1 Introduction

While a properly functioning immune system prevents illness by recognizing
nonself antigens as foreign, a malfunctioning immune system can recognize self
antigens as foreign causing autoimmune diseases such as Rheumatoid Arthritis
(RA). In recent years immune therapies have been proposed that attempt to
treat autoimmune diseases such as RA by shifting the relative balance between
inflammatory and regulatory immune response in favor of the regulatory popula-
tions. For example, sustained delivery of chemokines [12, 20], cytokines [11, 19]
and small molecule inhibitors [1, 19] can modulate immune cell function (e.g.
dendritic cells, T cells) in inflamed tissues to resolve RA and other autoim-
mune disease outcome in pre-clinical animal models. However, the effect of the
immunotherapy regimen is influenced by factors such as timing, dosage, and
the current balance of inflammatory/regulatory response in the patient - thus
making identification of effective treatment standards a challenging problem.

For this reason, there is a growing need for a observable measure of immune
system health which can be used for the prediction and prevention of RA and
other autoimmune diseases [5, 10, 13]. However, the question of identifying
observables is complicated by our relative lack of understanding of how the im-
mune system determines self vs non-self and the number of potential observables
which have been identified as contributing to function of the immune system. To
clarify the problem at hand, we therefore propose two relatively uncontroversial
theses.

First, we presume that the question of identification of observables for predic-
tion of autoimmune disease progression cannot be decoupled from the question
of modeling, since in the absence of a predictive model, there is no way to verify
that a certain set of observables can be used for prediction. That is, for any
proposed set of observables, there must exist an associated predictive model
with some associated accuracy in predicting autoimmune disease progression.
Second, we presume that the immune system is deterministic in that the self-
nonself decision (and hence autoimmune disease progression) is governed by a
dynamical process wherein the relative populations of immunogenic and regula-
tory cells and molecules evolve over time and that the relative balance of these
populations directly influences the establishment or elimination of autogenic
response in autoimmune disease. That is, we presume that, given a method
for modelling the immune system, there exists a set of observables capable of
effectively predicting the process of self-nonself determination.

Given these assertions, we can propose three necessary components of any
process for identification of observables with clinical predictive power. First,
we require a method for modeling based on given set of observables. While
such a model may be based on physical principles, such a model may also be
derived from data-based methods such as machine learning. Second, we require
a way to test suitability of the predictive model associated with any given set of
observables. Specifically, this test of suitability may include predictive accuracy
of the associated model, along with other metrics such as clinical feasibility
and robustness to patient variation. Finally, we require a methodology for
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Figure 1: A graphical description of the experimental procedure of inducing and
treating RA in mice. The first two steps induce RA, the next two steps is the
application of the treatment and the final step is the data generation using flow
cytometry. CFA = complete Freund’s adjuvant, IFA = incomplete Freund’s
adjuvant.

selection and rejection of observables in order to obtain a set of observables
with maximal suitability as defined previously. In this paper, we consider each of
these requirements: using experimental data and a variety of machine learning
algorithms to generate models; defining an appropriate metric for suitability;
and using feature selection algorithms to find a set of observables with maximal
suitability. Once we have addressed these requirements, we apply the proposed
methodology - arriving at a set of maximally suitable observables, which we
define as the “immune state”. An outline of our approach to addressing these
required subproblems is listed below.

For the first problem, in Section 2, we initially define our immunological
dataset obtained from ongoing trials of RA immunotherapy. Then, in Section 3,
we define our approach to modelling. Specifically, we define a set of machine
learning algorithms which uses a given subset of data observables to identify
both all other observables as well as RA outcome - as measured by severity of
inflammation.

For the second problem, in Section 4, we propose a dual metric for suitability
of a given set of observables based partially on predictive power of the associated
model. The first part of this metric is based on minimality (not prediction),
wherein we impose a penalty based on the number of observables in the set
(cardinality) in order to reduce experimental and clinical complexity. Second,
in order to ensure that relevant immunological data is not lost, we also add
a penalty based on the error of the associated model to predict observables
from the data not included in the given set. Third, to measure efficacy of the
prediction, we impose a penalty based on the error in prediction of RA severity
- a quantity we refer to as the “disease state”.

For the third problem, in Section 5, we use a variety of feature selection
algorithms to determine the set of observables which are optimally suited using
the suitability metric described above. We then, in Section 6, apply the resulting
algorithms to our dataset and propose a set of maximally suitable observables,
which we define as the “immune state”.



2 A mouse model of rheumatoid arthritis and
associated observables

The goal of this paper is to propose a methodology for identifying observable
measures for immune system health. To better illustrate this methodology, we
consider the approach as applied to a particularly rich dataset obtained from
an ongoing series of experiments involving the use of biomaterials-based parti-
cles [17] containing metabolites that promote self tolerance in intermediate/late
stage RA in a DBA/1j mouse model which develops severe arthritis when im-
munized with bc2 autoantigen. In this experimental series, the particles were
synthesized either with or without auto-antigen bc2 - a strategy designed to
determine if the particles can generate AG-specific anti-inflammatory response.
An overview of the experimental procedure is provided in Fig. 1. The chronol-
ogy of the experiment is listed here in detail. The data collection used for model
generation occurs exclusively on Day 70.

Day 0 and 21: RA was induced in mice to generate an autoimmune re-
sponse for the development of severe polyarthritis. On day 35, the mice were
divided into 3 groups, each receiving a distinct therapeutic regimen.

Group 0 - Days 35/42: The control group consists of 5 control mice, each
receiving two subcutaneous injections of phosphate buffered saline (PBS) near
the hind legs on days 35 and 40.

Group 1 - Days 35/42: Treatment group 1 consists of 5 mice. Each
mouse receives two injections of 0.5 mg of biomaterials-based particles without
embedded auto-antigen bc2 near the hind legs on days 35 and 40.

Group 2 - Days 35/42: Treatment group 1 consists of 8 mice. Each mouse
receives two injections of 0.5 mg of biomaterials-based particles with embedded
auto-antigen bc2 near the hind legs on days 35 and 40.

Measurements Taken on Days 62/70: Paw thickness measurements are
used to determine arthritic scores for all mice and were obtained either on day
62 or 70, and are defined on the interval [0,5]. Furthermore, flow cytometry
was preformed on cells collected from the popliteal lymph node, cervical lymph
node and spleen of each mouse on day 62 or 70. The flow cytometry procedure
stained for CD4, CD8, Ki67 (proliferation), CD25 (activation), Foxp3 (Treg
transcription factor (TF)), Thet (Thl/Tcl TF), GATA3 (Th2/Tc2 TF), RO-
RyT (Th17/Tcl7 TF), CD44 (memory marker), CD62L (memory marker), and
a tetramer that is specific to the autoantigen. Based on this staining, we iden-
tified 41 different combinations of markers which might be used to classify the
phenotype of a T cell and determined the percentage of either CD4 or CD8 T
cells presenting the associated combination of markers.

Summary of Associated Dataset: The data consists of 84 samples based
on 18 mice, each sample is associated with a mouse and sample location, all



samples are taken on day 62/70, and each sample consists of 43 features and
one label. The first two features of each sample indicate group number (0-2)
and sample location (1-3). The remaining 41 features defining the percentage
(0-100) of the CD4/CD8 population exhibiting the associated combination of
markers. The label for each sample is the arthritic score (0-5).

Based on this data, in the following section, we will propose several methods
of machine learning to construct predictive models which use subsets of the
features to predict both label and remaining features. For generating these
models, all features are scaled to the interval [0, 1].

3 Predictive Model Generation via Machine Learn-
ing Algorithms

In the previous section, we provided a dataset consisting of a large number of
features (43) and a single label (disease state). As discussed in the introduction,
to identify clinically significant observables, we will use a metric of suitability
combined with a feature selection algorithm to determine which observables
have the most predictive power. However, the use of such feature selection
algorithms requires a procedure for using a subset of the features to predict
both the remaining features and the label. In this section, therefore, we define
several state-of-the-art algorithms capable of generating predictive models from
given data. Specifically, we focus on ML algorithms for solving the problem of
regression.

Suppose we are given a dataset of m samples, wherein each sample {x;,y;}
defines a set of features {z; € R™}”, and an associated label {y, € R}7,.
The regression problem, then, is to find a predictive model, f : R®™ — R which
minimizes the predictive errors f(z;) — y; in an appropriately defined metric.
However, this metric and the resulting optimization problems vary significantly
between algorithms. In the following subsections, we define several state-of-the-
art machine learning algorithms which will be combined with feature selection
algorithms in Sections 5 and 6 to determine features with the most predictive
power. Finally, we note that in the context of feature selection algorithms, when
only a subset of the available features are used, the remaining features become
labels.

ML Algorithms for Regression:

In this section, we define five ML algorithms for potential use in combination
with feature selection algorithms, including advantages and disadvantages of
each.

Before beginning, we note that the choice and tuning of ML algorithms
is something more of an art than a science. Specifically, we want to avoid
overfitting the training data - thus allowing our predictive models to perform
well on unlabelled data. To this end, each of the ML algorithms we define
has an associated set of “regularization parameters” which should be selected



through a some ad hoc process. These tuning parameters will then affect how
well the resulting predictive model will generalize to unlabeled data. In each
case, therefore, we specify these parameters. However, we do not define how
these parameters are chosen until Section 6, as this process will vary depending
on the dataset.

In each case below, we assume the data set contains m samples, {z;, y; }1" 4,
each with n features, x; € R™ and a label y; € R.

Regularized Linear Regression (LR) The regularized linear regression al-
gorithm returns a predictive model y = f(z) = w2 + b, where w solves the
following optimization problem.

m
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In this case, a; > 0 and as > 0 are the regularization parameters. Linear
regression has the advantage of low computational complexity. However, the
resulting predictor is linear and if the underlying physical process is nonlinear,
accuracy of the predictive model will be poor.

e-loss Support Vector Regression (SVR) The support vector regression
problem uses a predictive model has the form f(z) = Y ;" a;k(z,z;) where
a € R™ is the decision variable and k is a user selected positive kernel function.
The objective function being minimized includes ), |f(z;) — y;| for any i such
that |f(z;) — yi| > €, where € is a tuning parameter. In addition, there is a
regularization parameter, C' where regularization increases as C' decreases. SVR
can generate accuracte nonlinear predictive models for appropriate choice of k.
However, the selection of the kernel heavily influences the resulting accuracy
and this process of selection is difficult to automate.

Tessellated Kernel Learning (TKL) The TKL algorithm (and kernel learn-
ing algorithms in general) improves on the SVR problem by automating the
search for a kernel function. Note we consider that the class of kernel learning
algorithms to include Deep Learning (although the search problem in this case
is non-convex). These approaches are limited, however, by the class of kernels
over which they are able to search. The class of Tesselated Kernels has been
shown in [7] to have the properties of universality, density, and tractability -
meaning the resulting algorithms are rather accurate and generalize well to new
data. Specifically, the TKL algorithm was shown in [8] to be more accurate and
more robust than all other tested ML algorithms (including multi-layer neu-
ral networks) - at the cost of some additional computational complexity. The
regularization parameters in this case are the € and C' as defined above for SVR.

Decision Tree Algorithms Decision trees are composed of a series of con-
ditional statements that branch in a “tree” like manner. We say the “depth”



of a decision tree is how many conditional statements appear in a branch be-
fore leading to a label denoted the “leaf”. Both the depth of the decision trees
and the maximum number of leaves are regularization parameters that can be
modified by the user. Decision trees are often weak predictors alone and in this
paper we use ensemble (random forest) or boosting (boosted trees) methods to
increase predictive performance. These algorithms are defined as follows.

e Random Forest: The random forest algorithm is an ensemble machine
learning method based on a combination of decision trees. Ensemble meth-
ods use a combination of predictive models (trees) that individually have
poor generalization but when used in combination can have significantly
improved predictions. The number of decision trees combined in the ran-
dom forest algorithm can be used as a regularization parameter.

e Boosted Trees: Gradient boosting is another machine learning method
also based on a combination of decision trees. In the boosted algorithm
trees are added to the predictive model sequentially, and each additional
tree is fit to the current residuals of the model. A “learning rate” is a
weight applied to the addition of each decision tree, and is often used
as a regularization parameter. Small learning rates tend to improve the
generalization of the predictive models.

Next we will focus on a metric we may use to identify the observables which
are most suitable to the task of predicting self vs nonself determination in au-
toimmune disease.

4 Quantifying Suitability of a Given Set of Ob-
servables

In the previous section, we provided a procedure for using a subset of the fea-
tures to predict both the remaining features and the label. To identify a set of
observables for predicting self vs nonself determination we rigorously define a
metric for suitability in order to select the observables which lead to superior
predictive models.

First, for the sake of generality, we define the algorithm, O PT, which we use
as a placeholder for the machine learning algorithms described in the previous
section.

Definition of OPT : Given a dataset {x;,y;}"; C RY xR, OPT ({4, yi }7%1),
returns a predictive function, f = argOPT ({z;,y;}%,), where f : R*¥ — RY.

Next, given a possible set of feature indices F' := {1,--- ,n}, we define the
set of partitions of F' as P(F), and the set of all possible partitions of F of
length w < n as follows.

By, ={veN"|vePF)}



For a given selection of features, b € B,,, we denote the associated projection
Py, : R" — RY so that (Py(z)); = xp, forx e R" and i =1, -+ ,w.

As discussed previously, our goal in this section is to define a metric of
suitability for a given selection of features, b € B,,. To this end, we consider
three cost/penalty functions, M7, Ms, L. The function L is simply a function of
the cardinality of the number of features selected, L(|b|c). The costs M; and
Ms, however, measure how well the selection of features can be used to predict
the remaining features. However, for a given set of data, these metrics will vary
depending on which data points are used for training O PT and which are used
to evaluate its performance. To explicitly account for the effect of choice in
partitioning of data samples, we now define the set of samples S := {1,--- ,m},
and the set of partitions of S as P(S). As for features, we denote the set of
sample partitions of length r as

Sy ={veN'|veP(S)}

and for a given selection of samples, g € S,, we denote the associated projected
data set as Py(X) :={z; € X, i € g}.

Therefore, the costs M; and Ms are a function of the feature partition,
b, the training partition, g € S, € P(S) and the associated test partition,
h:=8/g € Spm—r, so that we have M (b, g) and M5(b, g). Specifically, we have

9) = Z | fo.9(Po(2i)) — vil

i€S/g
M;(b, g) Z |dy,g(Po(x:)) — Pryp(ai)|
i€S/g
fbﬂ = argOPT({Pb(‘rgi)v ygi}zrzl)

dy,g = argOPT({ Py (2g,), Pryp(g,)}iz1))

In the ideal case, we would average these costs over all possible partitions of
the data set to give an estimate of the predictive power of b € B,,. However,
such an approach would result in very large computational overhead. Therefore,
we use the k-fold cross validation approach, wherein we divide the samples
into k training partitions of size w, which we label as ¢g(i) € Smx-1, for
i =1,---,k. Then the average cost of the feature partition b over the k ksample
partitions is

1 k
= 27900 5/a(0)

where

Jl(b7g) = /3’1\/M1(b,g)+62\/M2(b,g)+L(|b|C) (1)
and where (81,82 > 0 are given weights, the values of which are discussed in
Section 6.

In the following section, we now define the feature selection problems as
minimization of this metric and present algorithmic approaches to solving this
problem.



5 Feature Selection Algorithms

In the previous section, we defined the metric of suitability as a function of the
partition, b € B,,. Using this metric, the feature selection problem is defined as
the following combinatoric optimization problem.

vebiiey O @

Optimization problems of this form are a special case of feature selection
(typically solved using wrapper methods) and, being combinatorial optimiza-
tion, Problem (2) is NP-hard [6]. As a consequence, most Feature Selection
(FS) algorithms as applied to this problem are either heuristic, in that they are
not guaranteed to converge to a globally optimal solution, or solve unrelated
problems which may or may not yield reasonable values for Problem (2).

Nonetheless, several techniques have been proposed that enjoy relative ac-
curacy and computational efficiency. We focus first in Subsection 5.1 on FS
methods designed specifically for problems of the same form as Optimization
Problem (2), then in Subsection 5.2 consider two other FS approaches that do
not directly try to solve the optimization problem of interest but provide a
comparison to the direct method.

5.1 Proposed Wrapper Method and Implementations

We first define the algorithm (a wrapper method) which will be used and then
provide additional details on the various ML algorithms which are combined
with this wrapper to solve Problem (2).

The most common wrapper methods are Sequential Feature Selection (SFS)
algorithms [6]. SFS algorithms begin with an empty (or full) set of features and
sequentially add (or remove) the highest value (or cost) feature until the set of
features is a certain size or meets a performance metric.

The SFS algorithm used in this paper is as described in [9]. This SFS
algorithm begins with b := (), and iteratively selects a locally optimal feature
(with respect to the objective function of Optimization Problem (2)) at each
step.

Clearly, the effectiveness of Feature Selection depends on the ML algorithm
(OPT) used to generate the predictive model. Therefore, in the numerical
results generated in Section 6, we test all the machine learning algorithms pro-
posed in Section 3. Unfortunately, the accuracy of the reliability and accuracy
of the predictive model is influenced by user-selected parameters within the
algorithm. For reproducibility, we list here the selections for these parameter
values.

Linear Regression: We test all 16 combinations of a3 € [0,0.1,1,5] and
az € [0,0.1,1,5] and the data from choice yielding highest suitability (J) is
listed in Table 1.

TKL: We use the default TK kernel parameters and test ¢ = .1, and C €
[1,5,10] and the data from choice yielding highest suitability (J) is listed in



Table 1.

SVR: We test all combinations of e = .1, C' € [1,5,10] and 3 kernel functions
(linear, RBF, or 3rd degree polynomial) and the data from choice yielding high-
est suitability (J) is listed in Table 1. For the RBF kernel the features are
normalized by their variance and a bandwidth of % is selected.

Random Forest We test 9 combinations of number of trees (ng;ees € [50, 100, 150])
and the maximum tree depth of (maxgepen € [5, 10, 20]) and the data from choice
yielding highest suitability (J) is listed in Table 1.

Boosted Trees We test 15 combinations of number of trees (ngees € [50, 100, 150, 250])
and learning rate (LR € [0.01,0.1,0.5]) and the data from choice yielding highest
suitability (J) is listed in Table 1.

5.2 Suitability of Filter and Embedded Methods

Alternative feature selection algorithms will be used as a baseline by which
we may compare the wrapper method. We use three filter methods and one
embedded method in the analysis.

Filter Methods Filter methods, given a set of data, use a rating function to
rank each features relative “importance”. After the features have been ranked,
the user may select w features to be kept and the remaining features will be
discarded. The rating functions used to generate the data in Table 1 are as
follows.

Mutual Information (MI) The Mutual Information criteria [2] is a statisti-
cal function of two random variables that describes the amount of information
contained in one random variable relative to the other.

Analysis of Variance (ANOVA) The ANOVA method [16] is a commonly
used method for analyzing variable dependencies. The F-test is used to estimate
the features importance.

Principle component analysis (PCA) This method approximates the data
with linear manifolds [21]. The main methods used to perform PCA are based
on the singular value decomposition and diagonalization of the correlation ma-
trix. We calculate the importance based on the first 3 eigenvectors.

In all cases, once a set of features has been selected, suitability (J) is deter-
mined using each of the ML algorithms defined in Section 3 and the minimum
of these values is listed in Table 1.

Embedded Methods Embedded FS methods attempt to embed the process
of feature selection directly into the model generation process - typically adding
a cost for inclusion of a particular feature in the model. These methods have
been used in the gene expression domains as in [14] and have been successfully
applied to mass spectrometry analysis in [22, 15, 18]. For this analysis, only a
single embedded method was considered.

Mean Decrease in Impurity (RF) The Gini Importance or Mean Decrease
in Impurity [4] is an embedded method for the Random forest algorithm. It



calculates the importance of features as the mean of the number of splits (over
all trees) that include this feature, weighted by the probability of reaching this
node.
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(b) The objective function of Optimiza-
tion Problem (2) as a function of the num-
ber of features for the MDS of the mouse
using our TKL SFS method.

(a) The objective function of Optimiza-
tion Problem (2) as a function of the num-
ber of features for the MIS of the mouse
using our TKL SFS method.

Figure 2: The objective function of Optimization Problem (2) as a function of
the number of features for the MIS and MDS of the mouse RA dataset using
the TKL SFS method.

6 Feature selection analysis of rheumatoid arthri-
tis data

We now apply the feature selection algorithms proposed in Section 5 to data
generated from the mouse model of RA described in Section 2. We consider
three variations of the feature selection problem as posed in (2). First, we let
f1 =1and B2 = B3 = L(w) = 0 - a case we denote as the Minimal Disease State
(MDS). In this case, we are only concerned with predicting the progression of
the disease and are not concerned with predicting non-selected features or with
the number of features selected. Second, we let 81 = 0 and B3 = 3 = 1 and

0 forw<10

oo for w > 10.

concerned with reducing the number of features while retaining the ability to
reconstruct discarded features - a case we denote as the Minimal Immune State
(MIS). Finally, we let 8, = B2 = 83 = 1 and L(w) as defined for the MIS. We
denote this final case as Minimal Overall State (MOS).

In Table 1, we see the objective value of Optimization Problem (2) (J)
for each of the proposed feature selection algorithms as applied to MDS, MIS,
and MOS. Preprocessing and regression were performed using Python 3.7 with
scikit-learn 0.22.1 and MATLAB R2020a with TKL v1. To show that the results
of Optimization Problem (2) as applied to MDS, MIS and MOS are consistent
with other learning metrics [3], we also include data on these metrics for the

L(w) = In this case, ignore the disease state and are only

10



chosen selection of features and associated predictor. These metrics are defined
as follows. For given Let y to be the vector of labels associated with features
x. Let g be the predicted labels as generated by the predictor when applied to
features = (discarded features for MIS and disease state for MDS). Let 7 and g
be the average values of y and 3. Then we have the following.

The correlation coefficient (CC):

cC = Sy (v — 5) (i — )
\/Z;\Ll(yi — 7i)? Zf\il(@l — )2

Mean Absolute Error and relative Mean Absolute Error (MAE and
rMAE):

RS Sy lyi — 6l
MAE = — Y |y — g3y 1MAE = =i=L2 20
N i=1 > im 1Y — Uil
Root Mean Squared Error and relative Root Mean Squared Error
(RMSE and rRMSE):

1 N
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To illustrate convergence of the F'S algorithm, in Fig. 2 we see the objective

value of the TKL FS algorithm as applied t Optimization Problem (2) as each
feature is sequentially added to the list of selected features.

Table 1: Results for finding MIS and MDS using the RA data in Section 2 using
each of the algorithms described in Section 5. The bolded values are the best
metrics for each column.

MIS MDS

model J MAE rRMSE rMAE cc model J MAE rRMSE
Random Forest 6.47 4.46 0.43 0.32 0.85 TKL 1.22  0.96 0.79
Boosted Trees 6.66  4.47 0.44 0.36 0.83 || Linear Regression | 1.26  1.07 0.90
TKL 6.74  4.70 0.44 0.42 0.84 Boosted Trees 1.34 1.19 0.99
Linear Regression | 6.89 5.21 0.49 0.36 0.82 MI 1.34  1.22 1.01
SVR 737  5.37 0.47 0.35 0.82 SVR 1.38  1.09 0.88
PCA 12.84  9.80 0.69 0.66 0.69 ANOVA 1.38 1.23 1.03
RF 13.91 10.26 0.79 0.84 0.58 Random Forest 1.39  1.20 0.98
ANOVA 14.25  10.95 0.76 0.78 0.63 RF 1.39 1.27 1.07
MI 14.52  10.90 0.73 0.71 0.66 PCA 1.40 1.33 1.10

In the following analysis, we first list the features selected by the algorithm
which returned the minimal value of the objective (J). We then discuss the bio-
logical significance of these features. Next, we compare with features selected by
other algorithms to find features selected by all or a majority of the algorithms
tested.
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6.1 Case 1: Features for Predicting Disease Progression
(MDS)

High predictive accuracy is important for tracking the disease progression and
predicting the effectiveness of treatments based on measurements of the observ-
ables - which is important for autoimmune diseases where the disease state may
be difficult to measure.

Most Important Features Using Best SFS Algorithm For MDS, the
SFS TKL algorithm performed best. The corresponding 4 features were

1) CD8+Ki67+

3) CDJ+GATAS+Ki67+

(1)
(2) CD4+Foxp3+CD25+Ki67T+
3)
(4)

CD4+RORyT+Autoantigen

This group of cells consists of markers for cytotoxic (1), regulatory (2),
helper (3), and helper (4) subpopulations, respectively, where the second helper
population (4) is specific for the RA autoantigen. We conclude that the selected
features correspond to what would be expected in a measure of relevant T cell
sub-populations.

Agreement with other algorithms In Fig. 3 we show the observables that
were selected by each of the proposed algorithms. The three features selected
most often by the FS methods are

- CDj+Foxp3+CD25+ (regulatory)
- CD4+GATA3+Ki67+ (helper)
- CD8+Ki67+ (cytotoxic)

As indicated above, two of these features, (1) and (3), were also selected by the
TKL algorithm. Note that as expected filter methods did not perform as well
as the wrapper or embedded methods.

Overall predictive accuracy when using selected features

6.2 Case 2: Features for Predicting Remaining Features
(MIS)

This case studied the features most important for determining the overall state
of the immune system (and not the progressive state of any particular disease).

In Table 1, we list the performance of the various algorithms and in Fig. 3(a)
we indicate the T cell markers selected by each algorithm.
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The proposed FS algorithms can be clearly divided into two groups by the
achieved objective value. Specifically, Five of the methods performed poorly -
achieving minimal objective values greater than 7 (ANOVA PCA,SVR,MI RF).
The filter methods and embedded method performed particularly poorly. SVR,
which uses a standard RBF kernel, performed the worst of the SFS based meth-
ods. Furthermore, the selected features for these poorly performing methods
were inconsistent. For these reasons, we will discount results from the ANOVA,
PCA, SVR, and MI and limit our analysis to features selected by Random For-
est, Boosted Trees, TKL, and Linear Regression.

Most Important Features Using Best SFS Algorithms Unlike in the
previous subsection, there was broad agreement among all 4 high-performing
algorithms as to the most significant features for optimizing MIS. First, if we
consider markers specific to helper and regulatory T cells, and counting the num-
ber of times a feature was selected by these four methods (each method selected
10 features), the following features were each chosen by at least 3 algorithms.

1) CD4+Foxp3+CD25+Ki67+Autoantigen (3 times)

2) CD4+GATA3+Ki67+Autoantigen (3 times)

3) CD4+Roryt+CD25+Autoantigen (3 times)

(
(
(
(4

)
)
)
) CDj+Tbet+Autoantigen (3 times)

We note that every selected features was autoantigen specific - indicating this
additional information is particularly useful for creating predictive models.
Among the cytotoxic T cells, the algorithms were remarkably consistent.

5) CD8+GATA3+CD44+CD62L(LO) (4 times)

6) CD8+Tbet+CD44+CD62L(LO) (4 times)

7) CD8+Ki67+ (3 times)

()
(6)
(7)
(8) CD8+Thet+Ki67+ (3 times)

Overall, we note that the memory T cells (CD62) seem to be particularly
significant. In addition, the algorithms tend to choose features which have been
sorted by the most markers - indicating that perhaps this filtering provides ad-
ditional useful information to the algorithm. Supporting this hypothesis, we
also note that in our analysis of the results, that if certain data-rich biomark-
ers are left out, such as antigen-specific CD8+GATAS3+Ki67+, antigen-specific
CD4+Foxp3+CD25+Autoantigen and antigen-specific
CD4+GATA3+CD44+CD62(Lo)+, then those features are poorly predicted us-
ing all methods. For these cell populations the prediction error is approximately
12, significantly exceeding the average error for predicting other features. If
these T cells in particular are required with high accuracy it is best that they
be measured directly. By contrast, the biomarkers that most easily predicted
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are CDj+Foxp3+CD25+, CDL+GATAS+, CD4+Thet+CD44+CD62(Lo), and
CD8+Thet+. In these cases the prediction error values are 5 or

Finally, the fact that the location feature (origin of the tested cells) was not
chosen by any of the top 4 methods implies there is significant uniformity in
immune state among lymph nodes and spleen.

less.

6.3 Case 3: Features for Minimizing Weighted Objective
(MOS)

Next we consider the problem of selecting features that are optimal for predicting
a combination of the MIS and MDS objectives.

In Table 1, we list the performance of the various algorithms and in Fig. 3(c)
we indicate the T cell markers selected by each algorithm.

The proposed FS algorithms can be clearly divided into two groups by the
achieved objective value. As before, the SF'S methods significantly outperformed
the filter and embedded methods, and hence we again discount the ANOVA,
PCA, RF, and MI results and limit our analysis to the features selected by the
top four SF'S methods - the Boosted Trees, TKL, SVR, and Linear Regression
methods.

Most Important Features Using Best SF'S Algorithms Like the previ-
ous subsection, there is broad agreement among all high-performing algorithms
as to the most significant features for optimizing MOS.

A few T cell populations were selected quite often by the different methods.
All four methods selected the following antigen-specific population

(1) CD4+Tbet+Autoantigen

In addition, three of the four methods all chose the non-antigen specific cells,
(2) CD8+GATA3+CD25
(3) CD4+Tbet+Ki67+

7 Conclusion

In this paper, we have considered the problem of identification of three different
subsets of Tcells related to the overall response of the process of self-nonself
determination as well as the effectiveness of a recently developed approach to
immunotherapy for RA. Specifically, we have used a set of mouse-model exper-
iments to obtain a robust dataset of T cell markers and populations at the end
stage of a proposed immunotherapy treatment. We then used feature selection
algorithms to determine the minimal number of markers and populations needed
to effectively predict both the rest of the dataset and the current state of the
disease. Our results show that while a minimal number of T cell markers may
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be used to predict the remaining T cell subsets with relatively low error, predic-
tion of immunotherapy outcome is less reliable, implying that a full measure of
the immune state would require additional data beyond the T cell populations
collected, in this analysis.

nding
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SFS Random Forest

SFS Boosted Trees.

SFS TKL

(a) The features selected by various methods for predicting
the Minimal Immune State (MIS).

(b) The features selected by various methods for predicting
the Minimal Disease State (MDS).

SFS TKL

SFS SVR

(c) The features selected by various methods for predicting
the Minimal Overall State (MOS).

Figure 3: The green squares indicate that the feature selection method (left)
selected the feature (top). We show the observables selected by the nine different
FS algorithms from Section 5 that compose the MIS (a) and MDS (b). The
methods are ordered from highest objective function (RMSE) at the top to
lowest objective at the bottom. The best four methods and the most commonly
selected features by those methods are bolded.



