
Decentralized Estimation And Control Of A
Soft-robotic Arm Using Linearized Beam Model

Sachin Shivakumar, Daniel Aukes, Spring Berman, Ximin He, Rebecca E. Fisher,
Hamidreza Marvi and Matthew M. Peet

Abstract In this chapter, we use PDE models to design decentralized estimation and
control laws for a segmented octopus arm. The dynamics of the soft-robot arm are
formulated as a nonlinear PDE, which are then linearized about setpoints to obtain a
linear PDE representation similar to linear Euler-Bernoulli beam equations. We use
this linearized PDEmodel to design infinite-dimensional control and estimation laws.
The optimal controllers and observers are then discretized during the implementation
phase, to perform operations such as shape tracking. We show that the discretized
observer or controller can be implemented in a manner that allows decentralized
operation in the robot arm.

1 Introduction

Consider a rigid robotic manipulator with a single segment of fixed length A allowed
to rotate about the origin in a 2D plane. The tip of the segment can reach the points on
the circle centered at the origin with radius A as shown in Fig. 1a. Note that there does
not exist any configuration of the segment in which the tip can be inside or outside
this circle. As the segment is rigid, the reachable set of the tip of the segment is
limited. However, if the robot wasmade of two segments of length 1

2
A each connected

by a pin joint, as shown in Fig. 1b, with a constraint that the joint angle be greater
than 90◦ then the tip of the robot can reach every point whose distance is between
1√
2
A and A . Increasing the number of segments further leads to an increase in the

configuration space and the points which the tip can reach. A continuum robotic arm
is an arm with an infinite number of infinitesimally small segments. The tip of a

Sachin Shivakumar
Arizona State University, e-mail: sshivak8@asu.edu

Matthew M. Peet
Arizona State University, e-mail: mpeet@asu.edu

1

2 Authors Suppressed Due to Excessive Length

(a) Robot with one segment (b) Robot with two segments

Fig. 1: Figure on the left shows the locations reachable by the tip of a robot arm with
one segment allowed to rotate about the origin. On the right, the robot arm is made
of two segments and can reach all the points in the shaded region.

soft continuum robot can reach every point in the circle of radius A. In addition, the
added degrees of freedom in a continuum robot arm allows the robot to take more
difficult geometric configurations. Conventionally, robots built with highly flexible
components are called soft-robots. Soft robots can be used to perform tasks that
require complex motions and high precision, for instance, soft robots can be used
in medical surgeries [3], autonomous underwater exploration [6] and manufacturing
[16]. To control or observe a soft-robot arm, we will obtain a linear model for the
dynamics. Next, we will use a newly developed computational framework to design
�∞-optimal controllers and observers. Finally, we will show how the controller or
observer can be implemented in a decentralized manner.

Modeling of a soft-robot Several control-oriented models have been developed
for soft-robots which approximate the soft-robot as a series of segments governed
by the kinematics of rigid or deformable objects [9, 5]. However, approximating
a soft-robot as a series of rigid arm-segments requires us to use a large number
of segments to accurately represent large deformations. Furthermore, control of
these models in a decentralized manner is computationally intractable. On the other
hand, modeling the soft-robot as a single continuously deformable body with large
deformations leads to nonlinear stress-strain relationships which depend on spatial
derivatives of the displacement of the arm - implying that the dynamics of the system
are governed by a nonlinear function of the spatial derivatives of the distributed state,
i.e. a nonlinear PDE. Unfortunately, most control of nonlinear PDEs is suboptimal
and ad hoc. For this reason, we propose to linearize the nonlinear dynamics about a
collection of setpoints. A setpoint, in case of PDEs, can be any pre-specified state
which satisfies the PDE and the boundary conditions.

There is no general method that can be used to linearize PDEs that have nonlinear
terms. However, in [1] a method was given for the special case when the non-linear

Title Suppressed Due to Excessive Length 3

terms are polynomials in the states and their spatial derivatives. In this case, the
original nonlinear PDE system is approximated by a system of linear PDEs about a
collection of setpoints. This is the approach taken in section 2.2 of this manuscript.

Observation and control of a linear soft-robot modelOptimal Control of linear
PDEs with discretization is challenging. For this problem, we turn to the recently
developed Partial Integral Equation (PIE) framework. Because our PDE only has a
single spatial dimension, it can be represented in this framework as

T ¤x(C) = Ax(C) + B1F(C) + B2D(C)

where T ,A,B8 are Partial Integral (PI) operators of the form(
P{#8 }y

)
(B) := #0 (B)y(B) +

∫ B

0

#1 (B, \)y(\)3\ +
∫ 1

B

#2 (B, \)y(\)3\.

Optimal control and estimation of PIEs can be performed using a generalization
of Linear Matrix Inequalities (LMIs). We refer to this framework as the Linear PI
Inequality (LPI) framework and once our Linearized PDEs have been converted
to PIEs, in section 3.2, the PIETOOLS toolbox is used to find optimal continuum
estimators and feedback controllers.

Decentralized implementation of the controllerContinuumobservers and feed-
back controllers are naturally distributed along the robot arm. Implementing such
distributed controllers and observers using large numbers of embedded sensors and
actuators may be challenging unless some mechanism can be found to decentralize
the calculation of feedback gains and error corrections. Specifically, unless there is
some decentralization of the controller (or observer), then coordination of = actuators
(or sensors) would require =(= − 1) interconnections. The wiring alone required for
such an implementation has the potential to exceed the mass of the robot arm itself.
Furthermore, communication between distant nodes introduces potentially destabi-
lizing delay into the system. Unfortunately, the design of a decentralized �∞-optimal
controller or estimator is known to be NP-hard, except in the case of Quadratically
Invariant systems [7].

Although the design of a finite-dimensional �∞-optimal decentralized controller
or observer is an NP-hard non-convex optimization problem, in Section 4, we show
that controllers and observers of the PI form admit a naturally decentralized im-
plementation. Specifically, the number of interconnections in this implementation
scales as 2= (as opposed to =(= − 1)).

A brief summary of main results The main contribution of this work is to apply
the techniques developed to design optimal observers and controllers for linear
PDE to a soft robot manipulator. We model the dynamics of the robot arm as a
nonlinear PDE and discuss one of the strategies to linearize the nonlinear PDE.
Then the linear PDE is converted to a linear PIE. The design of a distributed �∞-
optimal observer or controller for the PIE is posed as a convex-optimization problem
with LPI constraints. The optimization problem is then solved using PIETOOLS.
Furthermore, a decentralized implementation of these observers and controllers is
proposed.

4 Authors Suppressed Due to Excessive Length

Note on Continuum Controllers and Observers The methods discussed in
this chapter aid in the design of the optimal controllers and observers without
approximating the PDEby anODE. The approximation is done at the implementation
stage after the design of the optimal controller or observer.Wewill use a finite number
of equispaced actuators and sensors. However other non-equispaced strategies, e.g.
[4], can be implemented in a decentralized manner due to the form of PI operators.
The key point is that the design process needs to be performed only once and different
discretization strategies for the observer can be used—which is not case if the PDE is
discretized prior to the design stage. Furthermore, models which approximate PDEs
by a finite-dimensional system before finding a controller or observer, e.g. hyper-
redundant continuum robotic arm [18], often result in a controller that requires
significant computational effort in motion planning - thus making it impractical in
real-time applications.

2 Modelling Of The Soft-robot Arm

In this section, we introduce the nonlinear PDEmodel which describes the dynamics
of the soft-robot followed by linearization of the system to obtain a linear PDEmodel
for the soft-robot arm.

2.1 Nonlinear Euler Beam Model

In this section, we introduce a nonlinear model of the soft-robot arm. The robot
is assumed to move in a 2D plane. The deformations are defined by the axial and
transverse coordinates. The derivation of this model can be found in [10].

The dynamics of this system are given by

mG (��4(G, C)2>B(\ (G, C))) + mG
(
mG (��mG\ (G, C))B8=(\ (G, C))

1 + 4(G, C)

)
=

d ¥D(G, C) + mG
(
� ¥\ (G, C)B8=(\ (G, C))

1 + 4(G, C)

)
,

mG (��4(G, C)B8=(\ (G, C))) − mG
(
mG (��mG\ (G, C))2>B(\ (G, C))

1 + 4(G, C)

)
+ 5 (G, C) =

d ¥F(G, C) + mG
(
� ¥\ (G, C)2>B(\ (G, C))

1 + 4(G, C)

)
,

where D is the axial deformation, F is the transverse deformation, � is the Young’s
modulus, � is the area of cross-section, � is the moment of inertia about the axis
perpendicular to the plane of motion, � is rotational moment of inertia about axial

Title Suppressed Due to Excessive Length 5

direction, d is the mass per unit length, 4 is the axial stretch and rotation of the
cross-section \.

For this study, we assume rotary inertia � is small and the arm is isotropic with
uniform cross-section. These assumptions are not necessary, however, and can be
relaxed if necessary. Next, we can simplify the equations to obtain

��mG (4(G, C)2>B(\ (G, C))) + ��mG
(
m2G \ (G, C)B8=(\ (G, C))

1 + 4(G, C)

)
= d ¥D(G, C)

��mG (4(G, C)B8=(\ (G, C))) − ��mG
(
m2G \ (G, C)2>B(\ (G, C))

1 + 4(G, C)

)
+ 5 (G, C) = d ¥F(G, C).

(1)

Now, we replace the geometric relations C0=(\) = mGF

1+mGD and 4 = ((1 + mGD)2 +
mGF

2) 12 − 1 in the Eq. (1). Taylors’ series expansion is then used to represent the
nonlinear terms as polynomials and terms with degree higher than 2 are truncated.
This yields a nonlinear PDE with 2=3 order derivative in time C and 4Cℎ order
derivatives in the spatial variable, G.

d ¥D(G, C) − ��m2G D(G, C) = ��mGF(G, C)m2GF(G, C)
+ �� (m2GF(G, C)m3GF(G, C) + mGF(G, C)m4GF(G, C)),

d ¥F(G, C) + ��m4GF(G, C) = ��(m2G D(G, C)mGF(G, C) + mGD(G, C)m2GF(G, C))
+ �� (m2G D(G, C)m2GF(G, C) + mGD(G, C)m3GF(G, C))
+ �� (m3G (mGD(G, C)mGF(G, C))) + 5 (G, C). (2)

We require the solutions to Eq. (2) D(., C), F(., C) ∈ ,2,4 [0, !] to satisfy the bound-
ary conditions corresponding to attachment of the arm at the mantle.

D̃(0, C) = 0, mG D̃(0, C) = 0, m2G D̃(!, C) = 0, m3G D̃(!, C) = 0,
F̃(0, C) = 0, mGF̃(0, C) = 0, m2G F̃(!, C) = 0, m3G F̃(!, C) = 0.

These boundary conditions imply the arm is fixed at one end and free at the other.
Equation (2) has polynomial nonlinearity, i.e. nonlinear terms that are products of
functions and derivatives of functions.

2.2 Setpoint Linearization Of The Dynamics Of Soft-robot Arm

Typically, for nonlinear ODE systems, Jacobian linearization is used to linearize the
system. Unfortunately, Jacobian Linearization cannot be directly used for nonlinear
PDEs. We can, however, use a similar approach [1] by considering deviations from
a pre-specified solution (setpoint) to obtain a linear PDE that approximates the
behavior of the system in the neighbourhood of the chosen setpoint. Consider a

6 Authors Suppressed Due to Excessive Length

Setpoint 1:

D4 (G) = 0, F4 (G) = 0.55G2 − 0.38G3 + 0.09G4

Setpoint 2:

D4 (G) = 0, F4 (G) = 2.8G2 − 2.6G3 + 0.94G4

Setpoint 3:

D4 (G) = 0, F4 (G) = 28.8G2 − 74.2G3 + 71.7G4

Fig. 2: Figure on the left shows three functions chosen as setpoints. The tip of the
arm is chosen to be the scheduling variable. The conic sections in gray show the
operation zone, i.e. if the tip of the arm is in the cone that shares an edge with x-axis,
then the first setpoint is chosen. On the right, we provide the polynomials for the
setpoint.

nonlinear PDE,

¤x(C) = A(x(C), D(C))

whereA : - ×* → - is a nonlinear function that is locally lipschitz. A solution, x
near the setpoint x4 can be written as x = x4 + nw. Since the setpoint is a solution to
the PDE, ¤x4 (C) = A(x4 (C), D(C)). Then, we can find

n ¤w(C) = A(x4 (C) + nw(C), D(C)) − A(xe (C), D(C)).

We expand A(x4 (C) + nw(C), D(C)) using a Taylors’ Series Expansion. The linear
approximation can then be obtained by truncating the terms with degree of n greater
than 1.

Applying this technique to the nonlinear PDE in Eq.(2) with setpoint D4 and F4,
we obtain the following linear PDEwhere the independent variables are here omitted
for brevity.

d ¥̃D = ��m2G D̃ + (��m2GF4 + ��m4GF4)mGF̃ + (��mGF4 + ��m3GF4)m2G F̃
+ ��m2GF4m3G F̃ + ��mGF4m4G F̃

d ¥̃F = (��m2G D4 + ��m4GD4)mGF̃ + (��mGD4 + ��m2G D4 + 3��m3GD4)m2G F̃
+ (��mGD4 + 3��m3GD4)m3G F̃ + (−�� + ��mGD4)m4G F̃
+ (��m2GF4 + ��m3GF4 + ��m4GF4)mG D̃ + (��mGF4 + ��m2GF4 + 3��m3GF4)m2G D̃
+ 3��m2GF4m3G D̃ + ��mGF4m4G D̃ + 5 . (3)

Finally, we define new states for the system Eq.(3) as x =
[
D̃ ¤̃D F̃ ¤̃F

]) . The PDE
can now be written as

Title Suppressed Due to Excessive Length 7

¤x(C) =
4∑
9=0

� 9 (B)m 9B x(C) + �1 (B) 5 (C), (4)

where

�0 (G) =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,
�1 (G) =

1

d

0 0 0 0

0 0 (��m2GF4 + ��m4GF4) 0
0 0 0 0

(��m2GF4 + ��m3GF4 + ��m4GF4) 0 (��m2G D4 + ��m4GD4) 0

 ,
�2 (G) =

1

d

0 0 0 0

�� 0 (��mGF4 + ��m3GF4) 0

0 0 0 0

(��mGF4 + ��m2GF4 + 3��m3GF4) 0 (��mGD4 + ��m2G D4 + 3��m3GD4) 0

 ,
�3 (G) =

1

d

0 0 0 0

0 0 ��m2GF4 0

0 0 0 0

3��m2GF4 0 (��mGD4 + 3��m2G D4) 0

 ,
�4 (G) =

1

d

0 0 0 0

0 0 ��mGF4 0

0 0 0 0

��mGF4 0 (−�� + ��mGD4) 0

 , �1 (G) =
1

d

0

0

0

1

 . (5)

In the next section, we present a way to convert a linear PDE of this format to a
PIE representation using the �8’s and �8’s defined above. The �8’s and �8’ for our
model are obtained by substituting the setpoint functions D4 and F4 illustrated in
Figure 2.

3 Estimation and Control Of Linear PDEs

In this section, we present the PIE representation of a PDE. This representation has
the advantage that it is defined by bounded linear operators (no spatial derivatives).
Furthermore, �∞-optimal observers and feedback controllers can be obtained for
systems in the PIE framework using newly-developed computational tools such as
PIETOOLS [15].

8 Authors Suppressed Due to Excessive Length

3.1 Partial Integral Operators

API operator is a parameterized linear mapping between infinite-dimensional spaces
R< × !=

2
→ R? × !@

2
. We define two classes of PI-operators, 3-PI and 4-PI. As the

nomenclature suggests, 3-PI operators, denoted as P{#8 } : !<
2
[0, 1] → !=

2
[0, 1],

are parameterized by 3 matrix-valued functions #0 : [0, 1] → R=×< and #1, #2 :
[0, 1]× [0, 1] → R<×=. 3-PI operators are bounded linear maps between the normed
spaces !<

2
[0, 1] and !=

2
[0, 1], endowed with standard !2 inner product.(

P{#8 }y
)
(B) := #0 (B)y(B) +

∫ B

0

#1 (B, \)y(\)3\ +
∫ 1

B

#2 (B, \)y(\)3\. (6)

Similarly, 4-PI operators, are bounded linear operators between R< × !=
2
[0, 1] and

R? × !@
2
[0, 1] and are parameterized by the matrix %, the matrix-valued functions

&1, &1 and the 3-PI operator P{#8 } where % : R< → R? , &1 : [0, 1] → R?×=,
&2 : [0, 1] → R@×< and P{'8 } : !=

2
[0, 1] → !

@

2
[0, 1].

P
[

%, &1
&2,{'}

] [
G

y

]
(B) :=

[
%G +

∫ 1
0
&1 (B)y(B)3B

&2 (B)G + P{'8 }y(B)

]
. (7)

3.2 Partial Integral Equations

Partial Integral Equations (PIEs) take the form

T ¤x(C) = Ax(C) + B1F(C) + B2D(C),
I(C) = C1x(C) + D11F(C) + D12D(C),
H(C) = C2x(C) + D21F(C) + D22D(C), (8)

where T ,A,B8 , C8 and D8 9 are 4-PI operators. PIEs are useful in analysis and
control of linear PDEs because they do not require boundary conditions or continuity
constraints. It was shown in [8] that any linear PDE with a single spatial variable
can be represented as a PIE. In the following example, we provide the PI operators
that transform a 4Cℎ-order linear PDE (of the form (4)) to a PIE.

Consider a linear PDE of the form,

¤G(B, C) =
4∑
9=0

� 9 (B)m 9B G(B, C) + �1 (B)F(C) + �2 (B)D(C),

�G1 (C) = 0, (9)

where �8 : R→ R=×=, �8 : R→ R=, rank(�) = 4= and

G1 (C) =

Title Suppressed Due to Excessive Length 9

col(G(0, C), mBG(0, C), m2B G(0, C), m3B G(0, C), G(1, C), mBG(1, C), m2B G(1, C), m3B G(1, C)).

We define the 3-PI operators,

T = P{�8 },A = P{�8 },B8 = P{�8 ,0,0}, C8 = 0,D8 9 = 0, (10)

where

�0 (B) = 0, �1 (B, \) = − 0 (B) (�) (1))−1�&(1, \) + !0 (B, \),
�2 (B, \) = − 0 (B) (�) (1))−1�&(1, \),

�0 (B) = �4 (B), �1 (B, \) = −
3∑
9=0

(� 9 (B) 9 (B) (�) (1))−1�&(1, \) + ! 9 (B, \)),

�2 (B, \) = −
3∑
9=0

� 9 (B) 9 (B) (�) (1))−1�&(1, \),

) (B) =

� 0 0 0

0 � 0 0

0 0 � 0

0 0 0 �

� B − 0 (B − 0)2/2 (B − 0)3/3!
0 � B − 0 (B − 0)2/2!
0 0 � B − 0
0 0 0 �

, &(B, \) =

0

0

0

0

(B − \)3/3!
(B − \)2/2!
B − \
�

,

 9 (B) =){ 9+5} (B), ! 9 (B, \) = & { 9+5} (B, \). (11)

The row index 9 for) and & stands for 9 Cℎ subpartition row shown above.
Then for any G that satisfies linear PDE (9), x = m4B G satisfies the PIE (8) for the

3-PI operators as defined in (10). Using �8 and �8 as defined in (5), we define the
3-PI operators (10) to find the PIE form of the PDE (3).

3.3 Linear Partial Integral Inequalities

Optimization problems with PI operator variables and Linear PI Inequality con-
straints can be solved using the software package PIETOOLS [15]. These optimiza-
tion problems are referred to as Linear PI Inequalities (LPIs) and take the form

P
[
%0, &0
&)
0
,
{
'08

}] + #∑
:=1

G 9P
[
%: , &:
&)
:
,
{
':8

}] < 0, (12)

where the decision variable is G ∈ R# and P
[
%: , &:
&)
:
,
{
':8

}] : R< × !=
2
[0, 1] → R< ×

!=
2
[0, 1] is a given self-adjoint 4-PI operator for 0 ≤ : ≤ # and : ∈ Z.

10 Authors Suppressed Due to Excessive Length

3.4 N∞-optimal Observer Design

In this subsection, we extend the LMI result used for design of�∞-optimal observers
of ODEs to an LPI for observation of systems defined by PIEs.

3.4.1 N∞-optimal Observer Design For Linear ODEs

Consider the problem of designing the �∞ optimal observer for a linear ODE whose
dynamics are governed by the equations

¤G(C) = �G(C) + �F(C), G(0) = 0,
I(C) = �1G(C) + �11F(C),
H(C) = �2G(C) + �21F(C), (13)

where � : R= → R=, � : R→ R=, �8 : R= → R, �81 : R→ R, F ∈ !2 ([0,∞)) is a
disturbance, H is the measured output and I is the regulated output. Let the observer
dynamics be

¤̂G(C) = �Ĝ(C) + ! (�2Ĝ(C) − H(C)),
Î(C) = �1Ĝ(C), (14)

where ! : R → R=, Ĝ is the estimated state and I4 (C) = Î(C) − I(C) is the error in
the estimate of regulated output. The closed-loop dynamics of the error system with
state 4(C) := Ĝ(C) − G(C) as determined by Eqs. (13) and (14) result in

¤4(C) = (� + !�2)4(C) − (� + !�21)F(C), I4 (C) = �14(C) − �11F(C). (15)

Using the KYP Lemma, [2], we can formulate the following LMI that provides
necessary and sufficient conditions for the existance of an �∞-optimal observer with
‖I4 ‖!2
‖F ‖!2

≤ W. The LMI used to find �∞-optimal observer for this system is

% > 0
−W� −�)

11
−(%� + /�21))

∗) −W� �1
∗) ∗) (%� + /�2)) + %� + /�2

 ≤ 0 (16)

where the observer gains are ! = %−1/ .

3.4.2 N∞-optimal Observer Design For Linear PIEs

We can generalize the LMI in Subsection 3.4.1 to an LPI - yielding continuum ob-
servers for systems modeled using PIEs. Specifically, suppose the system to be ob-

Title Suppressed Due to Excessive Length 11

served is defined by Eqns. (8). We propose an observer structure similar to Eqn. (14).
Then the closed-loop error dynamics are

T ¤e(C) = (A + LC2)e(C) − (B + LD21)F(C), e(0) = 0
I4 (C) = C1e(C) − D11F(C) (17)

where T : !=
2
[0, 1] → !=

2
[0, 1], A : !=

2
[0, 1] → !=

2
[0, 1], B : R → !=

2
[0, 1],

C8 : !=
2
[0, 1] → R, D81 : R→ R and L : R→ !=

2
[0, 1] are PI operators. The LPI

constraints for the PIE are given below.

Suppose there exists bounded linear operators P : !=
2
[0, 1] → !=

2
[0, 1] and

Z : R→ !=
2
[0, 1], such that P is coercive and
−W� −D∗

11
−(PB + ZD21)∗T

(·)∗ −W� C1
(·)∗ (·)∗ (PA +ZC2)∗T + T ∗ (PA +ZC2)

 4 −n � (18)

where n > 0 and � : !2 → !2 is an identity operator. Then P−1 exists and
is a bounded linear operator and for L = P−1Z and any F ∈ !2 ([0,∞)) any
solution for the system (17) satisfies ‖I4‖!2 < W‖F‖!2 .

For proof, please refer [17].

3.5 N∞-optimal Controller Synthesis

Similar to subsection 3.4, we state the LMI for finding an �∞ -optimal controller for
a linear ODE system and then present the extension to an LPI.

3.5.1 N∞-optimal Controller Synthesis For Linear ODEs

Consider an ODE

¤G(C) = �G(C) + �1F(C) + �2D(C),
I(C) = �1G(C) + �11F(C) + �12D(C), (19)

where � : R= → R=, �8 : R → R=, �1 : R= → R, �18 : R → R, F ∈ !2 ([0,∞))
is a disturbance, D is the input and I is the regulated output. If there exists a % > 0,
where % ∈ S=, and / : R= → R such that

%�) + �% + /) �)
2
+ �2/ �1 %�)

1
+ /) �)

12

∗) −W� �)
11

∗) ∗) −W�

 ≤ 0,

12 Authors Suppressed Due to Excessive Length

then for D(C) = /%−1G(C), the solutions of (19) satisfy ‖I‖!2 ≤ W‖F‖!2 for F ∈
!2 ([0,∞)).

3.5.2 N∞-optimal Controller Synthesis For Linear PIEs

Similar to the ODE shown earlier, consider a PIE system

T ¤x(C) = Ax(C) + B1F(C) + B2D(C), x(0) = 0,
I(C) = C1x(C) + D11F(C) + D12D(C), (20)

where T : !=
2
[0, 1] → !=

2
[0, 1], A : !=

2
[0, 1] → !=

2
[0, 1], B8 : R → !=

2
[0, 1],

C1 : !=
2
[0, 1] → R and D18 : R → R are PI operators. Then the following LPI can

be used to find �∞-optimal controller gains for a linear PIE.

Suppose there exists bounded linear operators P : !=
2
[0, 1] → !=

2
[0, 1] and

Z : !=
2
[0, 1] → R, such that P is coercive and

−W� D∗
11

(PC∗
1
+ Z∗D∗

12
)

(·)∗ −W� B1
(·)∗ (·)∗ (·)∗ + T (AP + B2Z)∗

 4 −n � (21)

where n > 0 and � : !2 → !2 is an identity operator. Then there exists
a bounded and coercive linear operator P−1. Further, for D = Kx, where
K = ZP−1, and any F ∈ !2 any solution for (20) satisfies ‖I‖!2 ≤ W‖F‖!2 .

For proof, please refer [14].

3.6 PIETOOLS: A MATLAB Toolbox For Handling PI Operators

The PI-operators form a *-subalgebra, i.e. the operations such as addition, concatena-
tion, composition, adjoint operations on PI operators are closed and result in another
linear PI operator. Then, if the operators P andZ are parametrized by PI operators
then the contraints in (18) and (21) are LPIs. Furthermore, in [13], it was proven that
positivity constraints on LPIs can be enforced using LMIs; the numerical implemen-
tation is done in MATLAB by using PIETOOLS [15]. PIETOOLS borrows some
functions for handling polynomials from SOSTOOLS [12] and can use a variety of
SDP solvers such as SeDuMi, Mosek et c.

Title Suppressed Due to Excessive Length 13

4 Decentralized Implementation Of The Controller And
Observer

In this section, a method for decentralized implementation of controllers and ob-
servers in PI form is presented. To calculate the gains K and L the inverse operator
P−1 must be computed. A self-adjoint, bounded and coercive operator in 4-PI form
has an inverse which is necessarily a 4-PI operator. Specifically, for a self-adjoint,
bounded and coercive 4-PI operator P

[
%, &

&) ,
{
'8

}] , if '1 = '2 then we have an ex-

act formula for the inverse P−1 = P
[

%̂, &̂1
&̂2,

{
'̂8

}] as presented in Theorem 8 of [11].
However, to find P−1, we need to find '0 (B)−1 which is a rational function. Instead
of calculating '0 (B)−1 exactly, we approximate it numerically by a polynomial and
calculate the inverse P−1. The controller (K = ZP−1) or observer (L = P−1Z)
gains are in 3-PI form

(Kx) (B) = 0 (B)x(B) +
∫ B

0

 1 (B, \)x(\)3\ +
∫ 1

B

 2 (B, \)x(\)3\,

(Lx) (B) = !0 (B)x(B) +
∫ B

0

!1 (B, \)x(\)3\ +
∫ 1

B

!2 (B, \)x(\)3\,

where the 8’s and !8’s are matrix-valued polynomials of appropriate dimensions.
For the implementation, we discretize the domain [0, !] by an equispaced grid

with = grids. The distributed state G(·, C) is approximated by the vector of states
G8 (C) = G(B8 , C) where B8 = 8ΔB, 8 ∈ {0, ..., =} and ΔB = !/(= + 1). Then,

 =G8 (C) := (KG) (B8 , C) u 0 (B8)G8 (C) + 10 (B8)
8∑
9=0

 11 (B 9)G 9 (C)ΔB

+ 20 (B8)
=∑

9=8+1
 21 (B 9)G 9 (C)ΔB,

where = is the finite-dimensional approximation of K on the grid with = seg-
ments. Note that the 8’s are polynomials and hence can be factored as 8 (B, \) =
 80 (B) 81 (\).

Typically, a full-state feedback requires =2 information transfers to find the inputs
D8 (C) = =G8 (C) for all 8. A system is said to be decentralized if it operates based
on local information. However, definition of localness of information is not clearly
defined. Hence, we say a system to be decentralized when the number of information
transfers required to determine the inputs D8 is of order O(#). As discussed below,
an observer/controller of 3-PI form can indeed be implemented such that inputs are
calculated using information from immediately adjacent nodes (local information).

Each node 8 has access to the information 0 (B8)G8 (C), 10 (B8) and 20 (B8).
The information needed from other segments are the cumulative values 28 (C) =∑8−1
9=0 11 (B 9)G 9 (C) and 38+1 (C) =

∑=
9=8+1 21 (B 9)G 9 (C). Suppose node 8 receives

14 Authors Suppressed Due to Excessive Length

Fig. 3: Information transfer needed to find input D8 (C)

the sum 28 (C) from the node 8 − 1. Then we find 28+1 (C) = 28 (C) + 11 (B8)G8 (C)
and send the information to node 8 + 1. In the opposite direction, we find 38 (C) =
38+1 (C) + 21 (B8)G8 (C) and transmit the information to node 8 − 1. Then every node
uses only local information to determine the input

D8 (C) = 0 (B8)G8 (C) + 10 (B8)28 (C)ΔB + 20 (B8)38+1 (C)ΔB

and the exchange of information can be achieved with just 2= information transfers.
Thus, we do not require communication between non-adjacent nodes. Further, delay
arising from communication between distal nodes are avoided and dramatically
reduces communication overhead.

4.1 Observer Implementation In MATLAB

Using PIETOOLS, we design the �∞-optimal observer for each of the setpoints
shown in Figure. 2 which results in 3 different observer gains for corresponding to the
different linearized PDEs. The linearized observers are implemented as a single gain-
scheduled observer where the active observer is determined by the sector in which
the tip of the arm is located. The domain [0, 1] is divided into a equispaced grid with
10 grids. The even-order derivatives in the PDE (2) were approximated by a 2=3 order
central difference expression while the odd-order derivatives were approximated by
using 1BC order upwind-biased difference expressions. The discretization methods are
not discussed in detail because it is not the focus of this work and other discretization
methods can be used to approximate the solution of PDE. MATLAB ode solver
was used to solve the finite difference approximation of the PDE using the initial
conditions

Ĝ8 (B, 0) = G1 (B, 0) = G2 (B, 0) = G4 (B, 0) = 0, G3 (B, 0) = (2B2 − (8/3)B3 + B4)

and input disturbance F(C) = B8=(C)
10C

where G is the system state, Ĝ is the observer
state and F is the input disturbance.

The two observed outputs H1 and H2 are the errors in transverse displacement of
the tip and average error in estimate of PIE state. The regulated output is the average
error in the estimate of the PIE states.

H(C) =
[
Ĝ(!, C) − G(!, C)∫ !

0
e([, C)3[

]
I(C) =

∫ !

0

e(B, C)3B, e = m4B Ĝ − m4B G

Title Suppressed Due to Excessive Length 15

The outputs can be expressed in PIE form (8) by defining C8 and D8 9 as

D8 9 = 0, C1 = P{0,� ,� }, C2 = P{0,�2 ,�2 }, �2 (B, \) =
[
�1 (!, \)

�

]
(22)

where �1 is as defined in (11). The material properties and dimensions for the soft-
robot arm are set as � = 5× 103#/<2, A = 0.025<, ! = 1< and d = 1.1× 103:6/<3.

A stepwise procedure to implement the observer:

1. Define the PI operators T , A, B8 as in (5) and C8 , D8 9 as in (22).
2. Solve the LPI (18), using PIETOOLS, to find P andZ.
3. Find the observer L = P−1Z for each setpoint.
4. Find finite-dimensional approximation ! of the observer L.
5. Use finite-difference approximation of the PDE (4) to find �, � and �8 .
6. Implement the closed-loop error dynamics (15) in MATLAB.

(a) I3 (C) vs C (b) Ĝ3 (B, C) vs B at different C values

Fig. 4: The figure on the left shows the time-evolution of the regulated output, which
in this case is the average error in the estimate of the state. On the right, we plot the
estimate of the transverse displacement at different times.

As seen in Fig. 4a, the error asymptotically converges to zero and the approx-
imation of the actual shape of the arm is shown in Fig. 4b. Figure 5 shows that
gain-scheduled observer converges for different initial conditions. If the LPI (18) is
solved with a large positive value for n then, for the obtained observer, the observer
state converges to system state faster. However, using large values for n can result in
high observer gain values and higher �∞-norm.

16 Authors Suppressed Due to Excessive Length

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x coordinate

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

y
 c

o
o
rd

in
a
te

t=15

IC

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x coordinate

-2

0

2

4

6

8

10

y
 c

o
o
rd

in
a
te

10
-3

t=15

IC

(b)

Fig. 5: Observer state converges for different Initial Conditions.

5 Conclusion

In this chapter, we discussed a method for linearizing a nonlinear PDE about set-
points. Next, we introduced the PIE representation of linear PDE and posed the
design of �∞-optimal observer and controller gains as an optimization problem with
PI variables and LPI constraints. A computational tool, PIETOOLS, was used to
solve the resulting LPI optimization problems. Next, we presented a method to im-
plement the proposed continuum controllers or observers in a decentralized manner.
Finally, we applied the methods developed for linear coupled PDE systems to the
model of a soft-robot arm.MATLAB implementation was used to show convergence
and stability of the observer.

Acknowledgements This work was supported by Office of Naval Research Award N00014-17-1-
2117 and National Science Foundation under grant No. 1739990.

References

1. A. S. Banach and W. T. Baumann. Gain-scheduled control of nonlinear partial differential
equations. In 29th IEEE Conference on Decision and Control, pages 387–392. IEEE, 1990.

2. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system
and control theory, volume 15. SIAM, 1994.

3. M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A.Men-
ciassi. Soft robotics technologies to address shortcomings in today’s minimally invasive
surgery: the STIFF-FLOP approach. Soft robotics, 1(2):122–131, 2014.

4. N. Darivandi, K. Morris, and A. Khajepour. An algorithm for LQ optimal actuator location.
Smart materials and structures, 22(3):035001, 2013.

5. I. S. Godage, G. A.Medrano-Cerda, D. T. Branson, E. Guglielmino, andD. G. Caldwell. Modal
kinematics for multisection continuum arms. Bioinspiration & biomimetics, 10(3):035002,
2015.

Title Suppressed Due to Excessive Length 17

6. R. Kang, A. Kazakidi, E. Guglielmino, D. T. Branson, D. P. Tsakiris, J. A. Ekaterinaris, and
D. G. Caldwell. Dynamicmodel of a hyper-redundant, octopus-likemanipulator for underwater
applications. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4054–4059. IEEE, 2011.

7. L. Lessard and S. Lall. Quadratic invariance is necessary and sufficient for convexity. In
Proceedings of the 2011 American Control Conference, pages 5360–5362. IEEE, 2011.

8. M. M. Peet, A. Das, S. Shivakumar, and S. Weiland. Representation and stability analysis of
PDE-ODE coupled systems. In Proceedings of the 3rd IFAC/IEEE CSS Workshop on Control
of Systems Governed by Partial Differential Equations CPDE and XI Workshop Control of
Distributed Parameter Systems, 2019.

9. F. Matsuno and K. Suenaga. Control of redundant 3D snake robot based on kinematic model.
In 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422),
volume 2, pages 2061–2066. IEEE, 2003.

10. A. H. Nayfeh and P. F. Pai. Linear and nonlinear structural mechanics. John Wiley & Sons,
2008.

11. M. M. Peet. �∞-optimal control of systems with multiple state delays: Part 1. In Proceedings
of the American Control Conference, 2019.

12. S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo. SOSTOOLS and its control
applications. In Positive polynomials in control, pages 273–292. Springer, 2005.

13. S. Shivakumar, A.Das, andM.M. Peet. PIETOOLS:AMATLAB toolbox formanipulation and
optimization of partial integral operators. In Proceedings of the American Control Conference,
2020.

14. S. Shivakumar, A.Das, S.Weiland, andM.M. Peet. Duality and�∞-optimal control of coupled
ODE-PDE systems. Technical report, arXiv.org, 2020. https://arxiv.org/abs/2004.03638.

15. S. Shivakumar and M. Peet. PIETOOLS for Time-Delay Systems.
https://codeocean.com/capsule/7653144/.

16. V. Vikas, E. Cohen, R. Grassi, C. Sözer, and B. Trimmer. Design and locomotion control of
a soft robot using friction manipulation and motor–tendon actuation. IEEE Transactions on
Robotics, 32(4):949–959, 2016.

17. S. Wu, S. Shivakumar, M. M. Peet, and C. Hua. �∞-optimal observer design for linear
systems with delays in states, outputs and disturbances. Technical report, arXiv.org, 2020.
https://arxiv.org/abs/2004.04482.

18. T. Zheng, D. T. Branson, R. Kang,M. Cianchetti, E. Guglielmino,M. Follador, G. A.Medrano-
Cerda, I. S. Godage, and D. G. Caldwell. Dynamic continuum arm model for use with
underwater robotic manipulators inspired by octopus vulgaris. In 2012 IEEE International
Conference on Robotics and Automation, pages 5289–5294. IEEE, 2012.

