
Decentralized Computation for Robust Stability Analysis of Large
State-Space Systems Using Polya’s Theorem

Reza Kamyar and Matthew M. Peet

Abstract— In this paper, we propose a parallel algorithm to
solve large robust stability problems. We apply Polya’s theorem
to a parameter-dependent version of the Lyapunov inequality
to obtain a set of coupled linear matrix inequality conditions.
We show that a common implementation of a primal-dual
interior-point method for solving this LMI has a block diago nal
structure which is preserved at each iteration. By exploiting
this property, we create a highly scalable cluster-computing
implementation of our algorithm for robust stability analy sis
of systems with large state-space. Numerical tests confirm the
scalability of the algorithm.

I. INTRODUCTION
Lyapunov-based methods have been used extensively in

robust stability analysis of systems with uncertain param-
eters. These methods are often used to obtain stability
conditions in the form of Linear Matrix Inequalities (LMIs).
In the case of systems with uncertain parameters, the use of
parameter-dependent Lyapunov functions as in [1], [2], [3]
and [4] leads to parameter-dependent LMIs. The feasibility
of such parameter-dependent LMIs implies the stability of
the uncertain system. This Feasibility problem is known to
be NP-hard [5]. A common algorithm for solving parameter-
dependent LMIs is Sum of Squares (SOS). This algorithm
optimizes over positive polynomials with scalar or ma-
trix coefficients [6], [7], [8]. Unfortunately, the number of
variables in Semi-Definite Programming (SDP) problems
associated with SOS algorithm can easily grow beyond ten
thousand as the number of uncertain parameters and/or the
degree of squared polynomials increases. Current single-core
and multi-core machines with shared memory architecture
are incapable of solving such large SDP problems due to
their insufficient memory capacity. Moreover, the single-core
processors speed has not been increased significantly over the
last few years and no further speed improvement is expected
in near future [9]. In some applications, parallel computing
can resolve the speed saturation problem and make a better
use of the memory in hand. In particular, cluster computers
can perform numerous tasks simultaneously and process
large amounts of data by distributing the tasks and data
among the processors and their individual memories.

Typical LMI solvers [10], [11] can only utilize a sin-
gle processor of cluster computers. Moreover, due to the
Amdahl’s law [12] the speed of general-purpose parallel

Reza Kamyar is a Ph.D student with the Cybernetic Systems and
Control Lab (CSCL), Department of Mechanical, Material andAerospace
Engineering, Illinois Institute of Technology, Chicago, IL, 60616 USA,
rkamyar@iit.edu

Matthew M. Peet is an assistant professor with the department of Mechan-
ical, Material and Aerospace Engineering, Illinois Institute of Technology,
Chicago, IL, 60616 USA, mpeet@iit.edu

SDP solvers [13], [14] inevitably saturates as the number
of processors increases. To take the full advantage of the
computational power of cluster computers, we must use al-
gorithms with highly decentralized structure. Unfortunately,
the SDP conditions associated with the SOS algorithm do
not have an obvious distributed structure. For this reason we
pursue an alternative approach based on Polya’s theorem,
where the uncertain parameters are assumed to be inside
a unit simplex. A modern version of this theorem for
polynomials with matrix coefficients can be found in [15].
A performance comparison of SOS algorithm and Polya’s
algorithm in robust stability analysis has been done in [4].
The contribution of this paper is to show how to use the
structure of the SDP which results from Polya’s theorem to
distribute the computation of step size and search direction
in a primal-dual interior-point algorithm. We show that the
largest tasks in this interior-point algorithm distributewith
little communication overhead. We also show that if we
have a sufficiently large number of processors, our algorithm
solves large robust stability problems in the same time
as it takes to solve the parameter-independent Lyapunov
inequality. Moreover, if we have a sufficient number of
processors the algorithm allows us to increase the accuracyof
our approximation for the domain of uncertain parameters in
which the system is stable, without adding any computation
per processor or communication overhead. For uncertain
systems with large number of states, by usingN processors
the parallel algorithm solves the associated robust stability
problem approximatelyN times faster than a sequential
algorithm, whereN is shown to have a large upper bound.
This implies that the proposed parallel algorithm is scalable.

This paper is arranged as follows. In Section III, the
background materials for uncertain system characteristics,
Lyapunov stability and Polya’s theorem are presented. The
LMIs obtained from Polya’s algorithm and the associated
SDP problem are discussed in Section IV. Then the parallel
interior-point SDP solver, its implementation and complexity
analysis are addressed in Section V. Finally, the performance
of SDP solver in terms of the scalability and computational
time is demonstrated in Section VI.

II. N OTATION

We represent a monomial asαγ , where α ∈ R
l is the

vector of variables,γ ∈ Nl is the vector of exponents and
αγ = ∏l

i=1 αγi
i . Consider αγ and δ η as two monomials,

whereα,δ ∈Rl andγ,η ∈Nl . According to lexicographical
ordering, αγ precedesδ η if the left most non-zero entry
of γ − η is positive. The subspace of ordered symmetric

matrices inRn×n is denoted bySn. The standard basis for
Sn is defined as

[Ek]i j =

{
1 i = j = k

0 otherwise
, for k ≤ n

and
[Ek]i j = [Ak]i j +[Ak]

T
i j, for k > n,

where
[Ak]i j =

{
1 i = j−1= k− n

0 otherwise.

The canonical basis forRn is denoted byei for i = 1, · · · ,n,
where ei = [0 ...0 1︸︷︷︸

ith

0 ...0].

~1∈R
k is a vector with all the entries equal to one. The trace

of A ∈Rn×n is denoted bytr(A) = ∑n
i=1 Aii. diag(X1, · · · ,Xm)

is a block-diagonal matrix inRmn×mn whose diagonal blocks
areX1, · · · ,Xm ∈ Rn×n.

III. PRELIMINARIES

Consider the linear system

ẋ(t) = A(α)x(t), (1)

where A(α) ∈Rn×n andα ∈ Q ⊂Rl is a vector of uncertain
parameters. In this paper, we consider the case of a homo-
geneous polynomial A(α) andQ = ∆l ⊂ Rl where∆l is the
unit simplex:

∆l =

{
α ∈ R

l ,
l

∑
i=1

αi = 1,αi > 0

}
(2)

If A (α) with degreeda is not homogeneous, it can be made
homogeneous by multiplying each monomial in A(α) by
1= (∑i αi)

b, whereb = da −dm anddm is the degree of that
monomial.

The following is a stability condition [4].
Theorem 1: The linear system (1) is stable if and only if

there exists a polynomial matrixP(α) such thatP(α) > 0
and AT (α)P(α)+P(α)A(α)< 0 (3)
for all α ∈ ∆l .
A similar condition also holds for discrete-time linear sys-
tems.

The conditions associated with Theorem 1 are infinite-
dimensional LMIs, meaning they must hold at an infinite
number of points. Such problems are known to be NP-
hard [5]. In this paper we derive a sequence of polynomial-
time algorithms such that their outputs converge to the
solution of the infinite-dimensional LMI. Key to this result
is Polya’s Theorem [16]. A variation of this theorem for
matrices is listed below.

Theorem 2: (Polya’s Theorem) The homogeneous polyno-
mial F(α)> 0 for all α ∈ ∆l if and only if for all sufficiently
larged, (

l

∑
i=1

αi

)d

F(α) (4)

has all positive definite coefficients.
Upper bounds for Polya’s exponentd have been found [17]
based on the properties ofF . In this paper, we show that
applying Polya’s algorithm on Theorem 1 yields a semidef-
inite programming condition with a parallel structure. This
condition will be discussed in detail in the following section.

IV. PROBLEM SET-UP

In this section, we show how Polya’s theorem can be used
to determine the robust stability of an uncertain system using
linear matrix inequalities with a distributed structure.

A. Polya’s Algorithm

We consider the stability of the system described by
Equation (1). We are interested in finding aP(α) which
satisfies the conditions of Theorem 1. According to Polya’s
theorem, the constraints of Theorem 1 are satisfied if for
some sufficiently larged, the polynomials(

l

∑
i=1

αi

)d

P(α) and (5)

−

(
l

∑
i=1

αi

)d

(AT (α)P(α)+P(α)A(α)) (6)

have all positive definite coefficients.
Let P be a polynomial of degreedp. It is defined using

coefficient matricesPγ as

P(α) = ∑
γ∈Wdp

Pγαγ , (7)

where Wd is the unit disk Wd :=
{

γ ∈Nl : ∑l
i=1 γi = d

}
,

wherel is the dimension of the vectorα. Likewise, let A be
a homogeneous polynomial of degreeda. It is defined using
the matrices Aγ as

A(α) = ∑
γ∈Wda

Aγαγ . (8)

By substituting (7) and (8) into (5) and (6), the conditions
of Theorem 2 can be represented as

∑
h∈Wdp

βh,γPh > 0; γ ∈Wdp+d and (9)

∑
h∈Wdp

(Hh,γ
T Ph +PhHh,γ)< 0; γ ∈Wdp+da+d . (10)

Before providing the formulas for the calculation of the sets
of scalars{βh,γ} and matrices{Hh,γ}, let us obtain these
coefficients for a simple case. Consider

A(α) = A[1,0]α1+A[0,1]α2 andP(α) = P[1,0]α1+P[0,1]α2.

By calculating (5) ford = 1 we have

(α1+α2)P(α) = P[1,0]α2
1 +(P[1,0]+P[0,1])α1α2+P[0,1]α2

2

and{βh,γ} can be extracted as

β[1,0],[2,0] = 1,β[0,1],[2,0] = 0,β[1,0],[1,1] = 1,

β[0,1],[1,1] = 1,β[1,0],[0,2] = 0,β[0,1],[0,2] = 1.
By calculating (6) ford = 1 we have

(α1+α2)
(
AT (α)P(α)+P(α)A(α)

)
=
(
AT

1 P1+P1A1
)

α3
1

+
(
AT

1 P1+P1A1+AT
2 P1+P1A2+AT

1 P2+P2A1
)

α2
1α2

+
(
AT

2 P1+P1A2+AT
1 P2+P2A1+AT

2 P2+P2A2
)

α1α2
2

+
(
AT

2 P2+P2A2
)

α3
2

and{Hh,γ} can be extracted as
H[1,0],[3,0] = A1, H[0,1],[3,0] = 0,

H[1,0],[2,1] = A1+A2, H[0,1],[2,1] = A1,

H[1,0],[1,2] = A2, H[0,1],[1,2] = A1+A2,

H[1,0],[0,3] = 0, H[0,1],[0,3] = A2.

We define{βh,γ} recursively as follows. Let

β 0
h,γ =

{
1 h = γ
0 otherwise

γ ∈Wdp , h ∈Wdp (11)

Then, for i = 1, . . .d, let
β i

h,γ = ∑
λ∈Wdp+i−1

λ=γ−e j
j=1...l

β i−1
h,λ . γ ∈Wdp+i, h ∈Wdp (12)

Finally, βh,γ = β d
h,γ , whereγ ∈Wdp+d . To obtainHh,γ , let

H0
h,γ = ∑

δ∈Wda
δ+h=γ

Aδ , γ ∈Wdp+da , h ∈Wdp . (13)

Then, for i = 1, . . .d, let
H i

h,γ = ∑
λ∈Wdp+da+i−1

λ=γ−e j
j=1...l

H i−1
h,λ γ ∈Wdp+da+i h ∈Wdp . (14)

Finally, setHh,γ = Hd
h,γ , whereγ ∈Wdp+da+d .

Computing{βh,γ} and {Hh,γ} is a significant challenge.
For a givend, the number ofβh,γ coefficients isL0 ·L, where

L0 =
(dp + l−1)!
dp!(l−1)!

is the number of monomials inP(α) and

L =
(dp + d+ l−1)!
(dp + d)!(l−1)!

(15)

is the cardinality ofWdp+d , where recalll is the dimension
of the uncertain parametersα in the uncertain system (1).
The number ofHh,γ coefficients isL0 ·M, where

M =
(dp + da + d+ l−1)!
(dp + da + d)!(l−1)!

(16)

is the cardinality ofWdp+da+d . In [18], we proposed a
decentralized computing approach to the calculation of the
coefficientsβh,γ .

In the following section, we express the LMIs associated
with conditions (9) and (10) in primal and dual format.
We also discuss the structure of the primal and dual SDP
variables and constraints.

B. SDP Problem Elements

We express the LMI constraints of (9) and (10) as a semi-
definite programming problem. We define semi-definite pro-
gramming as the optimization of a linear objective function
over the cone of positive definite matrices subject to linear
equality constraints. This problem can be stated either in
primal or in dual formulation.
GivenC ∈ Sm, a ∈ Rk andAi ∈ Sm, the primal problem is

max tr(CX)

subject to a−A(X) = 0

X � 0 (17)

where the linear operatorA : Sm →Rk is defined as

A(X) =
[

tr(A1X) tr(A2X) · · · tr(AkX)
]T

. (18)

X ∈ Sm is the primal variable. Please note that, the operator
A in (17) is different from the system matrix A in (1).

Given a primal SDP, the associateddual problem is
min aT y

subject to AT (y)−C = Z

Z � 0 , y ∈ R
k (19)

where the linear operatorAT : Rk → Sm is defined as

AT (y) =
k

∑
i=1

yiAi. (20)

y ∈ R
k andZ ∈ Sm are the dual variables.

The elementsC, Ai anda of SDP problem, associated with
the LMIs in (9) and (10) are defined as follows. We define
the elementC as

C = diag(C1, · · ·CL,CL+1, · · ·CL+M), (21)
where

C j =





εIn ·

(
∑h∈Wdp

βh,λ j

dp!

∏l
i=1hi!

)
, 1≤ j ≤ L

0n, L+1≤ j ≤ L+M,

(22)

wherehi ∈Nl is theith element ofWdp using lexicographical
ordering,λ j is the jth element ofWdp+d using lexicographical
ordering,L is the cardinality ofWdp+d , M is the cardinality
of Wdp+da+d , In and 0n are the identity and zero matrices of
dimensionn, and l is the number of uncertain parameters.
For i = 1, · · · ,K, the elementsAi are defined as

Ai = diag(Ai,1, · · ·Ai,L,Ai,L+1, · · ·Ai,L+M) (23)
where

K =
(dp + l−1)!
dp!(l −1)!

n(n+1)
2

, (24)

is the number of independent elements in the coefficients of
P(α) andAi, j is equal to{

∑h∈Wdp
βh,λ j

Ph(ei), 1≤ j ≤ L

−∑h∈Wdp
HT

h,γ j−L
Ph(ei)+Ph(ei)Hh,γ j−L , L+1≤ j ≤ L+M

(25)
whereγ j is the jth element ofWdp+da+d using lexicographical
ordering and

Ph(x) =
N

∑
k=1

Ek xk+N(Ih−1),

where Ek is the basis ofSn from Section II, Ih is the
lexicographical index ofh, N = n(n+1)

2 andn is the dimension
of system (1). Finally, by setting

a =~1∈ R
K , (26)

the SDP problem associated with Polya’s algorithm is de-
fined.

V. PARALLEL SDP SOLVER

In this section, we describe the steps of a primal-dual
interior-point algorithm and show how, for the LMIs in (9)
and (10), these steps can be distributed in a distributed-
computing, distributed-memory environment.

A. Interior-point methods

Interior-point methods define a popular class of algorithms
for solving linear and semi-definite programming problems.
The three types of interior-point algorithm are: primal [19],
primal-dual [20], [21], [22] and dual scaling [23]. In this pa-
per, we use the central-path-following primal-dual algorithm
described in [22] and [13]. In this algorithm, both primal
and dual problems are solved simultaneously by iteratively
calculating primal and dual step directions and step sizes,
and applying these to the primal and dual variables. LetX

be the primal variable andy andZ be the dual variables. At
each iteration, the variables are updated as

Xk+1 = Xk + tp∆X (27)

yk+1 = yk + td∆y (28)

Zk+1 = Zk + td∆Z, (29)

where∆X , ∆y, and∆Z are the search directions andtp and
td are primal and dual step sizes. We choose the step sizes
using a line-search between 0 and 1 so thatXk+1 and Zk+1

remain positive semi-definite. The Newton search direction
we use is

∆X = ∆X̂ +∆X (30)

∆y = ∆ŷ+∆y (31)

∆Z = ∆Ẑ +∆Z, (32)

where ∆X̂ , ∆ŷ and ∆Ẑ are the predictor step directions
and ∆X , ∆y, and ∆Z are the corrector step directions. The
predictor step directions are found as

∆ŷ = O−1(−a+A(Z−1GX)
)

∆X̂ =−X +Z−1GAT (∆ŷ)X (33)

∆Ẑ = AT (y)−Z−C+AT (∆ŷ),

whereC and the operatorsA and AT are as defined in the
previous section and

G =−AT (y)+Z+C (34)

O =
[
A(Z−1AT (e1)X) · · · A(Z−1AT (ek)X)

]

and recalle1, ...,ek are the unit basis vectors inRk. Once
we have the predictor step directions, we can calculate the

corrector step directions. Letµ =
1
3

tr(ZX). The corrector
step directions are

∆y = O−1
(

A(µZ−1)−A(Z−1∆Ẑ∆X̂)
)

∆X = µZ−1−Z−1∆Ẑ∆X̂ −Z−1∆ZX (35)

∆Z = AT (∆y). (36)

The stopping criterion is|aT y − tr(CX)| ≤ ε. Information
regarding the convergence of different variants of interior-
point primal-dual algorithm are presented in [20] and [21].

B. Structure of SDP Variables

In this section, the structure of the primal and dual vari-
ables of the SDP problem associated with Polya’s algorithm
is introduced. First, we define the following structured block-
diagonal subspace.

Sl,m,n := {Y ⊂ R
mn×mn : Y = diag(Y1, · · ·Yl ,Yl+1, · · ·Yl+m)

for Yi ∈ R
n×n} (37)

According to the following theorem, at each iteration the
primal and dual variables of our SDP problem defined in
Section IV-B have the same structure as in (37).

Theorem 3: Consider the SDP problem defined in (17)
and (19) with elements given by (21), (23) and (26). Suppose
L and M are the cardinalities ofWdp+d and Wdp+da+d .
If (27), (28) and (29) are initialized by

X0 ∈ SL,M,n, y0 ∈ RK , Z0 ∈ SL,M,n,

then for allk ∈N,

Xk ∈ SL,M,n, Zk ∈ SL,M,n.

Proof: First, suppose for somek ∈N

Xk ∈ SL,M,n, Zk ∈ SL,M,n. (38)

We will show that this impliesXk+1,Zk+1 ∈ SL,M,n. To see
this, observe that according to (27)

Xk+1 = Xk + tp∆Xk for all k ∈ N.

From (30),∆Xk can be written as
∆Xk = ∆X̂k +∆Xk for all k ∈ N. (39)

To find the structure of∆Xk, we focus on the structure of
∆X̂k and∆Xk individually. Using (33),∆X̂k is

∆X̂k =−Xk +Z−1
k GkAT (∆ŷk)Xk for all k ∈ N. (40)

where according to (34),Gk is
Gk =C−AT (yk)+Zk for all k ∈ N. (41)

First we examine the structure ofGk. According to the
definition ofC andAi in (21) and (23), and the definition of
AT (y) in (20), we know that

C ∈ SL,M,n, AT : RK 7→ SL,M,n. (42)
Since all the terms on the right hand side of (41) are inSL,M,n

and the structure of matrices inSL,M,n are preserved through
algebraic addition, we conclude

Gk ∈ SL,M,n for all k ∈ N. (43)
Returning to (40), using our assumption in (38) and noting
that the structure of the matrices inSL,M,n is preserved
through multiplication and inversion, we conclude

∆X̂k ∈ SL,M,n for all k ∈ N. (44)
Using (35), the second term in (39) is

∆Xk = µZ−1
k −Z−1

k ∆Ẑk∆X̂k −Z−1
k ∆ZkXk for all k ∈ N.

(45)
To determine the structure of∆Xk, first we investigate the
structure of∆Ẑk and ∆Zk. According to (48) and (36) we
have

∆Ẑk = AT (yk)−Zk −C+AT (∆ŷk) for all k ∈N (46)

∆Zk = AT (∆yk) for all k ∈ N. (47)

Since all the terms in the right hand side of (46) and (47)
are inSL,M,n, then

∆Ẑk ∈ SL,M,n, ∆Zk ∈ SL,M,n for all k ∈ N. (48)
Recalling (45) and our assumption in (38), we have

∆X k ∈ SL,M,n for all k ∈ N. (49)
According to (40), (44), (48) and (49), the total step direc-
tions are inSL,M,n,

∆Xk = ∆X̂k +∆Xk ∈ SL,M,n for all k ∈ N

∆Zk = ∆Ẑk +∆Zk ∈ SL,M,n for all k ∈ N,

and it follows that
Xk+1 = Xk + tp∆Xk ∈ SL,M,n for all k ∈ N

Zk+1 = Zk + tp∆Zk ∈ SL,M,n for all k ∈ N.

Thus, we have shown that for anyk ∈ N if Xk,Zk ∈ SL,M,n,
thenXk+1,Zk+1 ∈ SL,M,n. According to the theorem assump-
tion, X0,Z0 ∈ SL,M,n. Therefore, by induction we have proved
that

Xk ∈ SL,M,n, Zk ∈ SL,M,n for all k ∈ N

C. Parallel Implementation

In this section, a parallel algorithm for solving the SDP
problems associated with Polya’s algorithm is provided. We
show how to exploit the block-diagonal structure of SDP
elements and primal and dual variables to decentralize the
interior-point algorithm described in Section V-A.

Let N be the number of available processors andJ =
floor(L+M

N). Processori has access toCi and A j,i for
j = 1, · · · ,K, where

Ci =

{
diag(C(i−1)(J+1)+1, · · · ,Ci(J+1)) if 0 ≤ i < L+M−NJ
diag(C(2i−1)(J+1), · · · ,C(2J+1)i+1) if L+M−NJ ≤ i < N

and

A j,i =

{
diag(A j,(i−1)(J+1)+1, · · · ,A j,i(J+1)) if 0 ≤ i < L+M−NJ

diag(A j,(2i−1)(J+1), · · · ,A j,(2J+1)i+1) if L+M−NJ ≤ i < N,

whereC andA matrices are calculated using (22) and (25),
and{βh,γ} and{Hh,γ} are calculated using an algorithm sim-
ilar to the algorithm in [18]. The parallel algorithm consists
of processors and root initialization steps, five processors
steps and five root steps. The inputs, steps and outputs are
as follows.

Inputs:
The inputs to the algorithm areCi for i = 1, · · · ,L+M, A j,i

for i = 1, · · · ,L+M and j = 1, · · · ,K, degree ofP(α) and
the number of uncertain parameters.

Processors Initialization step:
For i = 0, · · · ,N −1, processori:

1) setX0
i , Z0

i andy0 as

X0
i =

{
I(J+1)n, 0≤ i < L+M−NJ

IJn, L+M−NJ ≤ i < N,

Z0
i = X0

i and y0 =~0∈ R
K ,

whereIn ∈ Rn×n is the identity matrix.
2) computeTR0

i ∈ R as follows.

TR0
i = tr(Z0

i X0
i)

3) sendTR0
i to processor root.

4) setm = 0.

Root Initialization step:
Root processor:

1) for i = 0, · · · ,N −1, receiveTR0
i from processori.

2) setµ as µ = 1
3 ∑N−1

i=0 TR0
i .

3) seta =~1∈ RK andy0 =~0∈ RK .
4) set primal and dual step sizes astp = 1 andtd = 1.

5) receivedp as the degree ofP(α) andnu as the number
of uncertain parameters from user.

Processors step 1:
For i = 0, · · · ,N −1, processori:

1) ComputeTR1
i,k ∈ R andTR2

i,k,l ∈ R as follows.

TR1
i,k = tr

(
Ak,i(Z

m
i)

−1

(
−

K

∑
j=1

ym
j A j,i +Zm

i +Ci

)
Xm

i

)

for k = 1, · · · ,K

TR2
i,k,l = tr

(
Ak,i(Z

m
i)

−1Al,iX
m
i

)

for k = 1, · · · ,K and l = 1, · · · ,K

2) sendTR1
i,k andTR2

i,k,l for k = 1, · · · ,K andl = 1, · · · ,K
to root processor.

Root step 1:
Root processor:

1) receive TR1
i,k and TR2

i,k,l for k = 1, · · · ,K and l =
1, · · · ,K from processori, wherei = 0, · · · ,N −1.

2) computeD1 andO according to

D1 =




∑N−1
i=0 TR1

i,1

∑N−1
i=0 TR1

i,2
...

∑N−1
i=0 TR1

i,K


− a

and

O =







∑N−1
i=0 TR2

i,1,1

∑N−1
i=0 TR2

i,2,1
...

∑N−1
i=0 TR2

i,K,1


 , · · · ,




∑N−1
i=0 TR2

i,1,K

∑N−1
i=0 TR2

i,2,K
...

∑N−1
i=0 TR2

i,K,K







3) solve the following system of linear equations for
∆ŷm ∈R

K . O∆ŷm = D1
4) send∆ŷm to all processors.

Processors step 2:
For i = 0, · · · ,N −1, processori:

1) receive∆ŷm from root.
2) compute predictor step directions as follows.

∆X̂m
i =

−Xm
i +(Zm

i)
−1

(
−

K

∑
j=1

ym
j A j,i +Zm

i +Ci

)
K

∑
j=1

∆ŷm
j A j,i Xm

i

∆Ẑm
i =

K

∑
j=1

ym
j A j,i −Zm

i −Ci +
K

∑
j=1

∆ŷm
j A j,i

3) computeTR3
i,k ∈ R andTR4

i,k ∈ R according to

TR3
i,k = tr(Ak,i(Z

m
i)

−1) for k = 1, · · · ,K

TR4
i,k = tr(Ak,i(Z

m
i)

−1∆Ẑm
i ∆X̂m

i) for k = 1, · · · ,K.

4) sendTR3
i,k andTR4

i,k for k = 1, · · · ,K to root processor.
Root step 2:
Root processor:

1) for k = 1, · · · ,K, receiveTR3
i,k andTR4

i,k from processor
i, wherei = 0, · · · ,N −1.

2) computeD2 according to

D2 = µ




∑N−1
i=0 TR3

i,1

∑N−1
i=0 TR3

i,2
...

∑N−1
i=0 TR3

i,K


−




∑N−1
i=0 TR4

i,1

∑N−1
i=0 TR4

i,2
...

∑N−1
i=0 TR4

i,K




3) solve the following system of linear equations for∆ym.

O∆ym = D2
4) send∆ym to all processors.

Processors step 3:
For i = 0, · · · ,N −1, processori:

1) receive∆ym from root processor.
2) compute corrector step directions as follows.

∆Z
m
i =

K

∑
j=1

∆ym
j A j,i

∆X
m
i =−(Zm

i)
−1(∆Z

m
i Xm

i +∆Ẑm
i ∆X̂m

i)+ µ(Zm
i)

−1

3) compute primal dual step total step directions accord-
ing to

∆Xm
i = ∆X̂m

i +∆X
m
i , ∆Zm

i = ∆Ẑm
i +∆Z

m
i ,

∆ym = ∆ŷm +∆ym.

4) set primal and dual step sizes equal to one.
tp = 1, td = 1

5) updateXi as follows.
Xm+1

i = Xm
i + tp∆Xm

i

6) check the positive definiteness ofXm+1
i . If Xm+1

i � 0,
then setkxi = 1; Otherwise setkxi = 0.

7) sendkxi to root processor.
8) updateZi andyi as follows.

Zm+1
i = Zm

i + td∆Zm
i , ym+1 = ym + td∆ym

9) check the positive definiteness ofZm+1
i . If Zm+1

i � 0,
then setkzi = 1; Otherwise setkzi = 0.

10) sendkzi to root processor.

Root step 3:
Root processor:

1) for i = 0, · · · ,N−1 receivekxi andkzi from processori.
2) for i = 0, · · · ,N − 1, If any of kxi = 0, then settp =

0.8tp, sendtp to all processors and repeat processors
steps 3.5, 3.6 and 3.7.

3) for i = 0, · · · ,N − 1, If any of kzi = 0, then settd =
0.8td, sendtd to all processors and repeat processors
steps 3.8, 3.9 and 3.10.

Processors step 4:
For i = 0, · · · ,N −1, processori:

1) computeTR5
i ∈ R andTR6

i ∈ R as follows.

TR5
i = tr

(
CiXm+1

i

)
, TR6

i = tr
(
Zm+1

i Xm+1
i

)

2) sendTR5
i andTR6

i to root processor.
3) sets the new value ofm = m+1.

Root step 4:
Root processor:

1) receive TR5
i and TR6

i from processori, where i =
0, · · · ,N −1.

2) updateµ as µ = 1
3 ∑N−1

i=0 TR6
i .

and send it to all processors.
3) calculate primal and dual costs as follows.

φ =
N−1

∑
i=0

TR5
i , ψ = aT y

4) check the stopping criterion: If|φ − ψ | > ε, then
return to Processors step 1; Otherwise the algorithm
converges. In this case, compute

L0 =
(dp + nu −1)!
(dp)!(nu −1)!

.

For i = 1, · · · ,L0 compute

Pi =
N

∑
j=1

E jy
m−1
(j+N(i−1)),

where recallE j is the standard basis forSn and N =
1
2n(n+1).

Outputs:
If the algorithm converges, the outputs of the algorithm are
Pi ∈ Rn×n for i = 1, · · · ,L0, which are the coefficients of
monomials inP(α) in lexicographical order. In this case
the system is stable and the Lyapunov function isV (x,α) =
xT P(α)x.
D. Computational Complexity Analysis

To show the computational advantages of the proposed
parallel algorithm in solving large-scale robust stability
problems, the computational complexity of the algorithm is
investigated in the following cases.

Case 1:Systems with large number of states
Consider the following uncertain linear system

ẋ(t) = A(α)x(t)

where A∈ Rn×n and α ∈ Rl is the vector of uncertain
parameters. If the number of available processorsN is
sufficiently large (equal or greater than the number of sub-
blocks inC as defined in (21)), then each processor performs

'
((dp + l−1)!)2

(dp!)2((l −1)!)2 n7. (50)

operations. Therefore, for systems with largen and fixeddp

and l, the number of operations per processor required to
solve the SDP associated with parameter-dependent feasibil-
ity problem A(α)T P(α)+P(α)A(α)≺ 0,
is proportional ton7. Solving the LMI associated with the
parameter-independent problem

AT P+PA ≺ 0.
also requiresO(n7) operations per processor. Therefore, if we
have a sufficient number of processors, the algorithm solves
both the stability and robust stability problems performing
O(n7) operations per processor.

Case 2:Accuracy improvement
Consider the definition of simplex as follows.

∆l =

{
α ∈ R

l ,
l

∑
i=1

αi = r,αi > 0

}

The accuracy of the algorithm is defined as the largest value
of r found by the algorithm (if exists) such that if the
uncertain parameters are inside the corresponding simplex,
the stability of the system is verified. Typically, increasing
Polya’s exponentd in (4) improves the accuracy of the algo-
rithm. According to (50), the number of processor operations
is independent ofd. The number of root operations

'
((dp + l−1)!)3

(dp!)3((l −1)!)3 n6, (51)

and the number of communication operations

' N
((dp + l−1)!)2

(dp!)2((l −1)!)2 n4.

are also independent ofd. Therefore, for a fixeddp and suffi-
ciently largeN, improving the accuracy by increasingd does

not add any computation per processor and communicational
overhead.

Case 3:Algorithm scalability
The speed-up of a parallel algorithm is defined as

SPN =
Ts

TN
,

whereTs is the execution time of the sequential algorithm
andTN is the execution time usingN processors. The speed-
up is governed by

SPN =
N

D+NS
, (52)

whereD is defined as the ratio of total operations performed
by all processors except root to total operations performedby
all processors and root.S is the ratio of operations performed
by root to total operations performed by all processors and
root. Suppose that the number of available processors is equal
to the number of sub-blocks inC defined in (21). Using the
definitions ofD andS and equations (50) and (51),D andS
can be approximated as

D '

N
((dp + l−1)!)2

(dp!)2((l −1)!)2n7

N
((dp + l−1)!)2

(dp!)2((l −1)!)2 n7+
((dp + l−1)!)3

(dp!)3((l −1)!)3n6

and

S '

((dp + l−1)!)3

(dp!)3((l −1)!)3 n6

N
((dp + l−1)!)2

(dp!)2((l −1)!)2n7+
((dp + l−1)!)3

(dp!)3((l −1)!)3 n6

.

The number of sub-blocks in our algorithm isL+M, where
according to (15) and (16),L and M are independent of
n. Therefore, the number of processorsN = L+M is also
independent ofn. Therefore,

lim
n→∞

D = lim
n→∞

Nn7

Nn7 = 1 and lim
n→∞

S = lim
n→∞

n6

Nn7+ n6 = 0.

By substitutingD and S in (52) with their limit values, we
have lim

n→∞
SPN = N.

Thus, for largen, by usingL+M processors the present
parallel algorithm solves large robust stability problems
L+ M times faster than the sequential algorithms. Generally,
for problems with largen, it can be shown that by using
N ≤ L+M processors the parallel algorithm solves the robust
stability problems approximatelyN times faster than the
sequential algorithm. For different values ofn, the algorithm
speed-up versus number of processors is illustrated in Fig 1.
According to Fig 1, asn increases, the trend of speed-up
becomes more linear. Therefore, in case of problems with
large number of states,n, our algorithm is highly scalable.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

No. of Processors

S
pe

ed
−u

p

n=5
n=10
n=25
n=50
n=100
n=1000

Fig. 1. Theoretical speed-up vs. No. of processors for different system
dimensionsn

TABLE I

COMPUTATION TIME T OF THE SDPALGORITHM FOR DIFFERENT

NUMBER OF PROCESSORSN

N 1 2 3 4 5
T (s) 247.32 129.13 87.35 66.24 53.16

VI. EXAMPLE
We evaluate the computation time and scalability of the

proposed parallel SDP solver in the following examples.

Example 1: A simplified model for the poloidal magnetic
flux gradient in a Tokamak reactor [24] is

∂ψx(x, t)
∂ t

=
1

µ0a2

∂
∂x

(
η(x)

x
∂
∂x

(xψx(x, t))

)

with the boundary conditionsψx(0, t) = 0 and ψx(1, t) =
0, whereψx is the deviation of the flux gradient from a
reference flux gradient profile,µ0 is the permeability of free
space,η(x) is the plasma resistivity anda is the radius
of the last closed magnetic surface (LCMS). To obtain the
finite-dimensional state-space representation of the PDE,we
discretize the PDE in the spatial domain(0,1) at 7 points.
The linear state-space model is

ψ̇x(t) = A(η(x))ψx(t), (53)

where A(η(x)) ∈ R7×7. Typically η(x) is not precisely
known; Therefore at each discretization point we substitute
η(x) in (53) with η̂(x)+α, whereη̂(x) is the known nominal
value of η(x) at that point andα is the uncertainty. Then
the uncertain system can be written as

ψ̇x(t) = A(α)ψx(t). (54)
The uncertain parametersα j belong toSB, which is defined
as

SB := {α ∈ R
8 :

8

∑
i=1

αi =−6|B|,−|B| ≤ αi ≤ |B|},

where the optimal value ofB is to be found by solving the
following optimization problem.

max B
s.t. system (54) is stable for allα ∈ SB (55)

To transformSB into the unit simplex defined in (2), we use
the map f : SB → ∆8 defined as

α ′ = f (α) =
1

2|B|
[α1+ |B|, · · · ,α8+ |B|].

By writing all α j in terms of α ′
j using the mapf , the

linear uncertain state-space model with the uncertain pa-
rameters inside a unit simplex can be written asψ̇x(t) =(
∑8

i=1 Aiα ′
i

)
ψx(t). We have omitted theAi matrices due to

the limitation of space. We solve the optimization problem
in (55) using bisection search onB. For each trial value
of B, we use the proposed parallel SDP solver to solve
the associated SDP with the elements defined in (21), (23)
and (26). The SDP problems have 224 constraints with
the primal variableX ∈ R1092×1092. Optimal B is found
to be 1.60× 10−8. In this particular example, the optimal
value of B does not change with the degrees ofP(α) and
Polya’s exponentd. The SDP problems are solved on a
Core i7 machine. The computation time of SDP algorithm
for different number of processors is presented in Table I.
Note that solving this problem by SOSTOOLS [6] on the
same machine is impossible due to the excessive amount of
memory that SOS method requires.

Example 2: To evaluate the scalability of the algorithm, we
solve three random SDP problems with different dimensions
using a parallel Linux-based cluster Karlin at Illinois Institute
of Technology. Fig. 2 demonstrates the algorithm speed-up
with respect to the number of processors for SDP problems
with different dimensions of the primal variableX . The
dimensions ofX are (L +M)n = 80, 200 and 500, where
L and M are defined in (15) and (16). The linearity of the
speed-up in all three cases implies the scalability of the
parallel algorithm.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

Number of processors

S
pe

ed
−u

p

(L+M)n=500, K=10
(L+M)n=200, K=8
(L+M)n=80, K=5

Fig. 2. Speed-up of SDP algorithm vs. the number of processors

Example 3: In this example, we ran our algorithm on
a desktop computer with 24 Gig of RAM to solve the
robust stability problem with dimensionn and l uncertain
parameters. Using trial and error, for differentn and d
we found the largestl for which the algorithm does not
terminate due to insufficient memory (Fig. 3). In all of the
runsda = dp = 1.

20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Dimension of uncertain system, n

La
rg

es
t N

o.
 o

f u
nc

er
ta

in
 p

ar
am

et
er

s,
 l

d=1
d=2
d=3
d=4

Fig. 3. Largest number of uncertain parameters ofn-dimensional systems
for which the algorithm can solve the robust stability problem of the system
on a computer with 24 Gig of RAM

VII. CONCLUSIONS

A parallel optimization algorithm based on an interior-
point primal-dual algorithm is proposed to solve large-scale
LMIs involved in robust stability analysis. In the present
work, these LMIs come from the application of Polya’s
algorithm on parameter-dependent Lyapunov inequalities.
It is shown that the SDP problem associated with these
LMIs has block-diagonal structure. By taking advantage of
such structure, the data and operations of the algorithm
are decentralized with little communication overhead. The
algorithm was used to investigate the stability of a model
for the gradient of the poloidal magnetic flux in a Tokamak
reactor with a large number of uncertain parameters.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding from NSF
with the award number CMMI-1100376 for the present work.

REFERENCES

[1] R. C. L. F. Oliveira and P. L. D. Peres, “Stability of polytopes of
matrices via affine parameter-dependent Lyapunov functions: Asymp-
totically exact LMI conditions,” Linear Algebra Appl., vol. 405,
pp. 209–228, Aug 2005.

[2] R. C. L. F. Oliveira and P. L. D. Peres, “A less conservative LMI
condition for the robust stability of discrete-time uncertain systems,”
Syst. Control Lett., vol. 43, pp. 371–378, Aug 2001.

[3] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Robust stability of
polytopic systems via polynomially parameter-dependent Lyapunov
functions,” Proceedings of the 42nd IEEE Conference on Decision
and Control, Dec 2003.

[4] R. C. L. F. Oliveira and P. L. D. Peres, “Parameter-dependent LMIs
in robust analysis: Characterization of homogeneous polynomially
parameter-dependent solutions via LMI relaxations,”IEEE Transac-
tions on Automatic Control, vol. 52, pp. 1334–1340, Jul 2007.

[5] A. Ben-Tal and A. Nemirovski, “Robust convex optimization,” Math.
Operat. Res., vol. 23, no. 4, pp. 769–805, 1998.

[6] P. Rajna, A. Papachristodoulou, and P. A. Parrilo, “Introducing SOS-
TOOLS: a general purpose sum of squares programming solver,”
Proceedings of IEEE Conference on Decision and Control, 2002.

[7] D. Henrion and J. B. Lassere, “Gloptipoly: Global optimization
over polynomials with Matlab and SeDuMi,” Proceedings of IEEE
Conference on Decision and Control, Mar 2003.

[8] C. W. Scherer and C. W. J. Hol, “Matrix sum-of squares relaxations for
robust semi-definite programs,”Math. programming Ser. B, vol. 107,
no. 1-2, pp. 189–211, 2006.

[9] S. Furber, “The future of computer technology and its implications for
the computer industry,”The Computer Journal, vol. 51, no. 6, 2008.

[10] J. Sturm, “Using sedumi 1.02, a MATLAB toolbox for optimization
over symmetric cones,”Optimization Methods and Software, vol. 11-
12, pp. 625–653, 1999.

[11] K. Toh, M. Todd, and R. Tutuncu, “A Matlab software package
for semidefinite programming,”Optimization Methods and Software,
vol. 11, pp. 545–581, 1999.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving
large-scale computing capabilities,” No. 30, pp. 483–485,AFIPS
Conference Proceedings, 1967.

[13] B. Borchers and J. G. Young, “Implementation of a primaldual method
for SDP on a shared memory parallel architecture,”Computational
Optimization and Applications, vol. 37, no. 3, pp. 355–369, 2007.

[14] M. Yamashita, K. Fujisawa, and M. Kojima, “SDPARA: Semidefinite
programming algorithm parallel version,”Parallel Computing, vol. 29,
pp. 1053–1067, 2003.

[15] C. W. Scherer, “Relaxations for robust linear matrix inequality prob-
lems with verifications for exactness,”SIAM Journal on Optimization,
vol. 27, no. 2, pp. 365–395, 2005.

[16] G. Hardy, J. E. Littlewood, and G. Pólya,Inequalities. Cambridge
University Press, 1934.

[17] M. Castle, V. Powers, and B. Reznick, “A quantitative polya’s theorem
with zeros,”Effective Methods in Algebraic Geometry, vol. 44, no. 9,
pp. 1285–1290, 2009.

[18] M. M. Peet and Y. V. Peet, “A parallel-computing solution for
optimization of polynomials,” Proceedings of the AmericanControl
Conference, Jun-Jul 2010.

[19] S. J. Benson, Y. Ye, and X. Zhang, “Solving large-scale sparse
semidefinite programs for combinatorial optimization,”SIAM Journal
on Optimization, vol. 10, pp. 443–461, 1998.

[20] F. Alizadeh, J. A. Haeberly, and M. Overton, “Primal-dual interior-
point methods for semidefinite programming: Convergence rates, sta-
bility and numerical results,”SIAM Journal on Optimization, vol. 8,
no. 3, pp. 746–768, 1998.

[21] R. D. C. Monteiro, “Primal-dual path following algorithms for
semidefinite programming,”SIAM Journal on Optimization, vol. 7,
no. 3, 1997.

[22] C. Helmberg, F. R. R. J. Vanderbei, and H. Wolkovicz, “Aninterior-
point method for semidefinite programming,”SIAM Journal on Opti-
mization, vol. 6, pp. 342–361, 1996.

[23] S. J. Benson, “DSDP3: Dual scaling algorithm for general positive
semidefinite programs,”Preprint ANL/MCS-P851-1000, Argonne Na-
tional Labs, 2001.

[24] E. Witrant, E. Joffrin, S. Brémont, G. Giruzzi, D. Mazon, O. Barana,
and P. Moreau, “A control-oriented model of the current profile in
tokamak plasma,”Plasma Physics and Controlled Fusion, vol. 49,
pp. 1075–1105, 2007.

