
1

Extension of the Partial Integral Equation
Representation to GPDE Input-Output Systems
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Abstract—Partial Integral Equations (PIEs) are an alternative
representation of systems governed by Partial Differential Equa-
tions (PDEs). PIEs have advantages over PDEs in that they are
defined by integral (not differential) operators and do not include
boundary conditions or continuity constraints on the solution
– a convenience when computing system properties, designing
controllers, or performing simulation. In prior work, PIE repre-
sentations were proposed for a class of 2nd -order PDEs in a single
spatial variable. In this paper, we extend the PIE representation
to a more general class of PDE systems including, e.g., higher-
order spatial derivatives (N th-order), PDEs with inputs and
outputs, PDEs coupled with ODEs, PDEs with distributed input
and boundary effects, and boundary conditions which combine
boundary values with inputs and integrals of the state. First, we
propose a unified parameterization of PDE systems, which we
refer to as a Generalized PDE (GPDE). Given a PDE system
in GPDE form, we next propose formulae that take the GPDE
parameters and construct the Partial Integral (PI) operators
that define an associated PIE system, including a unitary map
that converts solutions of the PIE to solutions of the GPDE
model. This map is then used to show that the GPDE model and
associated PIE have equivalent system properties, including well-
posedness, internal stability, and input-output behaviour. These
representations, conversions, and mappings are implemented in
an open-source software package and illustrated through several
examples: including beams, mixing problems, entropy modeling,
and wave equations. Finally, we demonstrate the significance
of the PIE representation by solving analysis, simulation, and
control problems for several representative GPDE models.

Index Terms—PDEs, Optimization, LMIs

I. INTRODUCTION

Although Partial Differential Equations (PDEs) have been
used to model spatially-distributed physical phenomena since
the time of Newton and Leibniz, the central importance of
boundary conditions (BCs) when defining a PDE model was
not formally recognized until the time of Dirichlet (See [4]
for a survey of the history of PDEs and BCs). However, even
with the inclusion of BCs, a PDE model is not complete
without a restriction on ‘continuity’ of the solution – spatial
derivatives and boundary values must be suitably well-defined.
The mathematical formalism for a continuity restriction was
only established in the middle of the 20th century by Sergei
Sobolev, defining what are now termed Sobolev spaces, and
allowing for the use of generalized functions or distributions
to define weak solutions.
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When the PDE, BCs, and continuity constraints are com-
bined, we obtain what can be called a ‘PDE model’ – a
system defined by three types of constraints, none of which
is individually sufficient but which, when combined, yield a
well-posed map from an initial state to a unique solution. In
the latter half of the 20th century, this map and its continuity
properties were formalized and generalized by the notion of a
C0-semigroup, with the BCs and continuity constraints of the
PDE system (now including delay systems and PDEs coupled
with ODEs) being defined as the ‘domain of the infinitesimal
generator’ (See, e.g. [5], [10]). Today, as a consequence of
almost 300 years of careful study and mathematical progress,
we may conclude that a well-posed PDE model is necessarily
defined by three constraints: a) the differential equation, or
‘PDE’, which constrains the spatio-temporal evolution of the
solutions inside the domain, c) the continuity condition, which
ensures that the solutions have sufficient regularity for the BCs
to be well-defined; and c) the BCs, which may constrain the
limit values or other properties of the solutions as permitted
by the regularity guaranteed by the continuity constraints.

A. The Challenge of using a 3-Constraint PDE Model
As described above, the natural representation of phenom-

ena such as diffusion would seem to be a three constraint PDE
model – given the historical context and the clear physical
interpretation of spatial derivatives and BCs. However, as
described below, when considering computational methods for
the analysis, control, and simulation of spatially distributed
phenomena, the use of a three constraint PDE model is incon-
venient. The most significant inconveniences are as follows:
1) Non-Algebraic Structure All computation is fundamen-
tally algebraic – consisting primarily of a sequence of ad-
dition and multiplication operations. The PDE model for-
mulation, however, is defined by spatial differentiation and
evaluation of limit points (Dirac operations). Neither dif-
ferentiation nor Dirac operators can be embedded in a ∗-
algebra of bounded linear operators on a Hilbert space [21].
The unbounded nature of the differential and Dirac operators
complicates both simulation and analysis – resulting either in
ill-conditioned ODE representations or a lack of the algebraic
structure needed for parameterization and optimization.

2) No Universality Computational methods are traditionally
centered on the ‘PDE’ part of the ‘PDE model’, and are
designed for a fixed set of BCs and continuity constraints.
This means every change in boundary condition or continuity
constraint requires a change in the algorithm, with such
changes being ad-hoc and requiring significant mathematical
analysis. As a result, there are no generic/universal algorithms
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for analysis, control, and simulation of PDEs.
To illustrate, consider the problem of computing the evo-

lution of a PDE model from a given initial condition.
Specifically, consider a simple transport equation ut = us

and construct a finite-difference approximation of us =
u(si+1)−u(si)

∆s
– yielding an finite-dimensional representation

ẋ(t) = 1
∆s

Ax(t), where xi = u(si), ∆s = si+1 − si is
uniform, and A is a bi-diagonal matrix of ±1 entries. In an
ideal simulation we would desire ∆s → 0 – which implies
that an ideal ODE representation of the transport equation
would have all infinitely large coefficients. Of course, we can
avoid many problems associated with discretization by con-
structing an explicit basis for the domain of the infinitesimal
generator (bases which staisfy the continuity constraints and
BCs) and projecting our solution onto this basis – an approach
used in Galerkin projection. The problem, however, is that
every change in the set of BCs and continuity constraints
necessitates a change in the basis functions. Such changes
require significant ad-hoc analysis – an obstacle to design of
general/universal simulation tools.

Having illustrated the disadvantages of the three constraint
PDE representation in the context of simulation, let us also
consider the problem of computational analysis and control
of a PDE model. For simplicity, consider the very stable heat
equation ut = uss with zero BCs, e.g. u(t, 0) = us(t, 1) = 0,
and propose an energy metric (Lyapunov function) of the
form V (u) =

∫ 1

0
u(s)2ds. This energy metric is uniformly

decreasing with time – thus proving the stability of the PDE
model. The challenge, however, is to use computation to prove
this fact. By parameterizing positive operators using positive
matrices, optimization-based methods for stability analysis can
easily recognize that V (u) = ⟨u, u⟩L2

and hence V is a
positive form [19] (i.e., a valid candidate Lyapunov function).
However, the algorithm must also verify that V̇ (u(t)) ≤ 0
for all solutions u(t) ∈ W2 satisfying the PDE model. Unfor-
tunately, if we differentiate V (u(t)) in time along solutions
of the PDE model we obtain V̇ (u(t)) = 2

〈
u(t), ∂2

su(t)
〉
=

2
∫ 1

0
u(t, s)uss(t, s)ds. Because differentiation is not embed-

ded in a ∗-algebra, we cannot simply parameterize a cone
of positive quadratic forms involving differential operators,
e.g., ⟨∂su, ∂su⟩. Moreover, since the derivative operator is
unbounded, the functions u and uss are independent until
the continuity constraints and BCs are enforced. However,
accounting for the continuity and BCs is an ad-hoc process,
using integration-by-parts or inequalities such as Wirtinger
or Poincare. While such ad-hoc methods have been used to
generate computational stability tests for specific classes of
PDE models (See LMI-methods in [2], [8], [11], [12], [17],
[29], backstepping methods in [1], [14], [15], [20], [27], [32],
late-lumping methods in [16] and port-Hamiltonian methods
in [30]), there exists no universal approach to computational
analysis and control of PDE models.

To summarize, while the representation of spatially-
distributed systems using the three constraint PDE model has
significant history and is the natural modeling framework,
the presence of unbounded operators, continuity constraints,
and BCs poses significant challenges to the development of a

universal computational framework for analysis, control, and
simulation. As will be shown in the following subsection,
however, these limitations are primarily an artifact of the PDE
modeling approach, are not inherent to spatially distributed
systems, and can be remedied by using an alternative modeling
framework defined by Partial Integral Equations (PIEs).

B. The Partial Integral Equation (PIE) Framework
The PIE framework is an approach to the modelling of

spatially distributed systems. PIE models can be considered a
generalization of the integro-differential systems which have
been used to model phenomena such as elasticity, mechanical
fracture, etc. [3], [13]. Unlike a PDE model, wherein the state
(e.g., u(t) ∈ W2) is differentiated, consistent with continuity
constraints, the state of a PIE model is the highest spatial
derivative (e.g., uss(t) ∈ L2) of the PDE model and this
state is integrated in space in order to obtain the evolution
equation. Consequently, a PIE model is defined by a single
integro-differential equation, is parameterized by the ∗-algebra
of Partial Integral (PI) operators, and can be used to represent
almost any well-posed PDE model.

The simplest form of PIE, in which we ignore ODEs, inputs,
and outputs, is defined by two Partial Integral (PI) operators,
T ,A : L2 → L2 as T v̇(t) = Av(t), where the state, v(t) ∈
L2 admits no continuity constraints or BCs. An operator P
is said to be a 3-PI operator, denoted P ∈ Π3 if there exist
R0 ∈ L∞ and separable functions R1, R2 such that

(Pu) (s)=R0(s)u(s)+

s∫
a

R1(s, θ)u(θ) dθ+

b∫
s

R2(s, θ)u(θ) dθ.

To illustrate a simple PIE, consider a PDE model of the heat
equation, ut = uss with BCs u(t, 0) = us(t, 1) = 0, continuity
constraint u ∈ W2 and initial condition u(0, ·) = u0 ∈ W2. A
PIE representation of this PDE model is given by∫ s

0

θ vt(t, θ) dθ +

∫ 1

s

s vt(t, θ) dθ = −v(s, t) (1)

with initial condition v(0, ·) = ∂2
su0 ∈ L2. In this case,

T ∈ Π3 is parameterized by R1(s, θ) = −θ,R2(s, θ) = −s
with R0 = 0, while A ∈ Π3 is parameterized by R0(s) = I
with R1 = R2 = 0. The solution to the PIE yields a
solution to the PDE model as u(t) = T v(t), so that u(t, s) =
−
∫ s

0
θ v(t, θ)dθ −

∫ 1

s
s v(t, θ)dθ.

B.1 Properties of PIEs and PI Operators
The distinguishing feature of the class of PIE models is

its parameterization using the *-algebras of PI operators (Πi

and Πp
i ). In contrast to differential and Dirac operators, PI

operators have the following properties:
1) Algebraic Structure The set of PI operators is a subspace
of L(L2) – the space of bounded linear operators on the
Hilbert space L2. PI operators form *-algebras, denoted Πi,
being closed under addition, composition, and transposition
(See [25, Appendix H]). In addition, Π3 and Π4 are unital
algebras – implying that these operators inherit most of the
properties of matrices, including operations that preserve
positivity.

2) Parameterization by Polynomials The subspaces of Πi

with polynomial parameters also form a *-subalgebra, de-
noted Πp

i . PIEs which represent PDE models are typically pa-
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rameterized by operators in Πp
i . Because polynomials admit a

linear parameterization using coefficient vectors, and because
multiplication, addition, and integration reduce to algebraic
operations on these coefficient vectors, the complexity of
computing operations involving operators in Πp

i is negligable.
3) Computation via PIETOOLS Most matrix operations
defined in Matlab have a Πp

i equivalent which is easy to
compute. These operations have been embedded into an
opvar class in the MATLAB toolbox PIETOOLS [26].
This toolbox also allows one to solve Linear PI Inequality
Optimization (LPIs) problems (a natural extension of the class
of Linear Matrix Inequality (LMI) optimization problems).

Having motivated the PI algebra, we summarize the benefits
of using PIE models in place of equivalent PDE models:
1) Known map from PDE model to PIE model For the large
class of well-posed linear PDE models defined in this paper,
we have explicit formulae for construction of an associated
PIE model, including the map from PIE solution to PDE
solution. In addition, most PDE models map to PIE models
parameterized by PI operators with polynomial parameters.

2) State-Space Structure Because PIE models are parameter-
ized by the PI *-algebra of bounded linear operators on L2,
PIEs inherit many of the benefits of the state-space repre-
sentation of linear ODEs. This implies that many numerical
methods designed for analysis, control, and simulation of
ODEs in state-space form may be extended to PIEs. Specif-
ically, many LMIs for analysis and control of ODEs have
been extended to PIEs, including stability analysis [18], L2-
gain analysis [23], H∞-optimal estimation [7], H∞-optimal
control [24], and robust stability/performance [6], [31].

3) Universal Methods A PIE model is defined by a single
differential equation with no further constraints on the state,
such as BCs or continuity constraints. This allows us to
develop universal algorithms for analysis, control, and simu-
lation which apply to any well-posed PIE model. Examples
of such algorithms can be found in PIETOOLS [26].

To illustrate these advantages, consider again the problem
of proving stability of the heat equation (with state u). Using
the PIE representation of the heat equation (with state v) in
Eqn. (1), proving stability is now much simpler. Specifically,
consider the standard energy metric/Lyapunov function V =
⟨u, u⟩L2

= ⟨T v, T v⟩L2
and differentiate in time to obtain

V̇ (v(t)) = ⟨T v̇(t), T v(t)⟩L2
+ ⟨T v(t), T v̇(t)⟩L2

= ⟨v(t), (T + T ∗)v(t)⟩L2
= ⟨v(t),Dv(t)⟩L2

where D ∈ Πp
3 is parameterized by R1(s, θ) = −2θ,

R2(s, θ) = −2s and R0 = 0. We may now use convex opti-
mization to find the PI operator Q ∈ Πp

3 such that D = −Q∗Q.
In this case Q is parameterized by R1 =

√
2, R2 = 0 and

R0 = 0. This proves that V̇ (v) = ⟨v,Dv⟩ = −⟨Qv,Qv⟩ ≤ 0.

C. Contribution of this Paper
Because the PIE representation is unified, any algorithm or

method designed for analysis, control, or simulation of PIE
models can be applied to any system which admits such a
representation. The impact of such algorithms and methods,
therefore, can be increased by expanding the class of PDE
models for which there exists an equivalent PIE model repre-

sentation. Unfortunately, however, the class of PDE models for
which there exist PDE-PIE conversion formulae is still rather
limited. To demonstrate, consider the following two systems:
1) Entropy evolution of 1D thermoelastic rod (c.f. [9]):

η̇(s, t) = ηss(s, t), η(0, t) = η(1, t) = −
∫ 1

0

η(s, t)ds.

2) Octopus-inspired soft robot arm (c.f. [28]):
ẍ(t) = −xsss(t, 0) + d0(t), x(t, 0) = x(t),

˙̇ ˙̇x(t, s) = −ẍ(t, s) + ẍs(t, s)− xssss(t, s) + d1(t, s),

xs(t, 0) = 0, xss(t, 1) = d2(t), xsss(t, 1) = u(t).

The first PDE model has integral terms at the boundary,
whereas the second model is a 4th-order PDE model coupled
with an ODE and has input signals forcing both the generator
and the BCs. At present, however, the class of PDE models
with known PIE conversion formulae does not include: genera-
tors with spatial derivatives of order higher than 2 or driven by
boundary values, PDEs with inputs and outputs, PDEs coupled
with ODEs, or BCs that combine boundary values with inputs
and integrals of the state (formulae for input-output PDEs and
ODEs coupled with PDEs appear in conference format [23]).

The goal of this paper, then, is to extend the class of PDE
models for which we have PDE to PIE conversion formulae to
include the cases defined above. As with any extension of the
PIE framework, we approach the incorporation of a new class
of PDE models in three steps: (a) we propose a parametric
representation of the PDE model class; (b) We define an appro-
priate state-space to be used in the corresponding PIE model;
(c) We find a unitary transformation from the PIE state-space
to the state space of the PDE model – proving equivalence
of solutions and equivalence of stability properties. In this
context, the three main contributions of the paper are:
1) A unified class of PDE models: We parameterize a class
of linear PDE models we refer to as Generalized Partial
Differential Equations (GPDEs) – See Section III. These
GPDEs encompass: ODEs coupled with PDEs, N th-order
spatial derivatives, integrals of the state, control inputs and
disturbances, and sensed and regulated outputs.

2) Formulae to convert GPDE models to PIEs: Given a suf-
ficiently well-posed GPDE model, we give formulae for
conversion to a PIE. These formulae are implemented in
PIETOOLS, including a GUI for declaration and conversion
of the GPDE model – Sections IV and V.

3) Equivalence of GPDEs and PIEs: We show the map be-
tween GPDE and PIE solution is unitary, implying a solution
of a GPDE model yields a corresponding solution of the
associated PIE and vice versa. We then prove input-output
and internal stability of the GPDE model is equivalent to
that of the associated PIE. See Section VI.

D. Approach and Organization of the paper
To conclude the introduction, we now summarize the or-

ganization of the paper. First, we define the algebra of PI
operators in Section II-A and the class of PIE models, along
with a definition of solution in Section II-B. Second, we
introduce the class of GPDE systems in Section III – defining
the interconnection structure of PDE and ODE subsystems and
including a definition of solution for both the PDE subsystem
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and interconnected GPDE. Third, for a given GPDE, we
propose a admissibility condition for well-posedness which
guarantees the existence of an equivalent PIE representation.
We then derive formulae for the PIE representation of the PDE
subsystem, and we combine these formulae with the ODE
subsystem to obtain the PIE representation of the intercon-
nected GPDE model (Sections IV and V). Next, in Section VI,
we show that the map between PIE and GPDE solutions is
unitary – proving equivalence between GPDE and PIE models
in terms of both existence of solutions and stability of these
solutions. Finally, in Section VIII, we consider several specific
GPDE models – using the PIE representation and PIETOOLS
to simulate the GPDE and prove stability. For brevity, we
include only an outline of most proofs and refer to Appendices
included in the full version of this paper [25] for extended
proofs and non-essential definitions.

II. NOTATION, PI OPERATORS AND PIES

In addition to denoting the empty set, ∅ is occasionally used
to denote a matrix or matrix-valued function with either zero
row or column dimension and whose non-zero dimension can
be inferred from context. We denote by 0m,n ∈ Rm×n the
matrix of all zeros, 0n := 0n,n, and In ∈ Rn×n the identity
matrix. We use 0 and I for these matrices when dimensions are
clear from context. R+ is the set of non-negative real numbers.
The set of k-times continuously differentiable n-dimensional
vector-valued functions on the interval [a, b] is denoted by
Cn

k [a, b]. L
n
2 [a, b] is the Hilbert space of n-dimensional vector-

valued Lebesgue square-integrable functions on the interval
[a, b] equipped with the standard inner product. Lm,n

∞ [a, b] is
the Banach space of m × n-dimensional essentially bounded
measurable matrix-valued functions on [a, b] equipped with the
essential supremum singular value norm.

Normal font u or u(t) typically implies that u or u(t) is a
scalar or finite-dimensional vector (e.g. u(t) ∈ Rn), whereas
the bold font, x or x(t), typically implies that x or x(t) is
a scalar or vector-valued function (e.g. u(t) ∈ Ln

2 [a, b]). For
a suitably differentiable function, x, of spatial variable s, we
use ∂j

sx to denote the j-th order partial derivative ∂jx
∂sj . For

a suitably differentiable function of time and possibly space,
we denote ẋ(t) = ∂

∂tx(t). We use Wn
k to denote the Sobolev

spaces Wn
k [a, b] := {u ∈ Ln

2 [a, b] | ∂l
su ∈ Ln

2 [a, b] ∀ l ≤ k}
with inner product ⟨u,v⟩Wn

k
=

∑k
i=0

〈
∂i
su, ∂

i
sv

〉
Ln

2
. Clearly,

Wn
0 [a, b] = Ln

2 [a, b]. For given n = {n0, · · · , nN} ∈ NN+1,
we define the Cartesian product space Wn :=

∏N
i=0 W

ni
i and

for u = {u0, · · · ,uN} ∈ Wn and v = {v0, · · · ,vN} ∈
Wn we define the associated inner product as ⟨u,v⟩Wn =∑N

i=0 ⟨ui,vi⟩Wni
i

. We use RLm,n
2 [a, b] to denote the space

Rm × Ln
2 [a, b] and for x =

[
x1

x2

]
∈ RLm,n

2 and y =

[
y1
y2

]
∈

RLm,n
2 , we define the associated inner product as〈[

x1

x2

]
,

[
y1
y2

]〉
RLm,n

2

= xT
1 y1 + ⟨x2,y2⟩Ln

2
.

Frequently, we omit the domain [a, b] and simply write Ln
2 ,

Wn
k , Wn, or RLm,n

2 . For functions of time only (L2[R+] and

Wk[R+]), we use the truncation operator

(PTx)(t) :=

{
x(t), if t ≤ T

0, otherwise.
to denote the extended subspaces of such functions by L2e[R+]
and Wke[R+] respectively as

L2e[R+] := {x | PTx ∈ L2[R+] ∀ T ≥ 0} ,
Wke[R+] := {x | PTx ∈ Wk[R+] ∀ T ≥ 0} .

Finally, for normed spaces A,B, L(A,B) denotes the space
of bounded linear operators from A to B equipped with the
induced operator norm. L(A) := L(A,A).

A. PI Operators: A ∗-algebra of bounded linear operators
The PI algebras are parameterized classes of operators on

RLm,n
2 (the product space of Rm and Ln

2 ). The first of these
is the algebra of 3-PI operators which map Ln

2 → Ln
2 .

Definition 1 (Separable Function). We say R : [a, b]2 → Rp×q

is separable if there exist r ∈ N, F ∈ Lr×p
∞ [a, b] and G ∈

Lr×q
∞ [a, b] such that R(s, θ) = F (s)TG(θ).

Definition 2 (3-PI operators, Π3). Given R0 ∈ Lp×q
∞ [a, b] and

separable functions R1, R2 : [a, b]2 → Rp×q , we define the
operator P{Ri} for v ∈ L2[a, b] as(

P{Ri}v
)
(s) := (2)

R0(s)v(s) +

∫ s

a

R1(s, θ)v(θ)dθ +

∫ b

s

R2(s, θ)v(θ)dθ.

Furthermore, we say an operator, P , is 3-PI of dimension p×q,
denoted P ∈ [Π3]p,q ⊂ L(Lq

2, L
p
2), if there exist functions R0

and separable functions R1, R2 such that P = P{Ri}.

For any p ∈ N, [Π3]p,p is a ∗-algebra, being closed under
addition, composition, scalar multiplication, and adjoint (See
[25, Appendix H]). Closed-form expressions for the composi-
tion, adjoint, etc. of 3-PI operators in terms of the parameters
Ri are also included in [25, Appendix H]. The algebra of 3-PI
operators can be extended to L(RLm,p

2 ,RLn,q
2 ) as follows.

Definition 3 (4-PI operators). Given P ∈ Rm×n, Q1 ∈ Lm×q
∞ ,

Q2 ∈ Lp×n
∞ , and R0, R1, R2 with P{Ri} ∈ [Π3]p,q , we say

P = P
[

P Q1

Q2 {Ri}

]
∈ L(RLm,p

2 ,RLn,q
2 ) if(

P
[
u
v

])
(s) :=

[
Pu+

∫ b

a
Q1(θ)v(θ)dθ

Q2(s)u+
(
P{Ri}v

)
(s)

]
. (3)

Furthermore, we say P , is 4-PI, denoted P ∈ [Π4]
m,n
p,q , if there

exist P,Q1, Q1, R0, R1, R2 such that P = P
[

P Q1

Q2 {Ri}

]
.

Definition 4 (*-subalgebras of Πi with polynomial param-
eters). We say P ∈ [Πp

3]p,q if there exist polynomials Ri

of appropriate dimension such that P = P{Ri}. We say
P ∈ [Πp

4]
m,n
p,q if there exist matrix P and polynomials Qi, Ri

of appropriate dimension such that P = P
[

P Q1

Q2 {Ri}

]
.

Parametric Representation of Operations on Πi: Alge-
braic operations on Πi are defined by algebraic operations on
the parameters which represent these operators. Specifically,
corresponding to Π3 and Π4 let us associate the corresponding
parameter spaces
[Γ3]p,q := {{R0, R1, R2} : Ri ∈ Lp×q

∞ , R1, R2 are separable},
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[Γ4]
m,p
n,q :=


[

P Q1

Q2 {Ri}

]
: P ∈ Rm×n, Q1 ∈ Lm×q

∞ ,

Q2 ∈ Lp×n
∞ , {Ri} ∈ [Γ3]p,q

 .

Then if the parametric maps P4
×, P

4
+ : [Γ4]

m,m
p,p × [Γ4]

m,m
p,p →

[Γ4]
m,m
p,p , P4

T : [Γ4]
m,m
p,p → [Γ4]

m,m
p,p are as defined in [25,

Lemmas 35-37], for any S, T ∈ [Γ4]
m,m
p,p , we have

P
[
P4

×(S, T )
]
= P

[
S
]
P
[
T
]
, P

[
P4

T (S)
]
= P

[
S
]∗

,

P
[
P4

+(S, T )
]
= P

[
S
]
+ P

[
T
]
.

B. Partial Integral Equations
A Partial Integral Equation (PIE) is an extension of the

state-space representation of ODEs (vector-valued first-order
differential equations on Rn) to spatially-distributed states on
the product space RL2. Mirroring the 9-matrix optimal control
framework developed for state-space systems, a PIE system
includes is parameterized by twelve 4-PI operators asT ẋ

¯
(t)

z(t)
y(t)

 =

A B1 B2

C1 D11 D12

C2 D21 D22

x
¯
(t)

w(t)
u(t)

−

Twẇ(t) + Tuu̇(t)
0
0

 ,

x
¯
(0) = x

¯
0 ∈ RLm,n

2 [a, b], (4)

where z(t) ∈ Rnz is the regulated output, y(t) ∈ Rny is the
sensed output, w(t) ∈ Rnw is the disturbance, u(t) ∈ Rnu is
the control input, and x

¯
(t) ∈ RLnx,nx̂

2 is the internal state.
No Spatial Derivatives or Boundary Conditions: A PIE

system does permit spatial derivatives – only a first-order
derivative with respect to time. The state of the PIE system,
x
¯
∈ RL2[a, b] is not differentiable and consequently, no BCs

are possible in the PIE framework.
Before formalizing the definition of solution for a PIE

system, let us note two significant features of this definition.
First, we observe that PIEs allow for the dynamics to depend
on the time-derivative of the input signals: ∂t(Tww) and
∂t(Tuu). Through some slight abuse of notation, in this paper
we will use expressions such as Twẇ to represent ∂t(Tww).
These terms are included in order to allow for PIEs to represent
certain classes of PDEs wherein signals enter through the BCs.

Second, the internal state of the solution of a PIE system
is required to be Frechét differentiable with respect to the T -
norm which is defined as ∥x

¯
∥T := ∥T x

¯
∥RL2

, for x
¯
∈ RL2.

Notation: Finally, and for brevity, we collect the 12 PI
parameters which define a PIE system in Eq. (4) and introduce
the shorthand notation GPIE which represents the labelled
tuple of such system parameters as
GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} .

When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.

We now define a notion of solution for a PIE system.

Definition 5 (Solution of a PIE system). For given inputs
u ∈ Lnu

2e [R+], w ∈ Lnw
2e [R+] with (Tuu)(·, s) ∈ Wnx+nx̂

1e [R+]
and (Tww)(·, s) ∈ Wnx+nx̂

1e [R+] for all s ∈ [a, b] and x
¯
0(t) ∈

RLnx,nx̂

2 , we say that {x
¯
, z, y} satisfies the PIE defined by

GPIE = {T , Tw, Tu, A, Bi, Ci, Dij} with initial condition
x
¯
0 and input {w, u} if z ∈ Lnz

2e [R+], y ∈ L
ny

2e [R+], x¯
(t) ∈

RLnx,nx̂

2 [a, b] for all t ≥ 0, x
¯

is Frechét differentiable with
respect to the T -norm almost everywhere on R+, x

¯
(0) = x

¯
0,

and Eq. (4) is satisfied for almost all t ∈ R+.

III. GPDES: A GENERALIZED CLASS OF LINEAR MODELS

Having introduced PIE systems and PI operators, we now
parameterize the class of ODE-PDE models for which we may
define associated PIE systems. To simplify the notation and
analysis, we will represent these models as the interconnection
of ODE and PDE subsystems – See Figure 3. This class of
ODE-PDE models will be referred to as Generalized Partial
Differential Equations (GPDEs). The parameterization of the
ODE subsystem is defined in Section III-A, the parameteriza-
tion of the PDE subsystem is defined in Section III-B, and the
subsystems are combined in Section III-C.

A. ODE Subsystem
The ODE subsystem of the GPDE model, illustrated in

Figure 1, is a typical state-space representation with real-
valued inputs and outputs. These inputs and outputs are finite-
dimensional and include both the interconnection with the
PDE subsystem and the inputs and outputs of the GPDE
model as a whole. Specifically, we partition both the input
and output signals into 3 components, differentiating these
channels by function. The input channels are: the control input
to the GPDE (u(t) ∈ Rnu ), the exogenous disturbance/source
driving the GPDE (w(t) ∈ Rnw ) and the internal feedback
input (r(t) ∈ Rnr ) which is the output of the PDE subsystem.
The output channels of the ODE subsystem are: the regulated
output of the GPDE (z(t) ∈ Rnz ); the sensed outputs of the
GPDE (y(t) ∈ Rny ); and the output from the ODE subsystem
which becomes the input to the PDE subsystem (v(t) ∈ Rnv ).

Definition 6 (Solution of an ODE Subsystem). Given matrices
A, Bxw, Bxu, Bxr, Cz , Dzw, Dzu, Dzr, Cy , Dyw, Dyu, Dyr,
Cv , Dvw, Dvu of appropriate dimension, we say {x, z, y, v}
with {x(t), z(t), y(t), v(t)} ∈ Rnx×Rnz ×Rny×Rnv satisfies
the ODE with initial condition x0 ∈ Rnx and input {w, u, r}
if x is differentiable, x(0) = x0 and for t ≥ 0

ẋ(t)
z(t)
y(t)
v(t)

 =


A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)

 . (5)

Notation: For brevity, we collect all matrix parameters from
the ODE subsystem in (5) and introduce the shorthand notation
Go which represents the labelled tuple of such parameters as
Go = {A,Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu,

Dyr, Cv, Dvw, Dvu} . (6)
When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.

B. PDE Subsystem
Our parameterization of the PDE subsystem is divided

into three parts: the continuity constraints, the in-domain
dynamics, and the BCs. The continuity constraints specify
the existence of partial derivatives and boundary values for
each state as required by the in-domain dynamics and BCs.
The BCs are represented as a real-valued algebraic constraint
subsystem which maps the distributed state and inputs to
a vector of boundary values. The in-domain dynamics (or
generating equation) specify the time derivative of the state,
x̂(t, s), at every point in the interior of the domain, and are
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w, u
ODE subsystem

z, y
r v

Fig. 1: Depiction of the ODE subsystem for use in defining a
GPDE. All external input signals in the GPDE model pass
through the ODE subsystem and are labelled as u(t) ∈
Rnu and w(t) ∈ Rnw , corresponding to control input and
disturbance/forcing input. Likewise all external outputs pass
through the ODE subsystem and are labelled y(t) ∈ Rny and
z(t) ∈ Rnz , corresponding to measured output and regulated
output. All interaction with the PDE subsystem is routed
through two vector-valued signals, where r(t) ∈ Rnr is the
sole output of the PDE subsystem and v(t) ∈ Rnv is the sole
input to the PDE subsystem.

r v
PDE+BC

+continuity constraints

x̂F x̂,Bx̂
Differential operator

Dirac operator

Fig. 2: Depiction of the PDE subsystem for use in defining a
GPDE. All interaction of the PDE subsystem with the ODE
subsystem is routed through the two vector-valued signals, r
and v, where r(t) ∈ Rnr is an output of the PDE subsystem
(and input to the ODE subsystem) and v(t) ∈ Rnv is an input
to the PDE subsystem (and output from the ODE subsystem).
Although there are no external inputs and outputs of the
GPDE, such signals can be routed to and from the PDE
subsystem through the ODE subsystem using r and v.

expressed using integral, dirac, and N th-order spatial derivative
operators. The PDE subsystem is illustrated in Figure 2. For
simplicity, no external inputs or outputs are defined for the
PDE subsystem, since these external signals may be included
by routing the desired signal through the ODE subsystem using
the internal signals, v(t) and r(t).
B.1 The continuity constraint

The ‘continuity constraint’ partitions the state vector of
the PDE subsystem, x̂(t, ·), and specifies the differentiability
properties of each partition as required for existence of the
partial derivatives in the generator and limit values in the
boundary condition. This partition is defined by the parameter
n ∈ NN+1 = {n0, · · ·nN}, wherein ni specifies the dimen-
sion of the ith partition vector so that x̂i(t, s) ∈ Rni . The
partitions are ordered by increasing differentiability so that

x̂(t, ·) =

 x̂0(t, ·)
...

x̂N (t, ·)

 ∈ Wn :=

Wn0
0
...

WnN

N

 .

Given the partition defined by n ∈ NN+1, and given x̂ ∈ Wn,
we would like to list all well-defined partial derivatives of x̂.
To do this, we first define nx̂ := |n|1 =

∑N
i=0 ni to be the

number of states in x̂, nSi :=
∑N

j=i nj ≤ nx̂ to be the total
number of i-times differentiable states, and nS =

∑N
i=1 nSi

to be the total number of possible partial derivatives of x̂ as
permitted by the continuity constraint.

Notation: For indexed vectors (such as n or x̂) we occa-

sionally use the notation x̂i:j to denote the components i to
j. Specifically, x̂i:j = col(x̂i, · · · , x̂j), ni:j :=

∑j
k=i nk and

nSi:j
=

∑j
k=i nSk

.

Next, we define the selection operator Si : Rnx̂ → RnSi

which is used to select only those states in x̂ which are at
least i-times differentiable. Specifically, for x̂ ∈ Wn, we have

Si =
[
0nSi

×nx̂−nSi
InSi

]
, so that (Six̂)(s) =

 x̂i(s)
...

x̂N (s)

 .

We may now conveniently represent all well-defined ith-order
partial derivatives of x̂ as ∂i

sS
ix̂ so that

(∂i
sS

ix̂)(s) =

 ∂i
sx̂i(s)
...

∂i
sx̂N (s)

 and (F x̂)(s) :=


x̂(s)

(∂sSx̂)(s)
...

(∂N
s SN x̂)(s)


where F concatenates all the ∂i

sS
ix̂ for i = 0, · · · , N —

creating an ordered list including both the PDE state, x̂, as
well as all nS possible partial derivatives of x̂ as permitted by
the continuity constraint and the vector (F x̂)(s) ∈ RnS+nx .

This notation also allows us to specify all well-defined
boundary values of x̂ ∈ Wn and of its partial derivatives.
Specifically, we may construct (Cx̂)(s) ∈ RnS , the vector
of all absolutely continuous functions generated by x̂ and
its partial derivatives. Using Cx̂, we may then construct
Bx̂ ∈ R2nS , the list all possible boundary values of x̂ ∈ Wn.
Specifically, Cx̂ and Bx̂ are defined as

Cx̂(s) =


(Sx̂)(s)

(∂sS
2x̂)(s)
...

(∂N−1
s SN x̂)(s)

 and Bx̂ =

[
(Cx̂)(a)
(Cx̂)(b)

]
. (7)

Combining F x̂ and Bx̂, we obtain a complete list of all
well-defined terms which may appear in either the in-domain
dynamics or BCs.

B.2 Boundary Conditions (BCs)

Given the notational framework afforded by the continuity
condition, and equipped with our list of well-defined terms
(F x̂ and Bx̂), we may now parameterize a generalized class
of BCs consisting of a combination of boundary values,
integrals of the PDE state, and the effect of the input signal,
v. Specifically, the BCs are parameterized by the square
integrable function BI : [a, b] → RnBC×(nS+nx̂) and matrices
Bv ∈ RnBC×nv and B ∈ RnBC×2nS as∫ b

a

BI(s)(F x̂(t))(s)ds+
[
Bv −B

] [ v(t)
Bx̂(t)

]
= 0 (8)

where nBC is the number of user-specified BCs. For reasons
of well-posedness, as discussed in Section IV, we typically
require nBC = nS . If fewer BCs are available, it is likely that
the continuity constraint is too strong – the user is advised
to consider whether all the partial derivatives and boundary
values are actually used in defining the PDE subsystem.

Now that we have parameterized a general set of BCs, we
embed these BCs in what is typically referred to as the domain
of the infinitesimal generator – which combines the BCs and
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continuity constraints into a set of acceptable states.

Xv :=

x̂ ∈ Wn[a, b] :∫ b

a
BI(s)(F x̂)(s)ds+

[
Bv −B

] [ v
Bx̂

]
= 0

 (9)

The set Xv is used to restrict the state and initial conditions
as x̂(t) ∈ Xv(t) and x̂(0) = x̂0 ∈ Xv(0).
Notation: For convenience, we collect all the parameters
which define the constraint in Eq. (8) and use Gb to represent
the labelled tuple of such parameters as

Gb = {B, BI , Bv} . (10)
When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.

B.3 In-Domain Dynamics of the PDE Subsystem
Having specified the continuity constraint and BCs using

{n,Gb}, we once again use our list of well-defined terms
(F x̂ and Bx̂) to define the in-domain dynamics of the PDE
subsystem and the output to the ODE subsystem. These
dynamics are parameterized by the functions A0(s), A1(s, θ),
A2(s, θ) ∈ Rnx̂×(nS+nx̂), Cr(s) ∈ Rnr×(nS+nx̂), Bxv(s)
∈ Rnx̂×nv , Bxb(s) ∈ Rnx̂×2nS , and matrices Drv ∈ Rnr×nv

and Drb(s) ∈ Rnr×2nS as follows.[
˙̂x(t, s)
r(t)

]
=

[
A0(s)(F x̂(t))(s)

0

]
+

[
Bxv(s) Bxb(s)

0 Drb

] [
v(t)
Bx̂(t)

]

+

 s∫
a

A1(s, θ)(F x̂(t))(θ)dθ +
b∫
s

A2(s, θ)(F x̂(t))(θ)dθ∫ b

a
Cr(θ)(F x̂(t))(θ)dθ

 (11)

Note: Many commonly used PDE models are defined solely
by A0. For example, if we consider ut = λu + uss, then
A0 =

[
λ 0 1

]
and all other parameters are zero.

The motivation for the parameters in this representation
(other than A0) can be summarized as follows: The kernels
A1, A2 model non-local effects of the distributed state; the
function Bxv represents the distributed effect of the distur-
bance/forcing function v on the generating equation; and Bxb

represents the distributed effect of the boundary values on
the generating equation. In addition: Cr is used to model the
influence of the PDE subsystem state on the dynamics and
outputs of the ODE subsystem; and Drb is used to model
the effect of boundary values of the PDE subsystem on the
dynamics and outputs of the ODE subsystem.
Notation: For convenience, we collect all parameters from the
in-domain dynamics of the PDE subsystem (Eq. (11)) and use
Gp to represent the labelled tuple of such parameters as

Gp = {A0, A1, A2, Bxv, Bxb, Cr, Drb} . (12)
When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions. We may now define
a notion of solution for a PDE subsystem.

Definition 7 (Solution of a PDE Subsystem). For given x̂0 ∈
Xv(0) and v ∈ Lnv

2e [R+] with Bvv ∈ W 2nS
1e [R+], we say that

{x̂, r} satisfies the PDE subsystem defined by n ∈ NN+1 and
{Gb,Gp} (defined in Eqs. (10) and (12)) with initial condition
x̂0 and input v if r ∈ Lnr

2e [R+], x̂(t) ∈ Xv(t) for all t ≥ 0,
x̂ is Frechét differentiable with respect to the L2-norm almost
everywhere on R+, x̂(0) = x̂0, and Eq. (11) is satisfied for
almost all t ≥ 0.

w, u
ODE subsystem

z, y

r v

PDE+BC
+continuity constraints

x̂F x̂,Bx̂
Differential operator

Dirac operator

PDE subsystem

Fig. 3: A GPDE is the interconnection of an ODE subsystem
(an ODE with finite-dimensional inputs w, u, v and outputs
z, y, r) with a PDE subsystem (N th-order PDEs and BCs with
finite-dimensional input r and output v). The BCs and internal
dynamics of the PDE subsystem are specified in terms of all
well-defined spatially distributed terms as encoded in F x̂(t)
and all well-defined limit values as encoded in Bx̂(t).

C. GPDE: Interconnection of ODE and PDE Subsystems
Given the definition of ODE and PDE subsystems, a GPDE

model is the mutual interconnection of these subsystems
through the interconnection signals (r, v) and is collectively
defined by Eqs. (5)-(11). This interconnection is illustrated in
Figure 3.

Given suitable inputs w,u, for a GPDE model, parameter-
ized by {n,Go,Gb,Gp}, we define the continuity constraint
and time-varying BCs by {x(t), x̂(t)} ∈ Xw(t),u(t) where

Xw,u :=

{[
x
x̂

]
∈ Rnx ×Xv | v = Cvx+Dvww +Dvuu

}
.

(13)
We now define the solution of a GPDE model as follows.

Definition 8 (Solution of a GPDE model). For given
{x0, x̂0} ∈ Xw(0),u(0) and w ∈ Lnw

2e [R+], u ∈ Lnu
2e [R+] with

BvDvww ∈ W 2nS
1e [R+] and BvDvuu ∈ W 2nS

1e [R+], we say
that {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go,
Gb, Gp} (See Equations (6), (10) and (12)) with initial condi-
tion {x0, x̂0} and input {w, u} if z ∈ Lnz

2e [R+], y ∈ L
ny

2e [R+],
v ∈ Lnv

2e [R+], r ∈ Lnr
2e [R+], {x(t), x̂(t)} ∈ Xw(t),u(t) for

all t ≥ 0, x is differentiable almost everywhere on R+, x̂
is Frechét differentiable with respect to the L2-norm almost
everywhere on R+, x(0) = x0, x̂(0) = x̂0, and Eqs. (5)-(11)
are satisfied for almost all t ≥ 0.

D. Illustrative Example of the GPDE Representation
In this subsection, we illustrate the process of identifying the

GPDE parameters of a given system. We begin this process
by introducing a conventional PDE representation. We then
divide the system into ODE and PDE subsystems and focus
on identifying the continuity constraint for the PDE subsystem
– always the least restrictive constraint necessary for existence
of the partial derivatives and boundary values. We then proceed
to identify the remaining parameters.

Illustration 1 (Damped Wave equation with delay and
motor dynamics) Let us consider a wave equation
η̈(t, s) = ∂2

sη(t, s), defined on the interval s ∈ [0, 1], (14)
to which we apply the typical boundary feedback law
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ηs(t, 1) = −ηt(t, 1), but where there is an actuator disturbance
and where the control is implemented using a DC motor and
where the output from the DC motor experiences a distributed
delay, so that ηs(t, 1) = w(t) +

∫ 0

−τ
µ(s/τ)T (t + s) where

T (t) is the output of the DC motor and µ(s) is a given
multiplier. The delay is represented using a transport equation
with distributed state p(t, s) on the interval [−1, 0] so that

ṗ(t, s) =
1

τ
ps(t, s), p(t, 0) = T (t), η(t, 1) =

0∫
−1

µ(s)p(t, s)ds.

The DC motor dynamics relate the voltage input, u(t) to the
torque T (t) through the current, i(t) as

i̇(t) =
−R

L
i(t) + u(t) T (t) = Kti(t).

Finally, the sensed output is the typical feedback signal ηt(1, t)
and the regulated output is a combination of the integral of
the displacement and controller effort so that

z(t) =

[∫ 1

0
η(t, s)ds
u(t)

]
, y(t) = ηt(1, t).

Since we require all states to have first order derivatives in
time and be defined on same spatial interval, we introduce the
change of variables ζ1 = η, ζ2 = η̇, ζ3(t, s) = p(t, s − 1). A
complete list of equations is now i̇(t) = −R

L i(t) + u(t) and
ζ̇1(t, s) = ζ2(t, s), ζ̇2(t, s) = ∂2

sζ1(t, s),

ζ̇3(t, s) =
1

τ
∂sζ3(t, s), ζ1(t, 0) = 0, ζ3(t, 1) = Kti(t),

∂sζ1(t, 1) = w(t) +

∫ 1

0

µ(s− 1)ζ3(t, s)ds,

z(t) =

[∫ 1

0
ζ1(t, s)ds
u(t)

]
, y(t) = ζ2(t, 1), s ∈ [0, 1], t ≥ 0.

ODE Subsystem: We start by identifying the parameters of
the ODE subsystem. Since i(t) is the only finite dimensional
state we set x(t) = i(t) to get ẋ(t) = −R

L x(t)+u(t). The ODE
subsystem influences the PDE subsystem via signals w(t) and
T (t). The effect of the PDE subsystem on the regulated and
observed outputs (z and y, respectively) is routed through r(t).
The outputs, z, y and internal signals, v, r, are now defined as

v(t) =

[
T (t)
w(t)

]
=

[
Kt

0

]
i(t) +

[
0
1

]
w(t),

r(t) =

[∫ 1

0
ζ1(t, s)ds
ζ2(t, 1)

]
,

[
z(t)
y(t)

]
=

 0
u(t)
0

+

1 0
0 0
0 1

 r(t).

Expressing these equations in the form of Eq. (5), we obtain

ẋ(t)z(t)
y(t)
v(t)

=


−R/L 0 1 0[

0
0

] [
0
0

] [
0
1

] [
1 0
0 0

]
0 0 0

[
0 1

][
Kt

0

] [
0
1

] [
0
0

] [
0
0

]

x(t)
w(t)
u(t)
r(t)

 .

Extracting the submatrices of this ODE subsystem, we
obtain an expression for Go which has the following nonzero
parameters: A = −R

L , Bxu = 1, Dyr =
[
0 1

]
,

Dzu =

[
0
1

]
, Cv =

[
Kt

0

]
, Dvw =

[
0
1

]
, Dzr =

[
1 0
0 0

]
.

PDE subsystem: Next, we need to define: n, Gb, and Gp.
Continuity Constraint: To identify the continuity constraint,
n, we consider the required partial derivatives and limit

values for the three distributed states: ζ1, ζ2 and ζ3. For
ζ1, ∂2

sζ1 appears in the in-domain dynamics and the BCs
involve ζ1(t, 0) and ∂sζ1(t, 1). The least restrictive continuity
constraint which guarantees existence of all three terms is
ζ1 ∈ x̂2. Next, no partial derivatives of ζ2 are needed, but
the limit value ζ(t, 1) appears in the BCs – so we restrict
ζ2 ∈ x̂1. Finally, ∂sζ3 appears in the in-domain dynamics and
ζ3(t, 1) appears in the BCs – implying ζ3 ∈ x̂1. We conclude
that n = {n0, n1, n2} = {0, 2, 1} and the GPDE state is

x̂ =

x̂0

x̂1

x̂2

 :=


∅[

ζ2(t, s)
ζ3(t, s)

]
ζ1(t, s)


Boundary Conditions: For this definition of the continuity
constraint, n, we have nx̂ = 3, nS0

= 3, nS1
= 3, nS2

= 1
and nS = 4 – i.e., there are three 0th-order, three 1st-order
and one 2nd-order differentiable states. In addition, nx̂+nS =
7 indicates there are 7 possible distributed terms in F x̂ and
2nS = 8 indicates there are 8 possible limit values in Bx̂.
Specifically, recalling that Six̂ is the vector of all ith order
differentiable states, we have

S0x̂ =

x̂0

x̂1

x̂2

=

ζ2ζ3
ζ1

, S1x̂ =

[
x̂1

x̂2

]
=

ζ2ζ3
ζ1

, S2x̂ = x̂2 = ζ1,

F x̂ = col(ζ2, ζ3, ζ1, ∂sζ2, ∂sζ3, ∂sζ1, ∂2
sζ1),

Cx̂ = col(ζ2, ζ3, ζ1, ∂sζ1) Bx̂ =

[
Cx̂(0)
Cx̂(1)

]
.

We now define the BCs. Recall these appear in the form∫ 1

0

BI(s)(F x̂(t))(s)ds+
[
Bv −B

] [ v(t)
Bx̂(t)

]
= 0.

Checking our BCs, we note that ζ1(t, 0) = 0 can be differen-
tiated in time to obtain ζ2(t, 0) = 0. Collecting all the BCs,
and placing these in the required form, we have∫ 1

0


0
0
0

µ(s− 1)ζ3(s)

 ds =


ζ1(0)
ζ2(0)
ζ3(1)
∂sζ1(1)

+


0
0

−v1
−v2


Recalling the expansions of F x̂ and Bx̂, we may identify the
parameters in Gb as

B =


0 0 1 01,2 0 0 0
1 0 0 01,2 0 0 0
0 0 0 01,2 1 0 0
0 0 0 01,2 0 0 1

 ,

Bv =

[
02
I2

]
, BI(s) =

[
03,1 03,1 03,5
0 µ(s− 1) 01,5

]
. (15)

In-Domain Dynamics: To find the parameters Gp, first recall
that PDE dynamics have the form[
˙̂x(t, s)
r(t)

]
=

[
A0(s)(F x̂(t))(s)

0

]
+

[
Bxv(s) Bxb(s)

0 Drb

] [
v(t)
Bx̂(t)

]
+

[∫ s

a
A1(s, θ)(F x̂(t))(θ)dθ +

∫ b

s
A2(s, θ)(F x̂(t))(θ)dθ∫ b

a
Cr(θ)(F x̂(t))(θ)dθ

]
.
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Recalling the expansion of F x̂, we represent the dynamics as

˙̂x(t, s)=

 ∂2
sζ1(t, s)

1/τ∂sζ3(t, s)
ζ2(t, s)

=

0 01,3 0 0 1
0 01,3

1
τ 0 0

1 01,3 0 0 0


︸ ︷︷ ︸

A0

(F x̂(t))(s)

Likewise, from the definition of r(t), we have

r(t) =

[∫ 1

0
ζ1(t, s)ds
ζ2(t, 1)

]
=

1∫
0

Cr︷ ︸︸ ︷[
01,2 1 01,4
01,2 0 01,4

]
(F x̂(t))(θ)dθ,

+

[
01,4 0 01,3
01,4 1 01,3

]
︸ ︷︷ ︸

Drb

Bx̂(t)

Thus we have A0, Cr, Drb – the only nonzero terms in Gp.

IV. REPRESENTING A PDE SUBSYSTEM AS A PIE

In Section III, we proposed a GPDE representation for a
broad class of coupled ODE-PDEs Systems - See Eqs. (5)-
(11). We now turn our attention to finding an alternative
representation of such a GPDE model as a PIE. We begin
this process by focusing on conversion of the PDE subsystem
to a restricted class of PIE subsystem of the form[

T̂ ˙̂x
¯
(t)

r(t)

]
=

[
Â Bv

Cr Drv

] [
x̂
¯
(t)

v(t)

]
−
[
Tv v̇(t)

0

]
, (16)

with initial condition x̂
¯
(0) = x̂

¯
0 ∈ Lm

2 . Such PIE subsystems
are a special case of Definition 5 with parameter set given by

GPIEs
:=

{
T̂ , Tv, ∅, Â,Bv, ∅, Crv, ∅,Drv, ∅, ∅, ∅

}
.

In this section, we will show that for any admissible PDE sub-
system defined by {n,Gb,Gp}, there exists a corresponding
PIE subsystem defined by {T̂ , Tv, Â, Bv, Crv, Drv} such
that for any suitable signal v, {x̂

¯
, r, ∅} is a solution of the PIE

subsystem with initial condition x̂
¯
0 and input v if and only if

{T̂ x̂
¯
(t) + Tvv(t), r} is a solution of the PDE subsystem with

initial condition (T̂ x̂
¯
0 + Tvv(0)) and input v.

A. Well-posedness of the BCs and Continuity Constraint

Before we map the PDE subsystem to an associated PIE
subsystem, we first define a notion of admissibility. This defi-
nition imposes a notion of well-posedness on Xv , the domain
of the PDE subsystem defined by the continuity constraints and
the BCs. This condition ensures, e.g., that there are a correct
number of independent BCs to establish a mapping between
the distributed state and its partial derivatives. Without such
a mapping, the solution to the PDE may not exist (too many
BCs) or may not be unique (too few BCs).

Definition 9 (Admissible Boundary Conditions). Given an
n ∈ NN+1 (with corresponding continuity constraint) and a
parameter set, Gb := {B, BI , Bv}, we say the pair {n,Gb}
is admissible if BT is invertible where

BT := B

[
T (0)

T (b− a)

]
−
∫ b

a

BI(s)U2T (s− a)ds ∈ RnBC×nS ,

and where T and U2 are defined (See also Block 4) as

Ti,j(s) =
s(j−i)

(j − i)!

[
0nSi−nSj×nSj

InSj

]
∈ RnSi×nSj , (17)

T (s) =


T1,1(s) T1,2(s) · · · T1,N (s)

0 T2,2(s) · · · T2,N (s)
...

...
. . .

...
0 0 · · · TN,N (s)

 ∈ RnS×nS ,

(18)
U2i =

[
0ni×ni+1:N

Ini+1:N

]
∈ RnSi

×nSi+1 , (19)

U2 =

[
diag(U20, · · · , U2(N−1))

0nN×nS

]
∈ R(nx̂+nS)×nS . (20)

Note that since BT must be square to be invertible, admissi-
bility requires nBC = nS . One way to interpret this condition
is to note that whenever we differentiate a PDE state, we lose
some of the information required to reconstruct that state. As
a result, if we have nS possible partial derivatives we need nS

BCs to relate all the partial derivatives back to the original state
vector. However, while the constraint nBC = nS is necessary
for admissibility, it is not sufficient – the BCs must be both
independent and provide enough information to allow us to
reconstruct the PDE state. See Subsection 3.2.2 in [18] for an
enumeration of pathological cases, including periodic BCs.

Finally, note that the test for admissibility depends only on
the continuity condition, n ∈ NN+1 and the parameters which
define the boundary condition – admissibility does not depend
explicitly on the dynamics.

A.1 Illustration of the Admissibility Condition
Illustration 2 (Damped wave Equation with motor dynam-

ics and delay) Let us revisit the coupled ODE-PDE from
Section III-D. Recall that for this example, n = {0, 2, 1}, so
nS0 = 3, nS1 = 3, nS2 = 1, nS = 4, and nx̂ = 3. In addition,
Gb has parameters as shown in Eq. (15). Then, using Eqs. (18)
and (20), we compute T , U2, and BT as

T1,1 =

[
03−3,3

I3

]
, T1,2 = s

[
03−1,1

I1

]
, T2,2 =

[
01−1,1

I1

]
,

U20 =

[
00,3
I3

]
, U21 =

[
02,1
I1

]
, T (s) =


1

1
1 s

1

 ,

U2 =


I3 03,1
02,3 02,1
01,3 1
01,2 01,2

 , BT =


0 0 1 0
1 0 0 0
0 1 0 0

0 −
∫ b

a
µ(s− 1)ds 0 1

 .

Clearly, BT is invertible for any µ which implies the pair
{n,Gb} is admissible.

B. A map between PIE and PDE states
Given an admissible pair {n,Gb}, we may construct a PIE

subsystem which we will associate with the PDE subsystem
defined by those parameters. The first step is to map x̂(t) ∈
Xv , the state of the PDE subsystem, to x̂

¯
(t) ∈ L2, the state

of the PIE subsystem using

x̂
¯
= Dx̂ =


x̂0

∂sx̂1

...
∂N
s x̂N

 ∈ Lnx̂
2 .

where D := diag(∂0
sIn0

, · · · , ∂N
s InN

). The following theo-
rem shows that this mapping is invertible and, moreover, the
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inverse is defined by PI operators.

Theorem 10. Given an n ∈ NN+1, and Gb with {n,Gb}
admissible, let {T̂ , Tv} be as defined in Block 4, Xv as defined
in Eq. (9) and D :=diag(∂0

sIn0
, · · · , ∂N

s InN
). Then we have

the following: (a) For any v ∈ Rnv , if x̂ ∈ Xv , then Dx̂ ∈ Lnx̂
2

and x̂ = T̂ Dx̂+Tvv; and (b) For any v ∈ Rnv and x̂
¯
∈ Lnx̂

2 ,
T̂ x̂

¯
+ Tvv ∈ Xv and x̂

¯
= D(T̂ x̂

¯
+ Tvv).

Proof. First, we generalize Cauchy’s formula for repeated
integration as

Lemma 11. Suppose x ∈ Cn
N [a, b] for any N ∈ N. Then

x(s)= x(a)+

N−1∑
j=1

(s−a)j

j!
∂j
sx(a)+

s∫
a

(s−θ)N−1

(N − 1)!
∂N
s x(θ)dθ.

This gives a map from ∂j
s x̂(a) and x̂

¯
to x̂. Next we express

Bx̂ in terms of the ∂j
s x̂(a) and x̂

¯
. Applying the boundary

conditions in Xv , we may now invert this map (using B−1
T )

to obtain an expression for the ∂j
s x̂(a) in terms of x̂

¯
and v.

Substituting this expression into Lemma 11, we obtain the
theorem statement. For details, see [25, Appendix A].

For any given v ∈ Rnv , Theorem 10 provides an invertible
map between the state of the PIE subsystem, x̂

¯
(t) ∈ Lnx̂

2 and
the state of the PDE subsystem, x̂(t) ∈ Xv . Furthermore, as
will be shown in Section VI, this transformation is unitary.
In the following subsection, we apply this mapping to the
internal dynamics of the PDE subsystem in order to obtain an
equivalent PIE representation of this subsystem.

nx̂ =

N∑
i=0

ni, nSi =

N∑
j=i

nj , nS =

N∑
i=1

nSi ni:j =

j∑
k=i

nk,

τi(s) =
si

i!
, Ti,j(s) = τ(j−i)(s)

[
0(nSi−nSj),nSj

InSj

]
,

Qi(s) =


0 τ0(s)Ini

0 τ1(s)Ini+1

. . .

0 τN−i(s)InN

, Q(s) =

Q1(s)
...

QN (s)



T (s) =

T1(s)
...

TN (s)

 =

T1,1(s) · · · T1,N (s)
...

. . .
...

0 · · · TN,N (s)

 ,

U1i =

[
Ini

0ni+1:N ,ni

]
, U1 = diag(U10, · · · , U1N )

U2i =

[
0ni,ni+1:N

Ini+1:N

]
, U2 =

[
diag(U20, · · · , U2(N−1))

0nN ,nS

]
,

BT = B

[
T (0)

T (b− a)

]
−

∫ b

a

BI(s)U2T (s− a)ds,

BQ(s)=B−1
T

BI(s)U1+

b∫
s

BI(θ)U2Q(θ − s)dθ −B

[
0

Q(b− s)

],

G0 =

[
In0

0(nx̂−n0)

]
, G2(s, θ) =

[
0

T1(s− a)BQ(θ)

]
,

G1(s, θ) =

[
0

Q1(s− θ)

]
+G2(s, θ), Gv(s) =

[
0

T1(s− a)B−1
T Bv

]
,

T̂ = P
[

∅ ∅
∅ {Gi}

]
, Tv = P

[
∅ ∅
Gv {∅}

]
.

Block 4: Definitions based on n ∈ NN+1 and the parameters
of Gb := {B, BI , Bv} used in Theorem 10.

C. PIE representation of a PDE Subsystem
For finite-dimensional state-space systems, similarity trans-

forms are used to construct equivalent representations of the
input-output map. Specifically, for any invertible T , the system
G := {A,B,C,D} with internal state x may be equivalently
represented as G := {T−1AT, T−1B,CT,D} with internal
state x̂ = T−1x. In this subsection, we apply this approach
to PDE subsystems. Specifically, now that we have obtained
an invertible transformation from Lnx̂

2 to Xv , we apply the
logic of the similarity transform to the internal dynamics
of the PDE subsystem in order to obtain an equivalent PIE
subsystem representation. Specifically, in Theorem 12, we
substitute x̂ = T̂ x̂

¯
+ Tvv in the internal dynamics of the

PDE subsystem. The result is a set of equations parameterized
entirely using PI operators. These PI operators, as defined in
Block 5, specify a PIE subsystem whose input-output behavior
mirrors that of the PDE subsystem and whose solution can
be constructed using the solution of the PDE subsystem.
Conversely, any solution of the associated PIE subsystem can
be used to construct a solution for the PDE subsystem.

Theorem 12. Given an n ∈ NN+1 and a set of PDE
parameters {Gb, Gp} as defined in Equations (10) and (12)
with {n,Gb} admissible, suppose v ∈ Lnv

2e [R+] with
Bvv ∈ W 2nS

1e [R+], {T̂ , Tv} are as defined in Block 4 and
{Â, Bv, Cr, Drv} are as defined in Block 5. Define

GPIE =
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
Then we have the following.
1) For any x̂0 ∈ Xv(0) (Xv is as defined in Equation (9)), if
{x̂, r} satisfies the PDE defined by {n,Gb,Gp} with initial
condition x̂0 and input v, then {Dx̂, r, ∅} satisfies the PIE
defined by GPIE with initial condition Dx̂0 ∈ Lnx̂

2 and input
{v, ∅} where Dx̂ = col(∂0

s x̂0, · · · , ∂N
s x̂N ).

2) For any x̂
¯
0 ∈ Lnx̂

2 , if {x̂
¯
, r, ∅} satisfies the PIE defined by

GPIE for initial condition x̂
¯
0 and input {v, ∅}, then {T̂ x̂

¯
+

Tvv, r} satisfies the PDE defined by {n,Gb,Gp} with initial
condition x̂0 = T̂ x̂

¯
0 + Tvv(0) and input v.

Proof. The proof is based on a partial similarity transform
induced by x̂ = T̂ x̂

¯
+ Tvv and details may be found in [25,

Appendix B].
The first part of Theorem 12 shows that well-posedness of

the PDE subsystem guarantees well-posedness of the associ-
ated PIE subsystem and, furthermore, shows that the input-
output behavior of the PIE subsystem mirrors that of the
PDE subsystem. The second, converse, result, shows that well-
posedness of the PIE subsystem guarantees well-posedness of
the PDE subsystem and, furthermore, shows that the input-
output behavior of the PDE subsystem mirrors that of the PIE
subsystem. Because PIEs are potentially easier to numerically
analyze, control and simulate, this converse result suggests
that the tasks of analysis, control and simulation of a PDE
subsystem may be more readily accomplished by performing
the desired task on the PIE subsystem and then applying the
result to the original PDE subsystem.
C.1 Illustration of the Construction of the PIE Subsystem

In this subsection, we detail the application of the formulae
in Blocks 4 and 5 to a given GPDE model. Additional, less
detailed examples are given in Section VIII.



11

RD,2(s, θ) = U2T (s− a)BQ(θ)

RD,1(s, θ) = RD,2(s, θ) + U2Q(s− θ),

Υ =


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

 ,

Ξ =
[ [

0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
,

[
Drv Crx

Bxv {Âi}

]
= P4

× (Ξ,Υ)

Â = P
[ ∅ ∅

∅ {Âi}

]
, Bv = P

[
∅ ∅

Bxv {∅}

]
, Cr = P

[
∅ Crx

∅ {∅}

]
Drv = P

[
Drv ∅
∅ {∅}

]
, T =

[
Inx

0

GvCv T̂

]
, Tw =

[
0 0

GvDvw 0

]
,

Tu =

[
0 0

GvDvu 0

]
, , A =

[
A+BxrDrvCv BxrCr

BvCv Â

]
,

B1 =

[
Bxw +BxrDrvDvw

BvDvw

]
, B2 =

[
Bxu +BxrDrvDvu

BvDvu

]
,

C1 =
[
Cz +DzrDrvCv DzrCr

]
, C2 =

[
Cy +DyrDrvCv DyrCr

]
D11 = Dzw +DzrDrvDvw, D12 = Dzu +DzrDrvDvu,

D21 = Dyw +DyrDrvDvw, D22 = Dyu +DyrDrvDvu.

Block 5: Definitions based on the PDE and GPDE parameters
in Gp= {A0, A1, A2, Bxv, Bxb, Cr, Drb} and Go = {A,
Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu, Dyr,
Cv, Dvw, Dvu}, the Definitions from Gb as listed in Block 4
and the map P4

× as defined in [25, Lemma 36].

Illustration 3 (A simple PIE: The Entropy PDE) A PDE
model for entropy change in a 1D linear thermoelastic rod
clamped at both ends is given by [9]

η̇(t, s) = ∂2
sη(t, s),subject to the BCs

η(t, 0) +

∫ 1

0

η(t, s)ds = 0, η(t, 1) +

∫ 1

0

η(t, s)ds = 0.

The GPDE representation of this model is defined by n =
{0, 0, 2}, Gp = {A0 =

[
0 0 1

]
}, and

Gb =

{
B =

[
1 0 0 0
0 0 1 0

]
, BI = −

[
1 0 0
1 0 0

]}
.

Using the formulae in Blocks 4 and 5, we find the PIE
subsystem as follows (we neglect interconnection to the ODE
subsystem as there are no ODEs, inputs, or outputs).

U2 =

1 0
0 1
0 0

 , U1 =

00
1

 , T (s) =

[
1 s
0 1

]
, Q(s) =

[
s
1

]
,

BT =

[
2 1/2
2 3/2

]
, BQ(s) = (1− s)

[
s
4
−1

]
, G0(s) = 0,

G1(s, θ) = G2(s, θ) + (s− θ), G2(s, θ) = 3s
(s− 1)

4
.

The PIE form (η
¯
= ∂2

2η) of the entropy PDE is then given by
s∫

0

(
s2 +

s

4
− θ

)
η̇
¯
(t, θ)dθ +

1∫
s

3

4
(s2 − s)η̇

¯
(t, θ)dθ = η

¯
(t, s).

V. PIE REPRESENTATION OF A GPDE

Having converted the PDE subsystem to a PIE, integration
of the ODE dynamics is a simple matter of augmenting the
PIE subsystem (Equation (16)) with the differential equations
which define the ODE (Equation (5)), followed by elimination
of the interconnection signals v and r. The result is an

augmented PIE system, as defined in Equation (4) whose
parameters are 4-PI operators, as defined in Blocks 4 and 5.

A. A map between PIE and GPDE states
Our first step in constructing the augmented PIE system

which will be associated to a given GPDE model is to con-
struct the augmented map from GPDE state (defined on Xw,u)
to the associated PIE state (defined on RLnx,nx̂

2 ). Specifically,
given a GPDE model {n,Gb,Go,Gp} with {n,Gb} admis-

sible and state x =

[
x
x̂

]
∈ Xw,u, the associated PIE system

state is x
¯
=

[
x
Dx̂

]
∈ RLnx,nx̂

2 where D := diag(∂0
sIn0

, · · · ,
∂N
s InN

). Using this definition, Corollary 13 shows that if {T ,
Tw, Tu} are as defined in Block 5, then the map x → x

¯
can

be inverted as x = T x
¯
+ Tww + Tuu.

Corollary 13 (Corollary of Theorem 10). Given an n ∈
NN+1, and Gb with {n,Gb} admissible, let {T , Tw, Tu}
be as defined in Block 5, Xw,u as defined in Eq. (13) and
D :=diag(∂0

sIn0 , · · · , ∂N
s InN

). Then for any w ∈ Rnw and
u ∈ Rnu we have:
(a) If x := {x, x̂} ∈ Xw,u, then x

¯
:= {x,Dx̂} ∈ RLnx,nx̂

2 and
x = T x

¯
+ Tww + Tuu.

(b) If x
¯
∈ RLnx,nx̂

2 , then x := T x
¯
+ Tww + Tuu ∈ Xw,u and

x
¯
=

[
Inx

0
0 D

]
x.

Proof. The proof simply applies the definitions of x, x
¯
, and

v – See [25, Appendix C].

Thus, for any given w, u, we have an invertible transforma-
tion from RLnx,nx̂

2 to Xw,u.

B. Representation of a GPDE model as a PIE system
In this subsection, we define the PIE system associated

with a given admissible GPDE model. This associated PIE
system is defined by 4-PI parameters as defined in Blocks 4
and 5. For convenience, we use M : {n,Gb,Go,Gp} 7→
{T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} to repre-
sent the several formulae used to map GPDE parameters to
PIE parameters.

Definition 14. Given {n,Gb,Go,Gp} where
Gb = {B,BI , Bv} , Gp = {A0, A1, A2, Bxv, Bxb, Cr, Drb}
Go = {A,Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu,

Dyr, Cv, Dvw, Dvu}
we say that GPIE = M({n,Gb,Go,Gp}) if GPIE =
{T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} where {T ,
Tw, Tu, A, B1, B2, C1, C2, D11, D12, D21, D22} are as defined
in Blocks 4 and 5.

Having specified the PIE system associated with a given
GPDE model, we now extend the results of Theorem 12 to

show that the map x 7→
[
I 0
0 D

]
x proposed in Corollary 13

maps a solution of a given GPDE model to a solution of the
associated PIE system and that the inverse map x

¯
7→ T x

¯
+

Tww+Tuu maps a solution of the associated PIE to a solution
of the given GPDE model.
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Corollary 15 (Corollary of Theorem 12). Given an n ∈ NN+1

and parameters {Go, Gb, Gp} as defined in Equations (6),
(10) and (12) with {n,Gb} admissible, let w ∈ Lnw

2e [R+]
with BvDvww ∈ W 2nS

1e [R+], u ∈ Lnu
2e [R+] with BvDvuu ∈

W 2nS
1e [R+]. Define
GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22}

= M({n,Gb,Go,Gp}.
Then we have the following:
1) For any {x0, x̂0} ∈ Xw(0),u(0) (where Xw,u is as defined in
Equation (13)), if {x, x̂, z, y, v, r} satisfies the GPDE defined
by {n, Go, Gb, Gp} with initial condition {x0, x̂0} and

input {w, u}, then
{[

x
Dx̂

]
, z, y

}
satisfies the PIE defined by

GPIE with initial condition
[
x0

Dx̂0

]
and input {w, u} where

Dx̂ = col(∂0
s x̂0,· · · ,∂N

s x̂N ).
2) For any x

¯
0 ∈ RLnx,nx̂

2 , if {x
¯
, z, y} satisfies the PIE

defined by GPIE with initial condition x
¯
0 and input {w, u},

then {x, x̂, z, y, v, r} satisfies the GPDE defined by

{n,Go,Gb,Gp} with initial condition
[
x0

x̂0

]
= T x

¯
0 +

Tww(0) + Tuu(0) and input {w, u} where[
x(t)
x̂(t)

]
:= T x

¯
(t) + Tww(t) + Tuu(t),

v(t) := Cvx(t) +Dvww(t) +Dvuu(t),

r(t) :=
[
0nx̂×nx

Cr
]
x
¯
(t) +Drvv(t),

and where Cr and Drv are as defined in Block 5.

Proof. The proof is simply a matter of applying Theorem 12
to the augmented states and verifying the definition of solution
is satisfied for both the GPDE and PIE. A detailed proof can
be found in [25, Appendix D].

Several examples of the conversion of GPDE models to PIE
systems can be found in Section VIII.

VI. EQUIVALENCE OF PROPERTIES OF GPDE AND PIE

We have motivated the construction of PIE representations
of GPDE models by stating that many analysis, control, and
simulation tasks may be more readily accomplished in the
PIE framework. However, this motivation is predicated on the
assumption that the results of analysis, control and simulation
of a PIE system somehow translate to analysis, control and
simulation of the original GPDE model. For simulation, the
conversion of a numerical solution of a PIE system to the
numerical solution of the GPDE is trivial, as per Corollary 15
through the mapping x

¯
(t) 7→ T x

¯
(t)+Tww(t)+Tuu(t). In this

section, we show that analysis and control of the PIE system
may also be translated to the GPDE model. For input-output
properties, this translation is trivial. For internal stability and
control, additional mathematical structure is required.

A. Equivalence of Input-Output Properties
Because the translation of PIE solution to GPDE solution is

limited to the internal state of the PIE (inputs and outputs are
unchanged), Corollary 15 implies that all input-output (I/O)
properties of the GPDE model are inherited by the PIE system
and vice versa. As a result, we have the following.

Corollary 16 (Input-Output Properties). Given an n ∈ NN+1

and parameters {Go, Gb, Gp} as defined in Equations (6),
(10) and (12) with {n,Gb} admissible, let w ∈ Lnw

2e [R+] with
BvDvww ∈ W 2nS

1e [R+]. Let GPIE = M({n,Gb,Go,Gp}.
Suppose {x0, x̂0} = {0, 0}. Then the following are equivalent.
1) If {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go,
Gb, Gp} with initial condition {0, 0} and input {w, 0}, then
∥z∥L2

≤ γ ∥w∥L2
.

2) If {x
¯
, z, y} satisfies the PIE defined by GPIE with initial

condition 0 and input {w, 0}, then ∥z∥L2
≤ γ ∥w∥L2

.
Suppose K :∈ L

ny

2e → Lnu
2e . Then the following are equivalent.

1) If {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go,
Gb, Gp} with initial condition {0, 0} and input {w,Ky},
then ∥z∥L2

≤ γ ∥w∥L2
.

2) If {x
¯
, z, y} satisfies the PIE defined by GPIE with initial

condition 0 and input {w,Ky}, then ∥z∥L2
≤ γ ∥w∥L2

.

Proof. Corollary 16 follows directly from Corollary 15.

B. Equivalence of Internal Stability
Unlike I/O properties, the question of internal stability of

a GPDE model is complicated by the fact that there is no
universally accepted definition of stability for such models.
Specifically, if the state-space of a GPDE model is defined
to be Xu,w (a subspace of the Sobolev space Wn), then the
obvious norm is the Sobolev norm – implying that exponential
stability requires exponential decay with respect to the Sobolev
norm. However, many results on stability of PDE models use
the L2 norm as a simpler notion of size of the state.

In this section, we show that while both notions of stability
are reasonable, the use of the Sobolev norm and associated
inner product confers significant advantages in terms of math-
ematical structure on the GPDE model and offers a clear
equivalence between internal stability of the GPDE model and
associated PIE system. In particular, we first show that X0,0 is
a Hilbert space when equipped with the Sobolev inner product
and furthermore, exponential stability of the GPDE model
with respect to the Sobolev norm is equivalent to exponential
stability of the PIE system with respect to the L2 norm.

B.1 Topology of X0,0 (state space of a GPDE with no inputs)
Before we begin, for n ∈ NN , let us recall the standard

inner product on Rnx ×Wn〈[
u
u

]
,

[
v
v

]〉
Rnx×Wn

= uT v +
∑N

i=0
⟨ui,vi⟩Wni

i
,

⟨ui,vi⟩Wni
i

:=
∑i

j=0

〈
∂j
sui, ∂

j
sui

〉
L2

with associated norms ∥ui∥Wni
i

:=
∑i

j=0

∥∥∂j
sxi

∥∥
L

ni
2

and∥∥∥∥[uu
]∥∥∥∥

Rnx×Wn

= ∥u∥R +
∑N

i=0
∥ui∥Wni

i
.

As we will see, however, the standard inner product Rnx×Wn

is not quite the right inner product for X0,0. For this reason, we
propose a slightly modified inner product which we will denote
⟨·, ·⟩Xn , and show that this new inner product is equivalent to
the standard inner product on Wn. Specifically, we have

⟨u,v⟩Xn :=
∑N

i=0

〈
∂i
sui, ∂

i
svi

〉
L

ni
2

= ⟨Du,Dv⟩Lnx
2

(21)
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and define the obvious extension〈[
u
u

]
,

[
v
v

]〉
Rnx×Xn

:= uT v + ⟨u,v⟩Xn .

We now show that the norms ∥·∥Rnx×Wn and ∥·∥Rnx×Xn

are equivalent on the subspace X0,0.

Lemma 17. Suppose pair {n,Gb} is admissible. Then
∥u∥Rnx×Xn ≤ ∥u∥Rnx×Wn and there exists c0 > 0 such that
for any u ∈ X0,0, we have ∥u∥Rnx×Wn ≤ c0 ∥u∥Rnx×Xn .

Proof. Because the map x
¯
→ x is a PI operator, it is bounded,

which allows a bound on all terms in the Sobolev norm.
See [25, Appendix F] for a complete proof.

Trivially, using nx = 0, this result also extends to equiva-
lence of ∥·∥Wn and ∥·∥Xn on X0.

Next, we will show that T̂ and T are isometric when X0

and X0,0 are endowed with the inner products ⟨·, ·⟩Rnx×Wn

and ⟨·, ·⟩Rnx×Xn , respectively. This implies that these spaces
are complete with respect to both ∥·∥Rnx×Xn (∥·∥Xn ) and
∥·∥Rnx×Wn (∥·∥Wn ).
B.2 X0,0 is Hilbert and T is unitary

First, note X0 and X0,0 are defined by {n,Gb} as

X0 :=
{
x̂ ∈ Wn[a, b] : BBx̂ =

∫ b

a
BI(s)(F x̂)(s)ds

}
,

X0,0 :=

{[
x
x̂

]
∈ R×Xv : v = Cvx

}
.

The sets X0 and X0,0 are the subspaces of valid PDE
subsystem and GPDE model states when v = 0 and when
u = 0, w = 0, respectively. Previously, in Theorem 10,
we have shown that T̂ is a bijective map. In Theorem 18
we extend this result to show that T̂ : Lnx̂

2 → Xn and
T : RLnx,nx̂

2 → Rnx ×Xn are unitary in that the respective
inner products are preserved under these transformations.

Theorem 18. Suppose {n,Gb} is admissible, {T̂ , Tv} are as
defined in Block 4, and {T , Tw, Tu} are as defined in Block 5
for some matrices Cv , Dvw and Dvu. If ⟨·, ·⟩Xn is as defined
in Equation (21), then we have the following:
a) for any v1, v2 ∈ Rnv and x̂

¯
, ŷ

¯
∈ Lnx̂

2〈(
T̂ x̂

¯
+ Tvv1

)
,
(
T̂ ŷ

¯
+ Tvv2

)〉
Xn

=
〈
x̂
¯
, ŷ
¯

〉
L

nx̂
2

. (22)

b) for any w1, w2 ∈ Rnw , u1, u2 ∈ Rnu , x
¯
,y
¯
∈ RLnx,nx̂

2 ,〈
(T x

¯
+ Tww1 + Tuu1),

(
T y

¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=
〈
x
¯
,y
¯

〉
RLnx,nx̂

2

. (23)

Proof. The proof follows directly from the definition of the
Xn inner product and the map x 7→ x

¯
. See [25, Appendix E]

for more details.

Corollary 19. Suppose {n,Gb} is admissible, T̂ is as defined
in Block 4, T is as defined in Block 5, Xv is as defined in
Eq. (9) and, for any matrices Cv , Dvw and Dvu, Xw,u is as
defined in Eq. (13). Then X0 is complete with respect to ∥·∥Xn

and X0,0 is complete with respect to ∥·∥Rnx×Xn . Furthermore,
T̂ : Lnx̂

2 → X0 and T : RLnx,nx̂

2 → X0,0 are unitary
(isometric surjective mappings between Hilbert spaces).

Proof. From Theorem 10 and Corollary 13, we have that T is
a bijective mapping from RLnx,nx̂

2 to X0,0. From Theorem 18,

we have that T is isometric with respect to the Rnx×Xn inner
product. Since RLnx,nx̂

2 is complete, we conclude that X0,0 is
complete with respect to the Rnx ×Xn norm. Completeness
of X0 follows trivially from the special case nx = 0.

As a direct consequence of Corollary 19 and Lemma 17,
X0 and X0,0 are also complete with respect to ∥·∥Wn and
∥·∥Rnx×Wn , respectively.
B.3 Equivalence of Internal Stability Properties

As shown in Theorem 18, the natural definition of exponen-
tial stability of a GPDE model is with respect to the Rnx×Xn

norm. However, as shown in Lemma 17, exponential stability
with respect to the Rnx×Xn norm is equivalent to exponential
stability with respect to the Rnx × Wn norm. Hence, we
formally define stability with respect to the Rnx ×Wn norm.

Definition 20 (Exponential Stability of a GPDE model). We
say a GPDE model defined by {n,Go,Gb,Gp} is exponen-
tially stable if there exist constants M , α > 0 such that for
any {x0, x̂0} ∈ X0,0, if {x, x̂, z, y, v, r} satisfies the GPDE
defined by {n,Go,Gb,Gp} with initial condition {x0, x̂0}
and input {0, 0}, then∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

Clearly, internal stability of a PIE system is with respect to
the RL2 norm.

Definition 21 (Exponential Stability of a PIE system). We say
a PIE defined by GPIE is exponentially stable if there exist M ,
α > 0 such that for any x

¯
0 ∈ RLnx,nx̂

2 , if {x
¯
, z, y} satisfies

the PIE defined by GPIE with initial condition x
¯
0 and input

{0, 0}, then ∥x
¯
(t)∥RL2

≤ M
∥∥x

¯
0
∥∥
RL2

e−αt for all t ≥ 0.

Exponential stability of a GPDE model is equivalent to
exponential stability of the associated PIE system.

Theorem 22. Given {n,Go,Gb,Gp} with {n,Gb} admis-
sible, the GPDE model defined by {n,Go,Gb,Gp} is expo-
nentially stable if and only if the PIE defined by GPIE :=
M({n,Gb,Go,Gp}) is exponentially stable.

Proof. The proof is a direct application of the stability defini-
tions, Theorem 18, and Lemma 17 ( [25, Appendix G]).

The results of Theorem 22 also imply that Lyapunov and
asymptotic stability of the GPDE model in the Rnx × Wn

norm are equivalent to Lyapunov and asymptotic stability of
the associated PIE system in the RL2 norm. Lyapunov and
asymptotic stability of GPDEs and PIEs are defined as follows.

Definition 23 (Lyapunov Stability).
1) We say a GPDE model defined by {n,Go,Gb,Gp} is
Lyapunov stable, if for every ϵ > 0 there exists a δ > 0 such

that for any {x0, x̂0} ∈ X0,0 with
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ, if {x,

x̂, z, y, v, r} satisfies the GPDE defined by {n,Go,Gb,Gp}
with initial condition {x0, x̂0} and input {0, 0}, then∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ 0.



14

2) We say a PIE model defined by GPIE is Lyapunov stable if
for every ϵ > 0 there exists a constant δ > 0 such that for
any x

¯
0 ∈ RLm,n

2 with
∥∥x

¯
0
∥∥
RLm,n

2
< δ, if {x

¯
, z, y} satisfies

the PIE defined by GPIE with initial condition x
¯
0 and input

{0, 0}, then ∥x
¯
(t)∥RLm,n

2
< ϵ for all t ≥ 0.

Definition 24 (Asymptotic Stability).
1) We say a GPDE defined by {n, Go, Gb, Gp} is asymp-
totically stable, if for every {x0, x̂0} ∈ X0,0 and ϵ > 0,
there exists a Tϵ > 0 such that if {x, x̂, z, y, v, r} satisfies
the GPDE defined by {n,Go,Gb,Gp} with initial condition

{x0, x̂0} and input {0, 0}, then
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all

t > Tϵ.
2) We say a PIE model defined by GPIE is asymptotically
stable, if for every x

¯
0 ∈ RLm,n

2 and ϵ > 0, there exists a
Tϵ > 0 such that if {x

¯
, z, y} satisfies the PIE defined by

GPIE with initial condition x
¯
0 and input {0, 0}, then there

exists Tϵ > 0 such that ∥x
¯
(t)∥RLm,n

2
< ϵ for all t > Tϵ.

Corollary 25. Given {n,Go,Gb,Gp} with {n,Gb} admis-
sible, let GPIE := M({n,Gb,Go,Gp}). Then
1) The GPDE model defined by {n,Go,Gb,Gp} is Lyapunov
stable if and only if the PIE system defined by GPIE is
Lyapunov stable.

2) The GPDE model defined by {n,Go,Gb,Gp} is asymptot-
ically stable if and only if the PIE system defined by GPIE

is asymptotically stable.

Proof. Based on the stability definitions, this result is a direct
corollary of Theorem 22 (See [Appendix G] [25]).

C. Convex Conditions for Internal Stability of a GPDE model
In this subsection, we show how the PIE system repre-

sentation may be used to determine internal stability of the
corresponding GPDE model in the RL2 norm (as opposed to
the R×Wn norm). In this case, however, we do not establish
stability of the PIE system itself in any sense – bounds on
the RL2 norm cannot be used to bound the R × Wn norm.
Thus the stability test is defined in terms of the PIE system
representation but is not actually a test for stability of the PIE
system. In addition, the stability test is defined in terms of the
existence of positive semidefinite PI operators subject to affine
equality constraints. Such forms of convex optimization are
labelled Linear PI Inequalities (LPIs) and LMI-based methods
for the feasibility of LPIs have been discussed in, e.g. [18].
The following is a direct extension of Theorem 6 in [18].

Theorem 26. Given {n,Go,Gb,Gp} with {n,Gb} admis-
sible, let GPIE := M({n,Gb,Go,Gp}). Suppose there exist
ϵ, δ > 0, and P ∈ Πnx̂,nx̂

nx,nx
such that P = P∗ ≥ ϵI and

A∗PT + T ∗PA ≤ −δT ∗T .

Then the GPDE model defined by {n,Go,Gb,Gp} is expo-
nentially stable in the RLnx,nx̂

2 norm.

While a complete discussion of LPI tests for analysis and
control of PIEs and GPDEs is beyond the scope of this
paper, we note that other LPI tests for properties of the
GPDE in terms of the associated PIE include L2-gain [23],

H∞-optimal estimator design [7], and H∞-optimal full-state
feedback controller synthesis [24].

VII. PIETOOLS: A SOFTWARE PACKAGE FOR GPDE
MODELS AND PIE REPRESENTATION

Because the GPDE class of model is meant to be “uni-
versal”, construction of a GPDE requires the identification
of a large number of system parameters — most of which
are typically zero or sparse. Furthermore, construction of
the associated PIE system using the formulae in Blocks 4
and 5 can be cumbersome, requiring one to parse a rather
complicated notational system. This complicated process of
identification of parameters and application of formulae may
thus be an impediment to practical application of the results
in this paper. For this reason, PIETOOLS versions 2021a and
later include software interfaces for construction of GPDE
models which do not require the user to understand of
the notational system defined in this paper. For example,
PIETOOLS 2021b (Available from [26]) includes a Graphical
User Interface (GUI) which allows the user to define a GPDE
data structure one term at a time. Because many GPDE models
only consist of a few terms, this GUI dramatically reduces the
time required to declare a GPDE model. Furthermore, this GUI
automates the application of the formulae in Blocks 4 and 5 –
allowing the user to construct an associated PIE system data
structure which is compatible with the PIETOOLS utilities for
analysis, control and simulation of PIEs. Additional details can
be found in the PIETOOLS user manual [22]. In addition to
the GUI, PIETOOLS includes many tools for the analysis,
control, estimation and simulation of PIE systems in the
context of: simple PDE models, advanced GPDE models and
Delay Differential Equations. In the following section, we
apply this GUI to several GPDE models. In some cases, we
will also include results generated by the analysis, control and
simulation tools in PIETOOLS as applied to the PIE systems
associated with these GPDE models.

VIII. EXAMPLES OF THE PIE REPRESENTATION

In this section, we illustrate the PIE representation of three
GPDE models. In most cases, we use the PIETOOLS GUI,
as described in Section VII, to construct the associated PIE
system. More examples can be found in [25, Appendix J].

A. Damped wave equation with delay and motor dynamics
First, we revisit the GPDE model studied in Section III-D

and Section IV-A1. Since we have already identified the
parameters of the GPDE model and applied the formulae
in Block 4, we do not use the GUI defined in Section VII
and instead directly construct the associated PIE system using
the formulae in Block 5. This allows us to retain the parameter
dependencies of the original GPDE model which now appear
in the 4-PI parameters of GPIE which defines the associated
PIE system. However, for simplicity, we choose µ(s) = 1
which yields the following nonzero PIE system parameters.

T = P

 1
[
0 0 0

] 0
−Kt

−Kts

 03,

1 0 0
0 0 0
0 −sθ −θ

 ,

0 0 0
0 −1 0
0 −sθ −s


 ,
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B2 = P
[

1 ∅
03,1 {∅}

]
, C2 = P

[
0

[
1 0 0

]
∅ {∅}

]

A = P

 −R
L

01,300
0

 
0 0 1
0 1

τ
0

0 0 0

 , 03, 03


 , Tw = P

 ∅ ∅00
s

 {∅}


C1 = P

[ [
−0.5Kt

0

] [
0 −0.5s −0.5s2 − s
0 0 0

]
∅ {∅}

]
,

D12 = P

[ [
0
1

]
∅

∅ {∅}

]
, D11 = P

[ [
0.5
0

]
∅

∅ {∅}

]
.

B. A 4th order PDE: Timoshenko Beam Equation

In this example, we find the PIE system associated with a
GPDE model with a 4th order spatial derivative. While the
dynamics of the Timoshenko beam [28] are often modeled
as two coupled 2nd order PDEs, if the beam is elastic,
isotropic and homogeneous with constant cross-section then
these equations can be combined to obtain a 4th order GPDE
representation.

ρAẅ(t, s)−
(
ρI +

EIρ

κG

)
∂2
s ẅ(t, s) +

ρ2I

κG
˙̇ ˙̇w(t, s)

= −EI∂4
sw(t, s),

where ρ is the density of the beam material, A is the cross
section area, I is the second moment of area, κ is the
Timoshenko beam constant, E is the elastic modulus and G is
the shear modulus. For simplicity, we take ρ = A = I = κ =
G = E = 1. The BCs are given by w(t, 0) = 0, ∂sw(t, 0) = 0,
∂2
sw(t, 1) = w(t, 1), and ∂3

sw(t, 1) = ∂sw(t, 1).

To eliminate the higher-order time derivates, we define
the state variables as w, ẇ, ẅ and ˙̇ẇ and based on the gen-
erator and BCs, we partition the state variables as x̂0 =
col(ẇ, ˙̇ẇ), x̂1 = ẅ, and x̂2 = w. The full state is then
x̂ = col(x̂0, x̂2, x̂4) so that the continuity condition is
n = {2, 0, 1, 0, 1}, implying nS1

= 2, nS2
= 2, nS3

= 1,
nS4 = 1, and hence nS = 6. Because we require nBC = nS ,
we need two additional BCs. To get these new BCs, we
differentiate w(t, 0) = 0 and ∂sw(t, 0) = 0 twice in time
to obtain ẅ(t, 0) = 0 and ∂sẅ(t, 0) = 0. We now use the
PIETOOLS GUI to calculate the PIE representation as

P
[

∅ ∅
∅ {Gi}

]
︸ ︷︷ ︸

T

˙̂x
¯
(t, s) = P

[
∅ ∅
∅ {Ai}

]
︸ ︷︷ ︸

A

x̂
¯
(t, s)

where x̂
¯
= col(ẇ, ˙̇ẇ, ∂2

s ẅ, ∂
4
sw) and

A0(s) =


0 0 0 0
0 0 1 −1
0 1 0 0
1 0 0 0

 , A1(s, θ) =


0 0 s− θ 0
0 0 θ − s 0
0 0 0 0
0 0 0 0

 ,

A2(s, θ) = 04, f0(s, θ) = − 1

39
s3θ3 +

s2θ2

26
(3s− θ − 2) ,

G0(s) =

[
I2

02

]
, G2(s, θ) =

[
03

f0(s, θ)− 1
6s

2(s+ 3θ)

]
,

G1(s, θ) =

02 [
s− θ 0
0 f0(s, θ) +

1
6θ

2(3s− θ)

] .
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Fig. 6: A simulation of the closed-loop GPDE model in Sec-
tion VIII-C using the stabilizing state-feedback controller gen-
erated using PIETOOLS. The initial conditions and decaying
sinusoidal disturbance, w, are as defined in section VIII-C.

C. Controller Simulation of Reaction-Diffusion Equations
Consider the a reaction-diffusion PDE model with an ODE-

based controller acting at the boundary.
ẋ(t) = −x(t) + u(t), ẋ(t, s) = λx(t, s) + ∂2

sx(t, s) + w(t),

z(t) =

[∫ 1

0
x(t, s)ds
u(t)

]
, s ∈ (0, 1), t ≥ 0

x(t, 0) = 0, x(t, 1) = x(t), x(0) = 0, x(0, s) = sin(πs),

where x is the state of the dynamic boundary controller, x
is the distributed state, z is the regulated output and w is a
disturbance. The control input, u(t), enters the system through
an ODE (typical for RC motor implementation) which is then
coupled with the PDE state x at the boundary. Using the
PIETOOLS GUI to define the GPDE, we construct the as-
sociated PIE system. For λ = 10, the open loop GPDE model
is unstable. However, the PIETOOLS tool for stabilizing state-
feedback controller synthesis (based on [24]) provides the
following state-feedback controller.

u(t) = −13.45x(t) +

∫ 1

0

k(s)∂2
sx(s, t)ds, where

k(s) = −9.39s10 + 19.7s9 + 34.7s8 − 124s7 + 83.5s6

+ 48.2s5 − 78.9s4 + 25.4s3 + 3.98s2 − 8.73s+ 6.61.

We now use the PIESIM package in PIETOOLS to simulate
the closed-loop PIE system and reconstruct the GPDE solution
where the disturbance is w(t) = sin(10t)

10t+10−5 (the 10−5 term is
added to avoid ill-conditioning at t = 0). Both the output and
control input are shown in Figure 6(a) – verifying that the
proposed controller stabilizes the system.

IX. CONCLUSION

We have considered a generalized class of coupled ODE-
PDE models (GPDEs) which can be used to define analy-
sis, simulation and optimal control/estimation problems. This
generalized class allows for inputs and outputs which enter
through the limit values of the GPDE model, through the in-
domain dynamics of the PDE subsystem and through a coupled
ODE. The GPDE class allows for integral constraints on the
PDE state. Additionally, we may model integrals of the PDE
state acting: on the PDE dynamics; on a coupled ODE; or
on the outputs of the system. Finally, this class includes PDE
models with nth-order spatial derivatives. The GPDE model
unifies several existing classes of PDE models in a single
parameterized framework.

Having parameterized a broad class of coupled ODE-PDE
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models, we proposed a test for admissibility of a given GPDE
model and shown that admissibility implies the existence of
an associated Partial Integral Equation (PIE) representation
of the GPDE model with a unitary map from state of the
PIE system to state of the GPDE model. The class of PIE
systems is parameterized by the ∗-algebra of PI operators and
we have furthermore shown that the unitary map from PIE
to GPDE state is itself a PI operator. Finally, we have shown
that many properties of the GPDE model and associated PIE
system are equivalent – including existence of solutions, input-
output properties, internal stability, and controllability.

To aid in practical application of the proposed GPDE mod-
els and PIE conversion formulae, we have described efficient
open-source software (PIETOOLS) for the construction of
the GPDE model, conversion to PIE system, simulation of
the GPDE/PIE, and analysis/control of the GPDE/PIE. This
software includes a GUI for construction of GPDE models
and conversion to an associated PIE system – a feature
demonstrated on several example problems.
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