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Abstract
The accuracy and complexity of machine learning
algorithms based on kernel optimization are de-
termined by the set of kernels over which they are
able to optimize. An ideal set of kernels should:
admit a linear parameterization (for tractability);
be dense in the set of all kernels (for robustness);
be universal (for accuracy). The recently pro-
posed set of Tesselated Kernels (TKs) is currently
the only known class which meets all three cri-
teria. However, previous algorithms for TK Ker-
nel Learning (TKL) were limited to classifica-
tion and furthermore relied on computationally
complex Semidefinite Programming (SDP) algo-
rithms. In this paper, we pose the TKL problem
as a minimax optimization problem and propose a
SVD-QCQP primal-dual algorithm which dramat-
ically reduces the computational complexity as
compared with previous SDP-based approaches.
Furthermore, we provide an efficient implementa-
tion of this algorithm for both classification and
regression, and which enables us to solve prob-
lems with 100 features and up to 30,000 datums.
Furthermore, when applied to benchmark data,
the algorithm demonstrates significant improve-
ment in accuracy over standard approaches such
as Neural Nets, SimpleMKL, and Random Forest
with similar or better computation time.

1. Introduction
Kernel methods for classification and regression (and Sup-
port Vector Machines (SVMs) in particular) require selec-
tion of a kernel. Kernel Learning (KL) algorithms such as
those found in (Xu et al., 2010; Sonnenburg et al., 2010;
Yang et al., 2011) automate this task by finding the kernel,
k ∈ K which optimizes an achievable metric such as the
soft margin (for classification). The set of kernels, k ∈ K,
over which the algorithm can optimize, however, strongly
influences the performance and robustness of the resulting
classifier or predictor.
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To understand how the choice of K influences performance
and robustness, three properties were proposed in (Colbert
& Peet, 2020) to characterize the set K - tractability, density,
and universality. Specifically, K is tractable if K is convex
(or, preferably, a linear variety) - implying the KL problem
is solvable using, e.g. (Rakotomamonjy et al., 2008; Jain
et al., 2012; Lanckriet et al., 2004; Qiu & Lane, 2005; Gönen
& Alpaydın, 2011). The set K has the density property if,
for any ε > 0 and any positive kernel, k∗ there exists a
k ∈ K where ‖k − k∗‖ ≤ ε. The density property implies
the kernel will perform well on untrained data (robustness
or generalizability). The set K has the universal property
if any k ∈ K is universal - ensuring the classifier/predictor
will perform arbitrarily well on large sets of training data.

In (Colbert & Peet, 2020), the Tessellated Kernels (TKs)
were shown to have all 3 properties, the first known such
class of kernels. This work was based on a general frame-
work for using positive matrices to parameterize positive
kernels (as opposed to positive kernel matrices as in (Lanck-
riet et al., 2004; Qiu & Lane, 2005; Ni et al., 2006)). Un-
fortunately, however, the algorithms proposed in (Colbert
& Peet, 2020) were implemented using SemiDefinite Pro-
gramming (SDP) (thereby limiting the amount of training
data) or using SimpleMKL with a randomized linear basis
for the kernels (implying loss of density). Thus, while the
algorithms in (Colbert & Peet, 2020) outperformed all other
methods (including Neural Nets) as measured by Test Set
Accuracy (TSA), the computation times were not competi-
tive. Furthermore, the results in (Colbert & Peet, 2020) did
not address the problem of regression.

In this paper, we extend the TK framework proposed in (Col-
bert & Peet, 2020) to the problem of regression. The KL
problem in regression has been studied using SDP in (Qiu
& Lane, 2005; Ni et al., 2006) and Quadratic Programming
(QP) in e.g. (Rakotomamonjy et al., 2008; Jain et al., 2012).
However, neither of these previous works considered a set
of kernels with both the tractability and the density property.
By generalizing the Tessellated KL framework proposed
in (Colbert & Peet, 2020) to the regression problem, we
demonstrate significant increases in performance, as mea-
sured by Mean Square Error (MSE), and when compared to
the results in (Rakotomamonjy et al., 2008; Jain et al., 2012;
Qiu & Lane, 2005).
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In addition, we show that the SDP-based algorithm (Col-
bert & Peet, 2020) for classification, and extended here to
regression, can be decomposed into primal and dual sub-
problems, OPT A and OPT P - similar to the approach
taken in (Rakotomamonjy et al., 2008; Jain et al., 2012).
Furthermore, we show that OPT P (an SDP) admits an
analytic solution using the Singular Value Decomposition
(SVD) - an approach which allows us to consider higher
dimensional feature spaces and more complex TKs. In addi-
tion, OPT A is a convex QP and may be solved efficiently
with achieved complexity which scales as O(m2.16) where
m is the number of data points. We use a two-step algo-
rithm onOPT A andOPT P and show that termination at
OPT A = OPT P is equivalent to global optimality. The
resulting algorithm, then, does not require the use of SDP
and, when applied to several standard test cases, is shown
to retain the favorable TSA of (Colbert & Peet, 2020) for
classification, while offering improved MSE for regression,
and competitive computation times as compared to other
KL and deep learning algorithms.

2. Properties of Kernel Sets for KL
Consider a generalized representation of the KL problem,
which encompasses both classification and regression where
(using the representor theorem (Schölkopf et al., 2001)) the
learned function is of the form fα,k(z) =

∑m
i=1 αik(xi, z).

min
k∈K

min
α∈Rm,b

‖fα,k‖2 + C
∑m

i=1
l(fα,k, b)yi,xi

(1)

Here ‖fα,k‖ =
∑m
i=1

∑m
j=1 αiαjk(xi, xj) is the norm

in the Reproducing Kernel Hilbert Space (RKHS) and
l(fα,k, b)yi,xi

is the loss function defined for SVM binary
classification and SVM regression as lc(fα,k, b)yi,xi

and
lr(fα,k, b)yi,xi

, respectively, where

lc(fα,k, b)yi,xi
= max{0, 1− yi(fα,k(xi)− b)},

and
lr(fα,k, b)yi,xi

= max{0, |yi − (fα,k(xi)− b)| − ε}.
The properties of the classifier/predictor, fα,k, resulting
from Optimization Problem 1 will depend on the properties
of the set K, which is presumed to be a subset of the convex
cone of all positive kernels. To understand howK influences
the tractability of the optimization problem and the resulting
fit, we consider three properties of the set, K.

2.1. Tractability
We say a set of kernel functions, K, is tractable if it can be
represented using a countable basis.

Definition 1. The set of kernels K is tractable if there exist
a countable set {Gi(x, y)}i such that, for any k ∈ K, there
exists NG ∈ N where k(x, y) =

∑NG

i=1 viGi(x, y) for some
v ∈ RNG .
Note the Gi(x, y) need not be positive kernel functions.
The tractable property is required for the KL problem to be
tractable using algorithms for convex optimization.

2.2. Universality
Universal kernel functions always have positive defi-
nite (full rank) kernel matrices, implying that for arbi-
trary data {yi, xi}mi=1, there exists a function f(z) =∑m
i=1 αik(xi, z), such that f(xj) = yj for all j = 1, ..,m.

Conversely, if a kernel is not universal, then there exists a
data set {xi, yi}mi=1 such that for any α ∈ Rm, there exists
some j ∈ {1, · · · ,m} such that f(yj) 6=

∑m
i=1 αik(xi, xj).

This ensures that SVMs using universal kernels can always
benefit from additional training data, whereas non-universal
kernels may saturate.

Definition 2. A kernel k : X × X → R is said to be
universal on the compact metric space X if it is continu-
ous and there exists an inner-product spaceW and feature
map, Φ : X → W such that k(x, y) = 〈Φ(x),Φ(y)〉W
and where the unique Reproducing Kernel Hilbert Space
(RKHS), H := {f : f(x) = 〈v,Φ(x)〉, v ∈ W} with as-
sociated norm ‖f‖H := infv{‖v‖W : f(x) = 〈v,Φ(x)〉}
is dense in C(X) := {f : X → R : f is continuous}
where ‖f‖C := supx∈X |f(x)|.
The following definition extends the universal property to a
set of kernels.

Definition 3. A set of kernel functions K has the universal
property if every kernel function k ∈ K is universal.
2.3. Density
The third property is density which distinguishes the TK
class from other sets of kernel functions with the universal
property. For instance consider a set containing a single
Gaussian kernel function - which is clearly not ideal for
kernel learning. The set containing a single Gaussian is
tractable (it has only one element) and every member of the
set is universal. However, it is not dense.

Considering SVM for classification, the KL problem de-
termines the kernel k ∈ K for which we may obtain the
maximum separation in the kernel-associated feature space.
Increasing this separation distance makes the resulting clas-
sifier more robust (generalizable) (Boehmke & Greenwell,
2019). The density property, then, ensures that the resulting
KL algorithm will be maximally robust (generalizable) in
the sense of separation distance.

Likewise, considering SVMs for regression, the KL problem
finds the kernel k ∈ K which permits the “flattest” (Smola
& Schölkopf, 2004) function in feature space. In this case,
the density property ensures that the resulting KL algorithm
will be maximally robust (generalizable) in the sense of
flatness.

These arguments motivate the following definition of the
pointwise density property.

Definition 4. The set of kernels K is said to be point-
wise dense if for any positive kernel, k∗, any set of data
{xi}mi=1, and any ε > 0, there exists k ∈ K such that
‖k(xi, xj)− k∗(xi, xj)‖ ≤ ε.
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3. A General Framework for Representation
of Tractable Kernel Sets

Here we define a framework for constructing classes of
tractable positive kernel functions and illustrate this ap-
proach on the class of General Polynomial Kernels.

Lemma 5. Let N be any bounded measurable function
N : X × Y → Rq on compact X and Y . If we define

K:=

{
k | k(x, y) =

∫
X

N(z, x)TPN(z, y)dz, P ≥ 0

}
(2)

then any k ∈ K is a positive kernel function and K is
tractable.
For a given N , the map P 7→ k is linear. Specifically,

k(x, y) =
∑q

i=1

∑q

j=1
Pi,jGi,j(x, y) where,

Gi,j(x, y) =

∫
X

Ni(z, x)Nj(z, y)dz,

and thus by Definition 1 K is tractable.

In Subsection 3.1 we apply this framework to obtain Gener-
alized Polynomial Kernels. In Subsection 4.1, we use the
framework to obtain the TK class.

3.1. The Class of General Polynomial Kernels is
Tractable

The class of General Polynomial Kernels (GPKs) is defined
as the set of all polynomials (R[x, y]), each of which is a
positive kernel.

KP := {k ∈ R[x, y] : k is a positive kernel} (3)
The GPK class is not universal, but is tractable, as per the
following lemma.

Lemma 6. KP is tractable.
Proof. See supplementary material for the proof.
This lemma implies that a representation of the form of
Equation (2) is necessary and sufficient for a GPK to be
positive. For convenience, we denote the set of GPK kernels
of degree d or less as follows (Recht, 2006).

KdP := {k : k(x, y) = Zd(x)TPZd(y) : P ≥ 0} (4)
where Zd : Rn → Rq is the vector of monomials of degree
d or less where q =

(
d+n
d

)
.

4. TKs: Tractable, Dense and Universal
In this section, we define the class of TK kernels and show
it is tractable, dense, and universal.

4.1. Tessellated Kernels (TKs)
Again, let Zd : Rn ×Rn → Rq be the vector of monomials
of degree d. Define I, the indicator function for the positive
orthant, and the following choice of N : Rn × Rn → R2q

as
I(z) =

{
1 z ≥ 0

0 otherwise,
and

Nd
T (z, x) =

[
Zd(z, x)I(z − x)
Zd(z, x)I(x− z)

]
(5)

where z ≥ 0 means zi ≥ 0 for all i.

We now define the set of TK kernels for a < b ∈ Rn as

KdT :=

{
k : k(x, y)=

∫ b

a

Nd
T (z, x)TPNd

T (z, y)dz, P ≥ 0

}
,

(6)
and where KT := {k : k ∈ KdT , d ∈ N} and P is a
symmetric matrix of size 2

(
d+n
d

)
.

Kernels in the TK class are “Tessellated” in the sense that
each datapoint defines a vertex which bisects each dimen-
sion of the domain of the resulting classifier/predictor -
resulting in a tessellated partition of the feature space.

4.2. The Set of TK Kernels is Tractable
The class of TK kernels is prima facie in the form of Eqn. (2)
in Lemma 5 and hence is tractable.

However, we will expand on this result by specifying the
basis for the set of TK kernels, which will then be used in
Section 5.
Corollary 7. Suppose that a < b ∈ Rn, and d ∈ N. We
define the finite set Dd := {(δ, λ) ∈ N2n : ‖(δ, λ)‖1 ≤ d}.
Let {[δi, γi]}qi=1 ⊆ Dd be some ordering of Dd and de-
fine Zd(x, z)j = xδjzγj where zδjxγj :=

∏n
i=1 z

δj ,i
i x

γj ,i
i .

Now let k be as defined in Eqn. (2) for some P > 0
and where N is as defined in Eqn. (5). If we partition

P =

[
Q R
RT S

]
then we have,

k(x, y) =
∑q

i,j=1
Qi,jgi,j(x, y) +Ri,jti,j(x, y)

+RTi,jti,j(y, x) + Si,jhi,j(x, y)

where gi,j , ti,j , hi,j : R2n → R are defined as

gi,j(x, y) := xδiyδjT (p∗(x, y), b, γi,j + 1),

ti,j(x, y) := xδiyδjT (x, b, γi,j + 1)− gi,j(x, y), and

hi,j(x, y) := xδiyδjT (a, b, γi + γj + 1)− gi,j(x, y)

− ti,j(x, y)− ti,j(y, x),

where 1 ∈ Nn is the vector of ones, p∗ : R2n → Rn
is defined elementwise as p∗(x, y)i = max{xi, yi}, and
T : Rn × Rn × Nn → R is defined as

T (x, y, ζ) =
∏n

j=1

(
y
ζj
j

ζj
−
x
ζj
j

ζj

)
.

The proof of Corollary 7 can be found in (Colbert & Peet,
2020).

4.3. The TK Class is Dense
The density property differentiates the set of TK kernels
from other sets of kernel functions (e.g. a linear combination
of Gaussian kernels of fixed bandwidths).

From (Colbert & Peet, 2020) we have that the set of TK
kernels satisfies the pointwise density property.
Theorem 8. For any positive semidefinite kernel matrixK∗

and any finite set {xi}mi=1, there exists a d ∈ N and k ∈ KdT
such that if Ki,j = k(xi, xj), then K = K∗.
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4.4. TK Kernels are Universal
Finally we discuss the universality property of the class of
TK kernels which ensures that every TK function can fit the
training data well.

The following theorem from (Colbert & Peet, 2020) shows
that any TK kernel with P > 0 is necessarily universal.
Theorem 9. Suppose k is as defined in Eqn. (2) for some
P > 0, d ∈ N and N as defined in Eqn. (5). Then k is
universal.
This theorem implies that even if we use the subset of TK
kernels defined by d = 0, this subset is still universal.

5. An Efficient Algorithm for KL in
Classification and Regression using TKs

In this section, we formulate the KL optimization problem
for both classification and regression and represent this as a
minimax saddle point problem. This formulation enables a
decomposition into convex primal and dual sub-problems,
OPT A(P ) and OPT P (α) with no duality gap. We then
consider the Frank-Wolfe algorithm and show using Dan-
skin’s Theorem that the gradient step can be efficiently com-
puted using the primal and dual sub-problems. Finally,
we propose efficient algorithms for computing OPT A(P )
and OPT P (α): in the former case using an efficient SMO
algorithm for convex QP and in the latter case, using an
analytic solution based on the SVD.

5.1. Primal-Dual Decomposition
For convenience, we define the feasible sets for the sub-
problems as

X : = {P ∈ Rq×q : trace(P ) = q, P > 0}
Yc : = {α ∈ Rm :

∑m

i=1
αiyi = 0, 0 ≤ αi ≤ C},

Yr : = {α ∈ Rm :
∑m

i=1
αi = 0, αi ∈ [−C,C]}.

In this section, we typically use the generic form Y∗ to refer
to either Yc or Yr depending on whether the algorithm is
being applied to the classification or regression problem. To
define the objective function we use λ(α, P ) to indicate

λ(α, P ) :=−1

2

m∑
i=1

m∑
j=1

αiαj

∫ b

a

Nd
T (z, xi)

TPNd
T (z, yj)dz,

(7)
where Nd

T are as defined in Eqn. (5). Additionally, we have
κc(α) :=

∑m
i=1 αi and

κr(α) := −ε
∑m

i=1
|αi|+

∑m

i=1
yiαi.

where, again, we use κ∗ = κc for classification and κ∗ = κr
for regression.

The KL optimization problem (OPT ) for TK kernels is
now defined as the following minimax saddle point opti-
mization problem.

OPTP := min
P∈X

max
α∈Y∗

λ(e∗ � α, P ) + κ∗(α), (8)

where � indicates elementwise multiplication, ec = y (vec-
tor of labels) for classification, and er = 1m (vector of
ones) for regression.

Minimax Duality To find the dual of the KL optimization
problem, we formulate two sub-problems:

OPT A(P ) := max
α∈Y∗

λ(e∗ � α, P ) + κ∗(α) (9)

and
OPT P (α) := min

P∈X
λ(e∗ � α, P ) + κ∗(α). (10)

Now, we have that
OPTP = min

P∈X
OPT A(P )

and its dual is
OPTD = max

α∈Y∗
OPT P (α) (11)

= max
α∈Y∗

min
P∈X

λ(e∗ � α, P ) + κ∗(α).

The following lemma states that there is no duality gap
between OPTP and OPTD - a property we will use in our
termination criterion.

Lemma 10. OPTP = OPTD. Furthermore, {α∗, P ∗}
solve OPTP if and only if OPT P (α∗) = OPT A(P ∗).
Proof. See supplementary material for the proof.

Finally, we note that OPT A(P ) is convex with respect to
P - a property we will use in Thm. 14.

Lemma 11. Let OPT A(P ) be as defined in 9. Then, the
function OPT A(P ) is convex with respect to P .
Proof. See supplementary material for the proof.

5.2. Primal-Dual Frank-Wolfe Algorithm
For an optimization problem of the form

min
S∈X

f(S),

whereX is a convex subset of matrices and 〈·, ·〉 is the Frobe-
nius matrix inner product, the Frank-Wolfe (FW) algorithm
is defined as in Algorithm 1.

Algorithm 1 The Frank-Wolfe Algorithm for Matrices.
Initialize P0 as any point in X .;
Step 1: Sk = arg minS∈X 〈∇Qf(Q)|Q=Pk

, S〉
Step 2: γk = arg minγ∈[0,1] f(Pk + γ(Sk − Pk))
Step 3: Pk+1 = Pk + γk (Sk − Pk) , k = k + 1, return
to step 1.

In our case, we have f(Q) = OPT A(Q) so that
OPTP = min

P∈X
OPT A(P ).

Unfortunately, implementation of the FW algorithm requires
us to compute∇QOPT A(Q)|Q=Pk

at each iteration. For-
tunately, as shown in Subsections 5.3 and 5.4, we may ef-
ficiently compute the sub-problems OPT A and OPT P .
Furthermore, in Theorem 13, we will show that these sub-
problems can be used to efficiently compute the gradient
∇QOPT A(Q)|Q=Pk

- allowing for an efficient implemen-
tation of the FW algorithm. Theorem 13 uses Danskin’s
theorem as stated below. (Bertsekas et al., 1998).



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

An Efficient Algorithm for Tessellated Kernel Learning

Proposition 12 (Danskin’s Theorem (Bertsekas et al.,
1998)). Let Y ⊂ Rm be a compact set, and let φ : X×Y →
R be continuous such that φ(·, α) : X → R is convex for
each α ∈ Y . Then if,

Y0(P ) =

{
ᾱ | φ(P, ᾱ) = max

α∈Y
φ(P, α)

}
.

consists of only one unique point, ᾱ, and φ(·, ᾱ) is differen-
tiable at P then f(P ) = maxα∈Y φ(P, α) is differentiable
at P and ∇P f(P ) = ∇Pφ(P, ᾱ),

where ∇Pφ(P, ᾱ) is the vector with coordinates

∂φ(P, ᾱ)

∂Pi
, i = 1, ..., n.

Lemma 13. If OPT A and OPT P are as defined in
Eqns. (9) and (10), then for any Pk ≥ 0, we have

arg min
S∈X
〈∇QOPT A(Q)|Q=Pk

, S〉

= argOPT P (argOPT A(Pk)).

Proof. For simplicity, we define D(α) as in Eqn. (12) such
that λ(e∗ � α, P ) := 〈D(α), P 〉. Now, since λ(α, P ) is
strictly convex in α, for any Pk > 0, OPT A(Pk) has a
unique solution and hence we have by Danskin’s Theorem
that
arg min

S∈X

〈
∇QOPT A(Q)|Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q

[
max
α∈Y∗

(〈D(α), Q〉+ κ∗(α))

]
Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉+ κ∗(ᾱ)]Q=Pk

, S
〉

where ᾱ = argOPT A(Pk). Hence,

arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉+ κ∗(ᾱ)]Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉]Q=Pk

, S
〉

= arg min
S∈X

〈
D(ᾱ), S

〉
= argOPT P (ᾱ)

= argOPT P (argOPT A(Pk)).

We now propose the efficient implementation of the FW
algorithm, as defined in Algorithm 2, based on efficient
algorithms for computing OPT A and OPT P as will be
defined in Subsections 5.3 and 5.4.

Algorithm 2 An Efficient FW Algorithm for TKL. Note
that the stopping criterion is defined using the duality gap
OPT P (αk)−OPT A(Pk) > 0, which is equivalent to
the stopping criterion used in the standard FW algorithm.
Initialize P0 = I , k = 0, α0 = OPT A(P0);
while OPT P (αk)−OPT A(Pk)≥ ε do

Step 1a: αk = argOPT A(Pk)
Step 1b: Sk = argOPT P (αk)
Step 2: γk = arg min

γ∈[0,1]
OPT A(Pk + γ(Sk − Pk))

Step 3: Pk+1 = Pk + γk(Sk − Pk), k = k + 1
end while

In the following theorem, we use convergence properties
of the FW algorithm to show that Algorithm 2 has worst-
case linear convergence. Note that we use an primal-dual
accelerator for quadratic convergence when higher accuracy
is required, as defined in Subsection 5.5.

Theorem 14. Algorithm 2 returns iterates Pk and αk such
that, |λ(αk, Pk) + κ∗(αk)−OPTP | < O( 1

k ).
Proof. If we define f = OPT A, then Theorem 13 shows
that f is differentiable and, if the Pk satisfy Algorithm 2,
that the Pk also satisfy Algorithm 1. In addition, Lemma 11
shows that f(Q) = OPT A(Q) is convex in Q. It has
been shown in, e.g. (Jaggi, 2013), that if X is convex and
compact and f(Q) is convex and differentiable on Q ∈ X ,
then the FW Algorithm produces iterates Pk, such that,
f(Pk)− f(P ∗) < O( 1

k ) where

f(P ∗) = min
P∈X

f(P ) = min
P∈X

OPT A(P ) = OPTP .

Finally, we note that

λ(αk, Pk) + κ∗(αk)

= λ(argOPT A(Pk), Pk) + κ∗(argOPT A(Pk))

= max
α∈Y∗

λ(α, Pk) + κ∗(α) = OPT A(Pk) = f(Pk)

which completes the proof.
In the following subsections, we provide efficient algorithms
for computing the sub-problems OPT A and OPT P .

5.3. Step 1, Part A: Solving OPT A(P )
For a given P > 0, OPT A(P ) is a convex Quadratic Pro-
gram (QP). General purpose QP solvers have a worst-case
complexity which scales as O(m3) (Ye & Tse, 1989) where,
when applied to OPT A, m becomes the number of sam-
ples. This computational complexity may be improved, how-
ever, by noting thatOPT A is compatible with the represen-
tation defined in (Chang & Lin, 2011) for QPs derived from
SVM. In this case, the algorithm in LibSVM (Chang & Lin,
2011) can reduce the computational burden somewhat. This
improved performance is illustrated in Figure 3 where we
observe the achieved complexity scales as O(m2.1). Note
that for the 2-step algorithm proposed in this manuscript,
solving the QP in OPT A(P ) is significantly slower that
solving the Singular Value Decomposition (SVD) required
for OPT P (α), which is defined in the following subsec-
tion. However, the achieved complexity of O(m2.1) is also
significantly faster than solving the large SDP, as described
in (Lanckriet et al., 2004), (Qiu & Lane, 2005), and (Colbert
& Peet, 2020). This complexity comparison will be further
discussed in Section 6.

5.4. Step 1, Part B: Solving OPT P (α)
For a given α, OPT P (α) is an SDP. Fortunately, however,
this SDP is structured so as to admit an analytic solution
using the SVD. To solve OPT P (α) we minimize λ(e∗ �
α, P ) from Eq. (7) which, as per Corollary 7, is linear in P
and can be formulated as
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(a) An image from Google
Maps of a section of the
Grand Canyon corresponding
to (36.04, -112.05) latitude and
(36.25, -112.3) longitude.

(b) Elevation data (m = 750)
from (Becker et al., 2009) for a
section of the Grand Canyon be-
tween (36.04, -112.05) latitude
and (36.25, -112.3) longitude.

(c) Predictor using a hand-tuned
Gaussian kernel trained on the
elevation data in (b). The Gaus-
sian predictor poorly represents
the sharp edge at the north and
south rim.

(d) Predictor from Algorithm 2
trained on the elevation data in
(b). The TK predictor accu-
rately represents the north and
south rims of the canyon.

Figure 1. Subfigure (a) shows an 3D representation of the section of the Grand Canyon to be fitted. In (b) we plot elevation data of this
section of the Grand Canyon. In (c) we plot the predictor for a hand-tuned Gaussian kernel. In (d) we plot the predictor from Algorithm 2
for d = 2.
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Figure 2. In (a) we plot the primal-dual gap from Algorithm 2 without the 2nd stage Primal-Dual Booster, and in (b) we plot the difference
between the objective function when we switch to the 2nd stage Booster (after the threshold step length has been reached).

OPT P (α) := min
P∈Rq×q

trace(P )=q
P>0

λ(e∗ � α, P ) := min
P∈Rq×q

trace(P )=q
P>0

〈D(α), P 〉

where,
Di,j(α) =

∑m

k,l=1
(αkyk)Gi,j(xk, xl)(αlyl) (12)

Gi,j(x, y) :=


gi,j(x, y) if i ≤ q

2 , j ≤
q
2

ti,j(x, y) if i ≤ q
2 , j >

q
2

ti,j(y, x) if i > q
2 , j ≤

q
2

hi,j(x, y) if i > q
2 , j >

q
2

and g, t and h can be found in Corollary 7.
The following theorem gives an analytic solution for
OPT P using the SVD.

Theorem 15. For a given α, denote symmetric Dα :=
D(α) ∈ Rq×q as defined in Eqn. (12) and letDα = V ΣV T

be its SVD. Let v be the right singular vector corresponding
to the minimum singular value of Dα. Then P ∗ = qvvT

solves OPT P (α).
Proof. Recall OPT P (α) has the form

min
P∈Rq×q

〈Dα, P 〉 s.t. P ≥ 0, trace(P ) = q.

Denote the minimum singular value of Dα as σmin(Dα).
Then for any feasible P ∈ X , by (Fang et al., 1994) we
have

〈Dα, P 〉 ≥ σmin(Dα)trace(P ) = σmin(Dα)q.

Now consider P = qvvT ∈ Rq×q. P is feasible since
P ≥ 0, and trace(P ) = q. Furthermore,
〈Dα, P 〉 = q trace(V ΣV T vvT ) = q trace(vTV ΣV T v)

= q σmin(Dα)
as desired.
Note that the size, q, of Dα in OPT P (α) scales with the
number of features, but not the number of samples (m). As
a result, we observe that the OPT P step of Algorithm 2 is
significantly faster than the OPT A step.

5.5. 2nd Stage Primal-Dual Booster
Implementation and numerical convergence analysis, in-
cluded in Section 7, indicates that Algorithm 2 will often
significantly exceeds linear convergence for the first several
iterations. However, the convergence rate for 10+ itera-
tions is consistently linear. While 10 iterations may be
sufficient accuracy for most applications, occasionally we
may require additional accuracy and for this case, we have
implemented an Accelerated Primal-Dual (APD) algorithm
based on the minimax momentum-style algorithms proposed
in (Hamedani & Aybat, 2020), which are proven to have
worst-case quadratic performance.

Because this APD algorithm is significantly slower for the
first several iterations, it is only used if the step size in the
Algorithm 2 falls below a predefined threshhold. Details of
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versus m.
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Figure 3. In (a) and (b) we find log scale plots of the time taken to execute FW TKL for P ∈ Rq×q . The line of best linear fit is included
for reference. In (c) and (d) we find log scale plots of the time taken to optimize TKL as a function of q for four different values of m.

this secondary algorithm are included in the supplementary
material. While the transition to 2nd stage APD is clearly
a heuristic, the numerical convergence studies in Section 6
show that this “booster” algorithm significantly reduces
computation time when low error tolerances are used.
6. Numerical Convergence and Scalability
Here we consider the convergence properties and computa-
tional complexity of Algorithm 2.

6.1. Convergence Properties
To study the convergence properties of Algorithm 2, in
Figure 2(a), we plot the duality gap between OPT A(Pk)
and OPT P (αk) as a function of iteration number for the
CANCER and PIMA datasets. Note that the typical FW
error metric is based on a bound on the primal-dual gap
and in practice we observe that these metrics are almost
identical - as illustrated in Figure 2(a). Also included in
Figure 2(a) is the duality gap in the SDP implementation of
the TKL algorithm, as obtained from (Colbert & Peet). We
do not include iterations of the SDP primal-dual algorithm
as the complexity of these iterations is not comparable to the
proposed algorithm. For reference, Fig. 2(a) also includes a
plot of theoretical worst-case linear convergence. Finally, in
Fig. 2(b), we study the benefits of the “boosted” FW-ADP
algorithm for 4 datasets.

These figures show that in all cases, the FW TKL algo-
rithm in practice achieves faster-than-linear convergence for
several iterations and then linear convergence and that the
second stage booster causes a significant decrease in the
stated error metric. Finally, we note that after 100 iterations,
the duality gap of the FW TKL algorithm is lower than that
of the SDP-based TKL implementation.

6.2. Computational Complexity
In Figures 3, we plot the computation time of the FW TKL
algorithm for both classification and regression on a desktop
PC with an Intel i7-5960X CPU at 3.00 GHz and 128 Gb of
RAM as a function of m and q, where m is the number of
samples used to learn the TK kernel function and the size of
P as q × q (so that q is a function of the number of features
and the degree of the monomial basis Zd). The data set
for these plots is Combined Cycle Power Plant (CCPP) in
(Tüfekci, 2014; Kaya et al., 2012), containing 4 features and

m = 9568 samples. In the case of classification, labels with
value greater than or equal to the median of the output were
relabeled as 1, and those less than the median were relabeled
as −1. To enable comparison with SimpleMKL, we use an
identical stopping criterion of 10−2. Figures 3(a-d) demon-
strate that the complexity of Algorithm 2 scales as approxi-
mately O(m2.28q0.57) for classification and O(m2.34q2.40)
for regression. These results are significantly lower with
respect to m than the value of O(m2.6q1.9) reported in (Col-
bert & Peet, 2020) for binary classification using the SDP
implementation. Aside from improved scalability, the over-
all time required for Algorithm 2 is significantly reduced
when compared with the SDP algorithm in (Colbert & Peet,
2020), improving by two orders of magnitude in some cases.
This is illustrated for classification using four data sets in
Table 1. This improved complexity is likely due to the lower
overhead associated with QP and the SVD.

7. Accuracy of the New TK Kernel Learning
Algorithm for Regression

In this section, we compare the accuracy of the classifica-
tion and regression solutions obtained from the FW TKL
algorithm to the SimpleMKL, Neural Networks, and Ran-
dom Forest algorithms. Specifically, we use the following
implementations of these algorithms.

[TKL] Algorithm 2 with d = 1, ε = .1 and we scale the data
so that xi ∈ [0, 1]n, and then select [a, b] = [0− δ, 1 + δ]n,
where δ ≥ 0 and C are chosen by 2-fold cross-validation;

[SMKL] SimpleMKL (Rakotomamonjy et al., 2008) with a
standard selection of Gaussian and polynomial kernels with
bandwidths arbitrarily chosen between .5 and 10 and poly-
nomial degrees one through three - yielding approximately
13(n+ 1) kernels. We set ε = .1 as in TKL and C is chosen
by 2-fold cross-validation;

[NNet] A neural network with 3 hidden layers of size
50 using MATLABs (patternnet for classification and
feedforwardnet for regression) implementation and
stopped learning after the error in a validation set decreased
sequentially 50 times.

[RF] The Random Forest algorithm (Breiman, 2004) as
implemented on the scikit-learn python toolbox (Pedregosa
et al., 2011) for classification and regression. We select
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Table 1. We report the mean computation time (in seconds), along with standard deviation, for 30 trials comparing the SDP algorithm
in (Colbert & Peet, 2020) and Algorithm 2. All tests are run on an Intel i7-5960X CPU at 3.00 GHz with 128 Gb of RAM.

Method Liver Cancer Heart Pima
SDP 95.75 ± 2.68 636.17 ± 25.43 221.67 ± 29.63 1211.66 ± 27.01

Algorithm 2 0.12 ± 0.03 0.41 ± 0.23 4.71 ± 1.15 0.80 ± 0.36

Table 2. Comparison of [TKL], [SMKL], [RF] and [NN] on 6 datasets. For each data set, the first column indicates: the number of features,
n; the number of training samples, m; and the number of test samples, mt, for each division. TSA is percentage of test samples correctly
labeled and MSE is Mean Square Error in predicted output vs. true output in the test samples. All regression tests are run on a desktop
with Intel i7-5960X CPU at 3.00 GHz and with 128 Gb of RAM. All classifications tests are run on a desktop with Intel i7-4960X CPU at
3.60 GHz and with 64 GB of RAM. N/A denotes that the indicated algorithm terminated unexpectedly due to memory (RAM) depletion.

Regression Method Error Time (s) Classification Method Accuracy (%) Time (s)
Gas Turbine TKL 0.23 ± 0.01 13580 ± 2060 Hill Valley TKL 86.70 ± 5.49 86.78 ± 48.18

n = 11 SMKL N/A N/A n = 100 SMKL 51.23 ± 3.55 2.81 ± 2.83
m = 30000 NNet 0.27 ± 0.03 1172 ± 100 m = 1000 NNet 70.00 ± 4.79 3.79 ± 1.75
mt = 6733 RF 0.38 ± 0.02 16.44 ± 0.57 mt = 212 RF 56.04 ± 3.27 0.75 ± 0.33

Airfoil TKL 1.41 ± 0.44 49.87 ± 4.29 Shill Bid TKL 99.76 ± 0.08 23.66 ± 2.63
n = 5 SMKL 4.33 ± 0.79 617.82 ± 161.63 n = 9 SMKL 97.71 ± 0.32 81.04 ± 13.11

m = 1300 NNet 6.06 ± 3.84 211.86 ± 41.04 m = 5000 NNet 98.64 ± 0.86 3.56 ± .60
mt = 203 RF 2.36 ± 0.42 0.91 ± 0.20 mt = 1321 RF 99.35 ± 0.14 0.78 ± 0.36

CCPP TKL 10.57 ± 0.82 626.76 ± 456.05 Abalone TKL 84.61 ± 1.60 17.63 ± 3.77
n = 4 SMKL 13.93 ± 0.78 13732 ± 1490 n = 8 SMKL 83.13 ± 1.06 350.41 ± 175.15

m = 8000 NNet 15.20 ± 1.00 305.71 ± 9.25 m = 4000 NNet 84.70 ± 1.82 4.68 ± 0.64
mt = 1568 RF 10.75 ± 0.70 1.65 ± 0.19 mt = 677 RF 84.11 ± 1.33 0.98 ± 0.21

between 50 and 650 trees (in 50 tree intervals) using 2-fold
cross-validation.

These algorithms were applied to 3 classification and 3 re-
gression datasets. These datasets were chosen arbitrarily
from (Dua & Graff, 2017) to contain a variety of num-
ber of features and number of samples. No other datasets
were tested for relative performance and datasets were not
“pre-screened”. In both classification and regression, our
accuracy metric uses 5 random divisions of the data into
test sets (mt samples ∼= 20% of data) and training sets (m
samples ∼= 80% of data). For regression, the training data
is used to learn the kernel and predictor. The predictor is
then used to predict the test set outputs. The Mean Squared
Error (MSE) of these predictions is listed in Table 2 along
with standard deviation. Likewise for classification, the
training data was used to obtain the kernel and classifier.
The classifier was then used to predict the binary label. The
percentage of correct labels is listed as Test Set Accuracy
(TSA) in Table 2, along with standard deviation.

From Table 2, we see that the TKL algorithm significantly
outperforms a carefully selected sample of state-of-the-art
machine learning algorithms in average accuracy, with im-
provements in accuracy exceeding the standard deviation
in 4 of 6 datasets. We note, however that average accuracy
score of the NNET algorithm for classification improved on
the TKL score for the Abalone dataset by .09%, which is
statistically insignificant, given the mean standard deviation
of 1.5% for all algorithms on that dataset. The most signif-
icant increases in accuracy performance were on the Hill
and Airfoil datasets, where TKL outperformed SimpleMKL
at 1.41% vs 4.33% and at 86.70% vs. 51.23% respectively.

These dramatic improvements may be due to some prop-
erty of the data which makes it unsuitable for Gaussian
kernels. For computation time, RF was uniformly fastest,
as expected. SimpleMKL was consistently slowest (except
for the Hill dataset, on which the accuracy was rather poor).
Compared with NNET, the TKL algorithm was faster only
on the Airfoil dataset, which is surprising, considering the
significant accuracy performance improvement of TKL on
that dataset.

To further illustrate the importance of density property and
the TKL framework for practical regression problems, we
used elevation data from (Becker et al., 2009) to learn a de-
gree 2 TK kernel and associated SVM predictor representing
the surface of the Grand Canyon in Arizona. This data set is
particularly challenging due to the variety of geographical
features. The result from the TKL algorithm can be seen in
Figure 1(d) where we see that the regression surface visually
resembles a photograph of this terrain, avoiding the artifacts
present in Gaussian-based methods.

8. Conclusion
We have extended the TK kernel learning framework to
regression problems and proposed an efficient algorithm
for TK kernel learning based on a primal-dual decomposi-
tion combined with a FW type algorithm. The set of TK
kernels is tractable, dense, and universal, implying that KL
algorithms based on TK kernels are more robust than ex-
isting machine learning algorithms, an assertion supported
by numerical testing on 6 relatively large and randomly se-
lected datasets, testing which yielded uniform increases in
accuracy of FW TKL over state-of-the-art alternatives.
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