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Abstract—We present a new data structure for represen-
tation of polynomial variables in the parsing of sum-of-
squares (SOS) programs. In SOS programs, the variables
s(x; P) are polynomial in the independent variables x , but
linear in the decision variables P. Current SOS parsers,
however, fail to exploit the semi-linear structure of the poly-
nomial variables, treating the decision variables as inde-
pendent variables in their representation. This results in
unnecessary overhead in storage and manipulation of the
polynomial variables. To reduce this computational over-
head, we introduce a new representation of polynomial
variables, the dpvar structure, which allows the parser to
exploit the structure of the decision variables. We show that
use of the dpvar structure significantly reduces the compu-
tational complexity of the polynomial operations required
for parsing SOS programs. We further show that the
memory complexity required to store polynomial variables
is significantly reduced when using the dpvar structure,
particularly when combined with the MATLAB Compressed
Sparse Column (CSC) matrix representation. Finally, we
incorporate the dpvar structure into SOSTOOLS 4.00, and
test performance for several polynomial optimization prob-
lems.

Index Terms—Computational methods, large-scale
systems, LMIs, stability of nonlinear systems.

I. INTRODUCTION

MANY problems in analysis and control of nonlinear
systems can be formulated as polynomial optimization

problems. Since testing nonnegativity of polynomials is NP-
hard [1], polynomial constraints of the form s(x) ≥ 0 for all
x ∈ R

n are often tightened to sum-of-squares (SOS) con-
straints: s ∈ �s, where �s denotes the set of functions that
may be expanded as s(x) = ∑

i pi(x)2 for some polynomials
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pi ∈ R[x]. Feasibility of s ∈ �s in turn is equivalent to exis-
tence of a positive semidefinite matrix Q ≥ 0 and a vector of
monomials Zd such that s(x) = Zd(x)TQZd(x) – allowing SOS
constraints to be expressed as LMIs. In this manner, SOS pro-
grams (SOSPs) can be formulated as semidefinite programs
(SDPs), which may be solved in polynomial time [2].

The typical process of numerically solving SOSPs consists
of two stages: the parsing of the SOSP, i.e., the implementation
of the program and conversion to an SDP; and the actual solv-
ing of this SDP. Unfortunately, the computational complexity
associated with both of these stages increases rapidly with the
size of the SOSP, as a result of which many large-scale applica-
tions of SOS programming remain unsolvable. This failure to
tackle large-scale problems has prompted several variations on
SOS programming to be proposed, reducing complexity of the
problem by imposing more restrictive constraints on the posi-
tive semidefinite matrix Q [3]–[5]. However, the goal of these
modifications is primarily to reduce the computational com-
plexity of the solving stage of the SOS programming process,
offering little to no reduction in the cost of parsing the SOSP.
As such, even if larger-scale problems can be solved with
these modifications, the computational cost of parsing such
programs may still make numerical implementation impossi-
ble. In fact, in many cases, the computational cost of parsing
the SOSP far exceeds that associated to solving the resulting
SDP (see Fig. 1), a discrepancy that will only be exacerbated
by reducing the complexity of the SDP.

For the greatest lower bound problem and robust stability
test presented in Section V-A and V-B, Fig. 1 shows what per-
centage of the time required to solve each problem is spent on
parsing the SOSP. Results are shown using the well-established
SOS parsers SOSTOOLS 3.04 [6] and YALMIP [7] to parse
the problems, using SEDUMI [8] to solve the resulting SDP.
The results show that both parsers consistently require more
time to construct the SDP from the SOSP than it takes to
actually solve this SDP, frequently spending more than 90%
of the execution time on parsing. In this letter, we show that
the percentage of the time spent on parsing can be signifi-
cantly reduced, proposing a new representation of polynomial
variables that allows for more efficient parsing of SOSPs.

In converting an SOSP to an SDP, SOS parsers use finite
monomial bases Zd to represent the polynomial variables.
Here, we let Zd ∈ R

n1 [x] denote a vector containing all mono-
mials in variables x1, . . . , xp of degree at most d, where n1 :=
(p+d)!

p!d! . These monomials may be numerically represented as a
matrix ZM,d ∈ N

n1×p containing the degrees of each variable
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Fig. 1. Percentage of execution time spent parsing the greatest
lower bound problem from Section V-A (Eqn. (6)) and the robust sta-
bility problem from Section V-B (Eqn. (7)), using SOSTOOLS 3.04 and
YALMIP. Using either parser, less than 50% of the time spent on each
problem is actually spent on solving the associated SDP, with the pars-
ing of the robust stability program even taking up more than 90% of the
time.

in each monomial, so that e.g.,

Z2(x1, x2) =

⎡

⎢
⎢
⎣

1
x2
x2

2
x1

x1x2
x2

1

⎤

⎥
⎥
⎦ and ZM,2 =

[x1,x2]
︷ ︸︸ ︷
⎡

⎣

0 0
0 1
0 2
1 0
1 1
2 0

⎤

⎦ .

Using such a monomial basis, an SOS variable s ∈ �s of
degree at most 2d can be represented in the quadratic form

s(x; Q) = Zd(x)TQZd(x),

where now Q ∈ S
n1×n1 is a decision variable. Meanwhile, any

polynomial p ∈ R[x] of degree 2d is uniquely defined by a
vector of coefficients c ∈ R

n2 for n2 := (p+2d)!
p!(2d)! , and may be

represented in the linear pvar form as

p(x) = cTZ2d(x). (1)

Finally, interface with SDP solvers requires polynomial con-
straints g(x; ξ) = 0, parameterized by decision variables ξ , to
be expressed in the SDP format

0 = g(x; ξ) = (Aξ − b)TZ(x), imposing Aξ = b.

For example, letting s1(x1; ξ) =
[

1
x1

]T[
ξ1ξ2
ξ2ξ3

][
1
x1

]

for
[
ξ1ξ2
ξ2ξ3

]

≥ 0, and defining p1(x1) :=1 − 2x2
1, the constraint

0 = g1(x1; ξ) := s1(x1; ξ)p1(x1) − 1 + 4x4
1,

can be equivalently represented in the SDP format as

0 = g1(x1; ξ) =
(

⎡

⎣
1 0 0
0 2 0−2 0 1
0 −4 0
0 0 −2

⎤

⎦

︸ ︷︷ ︸
A

[
ξ1
ξ2
ξ3

]

︸ ︷︷ ︸
ξ

−
[ 1

0
0
0−4

]

︸ ︷︷ ︸
b

)T

⎡

⎢
⎣

1
x1
x2

1

x3
1

x4
1

⎤

⎥
⎦.

In order to derive this expression, however, an SOS parser
has to compute the product s1(x; ξ)p1(x) without knowing
the values of the decision variables ξ . To this end, current
parsers treat the decision variables as independent variables,
and represent SOS variables s in the linear form as

s(x; ξ) = cT Z̄2d(x; ξ)

where Z̄2d(x; ξ) := [ 1
ξ

] ⊗ Z2d(x). However, including the
decision variables in the monomial basis Z̄2d, the computa-
tional cost of operations like multiplication increases rapidly
with the number of decision variables. Moreover, substantial
computational effort may be necessary to convert constraints
0 = cT Z̄(x; ξ) to the SDP format 0 = (Aξ − b)TZ(x).

To reduce the computational complexity associated with
parsing SOSPs, we propose a new representation of polyno-
mial decision variables, representing a variable s∈R[x; ξ ] as

s(x; ξ) := Z1(ξ)TCZd(x) =
[

1
ξ

]T

CZd(x), (2)

so that, for example

s1(x1; ξ) =
[

1
x1

]T[
ξ1 ξ2
ξ2 ξ3

][
1
x1

]

=
⎡

⎢
⎣

1
ξ1
ξ2
ξ3

⎤

⎥
⎦

T

C
︷ ︸︸ ︷⎡

⎢
⎣

0 0 0
1 0 0
0 2 0
0 0 1

⎤

⎥
⎦

Z2(x1)︷ ︸︸ ︷⎡

⎣
1
x1
x2

1

⎤

⎦ .

We refer to this variable structure as the dpvar representation
– a generalization of the pvar representation for polynomi-
als (Eqn. (1)) to polynomials with decision variables. As will
be shown in Section II, use of this representation accounts
for linearity with respect to the decision variables and elimi-
nates polynomial manipulations involving decision variables.
Furthermore, translation of a dpvar constraint s(x; ξ) = 0 to
an SDP constraint (C2ξ + c1)

TZ(x) = 0 is trivial, in that

s(x; ξ) =
[

1
ξ

]T[
cT

1
CT

2

]

Zd(x) = (ξTCT
2 + cT

1 )Zd(x).

Finally, by exploiting the MATLAB sparse matrix representa-
tion features, the dpvar structure reduces memory requirements
and computational effort – see Section IV.

In the remainder of this letter, we carefully detail how
an ideal parser should integrate the dpvar structure into the
parsing of SOSPs. Specifically, an ideal parser should

1) Exploit structure in polynomial computations. In partic-
ular, for operations such as multiplication, the parser
should exploit the affine dependence on the decision
variables to reduce computational overhead.

2) Be based on analytic expressions for the mathematical
operations.

3) Allow for fully dense polynomial structures.
4) Make efficient use of the platform-specific sparsity struc-

ture to minimize memory usage and computational
complexity for sparse polynomial objects.

5) Be scalable to hundreds of thousands of decision
variables.

In the following sections, we show how the dpvar structure can
be used to achieve these goals in the context of the MATLAB
programming language and sparsity package.

II. OPERATIONS IN THE DPVAR REPRESENTATION

We first show that, using the dpvar representation, standard
operations on polynomial variables s ∈ R[x; ξ ] may be per-
formed at relatively low computational cost. In particular, we
note that in the dpvar representation, as presented in Eqn. (2),
the vector of linear monomials Z1(ξ) always takes the same
form. Therefore, there is no need to explicitly store or account
for the degrees of the monomials in Z1(ξ), and the complex-
ity of operations will be largely independent of the number of
decision variables ξ .
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By contrast, in the pvar representation,

s(x; ξ)=cT Z̄d(x; ξ), with Z̄d(x; ξ) :=
[

1
ξ

]

⊗ Zd(x), (3)

the decision and independent variables are included in a single
vector of monomials Z̄d(x; ξ). Implementing a data structure
based on the pvar representation, therefore, the degrees of
the decision variables ξ have to be explicitly stored and pro-
cessed when performing polynomial operations, introducing
unnecessary computational overhead.

In the following subsections, we show how multiplication,
differentiation, and substitution of polynomial variables may
be performed efficiently using the dpvar representation. The
computational complexity of each operation is indicated using
big O notation, writing O(g) to indicate a complexity no
greater than Cg for some constant C > 0. In each case,
the complexity is also illustrated through a scalability test,
comparing the time required to perform each operation using
the dpvar data structure from SOSTOOLS 4.00, the pvar
and syms structures from SOSTOOLS 3.04, as well as the
YALMIP sdpvar structure. For the syms tests, the presented
computation times include those necessary to construct the
monomial degrees and coefficients needed for further pro-
cessing in SOSTOOLS 3.04. All tests were performed on a
computer with Intel Core i7-5960X CPU, and 128 GB of
installed RAM. Examples and additional test results can be
found in the arXiv version [9].

A. Multiplication
We first consider the operation of multiplication. Since

decision variables must appear linearly in any SOS program,
polynomial decision variables s ∈ R[x; ξ ] may only be mul-
tiplied by known polynomial functions p ∈ R[y]. In dpvar
format, these may be expressed as

s1(x; ξ) = Z1(ξ)TCZd1(x), p2(y) = bTZd2(y),

so that the product becomes

s1(x; ξ)p2(y) = Z1(ξ)T(
bT ⊗ C

)(
Zd2(y) ⊗ Zd1(x)

)
.

Performing this operation in MATLAB, the coefficients b, C
and degrees ZM,d1 , ZM,d2 can be stored as sparse matrices.
Then, taking the Kronecker product bT ⊗C will require multi-
plying at most nnz(C) ·nnz(b) elements, where nnz(A) denotes
the number of nonzero elements of a matrix A, invoking a
worst-case complexity of

O(
nnz(C)nnz(b)

)
.

To compute the product Zd2(y) ⊗ Zd1(x), the nonzero degrees
of all the variables in each monomial in Zd2 must be added to
the degrees of the same variables in each of the monomials
in Zd1 . In the worst-case scenario (e.g., x = y and Zd1 = Zd2 ),
this will require adding all nonzero degrees in ZM,d2 to all
nonzero degrees in ZM,d1 amounting to a complexity of

O(
nnz(ZM,d1)nnz(ZM,d2)

)
.

Consider now computing the same product based on the
pvar representation, s1(x; ξ) = cT Z̄d1(x; ξ), so that

s1(x; ξ)p2(y) = (bT ⊗ cT)(Zd2(y) ⊗ Z̄d1(x; ξ)),

where Z̄d(x; ξ) is as in (3). As was the case in the dpvar format,
the cost of computing the new coefficients will be

O(
nnz(c)nnz(b)

) = O(
nnz(C)nnz(b)

)
,

Fig. 2. Computation time for polynomial multiplication s(x, ξ )p(y )
using the syms, pvar, and dpvar data structures from respectively
SOSTOOLS 3.04 and 4.00, and the sdpvar structure from YALMIP to
represent s(x, ξ ). The rate at which the computation time increases is
relatively small using the dpvar representation compared to the alterna-
tives, with the time increasing only slightly as the number of decision
variables grows to 106.

scaling with the product of the number of terms in the two
polynomials. However, in the pvar representation, the number
of nonzero degrees in Z̄M,d1 increases linearly with the num-
ber of decision variables q in s1, so that the complexity of
computing Zd2 ⊗ Z̄d1 will be

O(
nnz(Z̄M,d1)nnz(ZM,d2)

)=O(
q · nnz(ZM,d1)nnz(ZM,d2)

)
.

This dependence on the number of decision variables is not
present when implementing the dpvar representation, result-
ing in a substantial difference in computational complexity
for large values of q. This reduction in complexity can be
observed in Fig. 2, displaying the required time for multiplying
a variable s1(x1, x2; ξ1, . . . , ξq) with a polynomial p2(y1, y2)
using the different data structures. The presented computation
time for each structure and each value of q corresponds to
the average of several test results, using randomly generated
coefficients to construct s1 and p2. Both polynomials were of
degree d1 = d2 = 4 in each case.

B. Differentiation and Substitution
We now consider the operations of differentiation and sub-

stitution. For an arbitrary polynomial s ∈ R[x; ξ ] in the dpvar
representation, these operations will involve only adjusting
the monomial degrees ZM,d, and associated columns in the
coefficient matrix C. For example, let zij = [ZM,d]ij denote
the element in row i and column j of the degree matrix
ZM,d ∈ N

n×p, and let Ci denote the ith column of the coeffi-
cient matrix C ∈ R

(q+1)×n. Then, differentiation with respect
to xj may be performed by multiplying all elements in each
column Ci for i = 1, . . . , n with zij, and subtracting a value of
1 from all nonzero degrees in column j of ZM,d ∈ N

n×p. The
complexity of this operation depends only indirectly on the
number of decision variables, as each decision variable adds
a row to the coefficient matrix C.

By contrast, performing the same operations using the
pvar representation, the decision variables are included in
the monomial basis Z̄d. Therefore, the complexity of find-
ing and adjusting the appropriate degrees of the monomials
to account for, e.g., differentiation with respect to a variable
xj will directly increase with the number of decision vari-
ables, despite the fact that the decision variables themselves
are invariant under these operations. In this sense, unneces-
sary computational overhead is introduced when performing
operations such as differentiation in the pvar representation,
which is avoided using the dpvar representation. The reduced
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Fig. 3. Computation time for differentiation and substitution of poly-
nomial variables s(x; ξ ) using different data structures to represent
s. Using the dpvar structure, the required time for both operations
increases very slowly, invoking the lowest computational complexity
overall.

computation time this allows is illustrated in Fig. 3, presenting
the elapsed time for differentiation and substitution of a poly-
nomial s1(x1, x2; ξ1, . . . , ξq) with respect to the variable x2,
using the different SOSTOOLS and YALMIP data structures,
and for increasing values of q.

III. STORAGE AND MANIPULATION OF DPVARS

Having analyzed the complexity of standard operations in
the dpvar representation, in this section, we show how this
representation also allows polynomial variables to be effi-
ciently stored and manipulated. In particular, implementing
the dpvar representation in MATLAB, we define a variable
S ∈ R

m1×m2 [x; ξ ] using the dpvar data structure, storing
• The independent variables x1, . . . , xp.
• The decision variables ξ1, . . . , ξq.
• The monomial degrees ZM,d ∈ N

n×p.
• The coefficient matrix C ∈ R

m1(q+1)×m2n.
Decomposing the polynomial in this manner, the greatest stor-
age cost will be associated with the monomial degrees and
coefficient matrix. However, storing both of these fields as
sparse matrices in MATLAB, the memory overhead will be
minimal, as we show in Section III-A. In addition, exploiting
the structure of dpvar objects, matrix operations such as con-
catenation can be performed with relatively low computational
overhead, as detailed in Section III-B.

A. Memory Complexity of Storing dpvar Objects
Exploiting linearity of the decision variables in its struc-

ture, the dpvar representation allows polynomial variables to
be stored in programming languages with sparsity structures
using minimal memory with respect to the number of decision
variables. Specifically, consider storing a matrix-valued poly-
nomial variable S ∈ R

m1×m2 [x1, . . . , xp; ξ1, . . . , ξq], expressed
in the dpvar representation as

S(x; ξ) = (
Im1 ⊗ Z1(ξ)

)T
C

(
Im2 ⊗ Zd(x)

)
. (4)

As mentioned, the greatest storage cost in representing this
variable in MATLAB will be that associated to the coefficients
C ∈ R

m1(q+1)×m2n1 and degrees ZM,d ∈ N
n1×p. Storing

both objects as sparse matrices, only the nonzero values are
retained, invoking a memory complexity of

O(
nnz(C) + nnz(ZM,d)

)
,

which does not depend directly on the value of q.

Consider now storing the same variable in the pvar format,

S(x; ξ) := BT(
Im2 ⊗ Z̄d(x; ξ)

)
, (5)

where B ∈ R
m1×m2n2 and Z̄d =

[
1
ξ

]

⊗ Zd(x) ∈ R
n2 [x; ξ ].

In this representation, the required memory for storing the
variable will be O(

nnz(B) + nnz(Z̄M,d)
)
. However, although

the number of coefficients nnz(B) = nnz(C) is the same, the
number of degrees in Z̄M,d ∈ N

(q+1)n1×(p+q) now depends on
the number of decision variables q (see [9] for more details),
so that the total memory complexity becomes

O(
nnz(C) + (q + 1)nnz(ZM,d) + qn1

)
.

Implementing the pvar representation, the required memory
of storing the monomials increases directly with the number
of decision variables, potentially amounting to a substantial
storage cost that may be avoided using the dpvar structure.

B. Matrix Operations on dpvar Objects
In many SOS programs, the polynomial decision variables

appear as matrix-valued objects, making it crucial for matrix
operations such as concatenation to be efficiently implemented
in any SOS parser. Using the dpvar representation, this can
be achieved by exploiting the block structure of the coeffi-
cient matrix. In particular, for a variable S ∈ R

m1×m2 [x; ξ ], the
coefficient matrix C ∈ R

m1(q+1)×m2n is comprised of m1 × m2
blocks Cij ∈ R

(q+1)×n, each corresponding to a single ele-
ment of the matrix-valued variable. This allows for efficient
modification of individual elements of the polynomial vari-
able. In addition, for two matrix-valued polynomial variables
S1, S2 ∈ R

m1×m2 [x; ξ ], defined in terms of the same monomial
basis Zd as

Si(x; ξ) = (
Im1 ⊗ Z1(ξ)

)T
Ci

(
Im2 ⊗ Zd(x)

)
,

concatenation of S1 and S2 merely requires concatenating
the coefficient matrices C1 and C2. For example, vertical
concatenation of S1, S2 may be represented as

[
S1(x; ξ)
S2(x; ξ)

]

= (
I2m1 ⊗ Z1(ξ)

)T
[

C1
C2

]
(
Im2 ⊗ Zd(x)

)
,

requiring almost no computational effort.

IV. EXPLOITING SPARSITY IN STORAGE AND OPERATION

Having presented the benefits of using the dpvar representa-
tion in parsing SOS programs, we finally show how the dpvar
data structure exploits the MATLAB built-in sparsity structure
to minimize memory and computational overhead in repre-
senting polynomial variables. In particular, in Section IV-A,
we outline how sparse matrices are implemented in MATLAB
and analyze how this format affects memory and computa-
tional complexity. In Section IV-B, we then show how the
dpvar structure exploits this format in storing the coefficients
and monomials, to optimize performance.

A. The Compressed Sparse Column Format
In MATLAB, sparse matrices are implemented using a

Compressed Sparse Column (CSC) format [10], representing
a matrix A ∈ R

m×n through three arrays:
1) An array a ∈ R

nnz(A) of nonzero elements.
2) An array r ∈ R

nnz(A) of row indices.
3) An array cp ∈ R

n+1 of column pointers.
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In the first of these arrays, a ∈ R
nnz(A), all nonzero elements

of the matrix are collected in column-major order. That is,
letting {a1, . . . , an} denote the columns of the matrix A, and
letting {ā1, . . . , ān} denote the nonzero elements from each of
these columns, the first array a may be constructed as

a = [
āT

1 , . . . , āT
n

]T ∈ R
nnz(A).

Corresponding row numbers for these nonzero elements are
then stored in the array r, so that the kth nonzero element
a(k) appears in row r(k) of the matrix A. Finally, for each of
the columns j = 1, . . . , n of the matrix, a column pointer is
stored in the array cp, defined as

cp =
[
1, 1 + �1, . . . , 1 + ∑n−1

j=1 �j,
∑n

j=1 �j

]
∈ R

n+1,

where �j := nnz(aj). Then, a(cp(j)) provides the first nonzero
element of column j ∈ {1, . . . , n} of A ∈ R

m×n.
Using this data structure to store (sparse) matrices, the

required memory will be minimal for matrices with few
columns. In particular, although the cost of storing a ∈ R

nnz(A)

and r ∈ R
nnz(A) depends only on the number of nonzero

elements nnz(A), the memory necessary to store the array
cp ∈ R

n+1 is determined by the number of columns n of
the matrix. Therefore, the memory burden for storing sparse
matrices increases with the number of columns in this matrix,
even if these columns contain no nonzero elements.

In addition, using the CSC storage format, the complexity of
operations involving full or partial columns of the matrix will
generally be smaller than those involving full or partial rows
of the matrix. Indeed, for any column j ∈ {1, . . . , n} of A, the
nonzero elements appearing in this column are known to be
stored at positions k ∈ {cp(j),cp(j) + 1, . . . ,cp(j + 1) − 1}
within the array a, requiring minimal effort to access these
elements. On the other hand, in order to access elements of
a particular row i ∈ {1, . . . , m} of the matrix, all indices
k ∈ {1, . . . , nnz(A)} with associated row index r(k) = i
have to be found, potentially requiring the full array r to be
analyzed. This introduces additional computational overhead
when operating on full or partial rows of the matrix, gen-
erally making “row-based” operations more computationally
demanding than “column-based” equivalents.

B. Sparsity in the dpvar Structure
We now show how, using the dpvar data structure, the CSC

storage format may be exploited to minimize the storage and
operational cost of representing and manipulating polynomial
variables. To illustrate, consider storing a variable

s(x; ξ) = Z1(ξ)CZd(x) ∈ R[x1, . . . xp; ξ1, . . . ξq].

Storing the coefficient matrix C ∈ R
(q+1)×n and monomial

degrees ZM,d ∈ N
n×p using the CSC structure, the required

memory will be relatively small. In particular, since p vari-
ables allow n = (p+d)!

p!d! monomials of degree at most d, the
number of rows of the degree matrix ZM,d ∈ N

n×p will in gen-
eral vastly exceed the number of columns. In addition, in SOS
programs, a monomial [Zd]k is often paired with multiple deci-
sion variables ξj. As a consequence, the number of decision
variables tends to exceed the number of monomials, and thus
the number of rows in the coefficient matrix C ∈ R

(q+1)×n

also tends to be at least as large as the number of columns.
Since the memory cost of storing a matrix in the CSC format
increases with the number of columns, the fact that both the
coefficient and monomial degree matrices contain relatively

few columns allows polynomial variables to be efficiently
stored using the dpvar data structure.

Similarly, the complexity of performing operations on vari-
ables in the dpvar structure may be minimized using the
sparse storage structure. In particular, the greatest computa-
tional effort in many operations comes from having to merge
or adjust particular monomials in Zd ∈ R

n[x], as well as the
associated columns of the coefficient matrix C ∈ R

(q+1)×n.
Here, although the large number of rows in ZM,d ∈ N

n×p

makes these operations more demanding in the CSC storage
format, the small number of columns ensures the complexity
remains relatively small. Moreover, the CSC storage structure
allows the columns of the matrix C ∈ R

(q+1)×n to be adjusted
with relatively high efficiency, invoking a complexity that does
not depend directly on the number of rows q+1. Thus, exploit-
ing the MATLAB built-in sparse storage structure, the dpvar
data structure allows the computational cost of standard oper-
ations to be minimized with respect to the number of decision
variables q.

V. INCORPORATION INTO SOSTOOLS
Having demonstrated the advantages of using the dpvar

data structure for parsing polynomial variables, we now
consider the incorporation of this structure in SOSTOOLS.
Specifically, for SOSTOOLS 4.00 [11], we have modified
all functions to use the dpvar data structure for represen-
tation of polynomial variables. To illustrate the enhanced
performance this offers, in this section, we consider sev-
eral optimization problems that are commonly solved with
SOSTOOLS. For each problem, we compare the time required
for parsing the problem using SOSTOOLS 3.04 and 4.00, as
well as using the batch parser YALMIP [7], in each case using
SEDUMI [8] to solve the resulting SDP. For more details on
the implementation of each problem, we refer to the arXiv
version [9].

A. Greatest Lower Bound
As a first problem, we seek a greatest lower bound (GLB)

on a function f (x) = x4
1 + x4

2 − 2x2x3
1 − 3x2

2x2
1 + 150(x2

1 + x2
2),

max
γ

γ, s.t. γ ≤ f (x) ∀x1, x2 ∈ [−12, 12].

Invoking Putinar’s Positivstellensatz [12] (Psatz), we imple-
ment this problem using a single SOS constraint

(f − γ ) − s1g1 − s2g2 − s3[g1 + g2] ∈ �s, (6)

where s1, s2, s3 ∈ �s are SOS variables, and we define

g1(x) = 122 − x2
1, g2(x) = 122 − x2

2.

Figure 4(a) displays the time required to parse the GLB
problem using the different data structures, and for increas-
ing monomial degrees d in the variables si = Zd(x)TPZd(x).
The results show that, using the dpvar structure, SOSTOOLS
4.00 is able to parse the GLB problem in substantially less time
than other parsers, in general spending less than 20% of the
computation time on parsing the SOSP.

B. Robust Stability
As a second example, we consider testing robust stability

of a linear ODE

ẋ(t) = A(p)x(t), ∀p ∈ G := {p ∈ R
2 | g(p) ≥ 0},
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Fig. 4. Required time to parse the SOS optimization problems from Section V, using SOSTOOLS 3.04 with the syms and pvar data structures,
SOSTOOLS 4.00 with the dpvar data structure, and using the batch parser YALMIP. Tests for the local stability problem were discontinued at
n = 14, as the solver ran out of memory. The percentage of time spent on parsing each problem was computed by dividing the absolute time spent
parsing by the sum of the time spent parsing the SOSP and solving the resulting SDP. The results show that, using the dpvar data structure,
SOSTOOLS 4.00 is able to parse common SOS problems with an efficiency comparable to, or even greater than that of the batch parser YALMIP.

where g(p) = 1 − p2
1 − p2

2, and A ∈ R
n×n is defined such that

Aij = 0.25p1 for i > j, Aij = −0.25p2 for i < j, and Aii = 1.
We implement this as an SOS problem

P − εIn ∈ �s[p], −Qg − PA − ATP ∈ �s[p], (7)

where Q ∈ �s[p], and we let ε = 10−4.
The time required for parsing this problem using each data

structure is displayed in Fig. 4(b), using a variable P of max-
imal degree 2d = 4, and problem sizes up to n = 30. The
results show that this problem too can be parsed in signif-
icantly less time using the dpvar structure than using the
alternative implementations. In fact, for n = 50, the problem
could still be parsed in 374 seconds using SOSTOOLS 4.00,
a threshold exceeded by YALMIP at n = 13.

C. Local Stability
As a final example, we test local stability of a chain of n

Van der Pol oscillators. In particular, we consider the system
presented in [13], given by ẋ(t) = f (x), where x = (y, z) =
(y1, . . . , yn, z1, . . . , zn) and for any j ∈ {1, . . . , n − 1},

fj(y, z) = 0.8yj + 10(1.22y2
j − 0.21)zj + εjzj+1yj,

fn(y, z) = 0.8yn + 10(1.22y2
n − 0.21)zn,

fn+i(y, z) = −2zi, ∀i ∈ {1, . . . , n}
where we let εj = −0.5 for each j. We test stability inside a
ball of radius r = 0.5, so that x ∈ {x ∈ R

2n | g(x) ≥ 0}, where
g(x) = r2 − ‖x‖2, implementing SOS constraints

V ∈ �s[x], −[∇V(x)]T f (x) − s(x)g(x) ∈ �s[x], (8)

where s ∈ �s. The times required to parse this problem using
a function V of degree 2d = 4 are presented in Fig. 4(c),
showing that, for this problem, SOSTOOLS 4.00 achieves an
efficiency similar to that of the batch parser YALMIP.

VI. CONCLUSION

In this letter, we have introduced a new representation of
polynomial variables, which is affine in the decision variables.

We showed that, using this dpvar representation, computa-
tion time for polynomial operations remains relatively small,
increasing favorably with the number of involved decision
variables. Exploiting the MATLAB built-in sparsity struc-
ture, we also showed that the computational and memory
overhead for storing and manipulating variables in the dpvar
representation is minimal. Incorporating this representation in
SOSTOOLS 4.00, performance was drastically enhanced, with
significant speedup over all existing parsers achieved for most
common SOS problems.
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