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Abstract— In this paper, we present the Partial Integral
Equation (PIE) representation of linear Partial Differential
Equations (PDEs) in one spatial dimension, where the PDE
has spatial integral terms appearing in the dynamics and
the boundary conditions. The PIE representation is obtained
by performing a change of variable where every PDE state
is replaced by its highest, well-defined derivative using the
Fundamental Theorem of Calculus to obtain a new equation (a
PIE). We show that this conversion from PDE representation
to PIE representation can be written in terms of explicit maps
from the PDE parameters to PIE parameters. Lastly, we present
numerical examples to demonstrate the application of the PIE
representation by performing stability analysis of PDEs via
convex optimization methods.

I. INTRODUCTION

While Partial Differential Equations (PDE) models typi-
cally invoke the idea of differential equations with derivative
terms, there is an extended class of PDE models with spatial
integral terms — typically due to some saturation limitations
or property conservation. Such PDEs appear when modeling
phenomena such as population distribution across age [1],
entropy variation in thermoelastic materials [2], chemical
reactions [3], etc. In contrast to previous examples, some
PDEs do not originally have spatial integral terms but the
dynamics are altered due to the presence of a sensor (e.g.,
contact-based point measurements may be spatial averages
over a small interval) or a controller (e.g. closed-loop PDEs
coupled with a backstepping controller or observer [4] have
spatial integral terms).

Our goal is to develop computational tools for analy-
sis/control of such PDEs — i.e., solve problems such as
stability analysis, input-output L2-gain bounds, estimator
design, etc. While there exist many works on the analysis
and control of PDEs, most of them cannot be applied to
develop computational tools because those approaches have
one or more of the following issues: are ad-hoc, are designed
for a specific PDE, or are conservative. In this paper, we will
look at convex optimization methods to provide certificates
of stability PDEs with spatial integral terms.

Before discussing the problems with existing methods
on the stability analysis and our proposed approach, let us
briefly look at the type of PDEs considered in this paper to
demonstrate potential applications of this work.

Example 1:The McKendrick PDE is a linear PDE model
used to model population distribution over a range of age
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(the spatial dimension) [1]. Such PDE models can be used
to predict or influence population growth via legislative
policies. The McKendrick PDE model has the form

ẋ(t, s) = −∂sx(t, s) + f(s)x(t, s),

x(t, 0) =

∫ 1

0

h(s)x(t, s)ds,

where x is the density of the population of age s at any
given time t. The boundary condition can be considered an
approximation of the number of newborns at time t and
is usually modeled as an integral boundary condition (a
weighted average of the population density at different ages).

Example 2: Next, we look at an example where a sim-
ple PDE without integral terms, coupled with a boundary
observer, becomes a PDE with spatial integral terms. Let
us take the reaction-diffusion PDE model with a boundary
observer. The equations can be written as:
ẋ(t, s) = λx(t, s) + ∂2

sx(t, s),

˙̂x(t, s) =λx̂(t, s) + ∂2
s x̂(t, s) + l(s) (∂sx(t, 1)− ∂sx̂(t, 1)) ,

∂sx(t, 0) = 0, x(t, 1) = 0, ∂sx̂(t, 0) = 0, x̂(t, 1) = 0,

where x is the distributed PDE state, x̂ is the observer
state, and l is the observer gain. A physical implementation
of a boundary sensor leads to the appearance of integral
terms because point measurements such as y(t) = ∂sx(t, 1)
(the sensor measurement that drives the observer dynamics)
may not be exact depending on the type of the sensing
mechanism. In such cases, one might expect a distributed
measurement which leads to a PDE of the form

˙̂x(t, s) = λx̂(t, s) + ∂2
s x̂(t, s)

+

∫ 1

0

l(s)w(θ) (∂sx(t, θ)− ∂sx̂(t, θ)) dθ.

where w is a Gaussian function centered at s = 1.

Various methods have been developed for analyzing such
PDEs such as early-lumping methods in [5], [6] and late-
lumping methods in [4]. Since both lumping methods use
some type of discretization or projection, at various stages
of analysis, they typically require a suitable choice of
discretization scheme or bases to project the system. The
discretization-based approaches result in an Ordinary Differ-
ential Equation (ODE) approximation of the PDE and stabil-
ity proved for the ODE may not imply stability of the PDE.
To avoid this disparity in stability, discretization schemes
must be carefully chosen and “high enough” order to get
meaningful analysis results — may have high computational
costs and may require different schemes for different PDEs.
Projection-based approaches also approximate the PDE by



an ODE, however, these ODEs are likely to reflect the
PDE behavior more closely than the ODEs obtained through
discretization because one can use the eigenfunctions of the
space of solutions as bases for projection — thereby, using
the dominant modes in analysis. However, a closed form
of the eigenfunctions for PDEs with integral terms cannot
typically be found and must be approximated numerically
resulting in additional numerical errors (apart from truncation
errors). These challenges make the development of a general
computational tool for analysis and control difficult to solve.
We note that some mathematical analysis methods were
presented, specifically for PDEs with integral terms, in [7],
[8] whereas [9] used computational tools like LMIs for
analysis. However, they did not consider PDEs with integral
terms at the boundary which is also addressed in this paper.

Our approach for the analysis/control of PDEs involves the
use of Partial Integral Equation (PIE) representation. Ever
since the PIE representation of linear PDEs was introduced
in [10], various analysis and control methods for PIEs have
been developed (see [11]). These analysis/control methods
are based on convex-optimization problems that can be
solved using Linear Matrix Inequalities (LMIs) and do not
involve any approximation. If we can find a PIE represen-
tation for PDEs with integral terms, then we can use analy-
sis/control methods for the PIE to solve the analysis/control
problem of such PDEs. Thus, this paper aims to find the
conditions under which a PDE with integral terms has a PIE
representation and then find the PIE representation if it exists.
To achieve these goals, we first present a standard parametric
representation for the PDEs with integral terms that allows
integral terms in the dynamics and the boundary. Then, based
on this standard representation, we find a sufficient condition
for the existence of a PIE representation and then show that
the two representations are equivalent by finding a bijective
map from the solution of the PDE to the solution of the
corresponding PIE.

To summarize the main contribution of this paper, we
provide a test for the existence of a PIE representation for a
given PDE with integral terms. Then, we also present explicit
maps from the parameters of a PDE with integral terms to
the parameters of the PIE where the PIE, so obtained, will
have stability properties identical to that of the PDE. Then,
we present the stability test for PDE with integral terms as an
operator-valued optimization problem. While the equivalence
of properties of a PDE and the corresponding PIE can be
easily extended to input-output properties (see [12]), that
topic is beyond the scope of this paper and will not be
discussed here.

II. NOTATION

We use the notation 0m×n to represent the zero matrix
of dimension m × n and 0n := 0n×n. Similarly, In is the
identity matrix of dimension n × n. When the dimensions
are clear from the context, we use 0 and I for the zero and
identity matrix. R+ is the set of non-negative real numbers.
Ln
2 [a, b] is the Hilbert space of n-dimensional vector-valued

Lebesgue square-integrable functions defined on the interval

[a, b] and is equipped with the standard inner product. For
a suitably differentiable function, x of spatial variable s, we
use ∂j

sx to denote the j-th order partial derivative ∂jx
∂sj . For

a suitably differentiable function of time and possibly space,
we denote ẋ(t) = ∂

∂tx(t). We use Wn
k to denote the Sobolev

spaces
Wn

k [a, b] := {u ∈ Ln
2 [a, b] | ∂l

su ∈ Ln
2 [a, b] for all l ≤ k}.

with the canonical Sobolev inner product denoted by ⟨·, ·⟩Wk
.

For brevity, we omit the domain [a, b] and write Ln
2 or Wn

k

when clear from the context.

III. PI OPERATORS AND PIE REPRESENTATION

PIEs are defined by bounded, linear maps from Ln
2 → Ln

2

called Partial Integral (PI) operators, which are parameter-
ized by separable functions. To quickly recall, a separable
function is defined as follows.

Definition 1 (Separable Function). We say a function R :
[a, b]2 → Rp×q , is separable if there exist r ∈ N and func-
tions F ∈ Lr×p

∞ [a, b], G ∈ Lr×q
∞ [a, b] such that R(s, θ) =

F (s)TG(θ) where L∞ is the Banach space of essentially
bounded measurable matrix-valued functions.

Using the above definition, we can define 3-PI operators
(with three parameters) as follow.

Definition 2 (3-PI operators, Π3). Given R0 ∈ Lp×q
∞ [a, b]

and separable functions R1, R2 : [a, b]2 → Rp×q , we define
the operator P{Ri} for v ∈ L2 as(

P{Ri}v
)
(s) := R0(s)v(s) +

∫ s

a

R1(s, θ)v(θ)dθ

+

∫ b

s

R2(s, θ)v(θ)dθ. (1)

Furthermore, we say an operator, P , is 3-PI of dimension p×
q, denoted P ∈ [Π3]p,q ⊂ L(Lq

2, L
p
2), if there exist functions

R0 ∈ Lp×q
∞ and separable functions R1, R2 such that P =

P{Ri}.

Proving that the set of 3-PI operators form a ∗-algebra
is beyond the scope of this paper; however, the proof can
be found in [11]. Additionally, we define [Π3]

+
n,n as the

set of positive definite 3-PI operators where the positivity
is defined with respect to L2-inner product, i.e, [Π3]

+
n,n :=

{P ∈ [Π3]n,n | ⟨x,Px⟩L2
> 0 ∀x ∈ L2 and x ̸= 0}.

A. Partial Integral Equations
A PIE is an extension of the state-space representation of

ODEs to spatially-distributed states on L2. A PIE model is
parameterized by 3-PI operators as

T ẋf (t) = Axf (t), xf (0) = x0
f ∈ Ln

2 [a, b], (2)
where T ∈ [Π3]n,n and A ∈ [Π3]n,n are 3-PI operators.
Unlike a PDE, a PIE does not allow for spatial derivatives
– only a first-order derivative w.r.t. time. In particular, the
state of the PIE model, xf ∈ L2[a, b], is not differentiable;
consequently, no boundary conditions are possible in a PIE
model. Finally, given a PIE, we require the time derivative
of the solution w.r.t. the T -norm, which is defined as

∥xf∥T := ∥T xf∥L2
, for xf ∈ L2. (3)



We require the map T in a PIE model (if the PIE model
corresponds to a PDE) to be bijective, and hence one can
easily prove that ∥·∥T is a norm [11]. The solution, if it
exists, of a PIE must satisfy the following requirements.

Definition 3 (Solution of a PIE). For given inputs x0
f ∈ Ln

2 ,
we say that {xf} satisfies the PIE defined by {T , A} with
initial condition x0

f if: a) xf (t) ∈ Ln
2 [a, b] for all t ≥ 0;

b) xf is Frechét differentiable with respect to the T -norm
almost everywhere on R+; c) xf (0) = x0

f ; and d) Eq. (2) is
satisfied for almost all t ∈ R+.

IV. A PARAMETRIC FORM OF PDES WITH INTEGRAL
TERMS

Now that we have defined the “target” representation,
we need to define the class of PDEs that will be con-
verted to this target representation. To define the PDE, we
first categorize the parameters of a PDE into three groups
based on the type of constraint they appear in – namely
the continuity constraints, the in-domain dynamics, and the
boundary conditions. The continuity constraints specify the
existence of partial derivatives and boundary values for each
state as required by the in-domain dynamics and boundary
conditions. The boundary conditions are represented as a
real-valued algebraic constraint that maps the distributed
state to a vector of boundary values. The in-domain dynamics
(or generating equation) specify the time derivative of the
state at every point in the interior of the domain and allow for
both integral and derivative operators in the spatial variable s.
The following subsections highlight the parameters required
to define the above three types of constraints in a PDE.

1) The continuity constraint: Given a PDE state, x(t, ·),
the continuity constraint can be uniquely defined by the
parameter n = {n0, n1, n2}, which partitions and orders the
PDE states x by differentiability as follows.

x(t, ·) =

x0(t, ·)
x1(t, ·)
x2(t, ·)

 ∈

Wn0
0

Wn1
1

Wn2
2

 =: Wn.

Given such an n ∈ N3, we can identify all well-defined
partial derivatives of x.
Notation: For convenience, we define the vector of all
continuous partial derivatives of the PDE state x as permitted
by the continuity constraint as xc, the vector of all partial
derivatives as xD and the list of all possible boundary values
of x as xb, i.e.,

xc(t, ·) =

 x1(t, ·)
x2(t, ·)
∂sx2(t, ·)


xb(t) =

[
xc(t, a)
xc(t, b)

] , xD(t, ·) =


x0(t, ·)
x1(t, ·)
x2(t, ·)
∂sx1(t, ·)
∂sx2(t, ·)
∂2
sx2(t, ·)

 . (4)

Additionally, we define nx :=
∑2

i=0 ni and nS =
∑2

i=0 i·ni

given the continuity constraint parameter n = {n0, n1, n2}.
2) Boundary Conditions: Given an n = {n0, n1, n2}, we

now parameterize a generalized class of boundary conditions
consisting of a combination of boundary values and integrals
of the PDE state. Specifically, the boundary conditions

are parameterized by square integrable functions BI(s) ∈
RnBC×(nx+nS) and B ∈ RnBC×2nS as

0 =

∫ b

a

BI(s)xD(t, s)ds−Bxb(t) (5)

where nBC is the number of specified boundary conditions.
For reasons of well-posedness, as discussed in Section V,
we typically require nBC = nS .

These boundary conditions and the continuity constraints
collectively define the domain of the PDE – which specifies
a set of acceptable solutions x(t) ∈ X for the PDE – as

X =

x ∈ Wn[a, b] : Bxb(t) =

b∫
a

BI(s)xD(t, s)ds

 . (6)

Notation: We collect all the parameters which define the
boundary-valued constraint in Eq. (5) and define Gb which
represents the labeled tuple of system parameters as Gb =
{B, BI}.

3) Dynamics of the PDE: Finally, we may now define the
dynamics of the PDE which is parameterized by the functions
A0(s), A1(s, θ), and A2(s, θ) ∈ Rnx(nx+nS) as

ẋ(t, s) = A0(s)xD(t, s) +

∫ s

a

A1(s, θ)xD(t, θ)dθ

+

∫ b

s

A2(s, θ)xD(t, θ)dθ, (7)

with the constraint x(t) ∈ X .
Notation: We collect all the parameters from the generating
equation (Eq. (7)) and define Gp which represents the
labelled tuple of system parameters as Gp = {A0, A1, A2}.
When the shorthand notations Gp, Gb, and n are used to
denote a given set of system parameters, it is presumed that
all parameters have appropriate dimensions. Now, we define
the notion of a solution to the above-described PDE.

Definition 4 (Solution of a PDE). For given x0 ∈ X , we say
that x satisfies the PDE defined by {n,Gb,Gp} with initial
condition x0 if: a) x(t) ∈ X for all t ≥ 0; b) x is Frechét
differentiable with respect to the L2-norm almost everywhere
on R+; c) x(0) = x0; and d) Eq. (7) is satisfied for almost
all t ≥ 0.

V. REPRESENTING A PDE AS A PIE

Recall that our goal is to find a PIE form of PDEs defined
in Section IV so that the computational tools developed for
PIEs can be used in analysis/control. However, first, we have
to verify that a PIE representation exists, i.e., we need to
verify that for any well-posed PDE of the form given in
Section IV with the initial condition x0 ∈ X , there exists
a corresponding PIE with corresponding initial condition
x0
f ∈ Ln

2 whose solution can be used to construct a solution
to the PDE. For this purpose, we introduce the notion of
admissibility and conditions for admissibility as follows.

A. Admissibility of the Boundary Conditions

The idea of admissibility imposes a notion of well-
posedness on X , the domain of the PDE defined by the
continuity constraints and the BCs, which, when satisfied,
guarantees the existence of a PIE form for the PDE.



Definition 5 (Admissible Boundary Conditions). Given the
parameters {n,Gb}, we say the pair {n,Gb} is admissible
if BT is invertible where

BT := B

[
T (0)

T (b− a)

]
−
∫ b

a

BI(s)U2T (s− a)ds, (8)

and the functions T , and U2 are given by

T (s) =

[
In1 sIn2

0 In2

]
,

U2i =

[
0ni×ni+1:2

Ini+1:2

]
, U2 =

[
diag(U21, U22)

0n2×nS

]
.

Since BT ∈ RnBC × nS is invertible only when it is a
square matrix, naturally, we require nBC = nS , i.e., when
we have nS differentiable states, we need nS boundary
conditions for a well-posed solution. Note that the test for
invertibility of BT depends only on the boundary condition
parameters and not the dynamics or the initial condition.
Hence, this test only guarantees existence, which is not the
same as “well-posedness of a PDE” a notion that requires
both the ‘existence’ and ‘uniqueness’ of the solution.

B. PIE representation of a PDE: T and A
In this subsection, a PIE form is proposed for a PDE with

admissible {n,Gb}. Then, we will see that the solutions of
the PDE and the corresponding PIE are equivalent, in a sense,
the PDE solution exists if and only if the PIE solution exists.

U1i = col(Ini
, 0ni+1:2×ni

)

U1 = diag(U10, U11, U12)
Q(s) =

0 In1 0
0 0 sIn2

0 0 In2


BU (s) = BI(s)U1 −Bcol(0, Q(b− s))

BQ(s) = B−1
T

(
BU (s) +

∫ b

s

BI(θ)U2Q(θ − s)dθ

)
G2(s, θ) = col(0,

[
In1

(s− a)In2

]
BQ(θ))

G1(s, θ) = col(0,
[
0n0

In1
0n2

]
) +G2(s, θ)

Rb(s, θ) = U2T (s− a)BQ(θ) G0 = diag(In0 , 0(nx−n0))

Ra(s, θ) = Rb(s, θ) + U2Q(s− θ) Â0(s) = A0(s)U1

Â1(s, θ) = A0(s)Ra(s, θ) +A1(s, θ)U1

+

∫ θ

a

A1(s, β)Rb(β, θ)dβ +

∫ s

θ

A1(s, β)Ra(β, θ)dβ

+

∫ b

s

A2(s, β)Ra(β, θ)dβ

Â2(s, θ) = A0(s)Rb(s, θ) +A2(s, θ)U1

+

∫ s

a

A1(s, β)Rb(β, θ)dβ +

∫ θ

s

A2(s, β)Rb(β, θ)dβ

+

∫ b

θ

A2(s, β)Ra(β, θ)dβ

T = P{Gi} A = P{Âi}

Fig. 1. Definitions based on PDE defined on an interval [a, b] with system
parameters given by {n,Gb,Gp}.

Theorem 1. Given a set of PDE parameters {n, Gb, Gp}
with {n,Gb} admissible, let the PI operators {T , A} be as
defined in Figure 1. Then, for any x0 ∈ X (as defined in
Equation (6)), x satisfies the PDE defined by {n,Gb,Gp}
with initial condition x0 if and only if Dx satisfies the PIE
defined by {T , A} with initial condition Dx0 ∈ Lnx

2 where
Dx = col(∂0

sx0, ∂sx1, ∂
2
sx2).

Proof. The proof is simply a matter of using the definitions
of {T ,A} and the definition of solutions for the PDE and
PIE. The proof is similar to the proof of Theorem 12 in [11]
with n = {n0, n1, n2}, T̂ = T , Â = A and other unused
parameters set to empty sets or zeros.

The above result provides a map from the PDE solution,
x, to the solution of the corresponding PIE, Dx and explicit
formulae to obtain the PIE representation given a PDE. An
inverse map, given by T , also exists that maps the solution
of the PIE back to the PDE solution as shown below.

Theorem 2. Given an n, and Gb with {n,Gb} admissible,
let T be as defined in fig. 1, X as defined in Eq. (6) and D
:=diag(∂0

sIn0
, ∂sIn1

, ∂2
sIn2

). Then we have the following.
(a) If x ∈ X , then Dx ∈ Lnx

2 and x = T Dx.
(b) If x̂ ∈ Lnx

2 , then T̂ x̂ ∈ X and x̂ = DT x̂.

Proof. This can be verified by substituting the definitions of
D and T . The proof is similar to the proof of Theorem 10
in [11] with n = {n0, n1, n2}, T̂ = T and other unused
parameters set to empty sets or zeros.

This bijective mapping ensures the existence of both
solutions when one of them exists. Given the PDE parameters
{n,Gb,Gp} we now have a set of formulae to find the
corresponding PIE parameters {T ,A}.

VI. EQUIVALENCE OF REPRESENTATIONS: PDE AND PIE
In this section, we show that the solutions to the two

representations (PDE and PIE) have equivalent stability prop-
erties and present a solvable optimization problem to prove
stability. However, we have to define a notion of stability for
the two representations.

A. Definitions of stability

We define the notion of stability of a PDE based on
the stability of x that satisfies the PDE for given initial
conditions where the stability is defined w.r.t. the standard
Sobolev norm H which is defined as ∥x∥H =

∑2
i=0 ∥xi∥Wi

.

Definition 6 (Exponential Stability of a PDE). We say a PDE
defined by {n,Gb,Gp} is exponentially stable, if there exists
constants M , α > 0 such that for any x0 ∈ X , if x satisfies
the PDE defined by {n,Gb,Gp} with initial condition x0

then ∥x(t)∥H ≤ M
∥∥x0

∥∥
H
e−αt for all t ≥ 0.

Similar to the stability of a PDE, we can define the stability
of a PIE system based on stability xf that satisfies the PIE for
some initial conditions and zero inputs. Unlike the stability
of PDE, the stability of a PIE is defined with respect to
the L2-norm since solutions of PIE need not have spatial
continuity.



Definition 7 (Exponential Stability of a PIE). We say a PIE
defined by {T ,A} is exponentially stable, if there exists
constants M , α > 0 such that for any x0

f ∈ Ln
2 , if xf

satisfies the PIE defined by {T ,A} with initial condition
x0
f , then ∥xf (t)∥L2

≤ M
∥∥∥x0

f

∥∥∥
L2

e−αt for all t ≥ 0.

The goal now is to show that for any x that satisfies the
PDE and xf that satisfies the PIE, if x = T xf with T
invertible, then x decays exponential if and only if xf decays
exponentially. The main hurdle in proving this is that these
two notions of stability are defined using different norms
(∥·∥H and ∥·∥L2

). For any x and xf such that x = T xf , we
know that ∥x∥H ≤ c implies ∥T xf∥L2

< c, but the converse
is typically not true. To prove the converse implication we
use a new norm on the space X , denoted by ∥·∥X , to show
that:

1) T is a norm-preserving bijection from L2 to X (when
equipped with ∥·∥X ).
- X is closed under ∥·∥X (and T is unitary)

2) ∥·∥H is equivalent to ∥·∥X on the subspace X (thus
stability of PDE w.r.t. ∥·∥H is equivalent to stability of
PIE w.r.t. ∥·∥T )

3) A PDE {n,Gp,Gb} is exponentially stable if and
only if the corresponding PIE defined by {T ,A} is
exponentially stable.

B. The map T are unitary

First, we would like to show that X is complete w.r.t.
the norm ∥·∥X . Previously, in Theorem 2, we showed that
T is invertible. Therefore, we must show that T preserves
the inner product. However, we first define the new X-inner
product as ⟨x,y⟩X :=

∑2
i=0

〈
∂i
sxi, ∂

i
syi

〉
L2

= ⟨Dx,Dy⟩L2
.

Theorem 3. Suppose {n,Gb} is admissible, T is as de-
fined in Figure 1. Then, for any x, y ∈ Lnx

2 we have
⟨T x, T y⟩X = ⟨x,y⟩L2

.

Proof. The proof follows directly from the definition of the
X inner product and the map T . The proof is similar to the
proof of Theorem 18 in [11] with n = {n0, n1, n2}, T̂ = T
and other unused parameters set to empty sets or zeros.

Next, we see that norms induced by the inner products
⟨·, ·⟩X and ⟨·, ·⟩H on X are equivalent and, consequently,
notions of stability w.r.t. these norms will be equivalent.

Lemma 4. Suppose pair {n,Gb} is admissible. Then, for
any x ∈ X , ∥x∥X ≤ ∥x∥H and there exists a constant
c0 > 0 such that ∥x∥H ≤ c0 ∥x∥X .

Proof. The proof is same as the proof of Lemma 17 in [11]
with n = {n0, n1, n2} and other unused parameters set to
empty sets or zeros.

Having established that X-norm can be upper bounded by
H-norm, we can now prove the equivalence of the stability
of PDE and PIE because the spaces X and L2-norm are
isometric.

Theorem 5. Given PDE system parameters {n,Gb,Gp}
with {n,Gb} admissible, suppose {T A} are as defined
in Figure 1. Then, the PDE defined by {n,Gb,Gp} is
exponentially stable if and only if the PIE defined by {T
A} is exponentially stable.

Proof. The proof is a direct application of the stability
definitions. The proof is same as the proof of Theorem 22
in [11] with n = {n0, n1, n2} and other unused parameters
set to empty sets or zeros.

Using the above results, we propose the following opti-
mization problem to test the stability of a PDE with integral
terms.

Theorem 6. Given a set of PDE parameters {n, Gb,
Gp}, suppose there exist α, δ > 0, and matrix-valued poly-
nomials R0, R1, R2, H0, H1, H2 such that P{Ri},P{Hi} ∈
[Π3]

+
nx,nx

, P{Ri} ≥ αI , P{Hi} ≥ δT ∗T and P{Hi} =
−
(
T ∗P{Ri}A+A∗P{Ri}T

)
where {T , A} are as defined

in Figure 1. Then, the PDE defined by {n,Gb,Gp} is
exponentially stable.

Proof. Suppose Ri and Hi are as stated above. Suppose x
solves the PDE defined by {n, Gb, Gp} for some initial
condition x0 ∈ X . Then xf := Dx solves the PIE defined
by {T , A} for initial condition x0. Let the Lyapunov function
candidate be V (xf ) =

〈
T xf ,P{Ri}T xf

〉
L2

. Then V (xf ) ≥
α ∥T xf∥2L2

for all xf ∈ L2. Taking the derivative of V with
respect to time along the solution trajectories of the PIE, we
have
V̇ (t)

=
〈
T ẋf (t),P{Ri}T xf (t)

〉
L2

+
〈
T xf (t),P{Ri}T ẋf (t)

〉
L2

=
〈
Axf (t),P{Ri}T xf (t)

〉
L2

+
〈
T xf (t),P{Ri}Axf (t)

〉
L2

=
〈
xf (t),

(
A∗P{Ri}T + T ∗P{Ri}T

)
xf (t)

〉
L2

= −
〈
xf (t),P{Hi}xf (t)

〉
L2

≤ −δ ∥T xf (t)∥2L2
.

Then, from Gronwall-Bellman inequality,

∥xf (t)∥2L2
≤ k

α

∥∥Dx0
∥∥2
L2

exp(−δξt)

where k =
∥∥T ∗P{Ri}T

∥∥
L(L2)

and ξ = ∥T ∥2(L2)
. Since the

initial condition was an arbitrary function, the above inequal-
ity is satisfied for any Dx0 ∈ L2, hence the PIE defined by
{T ,A} is exponentially stable and, from Theorem 5, the
PDE is exponentially stable.

See [13], for a parametric form of Ri and Hi that allows
the use of Linear Matrix Inequalities to enforce positivity
constraint. Once the positivity constraint is rewritten as LMI
constraints, we can use an SDP solver to find Ri and Hi that
satisfy the constraints of the above theorem.

VII. NUMERICAL EXAMPLE

This section presents numerical tests for the stability of
the two PDEs introduced earlier. The steps involved in
setting up the computational problem — defining the PDE



parameters, converting to PIE form, setting up the operator-
valued optimization problem, and converting the operator-
valued optimization problem to an LMI feasibility test — are
all performed using the PIETOOLS toolbox for MATLAB.

A. Population Dynamics

Recall the McKendrick PDE model for the population
dynamics introduced in Example 1 of Section I

ẋ(t, s) = −∂sx(t, s) + f(s)x(t, s), s ∈ [0, 1],

x(t, 0) =

∫ 1

0

h(s)x(t, s)ds.

We will select the kernel in the integral term of the boundary
condition as h(s) = (1 − s)s, which implies that the
population outside some normalized limits [0, 1] does not
contribute to the birth of newborns. We will employ a
constant mortality rate f(s) = c and vary the c ∈ R to
find the mortality rate, c0 below which the population would
go extinct (i.e, limt→∞ x(t, ·) = 0).

By testing the stability of the above PDE for various c
values (using the method of bijection), we determined that for
mortality rates greater than −0.740625, the population goes
extinct, i.e., the population will survive when the population
growth rate f(s) > 0.740625.

B. Observer-based control of reaction-diffusion equation

For the second test, recall the reaction-diffusion PDE from
Example 2 of Section I. We know that the observer gain, l,

l(s) = −
√
λ
I1

(√
λ(1− s2)

)
√
1− s2

,

provides a stable boundary observer [14]. Since we are
interested in the practical implementation, we will approx-
imate the gains l by a polynomial of a fixed order n
denoted by ln. Furthermore, the boundary measurements are
replaced by an integral. While a typical approach is to replace
point measurements by an integral with a Gaussian kernel
centered at the point, in this example specifically, we can use
the Fundamental Theorem of Calculus to rewrite the point
measurement ∂sx(t, 1) exactly as

∂sx(t, 1) = ∂sx(t, 0) +

∫ 1

0

∂2
sx(t, s)ds =

∫ 1

0

∂2
sx(t, s)ds.

Likewise, we replace the point measurement value ∂sx̂(t, 1)
by an integral to get the closed-loop observer PDE as

ẋ(t, s) = λx(t, s) + ∂2
sx(t, s), s ∈ [0, 1],

˙̂x(t, s) = λx̂(t, s) + ∂2
s x̂(t, s)

+

∫ 1

0

l(s)
(
∂2
sx(t, θ)− ∂2

s x̂(t, θ)
)
dθ,

x(t, 0) = 0, x(t, 1) = 0, x̂(t, 0) = 0, x̂(t, 1) = 0.

Then, using the conversion formulae presented in fig. 1,
we can find the PIE representation for the closed-loop PDE
where l replaced by ln which is the nth order polynomial
approximation of l. For λ ≤ 5, we can prove that 1st-
order polynomial approximation (a straight line) is sufficient
to guarantee the stability of the closed-loop PDE system.
However, as λ becomes larger higher order polynomial

approximation of l (l4 for λ = 6 and so on) was necessary
to prove the stability.

VIII. CONCLUSION

A standard parametric form for linear PDEs in one spatial
dimension with spatial integral terms and a sufficient crite-
rion to guarantee the existence of a PIE representation for
such PDEs were presented. We also revisited results showing
the equivalence of solutions and stability properties of the
two representations. Finally, using the equivalence in the
stability properties, we formulated the test for the stability
of PDEs as an optimization problem that can be solved
using SDP solvers and demonstrated the application using
numerical examples.
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