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Abstract— In this paper, we propose a parallel algorithm to  SDP solvers [13], [14] inevitably saturates as the number
solve large robust stability problems. We apply Polya’s therem  of processors increases. To take the full advantage of the
to a parameter-dependent version of the Lyapunov inequalyt ¢, mptational power of cluster computers, we must use al-
to obtain a set of coupled linear matrix inequality conditions. - . . .

We show that a common implementation of a primal-dual gorithms with hl_ghly decen_trallzedl structure. Unfortu_ﬂ;a,t
interior-point method for solving this LMI has a block diagonal ~ the SDP conditions associated with the SOS algorithm do
structure which is preserved at each iteration. By exploithg not have an obvious distributed structure. For this reasen w
this property, we create a highly scalable cluster-computig pursue an alternative approach based on Polya’s theorem,
implementation of our algorithm for robust stability analy sis  \yhere the uncertain parameters are assumed to be inside
of systems with large state-space. Numerical tests confirnhé o . .
scalability of the algorithm. a unit s_|mple>_<. A mpdern version of this theor_em for
polynomials with matrix coefficients can be found in [15].

l. INTRODUCTION ] A performance comparison of SOS algorithm and Polya’s

Lyapunov-based methods have been used extensively dfyorithm in robust stability analysis has been done in [4].
robust stability analysis of systems with uncerta_in paramrhe contribution of this paper is to show how to use the
eters. These methods are often used to obtain stabiligycture of the SDP which results from Polya’s theorem to
conditions in the form of Linear Matrix Inequalities (LMIS) istribute the computation of step size and search dinectio
In the case of systems with uncertain parameters, the use;Qfy primal-dual interior-point algorithm. We show that the
parameter-dependent Lyapunov functions as in [1], [2], [3krgest tasks in this interior-point algorithm distributath
and [4] leads to parameter-dependent LMIs. The feasibilitftie communication overhead. We also show that if we
of such parameter-dependent LMIs implies the stability ofaye a sufficiently large number of processors, our algorith
the uncertain system. This Feas_ibility problgm is known tQgyes large robust stability problems in the same time
be NP-hard [5]. A common algorithm for solving parameterys jt takes to solve the parameter-independent Lyapunov
dependent LMIs is Sum of Squares (SOS). This algorithiyequality. Moreover, if we have a sufficient number of
optimizes over positive polynomials with scalar or mapocessors the algorithm allows us to increase the accofacy
trix coefficients [6], [7], [8]. Unfortunately, the numbef o oyr approximation for the domain of uncertain parameters in
variables in Semi-Definite Programming (SDP) problemgich the system is stable, without adding any computation
associated with SOS algorithm can easily grow beyond t&f; processor or communication overhead. For uncertain
thousand as the number of uncertain parameters and/or %tems with large number of states, by ushgrocessors
degree of squared polynomials increases. Current sil@-C he parallel algorithm solves the associated robust gabil
and multi-core machines with shared memory architectutgoplem approximatelyN times faster than a sequential
are incapable of solving such large SDP problems due ggorithm, whereN is shown to have a large upper bound.
their insufficient memory capacity. Moreover, the singté&  Thjs implies that the proposed parallel algorithm is sdalab
processors speed has not been incrgased significa_ntlyim/ert This paper is arranged as follows. In Section Ill, the
last few years and no further speed improvement is expectggdckground materials for uncertain system charactesistic
in near future [9]. In some applications, parallel compytin|yanunov stability and Polya’s theorem are presented. The
can resolve the speed saturation problem and make a be{{gfis obtained from Polya’s algorithm and the associated
use of the memory in hand. In particular, cluster computer§pp problem are discussed in Section IV. Then the parallel
can perform numerous tasks simultaneously and proc&ggerior-point SDP solver, its implementation and comjiiex
large amounts of data by distributing the tasks and dag,yysis are addressed in Section V. Finally, the perfooman
among the processors and their individual memories. of SDP solver in terms of the scalability and computational

Typical LMI solvers [10], [11] can only utilize a Sin- time is demonstrated in Section VI.
gle processor of cluster computers. Moreover, due to the
Amdahl’s law [12] the speed of general-purpose parallel Il. NOTATION
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matrices inR"™" is denoted byS,. The standard basis for IV. PROBLEM SET-UP

Sn is defined as o In this section, we show how Polya’s theorem can be used
[Edij = {1 =1 :_k , fork<n to determine the robust stability of an uncertain systemgusi
. 0 otherwise linear matrix inequalities with a distributed structure.
[Edij = [Adij + [Ak]?], for k> n, A. Polya’'s Algorithm
where o We consider the stability of the system described by
IAdij = {1 i=j—1=k-n Equation (1). We are interested in findingRta) which
0 otherwise satisfies the conditions of Theorem 1. According to Polya’s

theorem, the constraints of Theorem 1 are satisfied if for
some sufficiently largel, the pdolynomials
|

(Zlai> P(a) and (5)

The canonical basis fdR" is denoted byg fori=1,---,n,
where -
§=1[0..0_1 0...0].

ith
1eRKis a vector with all the Ientries equal to one. The trace
of Ac R™" is denoted byr(A) = S, Aq. diag Xy, -+ , Xm) IR
is a block-diagonal matrix il®™*™ whose diagonal blocks - ('ziai> (A" (a)P(a)+P(a)A(a)) (6)
areXy, -+, Xm € R™N, =

1. PRELIMINARIES

have all positive definite coefficients.
Let P be a polynomial of degred,. It is defined using

Consider the linear system coefficient matrice®, as
X(t) = A(a)x(t), 1) P(a) = Pa’, 7)
where Aa) € R™"anda € Q C R! is a vector of uncertain yeWGp

parameters. In this paper, we consider the case of a hommwhere Wy is the unit diskWy := {ye N z!:ly. = d},
geneous polynomial fr) andQ = A, ¢ R! where4, is the wherel is the dimension of the vectar. Likewise, let A be

unit simplex: | a homogeneous polynomial of degrée It is defined using
A={acR Sa=1a>0 (2) the matrices 4 as
{ 2, =t } Al@)=5 AyaY. (8)
If A(a) with degreed, is not homogeneous, it can be made vVl

By substituting (7) and (8) into (5) and (6), the conditions

homogeneous by multiplying each monomial i b
g y PS o by t of Theorem 2 can be represented as

1=(5; ai)b, whereb = d; — dy, anddp, is the degree of tha

monomial. % BryPh>0; yeWy,.q and 9)
The following is a stability condition [4]. heWap
Theorem 1. The linear system (1) is stable if and only if Z (Hny " Ph+PiHhy) <0; Y € Wiy 4 da-+d- (10)
there exists a polynomial matriR(a) such thatP(a) > 0 heWy,
and AT (a)P(a)+P(a)A(a) <0 (3) Before providing the formulas for the calculation of thesset
forall o € 4. of scalars{fB,,} and matrices{Hn,}, let us obtain these
A similar condition also holds for discrete-time linear sys coefficients for a simple case. Consider
tems. Ala) = A[l,O] a1 +A[O,1] ar andP(a) = P[l,O] a1+ P[O,l] as.

The conditions associated with Theorem 1 are infiniteBy calculating (5) ford = 1 we have
dimensional LMIs, meaning they must hold at an infinite _ 2 2
+a)P(a) = a7+ + o0+ a
number of points. Such problems are known to be NP-r(] 1+ 02)P(a) =g i+ (Pag+Roy) @0+ Poya?
hard [5]. In this paper we derive a sequence of polynomiaﬁ
time algorithms such that their outputs converge to the Bao.20 = 1. Poa.20 = 0. Bropy =1,
solution of the infinite-dimensional LMI. Key to this result Bo,u, 11 =1,810.02 = 0,801,002 =1
is Polya’s Theorem [16]. A variation of this theorem forBy calculating (6) ford = 1 we have
matrices is listed below. T /AT 3
Theorem 2: (Polya’s Theorem) The homogeneous polyno- (a1+az) (A" (a)P(a) +P(a)Aa)) = (AP +PiA) of
mial F(ar) > O for all a € A if and only if for all sufficiently ~ + (ALPL+PiAL+AJPL+PiA + AP+ PoA ) afa

d{Bny} can be extracted as

larged, I\ ¢ + (AJPL+PiA + ALP + PoA + ATP + PoAY) aq02

(Zﬂ) F(a) @ (AP +PAY) A3

i=

has all positive definite coefficients. and {Hp} can be extracted as
Upper bounds for Polya’s exponetithave been found [17] Hi10,,3.0 = A, Hio.1,;30 =0,
based on the properties &f. In this paper, we show that Hio 2y =A1+A2, Hpoupy=Al
applying Polya’s algorithm on Theorem 1 yields a semidef- H o —A Hi . o — A LA
inite programming condition with a parallel structure. Fhi [10},2.2] 2 [0.4),2.2] 1+ 72
condition will be discussed in detail in the following sexti Hi10.03 =0, Ho1 0.3 = A2



We define{p,} recursively as follows. Let Given a primal SDP, the associatddal problem is

LT
1 h= min a'y
B, = Y yEW, heWy — (11)

0 otherwise subject to AT(y)—-C=2
k
Then, fori =1,...d, let Z-0,yeR (19)
Br'w: z Br'];\l. y € Wy,+i, heWy, (12) where the linear operatgx’ :Ifﬁk — Sm is defined as
AEW, i—
Aoy AT(y) = Y VA (20)

j=1.1

=
. _ R¥ andZ € Sy, are the dual variables.
Finally, By, = Bgy, wherey € Wy, 4. To obtainHh , let ye € om

The element€, A; anda of SDP problem, associated with
Hﬁy: z As, Yy €Wapid,, heWg,. (13) the LMis in (9) and (10) are defined as follows. We define

ge\r/]\/da the elementC as
ey C:dianl,'"CL,CL+1,"'CL+M), (21)
Then, fori=1,...d, let where o
i i—1 . : i
Hpy = Z | H,'M Y €Wypidati NEWe,. (14) ci— Elp- (2hewdp Bna; |‘|I—plh.') , 1<)<L 22)
)‘Ede+da+lfl 3
A=y—e On, L+1<j<L+M,
j=1. whereh; € N' is thei™ element oMW, using lexicographical
Finally, setH , = Hﬁ‘y, wherey € Wy, 1 d,+d- orderingAj is thej" element of\g, +a Using lexicographical

Computing{Bn,} and {Hx,} is a significant challenge. ordering,L is the cardinality oM, 4, M is the cardinality
For a givend, the number of3, , coefficients isLo-L, where  Of We,d,+d, In @nd G, are the identity and zero matrices of
(dp+1—1)1 dimensionn, and! is the number of uncertain parameters.

Lo= m Fori=1,--- ,K,_the elementg\ are defined as
. e A =diagAi1, - ALA L ALLEM) (23)
is the number of monomials iR(a) and where (dp+1—1)! n(n+1)
| ([dpt+d+1-1) (15) K= dt(i—1r 2 (24)
(dp+d)!I(1—1)! is the number of independent elements in the coefficients of

is the cardinality oM, .4, where recall is the dimension P(a) andA;; is equal to
of the uncertain parameters in the uncertain system (1). {Zhewdp Bra;Pa(e), 1<j<L

The number oHy, , coefficients isLg- M, where _ Zhewdp Hi{mph(q) + F%(&)Hh,yj,p L41<j<L+4M

"~ (dp+da+d)(1—1)! (16) wherey; is the j" element oWy, +d,+d USING lexicographical
is the cardinality ofWy, q,+d. In [18], we proposed a ordering and N
decentralized computing approach to the calculation of the Ph(x) = Z Ex XN -1)»
K=1

coefficientsS . . . K= . .
By here E¢ is the basis ofS, f(rorr; Section I, I is the
n(n+1

In the following section, we express the LMIs associatei@' . hical index of. N — dnis the di :
with conditions (9) and (10) in primal and dual format. exicograp 'fa[_ln e"x ob’ =7 andnisinedimension
We also discuss the structure of the primal and dual SD‘H system (1). Finally, by setting

7 K
variables and constraints. a=1eR", (26)
the SDP problem associated with Polya’s algorithm is de-
B. SDP Problem Elements fined.
We express the LMI constraints of (9) and (10) as a semi- V. PARALLEL SDP SOLVER

definite programming problem. We define semi-definite pro- In this section, we describe the steps of a primal-dual
gramming as the optimization of a linear objective functionnterior-point algorithm and show how, for the LMIs in (9)
over the cone of positive definite matrices subject to lineaand (10), these steps can be distributed in a distributed-
equality constraints. This problem can be stated either iomputing, distributed-memory environment.

primal or in dual formulation.

GivenC € Sp, a€ RK andAj € S, the primal problem is A. Interior-point methods
max  tr(CX) Interior-point methods define a popular class of algorithms

_ for solving linear and semi-definite programming problems.
subjectto a—A(X)=0 The three types of interior-point algorithm are: primal Jj19
X=0 (17)  primal-dual [20], [21], [22] and dual scaling [23]. In thigp
. . , per, we use the central-path-following primal-dual altjori
where the linear operatdk: Sy — R is deﬁnedTas described in [22] and [13]. In this algorithm, both primal
AX)=[ tr(ArX) tr(AgX) -+ tr(AX) | . (18) and dual problems are solved simultaneously by iteratively
X € Sp is the primal variable. Please note that, the operataalculating primal and dual step directions and step sizes,
A'in (17) is different from the system matrix A in (1). and applying these to the primal and dual variables. X et



be the primal variable angandZ be the dual variables. At then for allk € N,
each iteration, the variables are updated as X € Simns  Zk € Siatn.

Xcr1 = X+ tpAX (27) |
Vier1 = Yk + tady (28) Proof: First, suppose for somee N
Zk+1 — Zk+tdAZ (29) Xk € S_,M,na Zk € S_,M,n- (38)

. . We will show that this impliesXe, 1,211 € S mn. TO see
whereAX, Ay, andAZ are the search directions afgdand this, observe that according to (27)

tq are primal and dual step sizes. We choose the step sizes B A for all k
using a line-search between 0 and 1 so tiat; andZ, 1 Her1 = Xk+tp- X foralike
remain positive semi-definite. The Newton search directiofirom (30),AX can be written as

we use is R AX = DX+ OX for all ke N. (39)
AX = AX +AX (30) To find the structure ofAXy, we focus on the structure of
Ay = Ay + Ay (31) O alldAYk individually. Using (33),AX is
AZ =17 A7, (32) AX = — X+ Z 'GAT (A% forall ke N.  (40)
N R where according to (343 is
where AX, Ay and AZ are the predictor step directions Gy=C—AT(yx)+2Z forall keN. (41)

and AX, Ay, andAZ are the corrector step directions. TheFirst we examine the structure .

. N According to the
predictor step directions are found as ¢

definition ofC andA; in (21) and (23), and the definition of
Ay=0"1(-a+AZ'GX)) AT (y) in (20), we know that
AR = —X + 7~ 1GAT (A9)X (33) CeSmn AT :R“— S mn. (42)
BN Since all the terms on the right hand side of (41) ar§ if.n
ATy 7 T IR,
AZ=A'(y)-Z-C+A (49, and the structure of matrices # v n are preserved through
whereC and the operatoré and AT are as defined in the algebraic addition, we conclude

previous sectioq and Gke S mn forallkeN. (43)
G=-A(y)+Z2+C (34)  Returning to (40), using our assumption in (38) and noting
O=[AZ AT(e))X) --- A(Z*AT(e)X)] that the structure of the matrices ® wmn iS preserved

through multiplication and inversion, we conclude

and recalley,...,e are the unit basis vectors iR¥. Once

we have the predictor step directions, we can calculate the AXc € Smn fgr all ng. (44)
Using (35), the second term in (39) is

1
corrector step directions. Lat = =tr(ZX). The corrector — o~ o~ _
P =3 (2X) DXy = Pzt — 2 020X~ 2, 1DZy % for all k€ N.

step directions are

Ay=0"1 (A(uZ’l) —A(Z’lAZAX)) To determine the structure dIYk,_ first we investigat(él?%e

AX = yz-1- 2-IAGAKR — 7-1ATX (35) Ez\ljgture ofAZy and AZy. According to (48) and (36) we

AZ = AT (By). (36) AZ = AT (yy) —Z—C+AT(AY) forallkeN  (46)
The stopping criterion iga’y —tr(CX)| < €. Information AZ, = AT (D) forallke N.  (47)

regarding the convergence of different variants of interio gince all the terms in the right hand side of (46) and (47)
point primal-dual algorithm are presented in [20] and [21].gre inS_ \ n, then

B. Structure of SDP Variables AZy € Smn, DZgeSmn forallkeN. (48)

In this section, the structure of the primal and dual variRecalling (45) and our assumption in (38), we have
ables of the SDP problem associated with Polya’s algorithm AXye S mn forallkeN. (49)
is introduced. First, we define the following structureddito  According to (40), (44), (48) and (49), the total step direc-
diagonal subspace. tions are inS_m n,

Smni={Y CR™™:Y =diagYs, -, Yi11, - Yi4m) AXk:A)fk—i_Ai(kes"M’” for allke N

for YI c Rnxn} (37) AZk - AZk"’AZk S S_’M’n fOI’ a” k S N,

According to the following theorem, at each iteration the@nd it follows_that A for all ke N
primal and dual variables of our SDP problem defined in Xer1 =X+ pAX €S mn forall ke
Section IV-B have the same structure as in (37). L1 =Zc+1tpAZc € S mn forallkeN.

Theorem 3: Consider the SDP problem defined in (17)'I'hus, we have shown that for amye N if X, Zk € S_mn,
and (19) with elements given by (21), (23) and (26). SUpposRen X1, Zco1 € Sumn. According to the theorem aés[Jmp—

L and M are the cardinalities of\g,1a and W, idad-  tion, Xo, Zo € S_m.n. Therefore, by induction we have proved
If (27), (28) and (29) are initialized by hat M,
X< €S Mn, ZES mn forallkeN

XO S S_,M,na yO S RK7 ZO S S_,M,na



C. Parallel Implementation for k=1---.K

In this section, a parallel algorithm for solving the SDP TR = tr (A (ZM) 1A XM)
problems associated with Polya’s algorithm is provided. We for k: 1. K ’ and 1 7’1 LK
show how to exploit the block-diagonal structure of SDP o T
elements and primal and dual variables to decentralize the2) sendTR} andTR12k| fork=1,---,Kandl=1,--- K
interior-point algorithm described in Section V-A. to root processor.

Let N be the number of available processors ahe
floor(LJ,(lM). Processori has access t&€; and Aj; for
j=1,---,K, where

Root step 1:

Root processor:

. . 1) receive TRY, and TR?, for k=1,--- K and | =

G = {d!ag(c(il)(JHHlv“' Cia+1)) !f 0<i<L+M —NJ 1,--- K from processor, wherei =0,--- ,N—1.
diagCrai-1)(3+1)>*:Craztpyive) I LEM=NI<i<N 2) computeD; and O according to

and E%BiTRiil

A diag(Aj (i—1( J+1)+17"' Ajigey) FO<I<L+M-—NI D, — Yico TR, a
dlan 1<J+1) Aj,(2J+1)i+l) if L+M*NJSi<N, 1=

whereC and A matrices are calculated using (22) and (25), Z!\l:?)lTR%K

and{By} and{Hn} are calculated using an algorithm sim- an sN1TR2 sN 1TR?

ilar to the algorithm in [18]. The parallel algorithm cortsis | PlTRizll 5 *1TRI 1K

of processors and root initialization steps, five processor o= 2io K21 e 2i 2K

steps and five root steps. The inputs, steps and outputs are :

as follows. ZiN;01 TRI%K,l Zi'\l:?alTR%K,K

Inputs: _ . 3) solve the following system of linear equations for

The inputs to the algorithm a@ fori=1,--- ,L+M, Aj; Ay € RK.

oAy" =D,
4) sendAy™ to all processors.
Processors step 2:
Fori=0,--- ,N—1, processor:
1) receiveAy™ from root.
2) compute predictor step directions as follows.

fori=1,---,L+M andj=1,---,K, degree ofP(ar) and
the number of uncertain parameters.
Processors Initialization step:
Fori=0,--- , N—1, processor:
1) setx?, z% andy® as

w0 _ Nty 0<i<L+M-—NJ AKX = )

"l LEM-NI<i<N, XMy 2 < AR +C>ZAV§"K,-JX
29=X? and y’*=0eRK, = B

AZP}:ZYTAJ,i—Z{"—CiJrZAWA,—J
1:1 J:l

wherel, € R™" is the identity matrix.

2) computeTR; € R as follows. 3) computeTR?, € R and TR, € R according to
0 _ 0y 0 _
TR.O—tr(Z. X|) TR’%k:tr(Ak,i(Zim)il) for k:].,-",K

3) sendTR? to processor root. TR = tr(Ay; (ZM~1AZ"AX™)  for k=1,--- K.
4) setm=0. '
4) sendTR} and TR, for k=1,-.- K to root processor.
Root Initialization step: Root step 2:
Root processor: Root processor:
1) fori=0,--- ,N— 1 receiveTR from processof. 1) fork=1,--- K, receiveTRf:k andTR!, from processor
2) sety asp = 3Z| oTR? i, wherei=0,--- ,N—1.
3) seta=1eRK andyy = 0€ RX. 2) computeD, according to
4 t | and dual st izestgs=1 andty = 1. - -
5) se prlerga anh :a S epc:zes @? an hd i ZE:OiTRﬁl Zi::oiTR"fl
) receivedy as the degree (a) andny as the number NS TR_?:Z SN TRi4,2
of uncertain parameters from user. Dy =y _ -
Processors step 1: Nflz Nfl:
Fori=0,--- , N—1, processor: 2i=0 TRS,K 2i=0 TRi4,K
1) ComputeTR', € R and TR|-2k| € R as follows. 3) solve the following system of linear equations Ay™.

TRk—tr<Ak.(Zm ( 3 YA +27 +C)xm> OAy" =D,

4) sendAy™ to all processors.



Processors step 3:

Fori=1---,Lg comﬁute

A= Z S
Where recallg; is the standard basis f&, andN =
(n+ 1).
Outputs:
If the algorithm converges, the outputs of the algorithm are
P e R™" for i =1,---,Lg, which are the coefficients of

compute primal dual step total step directions accordnonomials inP(a) in lexicographical order. In this case

Fori=0,--- ,N—1, processor:
1) receiveAy™ from root processor.
2) compute corrector step directions as follows.
K
0Z" =5 AR
=1
AX" = —(Z") " HAZPX P+ AZIAXT) + p(Z)
3)
ing to
AX" = AX”‘+AX| WAVALES AZ”‘+AZ| ,
Ay" =AY+ Ay
4) set primal and dual step sizes equal to one.
tp=1 tg=1
5) updateX; as follows.
XML = XM 4 tpAX]"
6) check the positive definiteness Xf**. If X™ - 0,

7
8)

9)

then setky, = 1; Otherwise seky, = 0.
sendky, to root processor.
updateZ; andy; as follows.

ZMl=zM Az |y =y Ay

check the positive definiteness Bf*™. If ™ - 0,
then setk; = 1; Otherwise sek; =0

10) sendk; to root processor.
Root step 3:
Root processor:
1) fori=0,---,N—1 receiveky andk; from processor.
2) fori=0,---,N—1, If any of kx, =0, then setp, =

3)

the system is stable and the Lyapunov functiol (g, a) =
x"P(a)x.
D. Computational Complexity Analysis
To show the computational advantages of the proposed
parallel algorithm in solving large-scale robust stapilit
problems, the computational complexity of the algorithm is
investigated in the following cases.
Case 1:Systems with large number of states
Consider the following uncertain linear system
X(t) = A(o)x(t)
where Ac R™" and a € R' is the vector of uncertain
parameters. If the number of available processhrss
sufficiently large (equal or greater than the number of sub-
blocks inC as defined in (21)), then each processor performs
2
(dp))2((1 = 1)1)2
operations. Therefore, for systems with largand fixeddp
and |, the number of operations per processor required to
solve the SDP associated with parameter-dependent feasibi

ity problem A(a)TP(a)+P(a)A(a) <0,

0.8tp, sendt, to all processors and repeat processoris proportional ton’. Solving the LMI associated with the

steps 3.5, 3.6 and 3.7.
fori=0,---,N—1, If any of k; =0, then setty =

parameter-independent problem
ATP+PA <0.

0.8ty, sendty to all processors and repeat processorslso require©(n’) operations per processor. Therefore, if we

steps 3.8, 3.9 and 3.10.

Processors step 4:

Fori=0,---

1)

2)
3)

,N — 1, processor:
computeTR® € R and TR € R as follows.
TR =tr (GX™1) | TR =tr (Z™XMY)
sendTR® and TR? to root processor.
sets the new value oh=m-+1.

Root step 4:
Root processor:

1)
2)

3)

4)

receive TR® and TR® from processori, wherei =
0,---,N—1.

updatey asp = 1 yN L TRS.
and send it to all processors.
calculate primal and dual costs as follows.

Q= EOTR5 p=aly
check the stopping criterion:
converges. In this case, compute

Lo (dp+ny—1)!
°T Al (ng— 1)1

Ifo— | > €, then
return to Processors step 1; Otherwise the algorithm

have a sufficient number of processors, the algorithm solves
both the stability and robust stability problems perforgin
O(n’) operations per processor.

Case 2:Accuracy improvement
Consider the definition of simplex as follows.

|
N=_aeR Ya=ra>0
{ 2,

The accuracy of the algorithm is defined as the largest value
of r found by the algorithm (if exists) such that if the
uncertain parameters are inside the corresponding simplex
the stability of the system is verified. Typically, increasi
Polya’s exponend in (4) improves the accuracy of the algo-
rithm. According to (50), the number of processor operation
is independent ofl. The number of root operations
_ ((dp+1=2)1)3 B
(A3 =1)n3
and the number of communication operations
(o1 =12
(dph2(1—1)H2"
are also independent df Therefore, for a fixed, and suffi-
ciently largeN, improving the accuracy by increasidgloes

(51)



TABLE |

not add any computation per processor and communicational
COMPUTATION TIME T OF THESDPALGORITHM FOR DIFFERENT

overhead. NUMBER OF PROCESSORBI
Case 3:Algorithm scalability N T 5 3 a 5
The speed-up of a parallel algorithm is defined as T(s) | 247.32| 129.13 | 87.35 | 66.24 | 53.16
Py VI. EXAMPLE
N We evaluate the computation time and scalability of the

whereTs is the execution time of the sequential algorith”broposed parallel SDP solver in the following examples.
andTy is the execution time usinly processors. The speed-

up is governed by Example 1: A simplified model for the poloidal magnetic
Py = N (52) flux gradient in a Tokamak reactor [24] is
_ _ D+NS’ _ g(xt) 1 a9 n(x)i(xw (x1)
whereD is defined as the ratio of total operations performed ot maox \ x ox

by all processors except root to total operations perforboyed . ..
all processors and rods.is the ratio of operations performed with the boundary conditiong(0,t) = 0 and yx(1,t) =

by root to total operations performed by all processors an% where ¢ is the deviation of the flux gradient from a

root. Suppose that the number of available processors & eqﬁeference flux gradient profilgso is the permeability of free

to the number of sub-blocks i@ defined in (21). Using the space,n(x) is the plasma resistivity and is the radius

definitions ofD and S and equations (50) and (5I),andS ?f _'ihed!ast CI.OSG(T Talgnetlc surface (L(fI\:I_S). 'I;othobtam the
can be approximated as inite-dimensional state-space representation of the REE,

(dp+1—-1)1)2 discr(_atize the PDE in the spaﬁal domdidy 1) at 7 points.
Nmn The linear state-space model is
D~ N (do+1-1)N2Z _ ((dp+1-1))° Un(t) = AN (X)) Yx(t), (53)
(deh2(( _1)!)2n + (dp))3((1 _1)!)3” where A(n(x)) € R™7. Typically n(x) is not precisely
and (do+1—1)1)3 known; Therefore at each discretization point we substitut
% 6 n(x) in (53) with 1 (x) + a, wheren (x) is the known nominal
~ (dp!)*((1 = 1)1) ) value of n(x) at that point anda is the uncertainty. Then
NGpt1— 1)1)? 74 ((dp+1-1)1)3 6 the uncertain system can be written as
(dp)?(1=D)H2 " (dph)3((1 = 1)!)3 Bu(t) = A(a)Yx(t)- (54)

The number of sub-blocks in our algorithmlis- M, where The uncertain paramgteoe, belong toSs, which is defined

according to (15) and (16). and M are independent of as S = {a cRE: Zlai — _6|B,~|B| < a < |B]},

n. Therefore, the number of processdis=L + M is also i

independent (')\lh.7Therefore, 5 where the optimal value d8 is to be found by solving the
imD=lim -~ -1 and limS= lim ——_ _gq_following optimization problem.

N—oc0 n—o NN’ n—o0 n—e NN’ + n® max B
By substitutingD and S in (52) with their limit values, we s.t. system (54) is stable for @lle S (55)
have To transformSg into the unit simplex defined in (2), we use

rI]m}SPN =N. the mapf : S§ — Ag defined as

Thus, for largen, by usingL +M processors the present ,
parallel algorithm solves large robust stability problems o= f(a):m[alﬂBL--- 0+ |B]-
L+ M times faster than the sequential algorithms. Generallgy writing all o in terms of a] using the mapf, the
for problems with largen, it can be shown that by using linear uncertain state-space model with the uncertain pa-
N <L+ M processors the parallel algorithm solves the robusameters inside a unit simplex can be written fagt) =
stability problems approximatelil times faster than the (zis:lAiai’) Yx(t). We have omitted théy matrices due to
sequential algorithm. For different valuesrofthe algorithm the limitation of space. We solve the optimization problem
speed-up versus number of processors is illustrated in Figih (55) using bisection search dB. For each trial value
According to Fig 1, as: increases, the trend of speed-upof B, we use the proposed parallel SDP solver to solve
becomes more linear. Therefore, in case of problems withe associated SDP with the elements defined in (21), (23)
large number of states), our algorithm is highly scalable. and (26). The SDP problems have 224 constraints with
the primal variableX € R1092<1092 Qptimal B is found

80

7ol = neto to be 160x 1078, In this particular example, the optimal

o e value of B does not change with the degreesR{ftr) and

i et Polya’s exponend. The SDP problems are solved on a

B Core i7 machine. The computation time of SDP algorithm
% for different number of processors is presented in Table I.
12 Note that solving this problem by SOSTOOLS [6] on the
NS same machine is impossible due to the excessive amount of

Fig. 1. Theoretical speed-up vs. No. of processors for rdiffe system memory that SOS method requires
dimensionsn )
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