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A PIE Representation of Scalar Quadratic PDEs and Global

Stability Analysis Using SDP

Declan Jagt, Matthew Peet, Peter Seiler

Abstract—It has recently been shown that the evolution
of a linear Partial Differential Equation (PDE) can be more
conveniently represented in terms of the evolution of a
higher spatial derivative of the state. This higher spatial
derivative (termed the ‘fundamental state’) lies in L2 -
requiring no auxiliary boundary conditions or continuity
constraints. Such a representation (termed a Partial Integral
Equation or PIE) is then defined in terms of an algebra
of bounded integral operators (termed Partial Integral (PI)
operators) and is constructed by identifying a unitary map
from the fundamental state to the state of the original PDE.
Unfortunately, when the PDE is nonlinear, the dynamics of
the associated fundamental state are no longer parame-
terized in terms of partial integral operators. However, in
this paper we show that such dynamics can be compactly
represented using a new tensor algebra of Partial Integral
operators acting on the tensor product of the fundamental
state. We further show that this tensor product of the
fundamental state forms a natural distributed equivalent of
the monomial basis used in representation of polynomials
on a finite-dimensional space. This new representation is
then used to provide a simple SDP-based Lyapunov test
of stability of quadratic PDEs. The test is applied to three
illustrative examples of quadratic PDEs with various types
of boundary conditions.

I. INTRODUCTION

In this paper, we consider the problem of representation and

stability analysis of quadratic Partial Differential Equations

(PDEs). Quadratic PDEs are frequently used to model physical

processes, including fluid dynamics (e.g. Navier-Stokes), pop-

ulation growth (e.g. Fisher’s equation), and wave propagation

(e.g. Korteweg-de Vries). However, certain aspects of the

standard PDE representation of such nonlinear systems present

difficulties when applied to the problems of analysis and

simulation. For example, consider Burgers’ equation with an

added reaction term ru, and Dirichlet Boundary Conditions

(BCs):

ut(t, s) = uss(t, s) + ru(t, s)− u(t, s)us(t, s), s ∈ [0, 1],

u(t, 0) = 0, u(t, 1) = 0. (1)

To verify stability of this system, we can use the candidate

Lyapunov Function (LF) V (u) = 1

2
‖u‖2L2

≥ 0, with the

derivative satisfying V̇ (u) = r‖u‖2L2
−‖us‖2L2

along solutions

to the PDE. It can be proven that, for any r < π2, the

derivative of this LF satisfies V̇ (u) ≤ 0, thus certifying

stability of the system [1]. However, verifying that V̇ (u) ≤ 0
for r ∈ (0, π2) is not trivial, as it necessitates deriving some

upper bound on the norm of u in terms of the norm of
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its derivative us, invoking e.g. the Poincaré inequality. In

this manner, the representation of the system dynamics as a

(polynomial) function of u, us, and uss complicates the task

of verifying suitability of even a simple, fixed LF candidate

V (u) = 1

2
‖u‖2L2

.

Similarly, suppose that we adjust the BCs, imposing e.g. a

Neumann condition us(t, 1) = 0. In this case, despite the fact

that neither the gradient ∇V (u) nor the expression for u̇(t) is

changed, the derivative V̇ (u) = ∇V (u)u̇ no longer satisfies

V̇ (u) = r‖u‖2L2
−‖us‖2L2

along solutions to the system. More

generally, it is unclear how the BCs affect stability properties

of the system, and how we can account for them in testing

fitness of any LF candidate.

Because of these difficulties associated with verifying suit-

ability of LFs for nonlinear PDEs, most prior work focuses

only on limited classes of PDEs with specific BCs, proving

results only for the particular system under consideration. For

example, extensive research has been done deriving stability

conditions for Navier-Stokes equations [2]–[5], commonly

expanding solutions using e.g. a Galerkin basis, and proving

decay of a LF using Sum-Of-Squares (SOS) techniques. Sim-

ilarly, stability of the Kuramoto-Sivanshinsky Equation was

studied in [6], assuming periodic BCs, and verifying negativity

V̇ (u) ≤ 0 of a quadratic LF using discretization. However,

these results apply only to specific PDEs, offering limited

insight into how to test stability of other nonlinear systems.

Prior work studying more general systems includes [7],

deriving a Linear Matrix Inequality (LMI) stability test for

a class of wave equations utt = uss + f(u, s, t), assuming

a bound fu(u, s, t) < g on the nonlinear term. Similarly,

stability of classes of 2nd order, parabolic PDEs is analysed

in [8]–[11], e.g. deriving polynomial positivity conditions for

verifying stability of such systems. However, these results too

are limited in their applications, and the proposed stability

conditions may be challenging to enforce in practice.

Alternatively, the authors of [12]–[14] propose the use

of moment methods for analysis of nonlinear PDEs, testing

bounds on e.g. energy functionals V (u) = ‖u‖2L2
using

semidefinite programming. In order to obtain such bounds,

these works study a dual formulation of the PDE system,

attempting to use properties of this dual representation to

derive properties of the original PDE. However, an intuitive

algorithm applying these techniques to test stability of general

PDEs has not yet been developed.

In order to construct a comprehensive framework for testing

stability of nonlinear PDEs, in this paper, we illustrate how

the main obstacle prohibiting the construction of such a

framework is the PDE representation itself. In particular, as
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noted, the representation of the PDE dynamics in terms of

a polynomial function of not only the state u but also its

derivatives (us, uss, . . .) makes it difficult to verify V̇ (u) ≤
0 for any candidate LF V (u), in general. Moreover, the

presence of BCs in the PDE representation further complicates

such analysis, as any LF need only satisfy V̇ (u) ≤ 0 for

solutions u satisfying the BCs. A more suitable representation

of distributed-state systems, then, should ideally satisfy the

following two properties:

1. The system dynamics should be represented as a poly-

nomial function of only a single distributed state v(t) ∈ L2.

2. The representation should not impose any auxiliary

constraints on the state v(t), i.e. should be free of BCs and

continuity constraints.

In this paper, we show how, for scalar-valued, quadratic, 1D

PDEs, we may derive an equivalent representation satisfying

both of these conditions, termed the quadratic Partial Integral

Equation (PIE) representation.

Problem Formulation

We consider the problem of representation of nonlinear

PDEs and parametrization of quadratic (and non-quadratic)

forms on a distributed state-space. For simplicity, suppose we

are given a scalar 2nd order quadratic PDE of the form

PDE: ut(t, s) = c(s)T















u
us
uss
u2

uus
u2s















(t, s), s ∈ [a, b], (2)

and with linear boundary conditions of the general form

u(t) ∈ XB[a, b] :=

{

u ∈ H2[a, b]
∣
∣
∣ B

[
u(a)
us(a)
u(b)
us(b)

]

= 0

}

. (3)

The goal of this paper is to create a unified representation of

this class of PDEs (extending to higher-order PDEs) and to

verify the existence of quadratic Lyapunov functions which

prove stability of such systems. To create such a unified

representation and parametrization, we will first use the BCs

to express the distributed state, u ∈ XB , in terms of its highest

order derivative, v := uss ∈ L2 – constructing the linear map,

T : v 7→ u so that u = T ∂2
su and v = ∂2

sT v. This mapping

is referred to as the Partial Integral (PI) transformation, and

has already been studied extensively in the context of linear

PDEs [15].

Equipped with this PI transformation, we will show in

Section IV that any such quadratic PDE (including higher-

order PDEs) can be represented as

∂tT v(t) = Av(t) + B[v(t)⊗ v(t)]. (4)

where (v⊗v)(θ, η) = v(θ)v(η) is the tensor product of v with

itself and defines a distributed monomial basis on L2[a, b].
Although the focus of this paper is on quadratic PDEs, this

representation can also be extended to cubic or higher degree

PDEs by inclusion of higher degree monomials such as v ⊗

v⊗v. The operator A, meanwhile, is a PI operator, which for

simplicity can take the form

(Au)(s) =

∫ s

a

A1(s, θ)w(θ)dθ +

∫ b

s

A2(s, θ)w(θ)dθ.

Accordingly, the operator B is a tensor product of PI operators,

taking the form

(Bw)(s) =

∫ s

a

∫ θ

a

Q1(s, θ)R1(s, η)w(θ, η)dηdθ

+

∫ b

s

∫ s

a

Q2(s, θ)R2(s, η)w(θ, η)dηdθ

+

∫ b

s

∫ θ

s

Q3(s, θ)R3(s, η)w(θ, η)dηdθ.

Next, in Section V, we show that for a quadratic Lyapunov

functional of the form V (v) = 〈T v,PT v〉L2
(where P is a

PI operator decision variable) the derivative of this LF can be

represented as

V̇ (v) =

〈[

v

v ⊗ v

]

,

[

A∗PT + T ∗PA T ∗PB
B∗PT 0

] [

v

v ⊗ v

]〉

.

Exploiting the algebraic closure of our class of tensor products

of PI operators, we show how to take a quadratic form such

as 〈v, T ∗PBv⊗ v〉 and convert it to a corresponding linear

representation so that

〈v, T ∗PB[v⊗ v]〉L2
= K[v ⊗ v ⊗ v].

Finally, to test stability of a PDE, in Theorem 13, we enforce

negativity of A∗PT +T ∗PA along with the constraint K = 0.

This approach is applied to verify stability of three commonly

encountered scalar quadratic PDEs in Section VI.

II. NOTATION

For a given domain Ω ⊂ R
d, let Ln

2 [Ω] denote the set

of all Rn-valued square-integrable functions on Ω, where we

omit the domain when clear from context. For k ∈ N, define

Sobolev subspaces Hn
k [Ω] of L2 for Ω ⊆ R as

Hn
k [Ω] =

{
v ∈ Ln

2 [Ω] | ∂
α
s v∈Ln

2 [Ω], ∀α ∈ N : α≤ k
}
,

where we write ∂α
s v = ∂α

∂sα
v, and where we similarly omit

the domain when clear from context.

III. A MAP FROM FUNDAMENTAL STATE TO PDE STATE

We consider an N th order, scalar-valued, quadratic PDE of

the form

∂tu(t, s) =

N∑

i=0

αi(s)∂
i
su(t, s) (5)

+

N−1∑

i=0

i∑

j=0

βij(s)∂
i
su(t, s)∂

j
su(t, s), s ∈ [a, b],

with linear boundary conditions of the general form

u(t) ∈ XB[a, b] :=

{

u ∈ HN [a, b]
∣
∣
∣B

[
∆a

sD
N−1

u

∆b
sD

N−1
u

]

= 0

}

, (6)

where we define boundary operators ∆a
su = u and ∆b

su =
u(b) for arbitrary u ∈ H1[a, b], and where for u ∈ HN and

2



k ≤ N we define D
k
u as the vector of all derivatives of u

up to kth order as

D
k
u :=

[
u ∂su . . . ∂k

su

]T
.

We define solutions to the PDE as follows.

Definition 1 (Classical Solution to the PDE): For a given

initial state u0 ∈ XB , we say that u is a classical solution

to the quadratic PDE defined by {B, [α, β]} if u is Frechét

differentiable, u(0) = u0, and for all t ≥ 0, u(t) ∈ XB , and

u(t) satisfies (5).

In this section, we show how a suitably well-posed PDE of

the form in (5), defined in terms of spatial derivatives of the

variable u(s, t), can be equivalently represented in terms spa-

tial integrals of the variable ∂N
s u(s, t). The advantage of such

a representation, of course, will be that it is more compact,

defined only using bounded integral operators, and is free of

auxiliary constraints in the form of boundary conditions and

continuity constraints (i.e. u(t) ∈ XB). To begin, we recall

the standard definition of a Partial Integral (PI) operator [16].

Definition 2 (Algebras of PI Operators: Π3,Π2): For a

given domain, [a, b], we define the parameter space

N3 := L2[a, b]× L2[[a, b]
2]× L2[[a, b]

2],

and its subspace

N2 := L2[[a, b]
2]× L2[[a, b]

2].

Then, for any R := {R0, R1, R2} ∈ N3, we define the

associated operator R := P{R0,R1,R2} for u ∈ L2[a, b] as

(Ru)(s) = R0(s)u(s)+

∫ s

a

R1(s, θ)u(θ)dθ+

∫ b

s

R2(s, θ)u(θ)dθ.

We say R ∈ Π3 if R = P{R0,R1,R2} for some {R0, R1, R2} ∈
N3 and R ∈ Π2 if R = P{0,R1,R2} for some {R1, R2} ∈ N2.

For convenience, we say R is a 3-PI operator if R ∈ Π3 and

a 2-PI operator if R ∈ Π2.

Defining the 3-PI and 2-PI operators in this manner, it has

been shown that both Π2 and Π3 (and by extension N2,N3)

form *-algebras, being closed under summation, composition,

scalar multiplication, and adjoint with respect to L2. We refer

to [15] for explicit parameter maps defining these operations.

Consider now solutions u of an N th order quadratic PDE of

the form in (5). Since, at any time t ≥ 0, u(t) ∈ XB ⊂ HN is

only N th-order spatially differentiable, the N th-order spatial

derivative of this solution need only satisfy ∂N
s u(t) ∈ L2[a, b]

and hence is free of any continuity constraints or boundary

conditions. We refer to this state v(t) := ∂N
s u(t) as the

fundamental state associated to the PDE, defining a map from

the PDE state space XB to the fundamental state space L2

by the differential operator ∂N
s : XB → L2. Then, assuming

the boundary conditions to be sufficiently well-posed, we can

define an inverse map T : L2 → XB by a 2-PI operator T .

In particular, we recall the following result from e.g. [15].

Lemma 3: Let XB be as defined in Eqn. (6) for some B ∈
R

N×2N which satisfies the well-posedness conditions as given

in Defn. 9 in [15]. If T ∈ Π2 is as defined in [15], then for

all u ∈ XB and v ∈ L2,

u = T [∂N
s u], and v = ∂N

s [T v].

More generally, if Rj := ∂j
s ◦T ∈ Π2 for j ∈ {0, . . . , N−1},

then for all u ∈ XB and v ∈ L2,

∂j
su = Rj [∂

N
s u], and Rjv = ∂j

s [T v].

Proof: We refer to Thm. 10 and Thm. 12 in [15] for a

proof, as well as for explicit formulae mapping the matrix B
to operators T and Rj .

Using this lemma, we can express both the PDE state u(t)
and its derivatives ∂j

su(t) in terms of the fundamental state

v(t) := ∂N
s u(t) as u(t) = T v(t) and ∂j

su(t) = Rjv(t) for

j ∈ {0, . . . , N − 1}. Clearly, we can also define an identity

operator RN = I ∈ Π3, so that ∂N
s u = RNv. Substituting

these relations into the PDE (5), we find that if u satisfies the

PDE, then v satisfies

∂t(T v)(t, s) =

N∑

i=0

αi(s)(Riv)(t, s) (7)

+

N−1∑

i=0

i∑

j=0

βij(s)(Riv)(t, s)(Rjv)(t, s),

where v(t) ∈ L2[a, b] at each t ≥ 0 is free of boundary

conditions and continuity constraints. Moreover, in this rep-

resentation, the dynamics are now expressed as a quadratic

function of only the fundamental state v(t) and PI operators

applied to this state. In the following section, we show how this

quadratic function can be expressed more compactly in a linear

format CZ2(v), by defining a suitable basis of monomials

Z2(v) in the state v(t), and an associated class of operators

C acting on this monomial basis.
Example: Suppose that u(t, s) for s ∈ [0, 1] satisfies

Burgers’ equation with Dirichlet boundary conditions, so that

PDE: ut(t, s) = νuss(t, s)− u(t, s)us(t, s), (8)

BCs: u(t, 0) = 0, u(t, 1) = 0.

For any v ∈ L2[0, 1], let T ,R ∈ Π2 be defined as

(
T v

)
(s) :=

∫ s

0

[s− 1]θu(θ)dθ +

∫ 1

s

s[θ − 1]u(θ)dθ,

(
Rv

)
(s) :=

∫ s

0

θu(θ)dθ +

∫ 1

s

[θ − 1]u(θ)dθ. (9)

Now, if we define the fundamental state as v(t) := uss(t), then

u(t) = T v(t) and us(t) = Rv(t). Furthermore, v satisfies

∂tT v(t) = νv(t) − (T v(t))(Rv(t)). (10)

Conversely, if v(t) satisfies (10) and u(t) = T v(t), then

u(t, s) satisfies Eqn. (8).

IV. A COMPACT PIE REPRESENTATION OF QUADRATIC

PDES

In the previous section, we showed how a quadratic, N th

order PDE of Form (5), defined using state u(t) can be

equivalently represented in terms of Eqn. (7), defined using the

‘fundamental’ state v(t) = uss(t). However, the expression for

the dynamics of v in Eqn. (7) is not suitable for the purpose

of computational stability analysis – being defined using terms

such as (T v)(Rv). In this section, we show how we may

express these terms and thus the system dynamics in a linear

format. This linear format is then used to derive a stability test

for the quadratic PDE in (5) in the next section.
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A. Polynomial Representation on a Distributed State

To illustrate the difficulty posed by terms such as (T v)(Rv)
in testing stability of system as in (7), let us briefly recall

the problem of computational stability analysis of nonlinear

ordinary differential equations (ODEs). When the vector field,

f , is polynomial of degree d, the ODE may be uniquely

represented as ẋ = f(x) = AZd(x), where Zd(x) is the vector

of monomials in state x ∈ R
n of degree d or less. Additionally,

positive quadratic Lyapunov functions may be parameterized

as V (x) = 1

2
xTPx, where P ≥ 0 is a positive matrix

variable. The time-derivative of this Lyapunov functional is

then V̇ (x) = xTPAZd(x) for which we can enforce nega-

tivity using the equality constraint V̇ (x) = xTPAZd(x) =
−Zq(x)

TQZq(x) where q = (d + 1)/2 and Q is likewise

a positive matrix variable. However, enforcing this constraint

is made problematic due to the fact that expressions of the

form xTPAZd(x) and Zq(x)
TQZq(x) are not unique – i.e.

there exist PA 6= 0 such that xTPAZd(x) = 0. Thus in order

to enforce the constraint xTPAZd(x) = −Zq(x)
TQZq(x),

we must first convert to the linear representation, which is

unique – i.e. Zq(x)
TQZq(x) = vec(Q)[Zq(x) ⊗ Zq(x)] =

vec(Q)TBZd+1(x) where B is the map between monomials

in Zq(x)⊗ Zq(x) and those in Zd+1(x).
Returning now to the distributed-state system in (7), we

likewise want to derive a linear representation of terms such

as (T v)(Rv). In order to define this linear representation,

however, we first have to define a suitable basis of monomials

on distributed states v ∈ L2. To this end, let us consider

what such a basis looks like for a discretized state v =
[
v1 . . . vn

]T
=

[
v(s1) . . . v(sn)

]T
∈ R

n. For this

vector v ∈ R
n, the basis of monomials Z2(v) of degree 2

in v consists of each of the independent variables vi, as well

as any product vivj of these variables for i, j ∈ {1, . . . , n} –

i.e. the unique terms in v ⊗ v. Extending the vector v ∈ R
n

to a function v ∈ L2[a, b], we now have that v(si) and v(sj)
are independent variables for any si, sj ∈ [a, b]. Thus whereas

in finite dimensions, the independent variables are indexed by

i ∈ {1, . . . , n}, for functions on L2[a, b], every point s ∈ [a, b]
defines an independent variable. Accordingly, the degree one

monomials in infinite dimensions would simply be the function

v(s) where we have made the continuum extension vi 7→ v(s).
Likewise, for the monomials of degree 2, the products vivj
may be naturally extended to infinite dimensions as v(s)v(θ),
for s, θ ∈ [a, b]. We may denote these monomials compactly

using the tensor product (v⊗v)(s, θ) = v(s)v(θ), so that this

tensor product v⊗v ∈ L2[[a, b]
2] is the functional equivalent

of the homogeneous degree 2 monomial basis. Then, any

distributed polynomial of degree 2 in v may be expressed

in terms of the basis

Z2(v) =

[

v

v ⊗ v

]

.

We refer to this basis as the degree 2 distributed monomial

basis in v. In the following subsections, we derive a linear

representation of the system in Eqn. (7), and thus the PDE

in (5), in terms of this distributed monomial basis.

We remark that, the degree 2 distributed monomial basis can

naturally be extended to arbitrary degrees d ∈ N by including

higher degree tensor products (v ⊗ · · · ⊗ v)(θ1, . . . , θd) =
v(θ1) · · ·v(θd) of the state v. This would allow us to represent

polynomials of arbitrary degree d in the distributed state v,

and thus construct a linear representation of higher-degree

polynomial PDEs as well. However, this construction is left

for subsequent publications.

B. Tensor Products of 2-PI Operators

Having defined a monomial basis for distributed states in

terms of tensor products of this state, we now show how

we may similarly define a tensor product of 2-PI operators,

so that we may express e.g. (T v)(Rv) in the linear format

(T ⊗ R)(v ⊗ v). To motivate this class of operators, let us

again recall the linear representation of scalar polynomials on

a finite dimensional state, x ∈ R
n. In this case, however,

we are given two such polynomials, t(x) = cTt Zd(x) and

r(x) = cTr Zd(x) and want to construct a linear representation

of t(x)r(x). Fortunately, such a linear representation is readily

computed using the Konecker (i.e. tensor) product of ct and

cr as

t(x)r(x) = (ct ⊗ cr)(Zd(x)⊗ Zd(x)).

The goal of this subsection is to define the distributed equiv-

alent of this formula, where now t and r are the distributed

polynomials (albeit linear) T v and Rv, and where the 2-PI

operators T and R are the distributed equivalent of the vectors

cr and ct. Specifically, we create space Π22 , consisting of the

tensor product of 2-PI operators so that P = T ⊗R for some

T ,R ∈ Π2 implies P ∈ Π22 .

To define this tensor product of 2-PI operators, let us first

note that if T = P{0,T1,T2} ∈ Π2 and R = P{0,R1,R2} ∈ Π2,

then we can express the product (T v)(Rv) in terms of

[v ⊗ v] as

(T v)(s)(Rv)(s) =

∫ s

a

∫ s

a

T1(s, θ)R1(s, η)v(θ)v(η)dηdθ

+

∫ b

s

∫ s

a

T2(s, θ)R1(s, η)v(θ)v(η)dηdθ

+

∫ s

a

∫ b

s

T1(s, θ)R2(s, η)v(θ)v(η)dηdθ

+

∫ b

s

∫ b

s

T2(s, θ)R2(s, η)v(θ)v(η)dηdθ = Q[v⊗v](s),

for a suitably defined partial integral operator Q. Clearly,

however, this new PI operator Q ∈ Π22 (defined on v ⊗ v ∈
L2[[a, b]

2]) has a structure which is distinct from that in Π2

and Π3. Specifically, Q has the structure of a tensor product

of operators – a structure given by Defn. 4.

Definition 4 (Class of Tensor Product PI Operators, Π22 ):

For a given domain, [a, b], we define the parameter space

N22 [a, b] = L2[[a, b]
3]× L2[[a, b]

3]× L2[[a, b]
3].

Then, for any Q := [Q1, Q2, Q3] ∈ N22 , we define the
associated PI operator Q := P [Q] for w ∈ L2[[a, b]

2] as

(Qw)(s) =

∫ s

a

∫ θ

a

Q1(s, θ, η)w(θ, η)dηdθ

+

∫ b

s

∫ s

a

Q2(s, θ, η)w(θ, η)dηdθ+

∫ b

s

∫ θ

s

Q3(s, θ, η)w(θ, η)dηdθ.
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Finally, we say that Q ∈ Π22 if Q = P [Q] for some Q :=
[Q1, Q2, Q3] ∈ N22 .

Having defined a new class of operators, Π22 , we now

show that the products of the form (T v)(Rv) admit a linear

parameterization using operators in this class. Specifically, we

define the tensor operation T ⊗ R → Q ∈ Π22 such that

(T v)(Rv) = Q[v ⊗ v].
Definition 5 (Tensor Product of PI Operators: T ⊗R):

For any T = P{Ti} ∈ Π2 and R = P{Ri} ∈ Π2 where

T := {T1, T2} ∈ N2 and R := {R1, R2} ∈ N2, we say that

Q = T ⊗ R if Q = P [Q], where Q := [Q1, Q2, Q3] ∈ N22

is such that for all s, θ, η ∈ [a, b],

Q1(s, θ, η) := T1(s, θ)R1(s, η) + T1(s, η)R1(s, θ),

Q2(s, θ, η) := T2(s, θ)R1(s, η) + T1(s, η)R2(s, θ),

Q1(s, θ, η) := T2(s, θ)R2(s, η) + T2(s, η)R2(s, θ).

We now show that T ⊗R is a linear distributed polynomial

representation of the product (T v)(Rv).
Proposition 6: For any T ,R ∈ Π2 and v ∈ L2[a, b], we

have (T v)(s)(Rv)(s) = ((T ⊗R)[v ⊗ v])(s).
Proof: A proof is given in Appendix A.

We remark that, just as we can use higher degree tensor

products to define higher-degree distributed monomials, (v ⊗
· · · ⊗ v)(θ1, . . . , θd) = v(θ1) · · ·v(θd), we may also define

higher degree tensor products of 2-PI operators to map these

distributed monomials, so that (R1v) · · · (Rdv) = (R1⊗· · ·⊗
Rd)(v⊗ · · · ⊗v). Again, this extension is left for subsequent

publications.

C. A PIE Representation in Terms of Distributed
Monomials

We now return to the quadratic representation of the evo-

lution of v := ∂N
s u given in (7), of solutions u of the PDE

in (5). Using the distributed monomials and tensor products of

PI operators defined in the previous subsection, we can now

represent each of the quadratic terms in the PDE in terms of

the monomials of v – i.e. v ⊗ v. Specifically, the goal of

this subsection is to show that the evolution of v := ∂N
s u is

governed by a quadratic PIE of the form

PIE: ∂tT v(t) = Av(t) + B[v(t)⊗ v(t)], (11)

where A ∈ Π3 and B ∈ Π22 are given by

A =
N∑

i=0

Mαi
Ri, B =

N−1∑

i=0

i∑

j=0

Mβij
[Ri ⊗Rj ], (12)

where Mc denotes the multiplier operator associated to c ∈
L2[a, b], so that (Mcv)(s) = c(s)v(s). We note that the fact

that Π22 is closed under composition with multiplier operators

is relatively clear, but is also stated formally in Prop. 10. We

define solutions to the quadratic PIE in Eqn. (11) as follows.

Definition 7 (Classical Solution to the Quadratic PIE):

For a given initial state v0 ∈ L2, we say that v is a classical

solution to the quadratic PIE defined by {T , [A,B]} if v is

Frechét differentiable, v(0) = v0, and for all t ≥ 0, v(t)
satisfies (11).

The following lemma proves that there exists an invertible

map between classical solutions to the PDE (5), and classical

solutions to the associated PIE (11).

Lemma 8: Suppose that that B ∈ R
N×2N satisfies the well-

posedness conditions of Defn. 9 in [15], and let the associated

operators T ,Rj ∈ Π2 for j ∈ {0, . . . , N − 1} be as defined

in Lemma 3. Let further αk for k ∈ {0, . . . , N}, and βij ∈
L2[a, b] for i ∈ {0, . . . , N −1}, j ∈ {0, . . . , i}, and define the

operators A ∈ Π3 and B ∈ Π22 as in (12), where R0 = I ∈
Π3. Then, v is a classical solution to the quadratic PIE defined

by {T , [A,B]} with initial state v0 if and only if T v is a

classical solution to the quadratic PDE defined by {B, [α, β]}
with initial state T v0. Conversely, u is a classical solution to

the quadratic PDE defined by {B, [α, β]} with initial state u0

if and only if = ∂N
s u is a classical solution to the quadratic

PIE defined by {T , [A,B]} with initial state ∂N
s u.

Proof: Let the operators T ,Rj ∈ Π3 for j ∈ {0, . . . , N}
be as defined. Then, by Lemma 3, for any v ∈ L2[a, b],

v(s) =
(
∂N
s [T v]

)
(s), and (Rjv)(s) =

(
∂j
s [T v]

)
(s).

Defining A ∈ Π3 as in (12), by linearity of the PI operators,

we find then

(Av)(s) =
N∑

i=0

(Mαi
Riv)(s)

=
N∑

i=0

αi(s)(Riv)(s) =
N∑

i=0

αi(s)∂
i
s(T v)(s).

Similarly, defining B ∈ Π2 as in (12), by Prop. 6, and linearity

of the PI operators,

(B[v⊗ v])(s) =
N−1∑

i=0

i∑

j=0

(Mβij
[Ri ⊗Rj ])[v ⊗ v])(s)

=

N−1∑

i=0

i∑

j=0

βij(s)(Riv)(s)(Rjv)(s)

=

N−1∑

i=0

i∑

j=0

βij(s)∂
i
s(T v)(s)∂j

s (T v)(s)

Invoking these relations, it follows that for any v(t) ∈ L2[a, b],

∂t(T v)(t, s) = (Av)(t, s) + (B[v⊗ v])(t, s)

and v(0) = v0,

if and only if

∂t(T v)(t, s) =
N∑

i=0

αi(s)∂
i
s(T v)(t, s)

+
N−1∑

i=0

i∑

j=0

βij(s)∂
i
s(T v)(t, s)∂j

s (T v)(t, s)

and T v(0) = T v0.

By definition, then, v is a classical solution to the quadratic

PIE defined by {T , [A,B]} with initial state v0 ∈ L2[a, b] if

and only if T v is a classical solution to the quadratic PDE

defined by {B, [α, β]} with initial state T v0 ∈ XB[a, b].
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Conversely, by Lemma 3, we also know that for any u ∈
XB[a, b]

u(s) =
(
T [∂N

s u]
)
(s), and ∂j

su(s) =
(
Rj [∂

N
s u]

)
(s),

By linearity of the PI operators, it follows, then, that

N∑

i=0

αi(s)∂
i
su(s) =

N∑

i=0

αi(s)(Ri[∂
N
s u])(s)

=

N∑

i=0

(Mαi
Ri[∂

N
s u])(s) = (A[∂N

s u])(s).

Similarly, by Prop. 6, and linearity of the PI operators,

N−1∑

i=0

i∑

j=0

βij(s)(∂
i
su)(s)(∂

j
su)(s)

=

N−1∑

i=0

i∑

j=0

βij(s)(Ri[∂
N
s u])(s)(Rj [∂

N
s u])(s)

=

N−1∑

i=0

i∑

j=0

(Mβij
[Ri ⊗Rj ][∂

N
s u⊗ ∂N

s u])(s)

= (B[∂N
s u⊗ ∂N

s u])(s)

It follows that, for any u(t) ∈ XB[a, b],

∂tu(t, s) =

N∑

i=0

αi(s)∂
i
su(t, s) +

N−1∑

i=0

i∑

j=0

βij(s)(∂
i
su)(t, s)(∂

j
su)(t, s)

and u(0) = u0,

if and only if

∂t(T [∂N
s u])(t, s) = (A[∂N

s u])(t, s) + (B[∂N
s u⊗ ∂N

s u])(t, s)

and ∂N
s u(0) = ∂N

s u0.

By definition, then, u is a classical solution to the quadratic

PDE defined by {B, [α, β]} with initial state u0 ∈ XB[a, b]
if and only if ∂N

s u is a classical solution to the quadratic

PIE defined by {T , [A,B]} with initial state ∂N
s u0 ∈ L2[a, b],

concluding the proof.

Example: To illustrate the quadratic PIE representation,

suppose that u is a solution of Burgers’ equation as defined

in Eqn. (8). Define T ,R ∈ Π2 as in (9), and define B ∈ Π22

for w ∈ L2[[0, 1]
2] as

(Bw)(s) = −((T ⊗R)w)(s)

= −

∫ s

0

∫ θ

0

2[s− 1]θηw(θ, η)dηdθ

−

∫ 1

s

∫ s

0

[2s− 1][θ − 1]ηw(θ, η)dηdθ

−

∫ 1

s

∫ θ

s

2s[θ − 1][η − 1]w(θ, η)dηdθ.

Then v := uss is a solution of the quadratic PIE given by

PIE: ∂tT v(t) = νv(t) + B[v(t)⊗ v(t)].

V. A STABILITY TEST FOR QUADRATIC PDES

In the previous section, we showed that by constructing a

basis of distributed monomials on L2 and by representing the

dynamics of the PDE using the fundamental state (which lies

in L2), we may propose a compact and universal representation

of a class of quadratic PDEs using two PI operators, A and

B, where A ∈ Π3 is a 3-PI operator and B ∈ Π22 is a

linear combination of tensors products of 2-PI operators. Based

on this representation, in this section, we propose a simple

stability test using only quadratic storage functions. While

such a stability test is necessarily conservative, it is sufficient

to verify stability of many common quadratic PDEs and may

be later extended to non-quadratic storage functions.

Specifically, we would like to verify the existence

of a quadratic Lyapunov function of the form

V (u) = 〈u,Pu〉L2
= 〈T v,PT v〉L2

, where P = P∗ ∈ Π3 is

positive with respect to L2. If v(t) satisfies the dynamics of

the quadratic PIE in (11), then

V̇ (T v(t)) = 〈∂tT v(t),PT v(t)〉L2
+ 〈T v(t),P(∂tT v(t))〉L2

=

〈[

v(t)
v(t)⊗v(t)

]

,

[

A∗PT + T ∗PA T ∗PB
B∗PT 0

] [

v(t)
v(t)⊗v(t)

]〉

.

Since it can be shown that v and v⊗v are linearly indepen-

dent, we have that V̇ (T v) ≤ 0 for all v ∈ L2 if and only if

Q := [A∗PT + T ∗PA] � 0 and 〈v, T ∗PB[v⊗ v]〉L2
= 0

for all v ∈ L2, as stated in the following result

Proposition 9: Let Q ∈ Π3 and R ∈ Π32 , and define f :
L2 → R as

f(v) :=

〈[

v

v ⊗ v

]

,

[

Q R
R∗ 0

] [

v

v ⊗ v

]〉

L2

.

Then, for any E ∈ Π3, f(v) ≤ −‖Ev‖2L2
≤ 0 for all v ∈ L2

if and only if Q � −E∗E , and 〈v,R[v ⊗ v]〉L2
= 0 for all

v ∈ L2.

Proof: To prove this result, we first remark that, by def-

inition, 〈v,Qv〉L2
≤ −‖Ev‖2L2

= −〈v, E∗Ev〉L2
for all v ∈

L2 if and only if Q � −E∗E . As such, if 〈v,R[v ⊗ v]〉L2
= 0,

it immediately follows that f(v) = 〈v,Qv〉L2
≤ −‖Ev‖2L2

for all v ∈ L2 if and only if Q � −E∗E .

It remains to prove that if f(v) ≤ −‖Ev‖2L2
for all v ∈ L2,

then 〈v,R[v ⊗ v]〉L2
= 0. To prove this implication, suppose

that f(v) ≤ −‖Ev‖2L2
≤ 0 for all v ∈ L2, but assume

for contradiction that there exists a function v
∗ ∈ L2 such

that 〈v,R[v∗ ⊗ v
∗]〉L2

6= 0. Without loss of generality, we

may assume that 〈v∗,R[v∗ ⊗ v
∗]〉L2

> 0, as otherwise we

can simply replace v
∗ ↔ −v

∗ ∈ L2 to obtain the desired

inequality. Since f(v) ≤ 0 for all v ∈ L2, also f(v∗) ≤ 0,

and thus

〈v∗,Qv
∗〉L2

= f(v∗)− 2 〈v∗,R[v∗ ⊗ v
∗]〉L2

< 0

Now, define

λ := −
〈v∗,Qv

∗〉L2

〈v∗,R[v∗ ⊗ v∗]〉L2

> 0,
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and let v̂ = λv∗ ∈ L2. Then,

f(v̂) = 〈v̂,Qv̂〉L2
+ 2 〈v̂,R[v̂ ⊗ v̂]〉L2

= λ2 〈v∗,Qv
∗〉L2

+ 2λ3 〈v∗,R[v∗ ⊗ v
∗]〉L2

= λ2

[

〈v∗,Qv
∗〉L2

+ 2λ 〈v∗,R[v∗ ⊗ v
∗]〉L2

]

= −λ2 〈v∗,Qv
∗〉L2

> 0,

contradicting the fact that f(v) ≤ 0 for all v ∈ L2. Hence,

for any v ∈ L2 we must have 〈v,R[v ⊗ v]〉L2
= 0.

Since A,P , T are standard PI operators, the first constraint

Q � 0 may be enforced using existing functionality of the

PIETOOLS software suite [17].

Concentrating, then, on the second condition, we first show

that the set Π22 of tensor products of PI operators is closed

under composition with a 2-PI operator – so that T ∗,P ∈ Π3

and B ∈ Π22 implies T ∗PB ∈ Π22 .

Proposition 10: Let Q = P{Qi} ∈ Π3 and B = P [B] ∈
Π22 be defined by parameters Q = {Q0, Q1, Q2} ∈ N3 and

B = [B1, B2, B3] ∈ N22 . Define G := P [G] ∈ Π22 , where

G := [G1, G2, G3] ∈ N22 is given by

G1(s, θ, η) :=

∫ η

a

R13(s, ζ, θ, η)dζ +

∫ θ

η

R12(s, ζ, θ, η)dζ

+

∫ s

θ

R11(s, ζ, θ, η)dζ +

∫ b

s

R21(s, ζ, θ, η)dζ +Q0(s)B1(s, θ, η),

G2(s, θ, η) :=

∫ η

a

R13(s, ζ, θ, η)dζ +

∫ s

η

R12(s, ζ, θ, η)dζ

+

∫ θ

s

R22(s, ζ, θ, η)dζ +

∫ b

θ

R21(s, ζ, θ, η)dζ +Q0(s)B2(s, θ, η),

G3(s, θ, η) :=

∫ s

a

R13(s, ζ, θ, η)dζ +

∫ η

s

R23(s, ζ, θ, η)dζ

+

∫ θ

η

R22(s, ζ, θ, η)dζ +

∫ b

θ

R21(s, ζ, θ, η)dζ +Q0(s)B3(s, θ, η),

with Rij(s, ζ, θ, η) := Qi(s, ζ)Bj(ζ, θ, η). Then, for any v ∈
L2, Q(Bv)(s) = (Gv)(s).

Proof: A proof is given in Appendix B.

Applying this result, we can define G := T ∗PB ∈ Π22 , so

that we may express 〈v, T ∗PB[v⊗ v]〉L2
= 〈v,G[v ⊗ v]〉L2

.

Now, in order to enforce 〈v,G[v ⊗ v]〉L2
≡ 0, we note that,

in general, the quadratic representation of a polynomial is not

unique, and hence it would be conservative to simply enforce

the constraint that G = 0. To resolve this issue, in Prop. 12,

we show that for any G ∈ Π22 , the quadratic representation

of 〈v,G[v ⊗ v]〉L2
can be converted to a linear representation

of the form Klin[G](v⊗ v⊗ v) = 〈v,G[v ⊗ v]〉L2
, where the

transformation G → Klin[G] is given in Defn. 11. Since the

linear representations are uniquely defined, we may then en-

force the constraint 〈v,G[v ⊗ v]〉L2
≡ 0 without conservatism

using Klin[G] = 0.

Definition 11: For any G ∈ Π22 where G = P [G] for

G = [G1, G2, G3] ∈ N22 , we define the operator Klin[G] :
L2[[a, b]

3] → R as

Klin[G]w =

∫ b

a

∫ s

a

∫ θ

a

K(s, θ, η)w(s, θ, η) dηdθds,

where

K(s, θ, η) := G1(s, θ, η) +G2(θ, s, η) +G3(η, s, θ).

Proposition 12: For any G ∈ Π22 , we have

〈v,G[v ⊗ v]〉L2
= Klin[G][v ⊗ v ⊗ v].

for any v ∈ L2[a, b],
Proof: A proof is given in Appendix C.

Applying these results, we can now declare an optimization

program for testing stability of a quadratic PDE as follows.

Theorem 13: Let {B, [α, β]} define a quadratic PDE as

in (5), and let associated PI operators {T , [A,B]} be as

defined in Lemma 8. Suppose that there exist ǫ, δ > 0 and

P = P∗ ∈ Π3 such that

P � ǫI, (13)

Q := [A∗PT + T ∗PA] � −δT ∗T ,

Klin[T
∗PB] = 0.

Finally, let µ = ‖P‖LL2
. Then, any solution u(t) to the PDE

defined by {B, [α, β]} satisfies

‖u(t)‖2L2
≤

µ

ǫ
‖u(0)‖2L2

e−
δ
µ
t.

Proof: Consider the functional V : L2 → R defined for

v ∈ L2 as

V (v) = 〈T v,PT v〉L2
≥ ǫ‖T v‖2L2

.

Since ‖P‖LL2
= µ, this function is bounded from above as

V (v) = 〈T v,PT v〉L2
≤ µ‖T v‖2L2

.

Now, let u be an arbitrary solution to the PDE defined by

{B, [α, β]}, and fix v := ∂2
su. Then, by Lemma 8, u = T v,

and v is a solution to the quadratic PIE defined by {T , [A,B]}.

As such, the temporal derivative of V along v satisfies

V̇ (v(t)) = 〈∂tT v(t),PT v(t)〉L2
+ 〈T v(t),P(∂tT v(t))〉L2

=

〈
[
A B

]
[

v(t)
v(t)⊗v(t)

]

,PT v(t)

〉

L2

+

〈

T v(t),P
[
A B

]
[

v(t)
v(t)⊗v(t)

]〉

L2

=

〈[

v(t)
v(t)⊗v(t)

]

,

[

A∗PT +T ∗PA T ∗PB
B∗PT 0

][

v(t)
v(t)⊗v(t)

]〉

L2

= 〈v(t),Qv(t)〉L2
+ 2 〈v(t), T ∗PB [v(t) ⊗ v(t)]〉L2

.

Here, since Klin[T ∗PB] = 0, by Proposition 12 we have

〈v, T ∗PB[v(t)⊗v(t)]〉L2
=Klin[T

∗PB][v(t)⊗v(t)⊗v(t)]=0.

Since also Q := [A∗PT +T ∗PA] � −δT ∗T , it follows that

V̇ (v(t))=〈v(t),Qv(t)〉L2
≤−δ‖T v(t)‖2L2

≤ −
δ

µ
V (v(t)).

Applying the Grönwall-Bellman inequality, we find that

V (v(t)) ≤ V (v(0))e−
δ
µ
t,

and therefore

‖T v(t)‖2L2
≤

µ

ǫ
‖T v(0)‖2L2

e−
δ
µ
t.

Finally, since u = T v, we conclude that

‖u(t)‖2L2
≤

µ

ǫ
‖u(0)‖2L2

e−
δ
µ
t.
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VI. NUMERICAL EXAMPLES

Implementation of the stability test in Theorem 13 requires

certain functionality not implemented in PIETOOLS 2022 [17]

(the current release). Specifically, PIETOOLS 2022 does not

support PI operators of the class Π22 – i.e. the operator B. As

a result, construction of the tensor PIE representation and use

of tensor PI equality constraints requires significant expertise

on the part of the user. While we expect such functionality to

be included in a future release, for the purposes of this paper,

we have created a CodeOcean capsule which allows the user to

declare a limited class of quadratic PDEs and then automates

the process of construction of the tensor PI representation and

SDP-based stability test [18]. An early version of this software

was used to produce the results in the following subsections.

A. Burgers’ Equation

Consider Burgers’ equation on s ∈ [0, 1], with an added

reaction term ru(t, s), and Dirichlet boundary conditions:

PDE: u̇(t, s) = uss(t, s) + ru(t, s)− u(t, s)us(t, s),

BCs: u(t, 0) = 0, u(t, 1) = 0.

Let v(t) := uss(t) be the fundamental state, and define PI

operators T ,R ∈ Π2 as in (9) Then, u(t) = T v(t) and

us(t) = Rv(t). We obtain an equivalent PIE representation

PIE: ∂tT v(t) =
[

1 + rT
︸ ︷︷ ︸

A

−(T ⊗R)
︸ ︷︷ ︸

B

] [

v(t)
v(t)⊗ v(t)

]

.

Applying the conditions of Theorem 13 with ǫ = δ = 10−6,

the proposed algorithm is able to find a Lyapunov stability

proof for any r ≤ 9.8696 ≈ π2, which corresponds precisely

to the bound obtained in [16] for the linearization of Burger’s

equation – i.e. where we neglect the uus term.

Before moving on to the next example, we note that it is

well known that the nonlinear term uus vanishes when taking

the derivative of a candidate Lyapunov function of the form

V (u) = ‖u‖2L2
= ‖T v‖2L2

, i.e. letting P = 1 in (13). To

illustrate this phenomenon in the tensor PIE representation,

note that, for r = 0, the function V (v) = ‖T v‖2L2
satisfies

V̇ (v) = 〈v, [T ∗ + T ]v〉L2
− 〈v, T ∗[T ⊗R][v ⊗ v]〉L2

.

Then, defining Klin as in Proposition 12, we find that

Klin(T ∗[T ⊗ R]) = 0, and thus V̇ (v) = 〈v, [T ∗ + T ]v〉L2
.

Finally, a simple calculation yields T ∗ = T = −R∗R < 0, so

that V̇ (v) = −2 〈Rv,Rv〉L2
= −2‖us‖2L2

≤ 0. Of course,

one could derive a similar result combining integration by

parts with the boundary conditions. However, the advantage

of the PIE framework is that such ad hoc manipulations are

unnecessary due to the fact that the boundary conditions are

embedded in the operators T and R.

B. Kortweg-De Vries Equation

As mentioned in the previous example, the nonlinear term

uus is well-known to vanish in the derivative of the Lyapunov

function candidate V (u) = ‖u‖2L2
– as can be proved using

integration by parts. For this reason, we now consider a

modified version of the Korteweg-De Vries (KdV) equation

with a different type of quadratic term – u(s)2. The equation

is defined on s ∈ [0, 1] with Dirichlet-Neumann boundary

conditions,

PDE: u̇(t, s) = −usss(t, s) + u(t, s)[ru(t, s) + 6us(t, s)],

BCs: u(t, 0) = 0, u(t, 1) = 0, us(t, 1) = 0.

Define the PI operators T ,R ∈ Π2 for v ∈ L2[0, 1] as

(
T v

)
(s) :=

∫ 1

0

1

2
[s− 1]2θ2v(θ)dθ −

∫ 1

s

1

2
[s− θ]2v(θ)dθ,

(
Rv

)
(s) :=

∫ 1

0

[s− 1]θ2v(θ)dθ −

∫ 1

s

[s− θ]v(θ)dθ.

Then, defining fundamental state v(t) := usss(t) we have

u(t) = T v(t) and us(t) = Rv(t). Imposing this relation in

the PDE, the system can be equivalently represented as

PIE: ∂tT v(t) =
[

−1
︸︷︷︸

A

T ⊗ (rT + 6R)
︸ ︷︷ ︸

B

] [

v(t)
v(t)⊗ v(t)

]

.

Applying the conditions of Theorem 13 with ǫ = δ = 10−6,

the proposed algorithm is able to find a global Lyapunov

stability proof for any r ≤ 3.0655. Since there is no known

stability bound for this version of the KdV equation, accuracy

of these results is unclear.

C. Kuramoto-Sivashinsky Equation

We now consider the Kuramoto-Sivashinsky Equation

(KSE). As in the previous example, we add a quadratic term

ru2 to the dynamics, introducing a nonlinear term which

does not vanish trivially for quadratic Lyapunov function

candidates. In particular, we consider a system of the form

u̇(t, s)=−ussss(t, s)−uss(t, s)−u(t, s)[ru(t, s)+us(t, s)],

u(t, 0)=u(t, 1) = us(t, 0) = us(t, 1) = 0.

Define PI operators T ,R1,R2 ∈ Π2 for v ∈ L2[0, 1] as

(

T v

)

(s) := −

∫ s

0

1

6
[s− 1]2θ2[2sθ − 3s + θ]v(θ)dθ

−

∫ 1

s

1

6
[θ − 1]2s2[2sθ − 3θ + s]v(θ)dθ,

(

R1v

)

(s) := −

∫ s

0

1

2
[s− 1]θ2[2sθ − 3s+ 1]v(θ)dθ

−

∫ 1

s

1

2
s[θ − 1]2[2sθ + s− 2θ]v(θ)dθ,

(

R2v

)

(s) := −

∫ s

0

θ
2[2sθ − 3s− θ + 2]v(θ)dθ

−

∫ 1

s

[θ − 1]2[2sθ + s− θ]v(θ)dθ.

Then, defining fundamental state v(t) := ussss(t), we have

u(t) = T v(t), us(t) = R1v(t), and uss(t) = R2v(t). We

obtain an equivalent PIE representation as

∂tT v(t) =
[

−T −R2
︸ ︷︷ ︸

A

−T ⊗ (rT ⊗R1)
︸ ︷︷ ︸

B

] [

v(t)
v(t)⊗v(t)

]

.

Applying the conditions of Theorem 13 with ǫ = δ = 10−6,

the proposed algorithm is able to find a global Lyapunov

8



stability proof for any r ∈ [−0.525, 0.525]. Unfortunately, for

this system too, we have no analytic stability bound to verify

accuracy of the results.

VII. CONCLUSION

In this paper, we have proposed a new, compact PIE

representation of scalar-valued quadratic PDEs, expressed in

terms of PI operators on states v and v ⊗ v. In order to

derive this representation, we first defined a new class of PI

operators Π22 , acting on states v ⊗ v. We derived formulae

for computing the tensor product Q := T ⊗ R of standard

PI operators T ,R ∈ Π2, proving that the resulting operator

Q belongs to the newly defined class Π22 . Using this tensor

product, we then derived expressions for operators A ∈ Π3

and B ∈ Π22 defining the PIE representation associated to a

particular quadratic PDE. Finally, using this PIE representa-

tion, we proposed a method for testing existence of a quadratic

Lyapunov function certifying stability of the PDE, posing

this test as an optimization problem that can be solved with

semidefinite programming. While currently limited to scalar

quadratic PDEs, the results of this paper may be extended to

higher-degree polynomial PDEs and higher-degree Lyapunov

functions.
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APPENDIX

In this appendix, we prove a number of results regarding tensor products and compositions of partial integral operators. In

order to prove these results, we will extensively make use of the following identities for F ∈ L2[[a, b]
2]:

∫ s

a

∫ s

θ

F (θ, η)dηdθ =

∫ s

a

∫ s

η

F (η, θ)dθdη =

∫ s

a

∫ θ

a

F (η, θ)dηdθ, (14)

∫ b

s

∫ b

θ

F (θ, η)dηdθ =

∫ b

s

∫ b

η

F (η, θ)dθdη =

∫ b

s

∫ θ

s

F (η, θ)dηdθ.

A. Proof of Proposition 6

Proposition 14: Let Q := {Q1, Q2} ∈ N2 and R := {R1, R2} ∈ N2 define 2-PI operators Q = P{0,Q1,Q2},R =
P{0,R1,R2} ∈ Π2. Let B := [B1, B2, B3] ∈ N22 , where

B1(s, θ, η) := Q1(s, θ)R1(s, η) +Q1(s, η)R1(s, θ),

B2(s, θ, η) := Q2(s, θ)R1(s, η) +Q1(s, η)R2(s, θ),

B1(s, θ, η) := Q2(s, θ)R2(s, η) +Q2(s, η)R2(s, θ),

and define B := P [B] ∈ Π22 . Then, for any v ∈ L2[a, b],

(Qv)(s)(Rv)(s) = (B[v⊗ v])(s).
Proof: Let v ∈ L2[a, b] be arbitrary. Expanding the product (Qv)(s)(Rv)(s), and applying the identities iN (14), we

find that

(Qv)(s)(Rv)(s) =

[
∫ s

a

Q1(s, θ)v(θ)dθ +

∫ b

s

Q2(s, θ)v(θ)dθ

][
∫ s

a

R1(s, η)v(η)dη +

∫ b

s

R2(s, η)v(η)dη

]

=

∫ s

a

∫ s

a

Q1(s, θ)v(θ)R1(s, η)v(η)dηdθ +

∫ b

s

∫ s

a

Q2(s, θ)v(θ)R1(s, η)v(η)dηdθ

+

∫ s

a

∫ b

s

Q1(s, θ)v(θ)R2(s, η)v(η)dηdθ +

∫ b

s

∫ b

s

Q2(s, θ)v(θ)R2(s, η)v(η)dηdθ

=

∫ s

a

∫ θ

a

Q1(s, θ)R1(s, η)v(θ)v(η)dηdθ +

∫ s

a

∫ s

θ

Q1(s, θ)R1(s, η)v(θ)v(η)dηdθ +

∫ b

s

∫ s

a

Q2(s, θ)R1(s, η)v(θ)v(η)dηdθ

+

∫ b

s

∫ s

a

Q1(s, η)R2(s, θ)v(θ)v(η)dηdθ +

∫ b

s

∫ θ

s

Q2(s, θ)R2(s, η)v(θ)v(η)dηdθ

∫ b

s

∫ b

θ

Q2(s, θ)R2(s, η)v(θ)v(η)dηdθ

=

∫ s

a

∫ θ

a

B1(s, θ, η)[v ⊗ v](θ, η)dηdθ +

∫ b

s

∫ s

a

B2(s, θ, η)[v ⊗ v](θ, η)dηdθ +

∫ b

s

∫ θ

s

B3(s, θ, η)[v ⊗ v](θ, η)dηdθ = (B[v ⊗ v])(s).

We conclude that (Qv)(s)(Rv)(s) = (B[v ⊗ v])(s).

B. Proof of Proposition 10

Proposition 15: Let Q = P [Q] ∈ Π3 and B = P [B] ∈ Π22 be defined by parameters Q = {Q0, Q1, Q2} ∈ N3 and

B = [B1, B2, B3] ∈ N22 . Define

G1(s, θ, η) := Q0(s)B1(s, θ, η) +

∫ η

a

R13(s, ζ, θ, η)dζ +

∫ θ

η

Q12(s, ζ, θ, η)dζ +

∫ s

θ

Q11(s, ζ, θ, η)dζ +

∫ b

s

Q21(s, ζ, θ, η)dζ,

G2(s, θ, η) := Q0(s)B2(s, θ, η) +

∫ η

a

R13(s, ζ, θ, η)dζ +

∫ s

η

R12(s, ζ, θ, η)dζ +

∫ θ

s

R22(s, ζ, θ, η)dζ +

∫ b

θ

R21(s, ζ, θ, η)dζ,

G3(s, θ, η) := Q0(s)B3(s, θ, η) +

∫ s

a

R13(s, ζ, θ, η)dζ +

∫ η

s

R23(s, ζ, θ, η)dζ +

∫ θ

η

R22(s, ζ, θ, η)dζ +

∫ b

θ

R21(s, ζ, θ, η)dζ,

where Rij(s, ζ, θ, η) := Qi(s, ζ)Bj(ζ, θ, η), and let G := P [G], where G := [G1, G2, G3] ∈ N22 . Then, for any v ∈ L2,

Q(Bv)(s) = (Gv)(s).
Proof: In order to prove this result, we note that we can decompose Q = P{Q0,Q1,Q2} = P{Q0,0,0}+P{0,Q1,0}+P{0,0,Q2}.

Here, it is easy to see that

(P{0,Q1,0}Bw)(s) =

∫ s

a

∫ θ

a

Q0(s)B1(s, θ, η)w(θ, η)dηdθ +

∫ b

s

∫ s

a

Q0(s)B2(s, θ, η)w(θ, η)dηdθ +

∫ b

s

∫ θ

s

Q0(s)B3(s, θ, η)w(θ, η)dηdθ.

10



In addition, using the identities in (14), we find that

(P{0,Q1,0}
Bw)(s) =

∫ s

a

Q1(s, ζ)

[
∫ ζ

a

∫ θ

a

B1(ζ, θ, η)w(θ, η)dηdθ +

∫ b

ζ

∫ ζ

a

B2(ζ, θ, η)w(θ, η)dηdθ +

∫ b

ζ

∫ θ

ζ

B3(ζ, θ, η)w(θ, η)dηdθ

]

dζ

=

∫ s

a

∫ ζ

a

∫ θ

a

Q1(s, ζ)B1(s, θ, η)w(θ, η)dηdθdζ +

∫ s

a

∫ s

ζ

∫ ζ

a

Q1(s, ζ)B2(ζ, θ, η)w(θ, η)dηdθdζ +

∫ s

a

∫ b

s

∫ ζ

a

Q1(s, ζ)B2(ζ, θ, η)w(θ, η)dηdθdζ

+

∫ s

a

∫ s

ζ

∫ θ

ζ

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dηdθdζ +

∫ s

a

∫ b

s

∫ θ

ζ

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dηdθdζ

=

∫ s

a

∫ s

θ

∫ θ

a

Q1(s, ζ)B1(s, θ, η)w(θ, η)dηdζdθ +

∫ s

a

∫ θ

a

∫ ζ

a

Q1(s, ζ)B2(ζ, θ, η)w(θ, η)dηdζdθ +

∫ b

s

∫ s

a

∫ ζ

a

Q1(s, ζ)B2(ζ, θ, η)w(θ, η)dηdζdθ

+

∫ s

a

∫ θ

a

∫ θ

ζ

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dηdζdθ +

∫ b

s

∫ s

a

∫ θ

ζ

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dηdζdθ

=

∫ s

a

∫ θ

a

∫ s

θ

Q1(s, ζ)B1(s, θ, η)w(θ, η)dζdηdθ +

∫ s

a

∫ θ

a

∫ θ

η

Q1(s, ζ)B2(ζ, θ, η)w(θ, η)dζdηdθ +

∫ b

s

∫ s

a

∫ s

η

Q1(s, ζ)B2(ζ, θ, η)w(θ, η)dζdηdθ

+

∫ s

a

∫ θ

a

∫ η

a

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dζdηdθ +

∫ b

s

∫ s

a

∫ s

ζ

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dηdζdθ +

∫ b

s

∫ s

a

∫ θ

s

Q1(s, ζ)B3(ζ, θ, η)w(θ, η)dηdζdθ

=

∫ s

a

∫ θ

a

[∫ η

a

Q1(s, ζ)B3(ζ, θ, η)dζ +

∫ θ

η

Q1(s, ζ)B2(ζ, θ, η)dζ +

∫ s

θ

Q1(s, ζ)B1(s, θ, η)dζ

]

w(θ, η)dηdθ

+

∫ b

s

∫ s

a

[∫ η

a

Q1(s, ζ)B3(ζ, θ, η)dζ +

∫ s

η

Q1(s, ζ)B2(ζ, θ, η)dζ

]

w(θ, η)dηdθ +

∫ b

s

∫ θ

s

[∫ s

a

Q1(s, ζ)B3(ζ, θ, η)dζ

]

w(θ, η)dηdθ.

Similarly

(P{0,0,Q1}
Bw)(s) =

∫ b

s

Q2(s, ζ)

[
∫ ζ

a

∫ θ

a

B1(ζ, θ, η)w(θ, η)dηdθ +

∫ b

ζ

∫ ζ

a

B2(ζ, θ, η)w(θ, η)dηdθ +

∫ b

ζ

∫ θ

ζ

B3(ζ, θ, η)w(θ, η)dηdθ

]

dζ

=

∫ b

s

∫ s

a

∫ θ

a

Q2(s, ζ)B1(s, θ, η)w(θ, η)dηdθdζ +

∫ b

s

∫ ζ

s

∫ θ

a

Q2(s, ζ)B1(s, θ, η)w(θ, η)dηdθdζ +

∫ b

s

∫ b

ζ

∫ ζ

a

Q2(s, ζ)B2(ζ, θ, η)w(θ, η)dηdθdζ

+

∫ b

s

∫ b

ζ

∫ θ

ζ

Q2(s, ζ)B3(ζ, θ, η)w(θ, η)dηdθdζ

=

∫ s

a

∫ b

s

∫ θ

a

Q2(s, ζ)B1(s, θ, η)w(θ, η)dηdζdθ +

∫ b

s

∫ b

θ

∫ θ

a

Q2(s, ζ)B1(s, θ, η)w(θ, η)dηdζdθ +

∫ b

s

∫ θ

s

∫ ζ

a

Q2(s, ζ)B2(ζ, θ, η)w(θ, η)dηdζdθ

+

∫ b

s

∫ θ

s

∫ θ

ζ

Q2(s, ζ)B3(ζ, θ, η)w(θ, η)dηdζdθ

=

∫ s

a

∫ θ

a

∫ b

s

Q2(s, ζ)B1(s, θ, η)w(θ, η)dζdηdθ +

∫ b

s

∫ θ

a

∫ b

θ

Q2(s, ζ)B1(s, θ, η)w(θ, η)dζdηdθ +

∫ b

s

∫ θ

s

∫ s

a

Q2(s, ζ)B2(ζ, θ, η)w(θ, η)dηdζdθ

+

∫ b

s

∫ θ

s

∫ ζ

s

Q2(s, ζ)B2(ζ, θ, η)w(θ, η)dηdζdθ +

∫ b

s

∫ θ

s

∫ η

s

Q2(s, ζ)B3(ζ, θ, η)w(θ, η)dζdηdθ

=

∫ s

a

∫ θ

a

[
∫ b

s

Q2(s, ζ)B1(s, θ, η)dζ

]

w(θ, η)dηdθ +

∫ b

s

∫ s

a

[
∫ θ

s

Q2(s, ζ)B2(ζ, θ, η)w(θ, η)dζdηdθ +

∫ b

θ

Q2(s, ζ)B1(s, θ, η)dζ

]

w(θ, η)dηdθ

+

∫ b

s

∫ θ

s

[
∫ η

s

Q2(s, ζ)B3(ζ, θ, η)dζ +

∫ θ

η

Q2(s, ζ)B2(ζ, θ, η)dζ +

∫ b

θ

Q2(s, ζ)B1(s, θ, η)dζ

]

w(θ, η)dηdθ

Combining these results, it is clear that

(QBw)(s) = (P{Q0,0,0}Bw)(s) + (P{0,Q1,0}Bw)(s) + (P{0,0,Q2}Bw)(s) = (Gw)(s)

C. Proof of Proposition 12

Proposition 16: Let PI operator and G = P [G] ∈ Π22 be defined by parameters G = [G1, G2, G3] ∈ N22 . Let

G(s, θ, η) := G1(s, θ, η) +G2(θ, s, η) +G3(η, s, θ),

and define K : L2[[a, b]
3] → R as

Kw(s, θ, η) =

∫ b

a

∫ s

a

∫ θ

a

K(s, θ, η)w(s, θ, η)dηdθds.

Then, for any v ∈ L2[a, b], 〈v,G[v ⊗ v]〉L2
= K[v ⊗ v ⊗ v].
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Proof: Applying the identities in (14), we find that for any v ∈ L2[a, b],

〈v,G[v ⊗ v]〉L2
=

∫ b

a

v(s)(G[v ⊗ v])(s)ds

=

∫ b

a

∫ s

a

∫ θ

a

G1(s, θ, η)v(s)v(θ)v(η) dηdθds+

∫ b

a

∫ b

s

∫ s

a

G2(s, θ, η)v(s)v(θ)v(η) dηdθds

+

∫ b

a

∫ b

s

∫ θ

s

G3(s, θ, η)v(s)v(θ)v(η) dηdθds

=

∫ b

a

∫ s

a

∫ θ

a

[
G1(s, θ, η) +G2(θ, s, η)

]
v(s)v(θ)v(η) dηdθds+

∫ b

a

∫ s

a

∫ s

θ

G3(θ, s, η)v(s)v(θ)v(η) dηdθds

=

∫ b

a

∫ s

a

∫ θ

a

[G1(s, θ, η)+G2(θ, s, η) +G3(η, s, θ)]v(s)v(θ)v(η) dηdθds

=

∫ b

a

∫ s

a

∫ θ

a

K(s, θ, η)[v ⊗ v ⊗ v](s, θ, η) dηdθds

= K[v ⊗ v ⊗ v]

We conclude that, for any v ∈ L2[a, b], 〈v,G[v ⊗ v]〉L2
= K[v ⊗ v ⊗ v]
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