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Abstract: The Partial Integral Equation (PIE) framework provides a unified algebraic
representation for use in analysis, control, and estimation of infinite-dimensional systems.
However, the presence of input delays results in a PIE representation with dependence on the
derivative of the control input, u̇. This dependence complicates the problem of optimal state-
feedback control for systems with input delay – resulting in a bilinear optimization problem. In
this paper, we present two strategies for convexification of theH∞-optimal state-feedback control
problem for systems with input delay. In the first strategy, we use a generalization of Young’s
inequality to formulate a convex optimization problem, albeit with some conservatism. In the
second strategy, we filter the actuator signal – introducing additional dynamics, but resulting
in a convex optimization problem without conservatism. We compare these two optimal control
strategies on four example problems, solving the optimization problem using the latest release
of the PIETOOLS software package for analysis, control and simulation of PIEs.
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1. INTRODUCTION

We revisit the classic problem of optimal static state-
feedback control of a set of linear ordinary differential
equations with delay in the actuation – a formulation
defined in Eqn. (1). It is well-known that delays in the
input can destabilize an otherwise stable closed-loop sys-
tem, even if the open-loop dynamics are stable.

Perhaps the most common approach to control in the
presence of input delay is to use a predictor which uses a
model of the system to predict where the state will lie when
the actuation signal is applied. This approach is typified
by the Smith predictor (Smith [1959]) and when the model
is known perfectly it can be shown that under certain con-
ditions the interconnection of a stabilizing state-feedback
controller and Smith predictor will be stable. However, it
is also know that such an approach is sensitive to errors in
the system model (Laughlin et al. [1987]). As a result, there
have been many attempts to find state-feedback controllers
which are robustly stabilizing in the presence of input
delay. A representative sampling of this work can be found
in Krstic [2009], Zhang et al. [2005], Yue [2004], Moon et al.
[2001], Cheres et al. [1990], Yue [2004], Li et al. [1999], Du
et al. [2005, 2010, 2005], and Liu et al. [2012].

However, if we restrict our consideration to the question of
optimal control (as opposed to stabilizing control) in the
presence of input delay, the literature becomes relatively
sparse. Examples of optimal control in the presence of
input delay include Du et al. [2005], Carravetta et al.
[2010], Cacace et al. [2016], Basin and Rodriguez-Gonzalez
[2005, 2006]. In addition, closely related to the problem of
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optimal control is the question of eigenvalue assignment,
which was considered in Furtat et al. [2017]. In none of
these works, however, do we find anything approaching a
necessary and sufficient condition – implying all controllers
obtained from such methods will be rather sub-optimal.

Typically, the conservatism in approaches to analysis of
time-delay systems (ignoring the question of control) is
a result of the two factors: 1) The use of a restrictive
class of Lyapunov functions or 2) the use of conservative
inequalities in bounding the derivative of the Lyapunov
function. Of course, for optimal control, the problem be-
comes significantly harder in that we are simultaneously
searching for a Lyapunov function and a set of controller
gains - resulting in a bilinear optimization problem. While
bilinearity in the controller synthesis problem for ODEs
is typically resolved using a dual representation combined
with a variable substitution, the application of this ap-
proach to time-delay systems has been more limited –
See Peet [2019].

One class of systems for which we do have a relatively well-
defined notion of duality is the class of Partial Integral
Equations (PIEs). The study of PIEs is motivated by the
need for an algebraic representation of infinite-dimensional
systems, wherein the analysis, simulation, and control
techniques developed for state-space ODEs can be gener-
alized to systems of PDEs and systems with delay. Specif-
ically, it was shown in Peet [2021] that almost every linear
optimal control and estimation problem involving time-
delays can be reformulated as a question of optimal con-
trol and estimation of an associated PIE representation.
Furthermore, because of the algebraic parameterization of
PIEs, duality results have been proposed in Shivakumar
et al. [2020b] which yield a dual PIE representation which



retains the input-output properties of the primal PIE and
hence the original PDE or delayed system. Furthermore,
for certain classes of PIEs, it has been shown that the
question of H∞-optimal state-feedback control of that
class of PIE can be formulated as a convex optimization
problem – convertible to a Linear Matrix Inequality (LMI)
using parsers such as PIETOOLS (See Shivakumar et al.
[2021]). As a result, the problem of optimal state-feedback
control with state-delay has been more or less solved. Un-
fortunately, the extension of these techniques to systems
with input delay is unresolved.

The PIE representation of the H∞-optimal state-feedback
control problem with input delay does not fall into the
class of PIEs for which we have an exact convex formula-
tion of the problem. Specifically, the Tu term in Eqns. (3)
is non-zero. The goal of this paper, then, is to evaluate two
proposed methods for convexification of the problem of op-
timal control with input delay. We will then compare these
two approaches as applied to several numerical examples
to determine which is superior.

In the first approach, we apply a duality result and
use a conservative convex formulation of the resulting
optimization problem – See Shivakumar and Peet [2022].
While this approach is expected to be sub-optimal (relying
on Young’s inequality), it does not require us to filter the
input or alter the input-delay problem in any way.

The second approach is to use a simple filter on the input
signal, thus converting the input delay to a state delay.
This filter may represent actuator dynamics or may be
introduced artificially. Whatever the source, conversion of
the input delay to a state delay allows us to apply the
results in Shivakumar and Peet [2022] without any of the
conservatism associated with the use of Young’s inequality.

Having defined these two approaches, we apply them
to four standard numerical examples. These numerical
results indicate that the suboptimal approach without
filtering approach typically (but not consistently) results
in smaller closed-loop L2-gain bounds than the exact
condition with filtering. We end the paper by concluding
that both the filtered and non-filtered controller synthesis
conditions allow us to obtain state-feedback controllers for
systems with input delay which significantly outperform
any currently known class of controllers.

2. PROBLEM FORMULATION

In this paper, we consider the problem of H∞ optimal
control of a state-space system of Ordinary Differential
Equations (ODEs) subject to input delay. For simplicity,
we use a single delay and do not consider model un-
certainty, state delay, disturbance delay, or neutral-type
systems – although such features can be integrated into
the modelling framework presented here. Specifically, we
use the standard 9-matrix state-space formulation of the
optimal control framework, with 3 additional matrices
which model the effect of the delayed input.[

ẋ(t)
z(t)
y(t)

]
=

[
A0 B1 B2

C10 D11 D12

C20 D21 D22

][
x(t)
w(t)
u(t)

]
+

[
B2i

D12i

D22i

]
u(t− τ) (1)

Here x(t) ∈ Rn is the internal state, w(t) ∈ Rnw is the
exogenous disturbance, u(t) ∈ Rnu is the controlled input,

y(t) ∈ Rny is the sensed output, z(t) ∈ Rnz is the output
to be regulated, and τ > 0 is the input delay.

We focus on the problem of static state-feedback, so that

u(t) = K1x(t) +

∫ 0

−τ

K2(s)∂sx(t+ s)ds (2)

which is a slight generalization of the more typical class of
state-feedback controllers of the form

u(t) = K1x(t) +

∫ 0

−τ

K2(s)x(t+ s)ds.

The goal is to find the smallest γ > 0 such that for any
w, z ∈ L2 which satisfy Eqns. (1)-(2) for some x and u, we
have that ∥z∥L2

≤ γ ∥w∥L2
.

3. PARTIAL INTEGRAL EQUATIONS

Our approach to optimal control uses Partial Integral
Equations (PIEs) to represent the system of equations
defined in (1). Specifically, the PIE formulation of the
optimal control framework is defined by 11 Partial Integral
(PI) operators and has the form

T ẋ(t) + Twẇ(t) + Tuu̇(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t),

y(t) = C2x(t) +D21w(t) +D22u(t), (3)

where the operators T , Tw, Tu,A,Bi, Ci,Dij are PI opera-
tors (denoted P ∈ Πn,m

p,q ) of the form(
P
[

P, Q1

Q2,{Ri}

] [
x
Φ

])
(s) :=

Px+

∫ 0

−1

Q1(s)Φ(s)ds

Q2(s)x+
(
P{Ri}Φ

)
(s)


and where(

P{Ri}Φ
)
(s) :=

R0(s)Φ(s) +

∫ s

−1

R1(s, θ)Φ(θ)dθ +

∫ 0

s

R2(s, θ)Φ(θ)dθ.

As has been shown in Peet [2021], for every system of
linear delay-differential equations (DDEs), there exists an
associated PIE the solution to which yields the solution
of the DDE and for which internal and input-output
stability properties are equivalent. In addition, an H∞-
optimal state-feedback controller for the PIE yields an
H∞-optimal state-feedback controller for the DDE of the
form given in Eqn. (2). Furthermore, analytic expressions
for construction of the associated PIE were given in Peet
[2021]. In the following section, we apply these formulae to
the problem of optimal control of a system of ODEs with
input delay.

3.1 Linear PI Inequalities (LPIs)

One of the advantages of the PIE representation is that the
class of PI operators forms a ∗-algebra of bounded linear
operators, being closed under composition, concatenation,
addition, and adjoint. Furthermore, PI operators can be
represented using polynomials which can, in turn, be
represented using vectors and matrices. This mathematical
structure enables one to generalize most matrix operations
to PI operators and such operations can be computed
efficiently using software packages such as PIETOOLS
(See Shivakumar et al. [2020a]).

In addition, positive matrices can be used to parameterize
positive PI operators. This allows us to define a class
of convex optimization problems with linear objectives



and linear operator inequality constraints. Such problems
are referred to as Linear PI Inequalities (LPIs) and the
PIETOOLS software package includes a parser for conver-
sion of LPIs to LMIs, which can then be solved efficiently
using SDP solvers such as SeDuMi (Sturm [1999]) or
Mosek (Andersen and Andersen [2000]). Details of this
parser can be found in Shivakumar et al. [2021] and will
be used to solve the LPIs formulated in Theorems 2 and 4.

4. INPUT DELAY FORMULATION A
As discussed in the preceding section, a system of ODEs
with input delay admits an associated PIE of the form
given in (3). This associated PIE representation can be
constructed as follows.

Lemma 1. Suppose the operators A, T , Tw, Tu,Bi, Ci,Dij

are defined as

A = P
[
A0, −B2d

0,

{
1

τ
Inu , 0, 0

}]
, T = P

[
I, 0

0,
{
0, 0,−Inu

}], (4)

B1 = P
[
B1, ∅
0, {∅}

]
, B2 = P

[
B2 + B2d, ∅

0, {∅}

]
,

Tw = P
[
0, ∅
0,{∅}

]
, Tu = P

[
0, ∅

Inu ,{∅}

]
,

C1 = P
[
C10,−D12d

∅, {∅}

]
, C2 = P

[
C20,−D22d

∅, {∅}

]
,

D11 = P
[
D11, ∅
∅, {∅}

]
, D12 = P

[
D12 + D12d, ∅

∅, {∅}

]
,

D21 = P
[
D21, ∅
∅, {∅}

]
, D22 = P

[
D22 + D22d, ∅

∅, {∅}

]
.

Then for any x0, w, u ∈ W2e with w(0) = 0, and u(0) = 0,
we have that z, y, x ∈ L2e satisfy the ODE with input delay
in Eqns. (1) with inputs w, u and initial condition x(s) = 0

for s ≤ 0 if and only if z, y and x(t, s) =

[
x(t)

∂su(t+ τs)

]
satisfy the PIE in Eqns. (3) with inputs w, u and initial
condition x(0) = 0.

Proof. To apply the formulae given in Peet [2021], we
must first represent the ODE with input delay in the
form of a differential-difference equation (DDF). Although
formulae exist for direct conversion of a DDE to PIE, such
formulae fail to account for the low-dimensional nature of
the input delay channel.

To represent Eqns. (1) as a DDF, the primary task it to
identify the delay channel, r(t). In our case, this is trivially
r(t) = u(t). This yields the following DDF representation.ẋ(t)z(t)

y(t)
r(t)

 =

A0 B1 B2

C1 D11 D12

C2 D21 D22

0 0 Inu

[
x(t)
w(t)
u(t)

]
+

 B2d

D12d

D22d

0

 v(t) (5)

v(t) = r(t− τ).

Clearly, since u(t) = 0 for t ≤ 0, we have that x, z, y satisfy
Eqn. (1) with inputs w, u and initial condition x(0) = 0 if
and only if x, z, y, r = u and v(t) = u(t − τ) satisfy the
DDF with inputs w, u for initial condition x(0) = 0 and
v(s) = 0 for s ≤ 0.

Using the parameterization of a DDF given in Eqn. (3)
in Peet [2021], we may extract the following hitherto
undefined DDF parameters. Bv

D1v

D2v

Drv1

 =

 B2d

D12d

D22d

0

 , Cv1 = Inu
, Cvd1 = 0,

[Cr1 Br11 Br21] = [0 0 Inu ] .
We now apply these parameters to the formulae in
Eqns. (10) in Peet [2021] to obtain the following.

Ĉvi = Inu
, DI = Inu

, CIi(s) = −Inu

[T0 T1 T2] = [0 0 Inu ] , [Cvx Dvw Dvu] = [0 0 Inu ]

Ta(s, θ) = 0, Tb(s, θ) = −Inu , Iτ =
1

τ
Inu

,[
A(s)
C11(s)
C21(s)

]
= −

[
B2d

D12d

D22d

]
,

[
A0 B1 B2

C10 D11 D12

C20 D21 D22

]
=

[
A0 B1 B2

C10 D11 D12

C20 D21 D22

]
+

[
0 0 B2d

0 0 D12d

0 0 D22d

]
Finally, we apply these parameters to Eqns. (10) in Peet
[2021] to obtain the PIE operators given in the theorem
statement. Now, if we apply Lemmas 3 and 4 in Peet [2021]
we find that x, z, y, r = u and v(t) = u(t − τ) satisfy the
DDF with inputs w, u for initial condition x(0) = 0 and
v(s) = 0 for s ≤ 0 if and only if z, y and

x(t, s) =

[
x(t)

∂sϕ(t, s)

]
=

[
x(t)

∂sr(t+ τs)

]
=

[
x(t)

∂su(t+ τs)

]
satisfies the PIE with inputs w, u and initial condition
x(0) = 0.

5. H∞-OPTIMAL CONTROL W/O PRE-FILTERING

Although we have established a PIE representation of the
optimal control framework with input delay, we have yet
to establish a numerical approach to solving the problem
of optimal state-feedback control of such a PIE represen-
tation. Although LPI formulations of the problem of H∞-
optimal state-feedback have been proposed in Shivakumar
et al. [2020b], these results were restricted to the case
where Tu = Tw = 0. Unfortunately, the PIE associated
with the optimal control formulation of the system with
input delay, as defined in Lemma 1, does not satisfy this
restriction. Specifically, while Tw = 0, we have

Tu = P
[

0, ∅
Inu ,{∅}

]
which is clearly non-zero. Recently, however, in Shivaku-
mar and Peet [2022] it has been shown that by application
of Young’s inequality, the problem of H∞-optimal control
of PIEs with Tu ̸= 0 may be tightened to the following
formulation of the H∞-suboptimal control problem.

Theorem 2. Let Tw = 0 and suppose there exist ϵ >
0, γ > 0, P : Πnx,nu

nx,nu
and Z ∈ Πnu,0

nx,nu
such that P = P∗,

P ≥ ϵIm+n and H ≤ 0 where

H :=


−γ 0 0 0 D∗

1 B∗
1

0 −P 0 0 (D12Z)∗ 0

0 0 −P 0 0
√
2(TuZ)∗

0 0 0 −P 0 (B2Z)∗

D1 D12Z 0 0 −γ H12

B1 0
√
2TuZ B2Z H∗

12 D22


H12 = C1PT ∗ + C1Z∗T ∗

u +D12ZT ∗

H22 = (T PA∗ ++TuZA∗ + T Z∗B∗
2)

+ (T PA∗ ++TuZA∗ + T Z∗B∗
2)

∗
(6)

Let K = ZP−1. Then:

(1) For any w ∈ L2, if z, w, u,x satisfy the PIE in
Eqns. (3) for initial condition x(0) = 0 where u(t) =
Kx(t) we have that ∥z∥L2

≤ γ ∥w∥L2
.



(2) For any w ∈ L2, if z, w, u, x satisfy the DDE in
Eqns. (1) for initial condition x(0) = 0 where u(t) =

K
[

x(t)
us(t+ · ∗ τ)

]
for t ≥ 0 we have ∥z∥L2

≤ γ ∥w∥L2
.

Proof. The first statement, which provides an L2-gain
bound on the PIE in Eqns. (3), follows directly from Shiv-
akumar and Peet [2022]. The second statement follows
from the first statement combined with Lemma 1.

While the LPI provided in Theorem 2 allows us to min-
imize an upper bound on the minimum achievable L2-
gain of the closed loop system with static state-feedback
and input delay, such a bound is likely conservative, as
discussed in Shivakumar and Peet [2022]. For this reason,
we turn to an alternative formulation of the problem of
optimal control with input delay for which we can solve
the problem directly and which is possibly better-posed.

6. INPUT DELAY FORMULATION B

Our second approach to controller synthesis with input
delay converts the problem to one of optimal control with
state-delay by adding a filter between the input signal and
the plant. The delay is then applied to the output of this
filter. This filter may be chosen ad-hoc or may model the
dynamics of the actuator.

Specifically, implementation of a state-feedback controller
requires some form of actuation and while we often assume
this actuator is static (with no internal dynamics), in
reality most actuators are driven by electrical signals
which are then converted to force, torque, etc. Indeed, this
conversion of electrical stimulus to force or torque often
requires sophisticated dynamic models, including those
in Demerdash and Nehl [1980] and Zaccarian [2012].

For simplicity, we assume that the filter or actuator
dynamics have the form

Cẋc(t) = −Rxc(t) + Lu(t) (7)

where the meaning of the constants will depend on the
application. This approach has the advantage that if we
assume the dynamics of the filter are relatively fast, we
then obtain the pseudo-equilibrium xc(t) = R−1Lu(t) so
that if R−1L ∼= I, the output of the filter is simply the
desired actuation signal – implying that weights on the
input signal u(t) translate to weights on the actuation
signal xc(t). This means that bounds on achievable L2

gains from Formulation A can be compared directly to
achievable gains from Formulation B.

The delay is then applied to the output of the filter which
influences the plant as ẋ(t) = Ax(t) + B1w(t) + B2u(t) +
B2dxc(t − τ), yielding a modified form of the optimal
control framework (taking C = Inx for simplicity).ẋc(t)

ẋ(t)
z(t)
y(t)

 =

−R 0 0 L
0 A0 B1 B2

0 C10 D11 D12

0 C20 D21 D22

xc(t)
x(t)
w(t)
u(t)

+

 0
B2d

D12d

D22d

xc(t− τ) (8)

We now obtain a revised version of Lemma 1 as follows.

Lemma 3. Suppose the operators A, T , Tw, Tu,Bi, Ci,Dij

are defined as

A=P
[[

−R 0

B2d A0

]
,−
[

0

B2d

]
0, {Iτ , 0, 0}

]
, T = P

[
Inx+nu , 0[
Inu 0

]
,
{
0, 0,−Inu

}],
BT1

= P
[
0, ∅
0,{∅}

]
,BT2

= P
[
0, ∅
0,{∅}

]
,Dij = P

[
Dij , ∅
∅, {∅}

]
,

B1 = P
[[

0

B1

]
, ∅

0, {∅}

]
, B2 = P

[[
L

B2

]
, ∅

0, {∅}

]
,

C1 = P
[[

D12d C10

]
,−D12d

∅, {∅}

]
, C2 = P

[[
D22d C20

]
,−D22d

∅, {∅}

]
.

Then for any w, u ∈ L2e, we have that z, y, x and satisfy
the ODE with input delay in Eqns. (8) with inputs w, u
and initial condition x(0) = 0, xc(0) = 0 if and only if

z, y ∈ L2e and x(t, s) =

[
xc(t)
x(t)

∂sxc(t+ τs)

]
satisfy the PIE in

Eqns. (3) with inputs w, u for initial condition x(0) = 0.

Proof. As was the case in the proof of Lemma 1, we first
represent Eqns. (1) as a DDF. In this case, however, the
delay channel, r(t) is given by r(t) = xc(t). This yields the
following DDF representation.

ẋc(t)
ẋ(t)
z(t)
y(t)
r(t)

 =


−R 0 0 L
0 A0 B1 B2

0 C10 D11 D12

0 C20 D21 D22

Inu 0 0 0


xc(t)
x(t)
w(t)
u(t)

+


0

B2d

D12d

D22d

0

 v(t)

v(t) = r(t− τ)

Clearly, x, xc, z, y satisfy Eqn. (8) with inputs w, u and
initial condition x(0) = 0, xc(0) = 0 if and only if
x, xc, z, y, r = xc and v(t) = xc(t−τ) satisfy the DDF with
inputs w, u for initial condition x(0) = 0 and xc(t) = 0
for t ≤ 0. Using the parameterization of a DDF given
in Eqn. (3) in Peet [2021], we may extract the following
hitherto undefined DDF parameters.[

Bv

D1v

D2v

]
=

 0
B2d

D12d

D22d

 , Cv1 = Inu
, Cvd1 = 0,

[Cr1 Br11 Br21] =
[
[Inu

0] 0 0
]

We now apply these parameters to the formulae in
Eqns. (10) in Peet [2021] to obtain the following.

Ĉvi = Inu , DI = Inu , CIi(s) = −Inu (9)

[T0 T1 T2] =
[
[Inu

0] 0 0
]
,

[Cvx Dvw Dvu] =
[
[Inu

0] 0 0
]
,

Ta(s, θ) = 0, Tb(s, θ) = −Inu
, Iτ =

1

τ
Inu

,[
A(s)
C11(s)
C21(s)

]
= −

 0
B2d

D12d

D22d

 , (10)

[
A0 B1 B2

C10 D11 D12

C20 D21 D22

]
=


[
−R 0
B2d A0

] [
0
B1

] [
L
B2

]
[D12d C10] D11 D12

[D22d C20] D21 D22


Finally, we apply these parameters to Eqns. (10) in Peet
[2021] to obtain the PIE operators given in the theorem
statement. Now, if we apply Lemmas 3 and 4 in Peet [2021]
we find that x, xc, z, y,r = xc and v(t) = xc(t − τ) satisfy
the DDF with input w, u for initial condition x(0) = 0,
xc(t) = 0 for t ≤ 0 if and only if z, y and



x(t, s) =

[
xc(t)
x(t)

∂sϕ(t, s)

]
=

[
xc(t)
x(t)

∂sr(t+ τs)

]
=

[
xc(t)
x(t)

∂sxc(t+ τs)

]
satisfies the PIE with initial condition x(0) = 0.

Clearly, the difference between the original input-delay
model in (1) and that in (8) is that the input delay has
been converted to a state delay. The advantage of this
approach is that the PIE associated with Eqn. (8) satisfies
the condition Tu = Tw = 0 which implies that the problem
of optimal controller synthesis can be formulated directly
as an LPI. This LPI is defined in the following section.

7. H∞-OPTIMAL CONTROL WITH PRE-FILTERING

Having now obtained a formulation of the optimal control
framework with input delay for which the associated PIE
admits Tu = Tw = 0, we may now apply the results
of Shivakumar et al. [2020a] and Shivakumar and Peet
[2022] without the conservatism induced by the use of
Young’s inequality. This LPI is defined as follows.

Theorem 4. (Shivakumar et al. [2020a]). Let Tw = Tu = 0

and suppose there exist ϵ > 0, γ > 0, P : Πnx+nu,nu

nx+nu,nu
and

Z ∈ Πnu,0
nx+nu,nu

such that P = P∗, P ≥ ϵInx+nu+nu
and[−γI D∗

11 (PC∗
1 + Z∗D∗

12)
∗ −γI B1

∗ ∗ ∗+ T (AP + B2Z)∗

]
≺ 0. (11)

Let K = ZP−1. Then:

(1) For any w ∈ L2, if z, w, u,x satisfy the PIE in
Eqns. (3) for initial condition x(0) = 0 where u(t) =
Kx(t) we have that ∥z∥L2

≤ γ ∥w∥L2
.

(2) For any w ∈ L2, if z, w, u, x satisfy the DDE in
Eqns. (8) for initial condition x(0) = 0, xc(0) = 0

where u(t) = K

[
x(t)
xc(t)

xc,s(t+ · ∗ τ)

]
for t ≥ 0 we have

that ∥z∥L2
≤ γ ∥w∥L2

.

8. COMPARISON OF CONTROLLERS AS APPLIED
TO NUMERICAL EXAMPLES

Having defined two approaches to the problem of optimal
control with input delay, we now apply these approaches to
four test cases and compare the performance as measured
by achievable closed-loop L2-gain bounds.

In each case, the LPIs obtained from Theorems 2 and 4
were implemented using the PIETOOLS parser as de-
scribed in Shivakumar et al. [2021]. When a prefilter is
applied, we specify R = L = I.

8.1 Numerical Example 1

This system is adopted from Yue [2004], Moon et al. [2001],
and Cheres et al. [1990] and is open-loop stable.

ẋ(t) =

[
0 1

−1.25 −3

]
+

[
0
1

]
w(t) +

[
0
1

]
u(t− τ)

z(t) =

[
0 1
0 0

]
x(t) +

[
0
.1

]
u(t) (12)

The minimum achievable closed-loop L2-gain for 3 values
of delay are listed in Table 1. This example is the only
case where the filtered input consistently outperformed the
sub-optimal controller.

Table 1. Closed Loop H∞ gain of Eqn. (12).
τ → 1 2 3

γmin w/o filter .3286 .3333 .3333

γmin w filter .2718 .3103 .3270

Table 2. Closed Loop H∞ gain of Eqn. (13).
τ → 1 2 3

γmin w/o filter 1.0797 .4933 .4736

γmin w filter .2361 .4544 .6481

Table 3. Closed Loop H∞ gain of Eqn. (14).
τ → 1 2 3

γmin w/o filter .7372 1.683 2.6044

γmin w filter .9813 2.2426 3.9781

8.2 Numerical Example 2

Adapted from Yue [2004], Li et al. [1999] and Du et al.
[2005, 2010], this system is open-loop neutrally stable.

ẋ(t) =

[
0 0
1 −5

]
+

[
1
0

]
w(t) +

[
1
0

]
u(t− τ)

z(t) =

[
0 1
0 0

]
x(t) +

[
0
.1

]
u(t) (13)

The minimum achievable closed-loop L2-gain for 3 values
of delay are listed in Table 2. For comparison, in Li et al.
[1999] a robust controller was found with γ = 1.56 for
τ = .24 (a result with no weighting on the control effort).
The corresponding gain with input-delayed controller was
γ = .0891 and with filter was γ = .0357.

This example is interesting in that the suboptimal con-
troller performs better at higher delay and for τ = 3
outperforms the filtered controller.

8.3 Numerical Example 3

Adapted from Liu et al. [2012] this system is open-loop
unstable.

ẋ(t) =

[
−0.8 −0.01
1 0.1

]
+

[
1
0

]
w(t) +

[
0.4
0.1

]
u(t− τ)

z(t) =

[
0 1
0 0

]
x(t) +

[
0
.1

]
u(t) (14)

The minimum achievable closed-loop L2-gain for 3 values
of delay are listed in Table 3.

8.4 Numerical Example 4

Taken directly from Du et al. [2005] this sytem has 6 states
and is open-loop stable.[

I 0
0 M

]
ẋ(t) =

[
0 I

−K −C

]
x(t) +Bww(t) +Bu(t− τ)

z(t) = Cx(t)

M =

[
1.1 0 0
0 1.8 0
0 0 1.6

]
C =

[
1.2 −.6 0
−.6 1.2 −.6
0 −.6 .6

]

K =

[
2 −1 0
−1 2 −1
0 −1 1

]
B = [0 0 0 1 0 0]

T

Bw = [0 0 0 0 0 .1]
T

C =

[
.1 .1 .5 0 0 0
0 0 0 .1 .1 .5

]
(15)

The minimum achievable closed-loop L2-gain for 3 values
of delay are listed in Table 4. For comparison, at τ =
.15, Du et al. [2005] obtained an L2-gain of .624 and for
γ = 1 the maximum allowable delay was .164. Note that



Table 4. Closed Loop H∞ gain of Eqn. (15).
τ → 1 2 3

γmin w/o filter .0667 .1002 .1227

γmin w filter .0749 .1327 .2161

the very small closed-loop gains are partially a result of the
failure to weight the control effort in the optimal control
formulation.

9. CONCLUSION

In this paper, we have considered the problem of H∞-
optimal state feedback control with input delay. While the
PIE framework has previously been used to design optimal
state-feedback controllers for systems with state-delay, the
question of optimal control with input delay is not included
in the class of systems for which we have an equivalent con-
vex formulation of the problem. To address this, we have
proposed two approaches. In the first, we provide a sub-
optimal, yet convex formulation of the controller synthesis
problem. In the second, we add a pre-filter – essentially
converting the input delay to a state-delay at the cost
of introducing additional dynamics thereby slowing the
response. We then perform numerical experiments to de-
termine which approach results in smaller closed-loop L2-
gain bounds. The results seem to indicate that use of the
suboptimal approach without filtering generally results in
better performance than the sub-optimal control approach
– possibly indicating that the sub-optimal approach is not
very sub-optimal.
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