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Abstract— In this paper, we present a new method for
estimating the L2-gain of systems governed by 2nd order linear
Partial Differential Equations (PDEs) in two spatial variables,
using semidefinite programming. It has previously been shown
that, for any such PDE, an equivalent Partial Integral Equation
(PIE) can be derived. These PIEs are expressed in terms of
Partial Integral (PI) operators mapping states in L2[Ω], and
are free of the boundary and continuity constraints appearing
in PDEs. In this paper, we extend the 2D PIE representation
to include input and output signals in Rn, deriving a bijective
map between solutions of the PDE and the PIE, along with the
necessary formulae to convert between the two representations.
Next, using the algebraic properties of PI operators, we prove
that an upper bound on the L2-gain of PIEs can be verified by
testing feasibility of a Linear PI Inequality (LPI), defined by
a positivity constraint on a PI operator mapping Rn × L2[Ω].
Finally, we use positive matrices to parameterize a cone of
positive PI operators on Rn ×L2[Ω], allowing feasibility of the
L2-gain LPI to be tested using semidefinite programming. We
implement this test in the MATLAB toolbox PIETOOLS, and
demonstrate that this approach allows an upper bound on the
L2-gain of PDEs to be estimated with little conservatism.

I. INTRODUCTION
Physical systems are often modeled using Partial Differ-

ential Equations (PDEs), relating e.g. the temporal evolution
of state variables u to their spatial derivatives. For example,
for given parameters D and λ, the 2D PDE defined as

u̇(t) = D
[
∂2
xu(t) + ∂2

yu(t)
]
+ λu(t) + w(t),

z(t) =

∫
Ω

u(t, x, y)dxdy, (1)

can be used to model the evolution of a population density
u(t, x, y) in some domain (x, y) ∈ Ω [1], where w(t) is some
external forcing, z(t) corresponds to the total population size,
and u(t) is further constrained by boundary conditions (BCs)

u(t, x, y) ≡ 0, ∀(x, y) ∈ ∂Ω. (2)
In analysis and control of systems such as (1), a problem
that frequently arises is that of bounding the effect of the
disturbances w on the output z of the model. For example, we
may wish to measure the effect of environmental conditions
w(t) on the growth of the population size z(t). This effect
can be quantified by the L2-gain, defined as the ratio γ :=
∥z∥L2

∥w∥L2
of the magnitude of the regulated output z over

that of the disturbances w. The L2-gain provides a worst-
case energy-amplification from input to output signals, and
is often used as a metric for optimilaty in control and
estimation, e.g. designing controllers to minimize the effect
of disturbances on the system output.
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Unfortunately, the spatial variation of the PDE state com-
plicates efforts to compute the L2-gain of systems governed
by PDEs. For comparison, consider estimating the L2-gain
of a system governed by an Ordinary Differential Equation
(ODE), written in state space representation as

u̇(t) = Au(t) +Bw(t), u(0) = 0,

z(t) = Cu(t) +Dw(t). (3)

It can be shown that the L2-gain of a system of this
form is bounded by a value γ > 0, if there exists some
positive definite storage function V (u) > 0 which satisfies
V̇ (u(t)) ≤ γ∥w(t)∥2− 1

γ ∥z(t)∥
2 along solutions u(t) of the

system. Parameterizing storage functions V (u) = ⟨u, Pu⟩
using positive matrices P > 0, this problem can be posed as

the Linear Matrix Inequality (LMI)
[

−γI D C

DT −γI BT P

CT PB AT P+PA

]
≤ 0,

which can be efficiently solved using semidefinite program-
ming (SDP) [2].

However, two major issues arise when deriving a similar
test for computing the L2-gain of e.g. System (1). Firstly, the
PDE state u(t) at each time t ≥ 0 exists in the space L2[Ω] of
square integrable functions on Ω ⊆ R2, raising the question
of how to parameterize the set of positive storage functions
on this infinite-dimensional space. Secondly, solutions u(t)
to the system must satisfy not only the actual PDE (1),
but also the BCs (2) – raising the challenge of enforcing
the condition V̇ (u(t)) ≤ γ∥w(t)∥2 − 1

γ ∥z(t)∥
2 only along

solutions u(t) satisfying both constraints.
To circumvent these issues associated with parameteriz-

ing storage functions for PDEs, a common approach is to
approximate the PDE by a finite dimensional system – an
ODE – using e.g. a basis function expansion [3]. However,
properties such as L2-gain bounds estimated for the resulting
ODE may not accurately reflect those of the original system
– necessitating a posteriori error bounding methods to obtain
provably valid gains. Moreover, a large number of ODE state
variables may be required to obtain accurate results, growing
exponentially with the number of spatial variables in the
PDE. As a result, although ODE-based input-output analysis
can be efficiently performed for certain 2D systems [4], [5],
it is computationally intractable for more general 2D PDEs.

Other methods for testing input-output properties of 2D
PDEs without relying on finite-dimensional approximations
are generally limited in their application. For example, in [6],
[7], LMIs for H∞ filtering and control of diffusive systems
are derived, using a storage function of the form V (u) =
∥u∥2L2

+ ⟨∇u, P∇u⟩L2
, parameterized by a positive matrix

P > 0. Similarly, in [8], polynomial constraints N(x, y) ≤ 0



are proposed for testing input-output properties of wall-
bounded shear flows, also parameterizing a storage function
V (u) = 1

2 ⟨u, Qu⟩L2
by a positive matrix Q > 0. However,

the L2-gain test obtained in each study is valid only for a par-
ticular type of PDE with a particular set of BCs. Moreover,
by parameterizing storage functions merely by matrices, the
proposed methods introduce significant conservatism.

As an alternative to the aforementioned approaches, in this
paper, we propose an SDP-based method for computing an
upper bound on the L2-gain for a general class of 2nd order,
linear, 2D PDEs. Specifically, we focus on PDEs of the form,

u̇(t) =
∑2

i,j=0 Ai,j∂
i
x∂

j
yu(t) +Bw(t),

u(0) = 0,
u(t) ∈ X,

z(t) =
∫
Ω

(∑2
i,j=0 Ci,j∂

i
x∂

j
yu(t)

)
dxdy +Dw(t), (4)

where X ⊆ L2[Ω] is defined by a set of well-posed (non-
periodic) BCs. To derive an L2-gain test for systems of
this form, we adopt the approach presented in [9], wherein
an alternative representation of 1D PDEs as Partial Integral
Equations (PIEs) is used. In particular, the authors prove that
for any linear, 1D PDE, with sufficiently well-posed BCs
u(t) ∈ X , there exists an equivalent PIE representation,

T v̇(t) = Av(t) + Bw(t), v(0) = 0,

z(t) = Cv(t) +Dw(t), (5)

such that a function v ∈ L2[Ω] is a solution to the PIE
if and only if T v ∈ X is a solution to the PDE. In this
representation, the operators {T ,A,B, C,D} are all Partial
Integral (PI) operators: a class of operators that form a *-
algebra, with analytic expressions for addition, multiplica-
tion, etc.. Quadratic storage functions V (v) = ⟨T v,PT v⟩
can then be parameterized by PI operators P > 0, offering
substantially more freedom than parameterizing by matrices.
Moreover, the fundamental state v ∈ L2[Ω] in the PIE
representation is free of the BCs imposed upon the the
PDE state u ∈ X , allowing negativity conditions on the
derivative V̇ (v(t)) to be readily enforced. In this manner,
the authors are able to derive a Linear PI Inequality (LPI),

Q(γ) =

[
−γI D C
DT −γI BT P
CT PB AT PT +T T PA

]
≤ 0, for verifying an upper

bound γ on the L2-gain of the PIE. Parameterizing a cone
of positive PI operators by positive matrices, the authors
then pose this LPI as an SDP, allowing problems of L2-gain
analysis of 1D PDEs to be efficiently solved [10]–[12].

However, despite a PIE framework having recently been
introduced for 2D PDEs [13], deriving an SDP test for
bounding the L2-gain of general systems of the form (4)
still offers several challenges. In particular, although a map
T : L2[Ω] → X from the fundamental state space to the
PDE domain has been derived for atonomous systems, this
map may not be valid when disturbances w are included –
presenting the problem of incorporating these disturbances in
the PIE to PDE state conversion. In addition, a framework
for converting 2D PDEs with inputs and outputs to PIEs
is not yet available, still requiring formulae for computing
the appropriate operators {B, C,D} to be derived. Finally,

posing the LPI Q(γ) ≤ 0 for testing the L2-gain as an
SDP requires parameterizing PI operators on a coupled space
Rn1×Rn2×Ln3

2 [Ω], raising the challenge of performing such
a parameterization for PI operators in 2D.

In the remainder of this paper, we carefully detail how
we have overcome each of these challenges in deriving and
implementing an SDP test for L2-gain analysis of 2D PDEs.
In particular, in Section III, we first present an LPI for testing
the L2-gain of 2D PIEs, proving that this gain is bounded by
γ if there exists some positive definite 2D-PI operator P :
Ln2
2 → Ln2

2 such that an associated operator Q(γ,P) : Rn1×
Ln2
2 → Rn1×Ln2

2 is negative semidefinite. In Section IV, we
then show that a PIE representation can be derived for any
linear, 2nd order 2D PDE, defining operators T0 : Lnv

2 →
Lnv
2 and T1 : Rnw → Lnv

2 such that for a disturbance w ∈
Rnw , a function v ∈ Lnv

2 solves the PIE if and only if T0v+
T1w solves the PDE. Finally, in Section V, we parameterize
a cone of positive PI operators Π+ : Rn1 × Ln2

2 → Rn1 ×
Ln2
2 by positive matrices, allowing feasibility of the L2-gain

LPI to be posed as an SDP. This result is formulated in
Section VI, and numerical tests are presented in Section VII.

II. PRELIMINARIES

A. Notation

For a given domain Ω ⊂ Rd, let Ln
2 [Ω] denote the set

of Rn-valued square-integrable functions on Ω, where we
omit the domain when clear from context. Define intervals
Ωb

a := [a, b] and Ωd
c := [c, d] for spatial variables x, y, and

let Ωbd
ac := Ωb

a×Ωd
c be the corresponding 2D domain. For n=

{n0, n1}∈ N2, define Zn
1[Ω

bd
ac] := Rn0×Ln1

2 [Ωb
a]×Ln1

2 [Ωd
c ],

and for n = {n0, n1, n2} ∈ N3, define Zn[Ωbd
ac] := Rn0 ×

Ln1
2 [Ωb

a]× Ln1
2 [Ωd

c ] × Ln2
2 [Ωbd

ac], where we also omit the
domain when clear from context. For given n∈N3 and any

u=

[
u0
ux
uy
u2

]
∈ Zn and v =

[
v0
vx
vy
v2

]
∈Zn , define the inner product

⟨u,v⟩Zn =⟨u0, v0⟩+⟨ux,vx⟩L2
+⟨uy,vy⟩L2

+⟨u2,v2⟩L2
,

where ⟨., .⟩ denotes the Euclidean inner product, and ⟨., .⟩L2

the standard inner product on L2. For any α ∈ N2, we
denote ∥α∥∞ := max{α1, α2}. Then, we define Wn

k [Ω
bd
ac]

as a Sobolev subspace of Ln
2 [Ω

bd
ac], where

Wn
k [Ω

bd
ac]=

{
v | ∂α1

x ∂α2
y v∈Ln

2 [Ω
bd
ac], ∀αj ∈N :∥α∥∞≤ k

}
.

As for L2, we occasionally omit the domain when clear from
context. For v ∈ Wn

k [Ω
bd
ac], we use the norm

∥v∥Wk
=

∑
∥α∥∞≤k

∥∥∂α1
x ∂α2

y v
∥∥
L2

For v ∈ Wn
k [Ω

bd
ac], we denote the Dirac delta operators

[∆a
xv](y) := v(a, y) and [∆c

yv](x) := v(x, c).

For a function N ∈ Ln×m
2 [Ωbd

ac], and any v ∈ Lm
2 [Ωbd

ac], we
define the multiplier operator M and integral operator ∫ as

(M[N ]v)(x, y) := N(x, y)v(x, y),(
∫

Ωbd
ac

[N ]v

)
:=

∫ b

a

∫ d

c

N(x, y)v(x, y)dydx.



B. Algebras of PI Operators on 2D

Partial integral (PI) operators are bounded, linear opera-
tors, parameterized by square integrable functions. In 2D, we
distinguish PI operators defined by parameters in the spaces
N011, N2D and N0112, mapping different function spaces
as presented in Table I. We outline the definition of the
associated PI operators in this subsection, referring to [13]
for more details.

Definition 1 (011-PI Operators, Π011): For any
m := {m0,m1} ∈ N2 and n := {n0, n1} ∈ N2, let

N n×m
011 [Ωbd

ac] :=

 Rn0×m0 Ln0×m1
2 [Ωb

a] Ln0×m1
2 [Ωd

c ]
Ln1×m0

2 [Ωb
a] Nn1×m1

1D [Ωb
a] Ln1×m1

2 [Ωbd
ac]

Ln1×m0
2 [Ωd

c ] Ln1×m1
2 [Ωbd

ac] Nn1×m1
1D [Ωd

c ]

 ,

where

Nn×m
1D [Ωb

a] = Ln×m
2 [Ωb

a]× Ln×m
2 [Ωb

a×Ωb
a]× Ln×m

2 [Ωb
a×Ωb

a].

Then, for given parameters B :=
[

B00 B01 B02
B10 B11 B12
B20 B21 B22

]
∈ N n×m

011 ,
we define the associated 011-PI operator P[B] : Zm → Zn

as

P[B] :=

 B00 ∫Ωb
a
[B01] ∫Ωd

c
[B02]

M[B10] P[B11] ∫Ωd
c
[B12]

M[B20] ∫Ωb
a
[B21] P[B22]

 .

where for N := {N0, N1, N2} ∈ Nn×m
1D [Ωb

a] and any v ∈
Lm
2 [Ωb

a], we define(
P[N ]v

)
(x) = N0(x)v(x) +

∫ x

a

N1(x, θ)v(θ)dθ

+

∫ b

x

N2(x, θ)v(θ)dθ.

We denote the set of 011-PI operators as Πn×m
011 , so that

P ∈ Πn×m
011 if and only if P = P[B] for some B ∈ N n×m

011 .

Definition 2 (2D-PI Operators, Π2D): For any m,n ∈ N,
let

Nn×m
2D [Ωbd

ac] := Ln×m
2 [Ωbd

ac] Ln×m
2 [Ωbd

ac×Ωd
c ] Ln×m

2 [Ωbd
ac×Ωd

c ]
Ln×m

2 [Ωbd
ac×Ωb

a] Ln×m
2 [Ωbd

ac×Ωbd
ac] Ln×m

2 [Ωbd
ac×Ωbd

ac]
Ln×m

2 [Ωbd
ac×Ωb

a] Ln×m
2 [Ωbd

ac×Ωbd
ac] Ln×m

2 [Ωbd
ac×Ωbd

ac]

 .

Then, for given parameters N :=
[

N00 N01 N02
N10 N11 N12
N20 N21 N22

]
∈ Nn×m

2D ,
we define the associated 2D-PI operator P[N ] : Lm

2 [Ωbd
ac] →

Ln
2 [Ω

bd
ac] such that, for any v ∈ Lm

2 [Ωbd
ac],

(P[N ]v)(x, y) := N00(x, y)v(x, y)

+

∫ x

a

N10(x, y, θ)v(θ, y)dθ +

∫ b

x

N20(x, y, θ)v(θ, y)dθ

+

∫ y

c

N01(x, y, ν)v(x, ν)dν +

∫ d

y

N02(x, y, ν)v(x, ν)dν

+

∫ x

a

∫ y

c

N11(x, y, θ, ν)v(θ, ν)dνdθ

+

∫ b

x

∫ y

c

N21(x, y, θ, ν)v(θ, ν)dνdθ

+

∫ x

a

∫ d

y

N12(x, y, θ, ν)v(θ, ν)dνdθ

+

∫ b

x

∫ d

y

N22(x, y, θ, ν)v(θ, ν)dνdθ.

We denote the set of 2D-PI operators as Πn×m
2D , so that

P ∈ Πn×m
2D if and only if P = P[N ] for some N ∈ Nn×m

2D .

PI operator parameter Function spaces associated to PI
space N operator P[N ], for N ∈ N

Nn×m
2D n,m ∈ N Lm

2 [Ωbd
ac] → Ln

2 [Ω
bd
ac]

N n×m
011 n,m ∈ N2 Zm

1 [Ω
bd
ac] → Zn

1[Ω
bd
ac]

Nn×m
2D←011 n ∈ N, m ∈ N2 Zm

1 [Ω
bd
ac] → Ln

2 [Ω
bd
ac]

N n×m
011←2D n ∈ N2, m ∈ N Lm

2 [Ωbd
ac] → Zn

1[Ω
bd
ac]

N n×m
0112 n,m ∈ N3 Zm[Ωbd

ac] → Zn[Ωbd
ac]

TABLE I
FUNCTION SPACES ASSOCIATED TO PI OPERATOR PARAMETER SPACES

INTRODUCED IN SUBSECTION II-B

Definition 3 (0112-PI Operators, Π0112): For any
m := {m0,m1,m2} ∈ N3 and n := {n0, n1, n2} ∈ N3, let

N n×m
0112 :=

[
N ñ×m̃

011 [Ωbd
ac] N ñ×m2

011←2D[Ωbd
ac]

Nn2×m̃
2D←011[Ω

bd
ac] Nn2×n2

2D [Ωbd
ac]

]
,

where ñ := {n0, n1}, m̃ := {m0,m1}, and

Nn2×m̃
2D←011 :=

 Ln2×m0
2 [Ωbd

ac]
Nn2×m1

1D [Ωbd
ac]

Nn2×m1
1D [Ωdb

ca]

 , N ñ×m2
011←2D :=

 Ln0×m2
2 [Ωbd

ac]
Nn1×m2

1D [Ωbd
ac]

Nn1×m2
1D [Ωdb

ca]


with

Nn×m
1D [Ωbd

ac] := Ln×m
2 [Ωbd

ac]×Ln×m
2 [Ωbd

ac×Ωb
a]×Ln×m

2 [Ωbd
ac×Ωb

a].

Then, for given parameters G =
[
B C1

C2 N

]
∈ N n×m

0112 , where

C1 :=
[

C03
C13
C23

]
∈ N ñ×m2

011←2D and, C2 :=
[

C30
C31
C32

]
∈ Nn2×m̃

2D←011,

we define the associated 0112-PI operator P[G] : Zm → Zn

as
P[G] =

[
P[B] P[C1]
P[C2] P[N ]

]
,

where for D =
[

D0
D1
D2

]
∈ N n×m

011←2D and E =
[

E0
E1
E2

]
∈

Nn×m
2D←011 with n,m ∈ N2 we define

P[E]=
[

M[E0] P[E1] P[E2]
]
, P[D]=

 ∫Ωbd
ac
[D0]

∫Ωd
c
[I] ◦ P[D1]

∫Ωb
a
[I] ◦ P[D2]

,
where for R := {R0, R1, R2} ∈ Nn×m

1D [Ωbd
ac], we define

(P[R]v)(x, y) := R0(x, y)v(x, y) +

∫ x

a

R1(x, y, θ)v(θ, y)dθ

+

∫ b

x

R2(x, y, θ)v(θ, y)dθ,

for arbitrary v ∈ Lm
2 [Ωbd

ac]. We denote the set of 0112-
PI operators as Πn×m

0112, so that P ∈ Πn×m
0112 if and only if

P = P[G] for some G ∈ N n×m
0112 .

C. Properties of PI Operators
In [13], it was shown that the set of 0112-PI operators

Πn×m
0112 forms a *-algebra, with several useful properties. We

summarize a few of these properties below, referring to [13]
for more details and a proof of each result.

1) The sum of 0112-PI operators is a 0112-PI operator:
Proposition 4: For any Q,R ∈ Πn×m

0112 with n,m ∈ N3,
there exists a unique P ∈ Πn×m

0112 such that P = Q+R.
We denote the associated parameter map as L+ : N n×m

0112 ×
N n×m

0112 → N n×m
0112 , so that, for any Q,R ∈ N n×m

0112 ,

P[P ] = P[Q] + P[R], if and only if P = L+(Q,R).



2) The product of 0112-PI operators is a 0112-PI
operator:

Proposition 5: For any Q ∈ Πn×p
0112 and R ∈ Πp×m

0112 with
n, p,m ∈ N3, there exists a unique P ∈ Πn×m

0112 such that
P = QR.
We denote the associated parameter map as L× : N n×p

0112 ×
N p×m

0112 → N n×m
0112 , so that, for any Q ∈ N n×p

0112 and R ∈ N p×m
0112 ,

P[P ] = P[Q]P[R], if and only if P = L×(Q,R).

3) The inverse of a suitable 011-PI operator is a 011-PI
operator:

Proposition 6: For any R ∈ Πn×n with n := {n0, n1, 0},
satisfying the conditions of Lemma 5 in [13], there exists a
unique R̂ ∈ Πn×n

011 such that R̂R = RR̂ = I .
We denote the associated parameter map as Linv : N n×n

011 →
N n×n

011 , so that, for any R ∈ N n×n
011 as in Lemma 5 in [13],

P[R̂]P[R] = I, if and only if R̂ = Linv(R).

4) The composition of a differential operator with a
suitable 2D-PI operator is a 2D-PI operator:

We refer to Lemmas 6 and 7 in [13] for more information.

5) The adjoint of a 2D-PI operator is a 2D-PI operator:
Here we define the adjoint of a PI operator P ∈ Πn×m

0112, as
the unique operator P∗ ∈ Πm×n

0112 that satisfies

⟨v,Pu⟩Zn = ⟨P∗v,u⟩Zm

for any u ∈ Zm and v ∈ Zn, where n,m ∈ N3.

6) A cone of positive semidefinite 2D-PI operators can
be parameterized by positive semidefinite matrices:

Here we say that an operator P ∈ Πn×n
0112 is positive

semidefinite or (strictly) positive definite, denoted as P ≥ 0
and P > 0, if for any v ∈ Zn with v ̸= 0 and some ϵ > 0,

⟨v,Pv⟩Zn ≥ 0, or respectively, ⟨Pv,v⟩Zn ≥ ϵ ⟨v,v⟩Zn .

Using Properties II-C.1 through II-C.4, we will derive
an equivalent PIE representation of linear 2D PDEs with
inputs and outputs in Section IV. For this, we note that
Property II-C.4 holds for PI operators mapping Z{n0,0,n2}

as well, as shown in Appx. I-A of the extended version of
this paper [14]. In Section V, we prove that Properties II-C.5
and II-C.6 also hold for PI operators on Z{n0,0,n2}, allowing
us to numerically test feasibility of the L2-gain LPI presented
in Section III using semidefinite programming.

D. Partial Integral Equations

A Partial Integral Equation (PIE) is a linear differential
equation, parameterized by PI operators, describing the evo-
lution of a fundamental state v(t) ∈ L2[Ω

bd
ac]. For any linear,

2nd order, autonomous, 2D PDE, there exists an equivalent
PIE representation, as well as a differential operator D and
PI operator T such that any solution v(t) to the PIE satisfies
v(t) = Dv̄(t), where v̄(t) = T v(t) is a solution to the PDE.

Example 7: Consider a 2D advection PDE on (x, y) ∈
[0, 1]× [0, 1], with Dirichlet boundary conditions,

˙̄v(t)=c
[
∂xv̄(t) + ∂yv̄(t)

]
, 0= v̄(t, 0, y)= v̄(t, x, 0). (6)

Defining the fundamental state v(t) = ∂x∂yv̄(t) ∈ L2, this
system may be equivalently represented by the PIE∫ x

0

∫ y

0

v(t, θ, ν)dνdθ= c

[∫ y

0

v(t, x, ν)dν +

∫ x

0

v(t, θ, y)dθ

]
,

where v(t) solves this PIE if and only if v̄(t) :=∫ x

0

∫ y

0
v(t, θ, ν)dνdθ solves the PDE (6). Defining R :=[

0 0 0
0 R11 0
0 0 0

]
∈ N2D and Q :=

[
0 Q01 0

Q10 0 0
0 0 0

]
∈ N2D, where

R11(x, y, θ, ν) = 1 and Q01(x, y, ν) = Q10(x, y, θ) = c,
we may equivalently express the PIE as

T v̇(t) = Av(t),

where T := P[R] ∈ Π1×1
2D and A := P[Q] ∈ Π1×1

2D .
Consider now including a disturbance w(t) ∈ R and

regulated output z(t) ∈ R in the PDE, as

˙̄v(t) = c
[
∂xv̄(t) + ∂yv̄(t)

]
+ kw(t),

z(t) =

∫ 1

0

∫ 1

0

v̄(t, x, y)dydx. (7)

Then, assuming the same boundary conditions, the system
may be equivalently represented by the PIE

T v̇(t) = Av(t) + kw(t) = Av(t) + Bw(t),

z(t) =

(
∫

Ω11
00

[I] ◦ T
)
v(t) = Cv(t), (8)

where T ,A ∈ Π1×1
2D = Π

{0,0,1}×{0,0,1}
0112 are as before, and

we define B := M[k] ∈ Π
{0,0,1}×{1,0,0}
0112 and

C := ∫
Ω11

00

[(1− x)(1− y)] ∈ Π
{1,0,0}×{0,0,1}
0112 .

Then, for any input w, the pair (v, z) is a solution to the
PIE (8) if and only if (T v, z) is a solution to the PDE (7).

III. AN LPI FOR L2-GAIN ANALYSIS

In this section, we present the main technical result of this
paper. In particular, we provide an LPI for verifying an upper
bound γ on the L2 gain of a PIE of the form

T v̇(t) = Av(t) + Bw(t), v(0) = 0,

z(t) = Cv(t) +Dw(t), (9)

where w(t) ∈ Rnw , z(t) ∈ Rnz , and v(t) ∈ Lnv
2 [Ωbd

ac]
represent respectively the value of the input, output, and
(fundamental) state at any time t ≥ 0, and where

T ,A ∈ Π
{0,0,nv}×{0,0,nv}
0112 , B ∈ Π

{0,0,nv}×{nw,0,0}
0112 ,

C ∈ Π
{nz,0,0}×{0,0,nv}
0112 , D ∈ Π

{nz,0,0}×{nw,0,0}
0112 .

Lemma 8: Let γ > 0, and suppose there exists a 2D-PI
operator P ∈ Πnv×nv

2D such that P = P∗ > 0 and−γI D C
(·)∗ −γI B∗PT
(·)∗ (·)∗ (·)∗ + T ∗PA

 ≤ 0 (10)



Then, for any w ∈ Lnw
2 [0,∞), if (w, z) satisfies the PIE (9),

then z ∈ Lnz
2 [0,∞) and ∥z∥L2 ≤ γ∥w∥L2 .

Proof: Define a storage function V : Lnv
2 → R as

V (v) := ⟨T v,PT v⟩L2
. Since P > 0, we have V (v) > 0

for any v ̸= 0. In addition, for any w ∈ L2[0,∞), the
derivative V̇ (v(t)) for v(t) satisfying PIE (9) is given by

V̇ (v(t))= ⟨T v(t),PT v̇(t)⟩L2
+ ⟨T v̇(t),PT v(t)⟩L2

=
〈
T v(t),P

[
Av(t) + Bw(t)

]〉
L2

+
〈[
Av(t) + Bw(t)

]
,PT v(t)

〉
L2

=

〈[
w(t)
v(t)

]
,

[
0 B∗PT

T ∗PB A∗PT +T ∗PA

][
w(t)
v(t)

]〉
Zn1

where n1 := {nw, 0, nv} so that Zn1 = Rnw × Lnv
2 [Ωbd

ac].
Define n2 := {nz + nw, 0, nv}. Then, for any w(t) ∈ Rnw ,
and for any v(t) ∈ Lnv

2 [Ωbd
ac] and z(t) ∈ Rnz satisfying the

PIE (9) with input w, we have〈 z(t)
γ

w(t)
v(t)

,
−γI D C
D∗ −γI B∗PT
C∗ T ∗PB A∗PT + T ∗PA

 z(t)
γ

w(t)
v(t)

〉
Zn2

=

〈[
w(t)
v(t)

]
,

[
0 B∗PT

T ∗PB A∗PT + T ∗PA

] [
w(t)
v(t)

]〉
Zn1

− γ∥w(t)∥2 + γ−1
[
⟨v(t), C∗z(t)⟩L2

+ ⟨w(t),D∗z(t)⟩
]

+ γ−1
[
⟨z(t), Cv(t)⟩L2

+ ⟨z(t),Dw(t)⟩
]
− γ−1∥z(t)∥2

= V̇
(
v(t)

)
− γ∥w(t)∥2 + γ−1∥z(t)∥2

Invoking Eqn. (10), it follows that

V̇
(
v(t)

)
≤ γ∥w(t)∥2 − γ−1∥z(t)∥2.

Integrating both sides of this inequality from 0 up to ∞,
noting that V (v(0)) = V (0) = 0, we find

0 ≤ lim
t→∞

V
(
v(t)

)
≤ γ∥w∥2L2

− γ−1∥z∥2L2
,

and therefore ∥z∥L2
≤ γ∥w∥L2

.
Lemma 8 proves that, if the LPI (10) is feasible for some

γ > 0, then the L2-gain ∥z∥L2

∥w∥L2
of the 2D PIE (9) is bounded

by γ. In Section IV, we will show that any well-posed, linear,
2nd order 2D PDE can be equivalently represented as a PIE
of the form (9) – thus allowing the L2-gain to be tested as
an LPI. In Section V, we then show that feasibility of an LPI
can be tested as an LMI, allowing the L2-gain of 2D PDEs
to be verified using semidefinite programming – a result we
show in Section VI.

IV. A PIE REPRESENTATION OF 2D PARTIAL
DIFFERENTIAL INPUT-OUTPUT SYSTEMS

Having shown that the L2-gain of a 2D PIE can be
tested by solving an LPI, we now show that equivalent PIE
representations can be derived for systems belonging to a
large class of 2D PDEs. In particular, in Subsection IV-
A, we present a standardized format for representing linear,
2nd order, 2D PDEs with finite-dimensional input and output
signals. In Subsection IV-B, we then derive a bijective map
between the PDE state space Xw ⊂ L2[Ω

bd
ac], constrained

by boundary and continuity conditions, and the fundamental
state space L2[Ω

bd
ac]. Finally, in Subsection IV-C, we prove

that for any solution to the PDE, an equivalent solution
exists to an associated PIE, presenting the PI operators
{T0, T1,A,B, C,D} defining this representation.

A. A Standardized PDE Format in 2D

We consider a coupled linear PDE of the form

˙̄v(t) = Āv̄(t) + B̄w(t),
z(t) = C̄v̄(t) + D̄w(t), (11)

where at any time t ≥ 0, w(t) ∈ Rnw , z(t) ∈ Rnz , and
v̄(t) ∈ Xw(t), where Xw(t) ⊆ Ln0+n1+n2

2 [Ωbd
ac] includes the

boundary conditions and continuity constraints, defined as

Xw :=

{
v̄ =

[
v̄0

v̄1

v̄2

]
∈

[
Ln0
2

Wn1
1

Wn2
2

]∣∣∣∣∣ Ē0v̄ + E1w = 0

}
, (12)

and where the operators {Ā, B̄, C̄, D̄, Ē0, E1} are all linear.
In particular, the PDE dynamics are defined by the operators

Ā :=

2∑
i,j=0

M[Aij ] ∂
i
x∂

j
y M[Si,j ], B̄ := M[B],

C̄ :=
2∑

i,j=0

∫
Ωbd

ac

[Cij ] ∂
i
x∂

j
y M[Si,j ], D̄ :=M[D], (13)

parameterized by matrix-valued functions[
Aij B
Cij D

]
∈

[
L
nv×mij

2 [Ωbd
ac] Lnv×nw

2 [Ωbd
ac]

L
nz×mij

2 [Ωbd
ac] Rnz×nw

]
,

where nv = n0 + n1 + n2 and mij :=
∑2

k=max{i,j} nk, and
where the matrix

Si,j :=


In0+n1+n2 , if i = j = 0,[
0(n1+n2)×n0

In1+n2

]
, if max{i, j} = 1,[

0n2×n0
0n2×n1

In2

]
, if max{i, j} = 2,

extracts all elements u(t) = Si,jv̄(t) ∈ W
mij

max{i,j}[Ω
bd
ac] of

the state v̄(t) which are differentiable up to at least order
i in x and j in y, for any t ≥ 0. In addition, the state
v̄(t) at each time is constrained by the boundary conditions
Ē0v̄(t) + E1w(t) = 0, where

Ē0 = P[E0] Λbf, and E1 = M[E1], (14)

for a matrix-valued function E1 ∈ Znb×{nw,0}
1 [Ωbd

ac] and
parameters E0 ∈ N nb×nf

011 [Ωbd
ac], where nb := {n1 +4n2, n1 +

2n2} corresponds to the number of boundary conditions, and
nf := {4n1 + 16n2, 2n1 + 4n2}, and where the operator
Λbf : Ln0

2 ×Wn1
1 ×Wn2

2 → Znf
1 extracts all the possible

boundary values for the state components v̄1 and v̄2, as
limited by differentiability. In particular,

Λbf=

Λ1

Λ2

Λ3

 : Ln0
2 ×Wn1

1 ×Wn2
2 →

 R4n1+16n2

L2n1+4n2
2 [Ωb

a]

L2n1+4n2
2 [Ωd

c ]

 , (15)

where



Λ1 :=


0 ∆1 0
0 0 ∆1

0 0 ∆1∂x

0 0 ∆1∂y

0 0 ∆1∂xy

 ,

[
Λ2

Λ3

]
:=


0 ∆2∂x 0
0 0 ∆2∂

2
x

0 0 ∆2∂
2
x∂y

0 ∆3∂y 0
0 0 ∆3∂

2
y

0 0 ∆3∂x∂
2
y

 ,

and where we use the Dirac operators ∆k defined as

∆1 =


∆a

x∆
c
y

∆b
x∆

c
y

∆a
x∆

d
y

∆b
x∆

d
y

 , ∆2 =

[
∆c

y

∆d
y

]
, ∆3 =

[
∆a

x

∆b
x

]
.

Definition 9 (Solution to the PDE): For a given input sig-
nal w and given initial conditions v̄I ∈ Xw(0), we
say that (v̄, z) is a solution to the PDE defined by
{Aij , B,Cij , D,E0, E1} if v̄ is Frechét differentiable,
v̄(0) = v̄I, and for all t ≥ 0, v̄(t) ∈ Xw(t), and (v̄(t), z(t))
satisfies Eqn. (11) with the operators {Ā, B̄, C̄, D̄, Ē0, E1}
defined as in (13) and (14).

B. A Bijection Between the Fundamental and PDE State
In the PDE (11) defined by {Aij , B,Cij , D,E0, E1}, the

state v̄(t) ∈ Xw(t) at each time t ≥ 0 is constrained
to satisfy continuity constraints and boundary conditions,
defined by E0 and E1. For any such v̄ ∈ Xw, we define an
associated fundamental state v ∈ Lnv

2 [Ωbd
ac], free of boundary

and continuity constraints, using a differential operator D:

v :=

v0

v1

v2

 =

In0

∂x∂y
∂2
x∂

2
y


︸ ︷︷ ︸

D

v̄0

v̄1

v̄2

 = Dv̄.

In this subsection, we show that if the parameters E0, E1

define well-posed boundary conditions, then there exist as-
sociated PI operators T0, T1 such that

v̄ = T0Dv̄ + T1w, and v = D
[
T0v + T1w

]
,

for any v̄ ∈ Xw and v ∈ L2. To prove this result, we recall
the following lemma from [13], expressing the PDE state in
terms of the fundamental state and a set of boundary values.

Lemma 10: Let v̄ ∈ Ln0
2 ×Wn1

1 ×Wn2
2 and define Λbc :

Ln0
2 ×Wn1

1 ×Wn2
2 → Znb

1 with nb = {n1+4n2, n1+2n2} as

Λbc :=



0 ∆a
x∆

c
y 0

0 0 ∆a
x∆

c
y

0 0 ∆a
x∆

c
y ∂x

0 0 ∆a
x∆

c
y ∂y

0 0 ∆a
x∆

c
y ∂x∂y

0 ∆c
y ∂x 0

0 0 ∆c
y ∂2

x

0 0 ∆c
y ∂2

x∂y

0 ∆a
x ∂y 0

0 0 ∆a
x ∂2

y

0 0 ∆a
x ∂x∂

2
y


. (16)

Then, if parameters K1 ∈ Nnv×nb
2D←011 and K2 ∈ Nnv×nv

2D are
as defined in Lemma 10 in [13], then

v̄ = P[K1]Λbcv̄ + P[K2]v, where v = Dv̄.

Proof: A proof can be found in [13].

Corollary 11: Let v ∈ Ln0
2 ×Wn1

1 ×Wn2
2 and let Λbf be as

defined in Eqn. (15). Then, if parameters H1 ∈ N nf×nb
011 and

H2 ∈ N nf×nv

011←2D with nf = {4n1 + 16n2, 2n1 + 4n2} are as
defined in Corollary 11 in [13], then

Λbfv̄ = P[H1]Λbcv̄ + P[H2]v,

where v = Dv̄, and where Λbc is as defined in Eqn. (16).
Using these results, we can express v̄ ∈ Xw directly in

terms of Dv̄ ∈ Lnv
2 and the input signal w, as shown in the

following theorem. For a full proof of this result, we refer
to Appx. II of the arXiv version of this paper [14].

Theorem 12: Let E0 =
[

E00 E01 E02
E10 E11 E12
E20 E21 E22

]
∈ N nb×nf

011 and E1 =[
E1,0
E1,1
E1,2

]
∈ Znb×{nw,0}

1 with Ejj := {E0
jj , E

1
jj , E

1
jj} ∈ N1D

for j ∈ {1, 2} be given, and such that the operator
P[E0]P[H1] is invertible, where H1 ∈ N nf×nb

011 is
as in Cor. 11. Let w be a given input signal, with
associated set Xw as defined in Eqns. (12) and (14).
Then, there exist parameters T0 ∈ Nnv×nv

2D and
T1 ∈ Lnv×nw

2 [Ωbd
ac] such that if T0 = P[T0] ∈ Πnv×nv

2D and
T1 = M[T1] ∈ Π

{0,0,nv}×{nw,0,0}
0112 , then for any v̄ ∈ Xw and

v ∈ Lnv
2 ,

v̄ = T0Dv̄ + T1w and v = D
[
T0v + T1w

]
,

where D =

[
In0

∂x∂y

∂2
x∂2

y

]
. In particular, we may define

T0 ∈ Nnv×nv

2D and T1 ∈ Lnv×nw
2 [Ωbd

ac] as in Eqn. (17) in the
outline of the proof of this theorem.

Outline of proof: The result follows from application of
Lemma 10 and Corollary 11. In particular, by Cor. 11, there
exist parameters H1 ∈ N nf×nb

0112 and H2 ∈ N nf×nv
0112 such that

Λbfv̄ = P[H1]Λbcv̄ + P[H2]v.

Substituting this expression into that for the boundary con-
ditions, 0 = P[E0]Λbfv̄ + P[E1]w, it follows that

0 = P[E0]P[H1]Λbcv̄ + P[E0]P[H2]v + P[E1]w

= P[R1]Λbcv̄ + P[R2]v + P[E1]w,

where we define Ri = L×(E0, Hi) for i ∈ {1, 2}. Since (by
assumption) P[R1] = P[E0]P[H1] is invertible, there exist
parameters R̂1 = Linv(R1) ∈ N nb×nb

011 such that P[R̂1] =
P[R]−1, and we can express Λbcv̄ in terms of v and w as

Λbcv̄ = −P[R̂1]P[R2]v − P[R̂1]P[E1]w

= P[G0]v + P[G1]w,

where G0 = −L×(R̂1, R2) and G1 = −L×(R̂1, E1).
Finally, by Lemma 10, there exist parameters K1 ∈ Nnv×nb

0112

and K2 ∈ Nnv×nv
0112 such that

v̄ = P[K1]Λbcv̄ + P[K2]v,

and thus, imposing the relation Λbcv̄ = P[G0]v + P[G1]w,

v̄ =
(
P[K2] + P[K1]P[G0]

)
v + P[K1]P[G1]w

= P[T0]v + P[T1]w = T0v + T1w,
where

T0 = L+

(
K2,L×(K1, G0)

)
, T1 = L×

(
K1, G1

)
. (17)



C. PDE to PIE Conversion
Having constructed the PI operators T0, T1 mapping

fundamental states v ∈ Lnv
2 [Ωbd

ac] to PDE states v̄ ∈ Xw,
we can now define an equivalent PIE representation of
the standardized PDE. In particular, for given PI operators
{T0, T1,A,B, C,D}, we define the associated PIE as

T1ẇ(t) + T0v̇(t) = Av(t) + Bw(t), v(t)∈ Lnv
2 ,

z(t) = Cv(t) +Dw(t). (18)

Definition 13 (Solution to the PIE): For a given input
signal w and given initial conditions vI ∈ Lnv

2 , we say that
(v, z) is a solution to the PIE defined by {T0, T1,A,B, C,D}
if v is Frechét differentiable, v(0) = vI, and for all t ≥ 0,
(v(t), z(t)) satisfies Eqn. (18).

The following lemma shows that for any PDE of the
form (11) for which P[E0]P[H1] in Theorem. 12 is invert-
ible, there exists an equivalent PIE of the form (18).

Lemma 14: Suppose T0, T1 are as defined in Thm. 12. Let

A := Ā ◦ T0 ∈ Πnv×nv
0112 , B := B̄ + Ā ◦ T1 ∈ Πnv×nw

0112 ,

C := C̄ ◦ T0 ∈ Πnz×nv
0112 , D := D̄ + C̄ ◦ T1 ∈ Πnz×nw

0112 ,

where the operators {Ā, B̄, C̄, D̄} are parameterized by
{Aij , B,Cij , D}, as in Eqn. (13), and where we define nv :=
{0, 0, nv}, nw := {nw, 0, 0} and nz := {nz, 0, 0}. Then, for
a given input w and initial values vI ∈ Lnv

2 , (v, z) solves
the PIE (18) defined by {T0, T1,A,B, C,D} with initial con-
ditions vI if and only if (v̄, z) with v̄(t) = T0v(t)+ T1w(t)
solves the PDE (11) defined by {Aij , B,Cij , D,E0, E1}
with initial conditions v̄I := T0vI + T1w(0).

Proof: The result follows directly by substituting the
relation v̄ = T0v + T1w into the PDE (11). A full proof is
provided in the extended version of this paper [14].

V. PARAMETERIZING POSITIVE PI OPERATORS

Using the results from Sections III and IV, a bound on the
L2-gain of a large class of 2D PDEs can be verified using the
LPI (10). In this section, we show how feasibility of such
LPIs can be tested using LMIs, by parameterizing a cone
of positive PI operators P ∈ Π

{n0,0,n2}×{n0,0,n2}
0112,+ mapping

Z{n0,0,n2} by positive matrices. Since positive PI operators
must be self-adjoint, we first show that the adjoint of any PI
operator acting on Z{n0,0,n2} is also a PI operator.

Lemma 15: Let G := [ B C
D N ] ∈ N nv×nu

0112 for some
nu = {m0, 0,m2} and nv = {n0, 0, n2}, and with N =[

N00 N01 N02
N10 N11 N12
N20 N21 N22

]
∈ Nn2×m2

2D . Define Ĝ :=
[

BT DT

CT N̂

]
∈ N nu×nv

0112

with N̂ =

[
N̂00 N̂01 N̂02
N̂10 N̂11 N̂12
N̂20 N̂21 N̂22

]
∈ Nm2×n2

2D , where N̂00(x, y) N̂01(x, y, ν) N̂02(x, y, ν)

N̂10(x, y, θ) N̂11(x, y, θ, ν) N̂12(x, y, θ, ν)

N̂20(x, y, θ) N̂21(x, y, θ, ν) N̂22(x, y, θ, ν)


=

 NT
00(x, y) NT

02(x, ν, y) NT
01(x, ν, y)

NT
20(θ, y, x) NT

22(θ, ν, x, y) NT
21(θ, ν, x, y)

NT
10(θ, y, x) NT

12(θ, ν, x, y) NT
11(θ, ν, x, y)

 .

Then for any u ∈ Znu [Ωbd
ac] and v ∈ Znv [Ωbd

ac],
⟨v,P[G]u⟩Znv =

〈
P[Ĝ]v,u

〉
Znu

.

Proof: A proof of this result can be found in Ap-
pendix I-B of the arXiv version of this paper [14].

We now propose a parameterization of a cone of positive
PI operators on Z{n0,0,n2}. A proof of this result can be
found in Appx. III of the arXiv version of this paper [14].

Proposition 16: For any Z ∈ Lq×n2

2 [Ωbd
ac×Ωbd

ac] and scalar
function g ∈ L2[Ω

bd
ac] satisfying g(x, y) ≥ 0 for any (x, y) ∈

Ωbd
ac, let LPI : R(9q+n0)×(9q+n0) → N nu×nu

0112 be as defined
in Eqn. (51) in Appx. III of [14], where nu := {n0, 0, n2}.
Then, for any P ≥ 0, if B = LPI(P ), then P := P[B] ∈
Πnu×nu

0112 satisfies P∗ = P and ⟨u,Pu⟩Znu ≥ 0 for any u ∈ Znu .
Parameterizing positive PI operators as in Prop. 16, we

use a monomial basis Zd of degree at most d to define
Z , yielding polynomial paramaters B = LPI(P ) for any
(positive) matrix P . For the scalar function g(x, y) ≥ 0, we
include the candidates
g0(x, y)=1, g1(x, y)=(x−a)(b−x)(y−c)(d−y), (19)

which are both nonnegative on the domain Ωbd
ac :=[a, b]×[c, d].

We denote the resulting set of operators as Ξd, so that

Ξd :=

{ 2∑
j=0

P[Bj ]
∣∣∣Bj = LPI(Pj) for some Pj ≥ 0,

with Z = Zd and gj(x, y) as in (19)
}

where now P ∈ Ξd is an LMI constraint implying P ≥ 0.
Computational complexity: Since the number of mono-

mials of degree at most d in 2 variables is of the order
O(d2), the size of the matrix P ∈ Sq×q parameterizing
a 2D-PI operator P[P ] ∈ Ξd will be q = O(nd2), for
P[P ] ∈ Πn×n

2D . As such, the number of decision variables in
the LMI P ≥ 0 will scale with q2 = O(n2d4) – a substantial
increase compared to the O(n2d2) scaling for 1D PDEs, and
the O(n2) scaling for ODEs. Nevertheless, accurate L2-gain
bounds for 2D PDEs can already be verified with d = 1, as
we illustrate in Section VII.

VI. AN LMI FOR L2-GAIN ANALYSIS OF 2D PDES

Combining the results from the previous sections, we
finally construct an LMI test for verifying an upper bound
on the L2-gain of a 2D PDE.

Theorem 17: Let parameters {Aij , B,Cij , D,E0, E1}
with E1 = 0 define a PDE of the form (11)
as in Subsection IV-A. Let associated operators
{T0, T1,A,B, C,D} be as defined in Lemma 14 in
Subsection IV-C. Finally, let γ > 0, and suppose there exists
a PI operator P ∈ Πnv×nv

2D such that P − ϵI ∈ Ξd1
and

−Q ∈ Ξd2
for some d1, d2 ∈ N and ϵ > 0, where

Q :=

−γI D C
(·)∗ −γI B∗PT0

(·)∗ (·)∗ (·)∗ + T ∗0 PA

 . (20)

Then, for any w ∈ Lnw
2 [0,∞), if (w(t), z(t)) satisfies the

PDE (11) for all t ≥ 0, then z ∈ Lnz
2 [0,∞) and ∥z∥L2

∥w∥L2
≤ γ.

Proof: Let the parameters {Aij , B,Cij , D,E0, E1}
and operators {T0, T1,A,B, C,D} be as proposed. Let w ∈
Lnw
2 [0,∞) be arbitrary, and let (v̄, z) be a solution to the

PDE (11) with input w. Then, by Lem. 14, letting v = Dv̄,
(v, z) is a solution to the PIE (18) with input w. Since
E1 = 0, it follows by Thm. 12 that T1 = 0, and therefore
(v, z) is a solution to the PIE (9) with T = T0. Finally, by
Prop. 16, if P − ϵI ∈ Ξd1

and −Q ∈ Ξd2
, we have P > 0

and Q ≤ 0. Then, all conditions of Lem. 8 are satisfied, and
we find that z ∈ Lnz

2 [0,∞) and ∥z∥L2

∥w∥L2
≤ γ.



VII. NUMERICAL EXAMPLES

In this section, results of several numerical tests are
presented, computing an upper bound on the L2-gain of
2D PDEs using the LPI methodology proposed in the
previous sections, incorporated into the MATLAB toolbox
PIETOOLS [15]. Results are shown using monomials of
degree at most d = 1 to parameterize the positive operator
P ∈ Ξd in Theorem 17. Estimates of the L2-gain computed
using discretization are also shown, using a finite difference
scheme on N ×N uniformly distributed grid points.

For each of the proposed PDEs, a regulated output
z(t) =

∫
Ωb

a

∫
Ωd

c
v̄(t, x, y)dydx is considered, corresponding

to C00 = I and Cij = 0 for all other i, j ∈ {0, 1, 2} in
Eqns. (13) defining the parameters for the PDE (11).

A. KISS Model
Consider first a particular instance of the KISS model as

presented in [1], with uniformly distributed disturbances on
[0, 1]× [0, 1], and Dirichlet boundary conditions,

˙̄v(t) =
[
∂2
xv̄(t) + ∂2

y v̄(t)
]
+ λv̄(t) + w(t)

0 = v̄(t, 0, y) = v̄(t, 1, y) = v̄(t, x, 0) = v̄(t, x, 1). (21)
Figure 1 presents bounds on the L2-gain of this system
for λ ∈ [9, 19], computed using the LPI approach. Gains
estimated using discretization with N = 12 grid points are
also displayed. The results show that the LPI method is able
to achieve (provably valid) bounds on the L2-gain that are
lower than the values estimated through discretization.

9 10 11 12 13 14 15 16 17 18 19

10
-1

10
0

Discretization

LPI

Fig. 1. Bounds on the L2-gain of System (21) computed using the LPI
methodology, parameterizing P ∈ Ξd in Thm. 17 using monomials of
degree at most d = 1. Estimates of the gain computed through discretization
are also shown, using a grid of 12× 12 uniformly distributed points.

B. Other Parabolic Systems
Consider now a bound on the L2-gain computed using

the LPI approach, and an estimated gain computed using
discretizaion, for each of the following variations on Sys-
tem (21), where g(x, y) := 1− 2(x− 0.5)2 + 2(y − 0.5)2:

1) Using an inhomogeneously distributed reaction term:
˙̄v(t) =

[
v̄xx(t) + v̄yy(t)

]
+ g(x, y)v̄(t) + w(t).

2) Using an inhomogeneously distributed disturbance:
˙̄v(t) =

[
v̄xx(t) + v̄yy(t)

]
+ v̄(t) + g(x, y)w(t).

3) Using Neumann boundary conditions:
0 = v̄(t, 0, y) = ∂xv̄(t, 1, y) = v̄(t, x, 0) = ∂yv̄(t, x, 1).

The results of each test are provided in Table II, along
with the required CPU times. The results once more show
that the LPI method is able to produce bounds on the L2-
gain which are smaller than the estimates obtained through
discretization, in relatively short time.

Discretization LPI

N = 6 N = 9 N = 12 d = 1

1) L2-Gain 0.0404 0.0384 0.0376 0.0367
CPU Time (s) 5.56 6.58 · 102 3.75 · 104 1.73 · 104

2) L2-Gain 0.0315 0.0302 0.0298 0.0293
CPU Time (s) 3.91 6.59 · 102 3.76 · 104 2.64 · 105

3) L2-Gain 0.1793 0.1767 0.1758 0.1747
CPU Time (s) 3.77 6.59 · 102 4.09 · 104 1.32 · 104

TABLE II
Bounds on the L2-gain for variations 1 through 3 on System (21)

computed using the LPI approach, along with the CPU time required for
each test. Estimates computed using discretization are also provided, using

N ×N uniformly distributed grid points.

VIII. CONCLUSION

In this paper, a new method for estimating the L2-gain of
linear, 2nd order, 2D PDEs, using semidefinite programming
was presented. To this end, it was proved that any such
PDE can be equivalently represented by a PIE, and the
necessary formulae to convert between the representations
was derived. It was further proved that the problem of
verifying an upper bound on the L2-gain of a PIE can be
posed as an LPI, and a method for parameterizing such LPIs
as LMIs was presented. Implementing this approach in the
MATLAB toolbox PIETOOLS, relatively accurate bounds on
the L2-gain of several PDEs could be numerically computed.
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