorbida, M. Ahmadi, and A. Papachristodoulou,
“Semi-definite programming and functional inequalities for
distributed parameter systems,” in Proceedings of the IEEE
Conference on Decision and Control, 2014, pp. 4304–4309.

[27] ——, “Stability analysis for a class of
partial differential equations via semidefinite programming,”
IEEE Transactions on Automatic Control, vol. 61, no. 6, pp.
1649–1654, 2016.

[28] A. Gahlawat and G. Valmorbida, “A semi-definite
programming approach to stability analysis of linear
partial differential equations,” in Proceedings of the IEEE
Conference on Decision and Control, 2017, pp. 1882–1887.

[29] M. Ahmadi,
G. Valmorbida, D. Gayme, and A. Papachristodoulou, “A
framework for input–output analysis of wall-bounded shear
flows,” Journal of Fluid Mechanics, vol. 873, pp. 742–785,
2019.

[30] M. Peet, “A new state-space representation for coupled
PDEs and scalable Lyapunov stability analysis in the SOS
framework,” in Proceedings of the IEEE Conference on
Decision and Control, 2018.

[31] J. Lofberg, “Yalmip: A toolbox for modeling and optimization
in matlab,” in Computer Aided Control Systems Design, 2004
IEEE International Symposium on, 2004, pp. 284–289.

[32] S. Shivakumar, A. Das, and M. Peet, “PIETOOLS: a
Matlab toolbox for manipulation and optimization of partial
integral operators,” in Proceedings of the American Control
Conference, 2020,
http://control.asu.edu/pietools.

[33] M. Peet, “A partial integral equation (PIE) representation
of coupled linear PDEs and scalable
stability analysis using LMIs,” arXiv.org, Tech. Rep., 2018,
http://arxiv.org/abs/1812.06794.

[34] R. Datko, “Extending a theorem of A. M. Liapunov to Hilbert
space,” Journal of Mathematical analysis and applications,
vol. 32, no. 3, pp. 610–616, 1970.

[35] M. Peet, “A dual to Lyapanov’s second method for linear
systems with multiple delays and implementation using sos,”
IEEE Transactions on Automatic Control, vol. 64, no. 3, pp.
944 – 959, 2019.

[36] A. Diagne, G. Bastin, and J.-M. Coron, “Lyapunov
exponential stability of 1-D linear hyperbolic systems of
balance laws,” Automatica, vol. 48, no. 1, pp. 109–114, 2012.

[37] P.-O. Lamare, A. Girard, and C. Prieur, “An optimisation
approach for stability analysis and controller synthesis of
linear hyperbolic systems,” ESAIM: Control, Optimisation
and Calculus of Variations, vol. 22, no. 4, pp. 1236–1263,
2016.

[38] G. Chen, “Energy decay estimates and exact boundary value
controllability for the wave equation in a bounded domain,”
J. Math. Pures Appl., vol. 58, pp. 249–273, 1979.

[39] R. Datko, J. Lagnese, and M. Polis, “An example on the effect
of time delays in boundary feedback stabilization of wave
equations,” SIAM Journal on Control and Optimization,
vol. 24, no. 1, pp. 152–156, 1986.

[40] M. M. Peet, “Exponentially stable nonlinear systems have
polynomial Lyapunov functions on bounded regions,” IEEE
Transactions on Automatic Control, vol. 52, no. 5, 2009.

17

