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We Focus on Two Distinct Topics

Computational focus, Energy focus
Topic 1: Application of parallel computing in controls
> Discussing intractable problems in control and their real-world applications
> Formulating these problems as optimization problems with a special structure

> Designing parallel algorithms capable of exploiting the structure

Topic 2: Optimal thermostat programming in an smart-grid environment

> Determining optimal interior temperature given electricity prices & building parameters
> Benefit to residential customers: minimizing electricity bills

> Potential benefit to utility companies: reducing cost of generation
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Research Goal:

Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of
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Research Goal:

Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of

1. System of n linear ODEs with m uncertain parameters (n > 100, m > 10)

i(t) = A(Q)z(t), a € Q CR™

Application in aerospace:

X-AXIS
. B B . . (BODY)
Linearized equations of symmetric flight: X,u
X X Xgq
, - 0 = 0 a Lo
u Yo _p Xr u
"[) ZO m ZO m Z O m UO v
a
w r: 0 r:: . m + UD 0 w
.| = 0 Izz2Ly+1IgpzNy 0 —IzzLlptlazNp 0 —IozLyptIgp Ny
p 12, —Igalzz 12, —Igzlzz p
q My 0 My Mg 0 q
it Tyy Tyy Tyy r
IpzLy—Iga Ny 0 0 IpzLr—IzaNr | O o>
@(t) 12, —Igalzz 12, —Ipglzz x(t)
A(Xw, Xw,Xq,Yu,Yp,Yr, Zu, Zw,Zq, Ly, Lp, Ly, My, My, Mg,Ny,Np,Ny)

Problem: Find the uncertainty set Q such that for all the aerodynamic coefficients

X, Xw, -+ € Q, the aircraft is stable.
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Research Goal:

Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.

Problems involving stability and/or control of

2. Systems of n nonlinear ODEs (n > 10)
&(t) = f(x(t))

Application in power systems:
Three-machine, nine-bus power generating system:

01(t) = wi(?)
$a(t) = walt) i
Sd(t) = UJg(t)

wi(t)= % (d1wi(t) + Pm; — Pe; (01(1), 02(¢), 03(t)))

w2 (t)= % (daw2(t) + Pmy — Pey (01(1), 02(1), 63(t)))
w3(t)= % (dsws(t) + Pmg — Pes (01(t), 02(t), 63(t)))

Problem: Find the set of initial phase angles
6;(0) and frequencies w;(0) such that d;(¢)
and w;(t) converge to a stable equilibrium.
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Research Goal:

Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of
3. PDEs with uncertain parameters

ot

2u(:lc,t) = apu(z,t) + ;ai%u(x,t), a€eQ

Application in ecology:

Modelling of population density in a 2D landscape:

Ut (117, Y, t) = a(uII(xv Y, t) + uyy(% Y, t)) + 5(“1‘ (117, Y, t) + Uy (xﬂ Y, t)) + 'yu(x, Y, t)
—_———

population diffusion population drift population growth
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Research Goal:
Computational focus, Energy focus
Finding ways to solve fundamentally difficult and large-scale problems in control.

Problems involving stability and/or control of
4. Systems of linear ODEs with time-delay

m
&(t) = Z Az (t — 1) X5/ iected e 0‘ Memory T cell
1=1 Macrommage Helper T cell {f ‘
Killer T cell #
Dead cell @
Application in immunology: :‘f»
A linearized model for immune system response: nfected el
7(t) —d— kVis 0 — kT 0] [T 0
T(t)| kVss —0 —dgEss  kTss —daTY, 0 T*(t) I 0
V) | 0 N§ —c 0 V() 0
E(t) 0 0 0 —de| | E®) pT*(t —7)

T*(t — 7) allows for a time delay between the moment of infection and the

recognition of the infected cells.
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What Are The Computational Challenges?

» NP-hardness: Most likely there exists no algorithm which can find exact solutions
to these problems in polynomial-time.
I—) e.g., Stability analysis of #(¢) = A(«a)z(t) using the converse Lyapunov theory:

P(a) >0, AT (a)P(a) + P(a)A(a) <0

The question of feasibility of parameter-dependent Lyapunov inequalities is NP-hard.

» Dimension: The required memory for the existing algorithms scales exponentially
with the dimension of the problem and accuracy of the solutions.

l—) Even a “rough” discretization of a 2D PDE can create hundreds of states!

l—) e.g., current algebraic geometry techniques (SOS) require 1 TB of memory to verify
stability of a nonlinear system with 10 states.
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SOS Method To The Rescue!

Polynomial-time asymptotic solutions

» The SOS method defines a sequence of convex optimization problems (SOS

programs) whose solutions converge to a solution of the intractable problem.
» SOS programs admit polynomial-time solutions - complexity ~ n®(?).
n : state-space dimension, d : degree of the Lyapunov function

Example: Robust stability
System #(t) = A(a)z(t), a € [0, 1] is stable if and only if 3 P(«) :

P(a) >0 and — A(a)TP(a) — P(a)A(a) >0 forall «€l0,1]

Instead one can solve

P(a) = So(a) + a(l — a)S1 (@)
—A(a)TP(oz) — P(a)A(a) = S2(a) + a1 — @) S3(cv)

> So,S1,S2,S3 are SOS polynomials, i.e., S;(a) = > Gi(a)Q.
B
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Is Polynomial-Time Good Enough?
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> Polynomial-time algorithms have been perceived as the gold standard for what
the solution to a control problem should look like.

» However, polynomial-time algorithms are NOT always practical!

l—) e.g., computing a Lyapunov function for a 10-state nonlinear system by the SOS
algorithm requires 116 DAYS!

> A polynomial-time algorithm is “good” when the ratio of its complexity to the

computing power of current computers is reasonably low (technology-dependent).

> The per-core speed of commercial CPUs has saturated, while majority of controls

algorithms and software can use only a single core.
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Moor's law is manifesting in the form of Single-core processor speed has saturated

multi-core CPUs.



Our Contribution: Using Fast-growing Computational Resources For Control

Introducing parallel computation to controls community

> The real problem with computation in control is not the availability of resources,
but rather the lack of algorithms capable of efficiently utilizing those resources.

» We look for algorithms capable of using those computational resources which
have the fastest growth in speed: cluster-computing, supercomputing.

» Surprisingly there has been little study on -
the use of parallel computation for control! e Tanhe 2 ey gps e

2012 Titan - Crhy XK7 goes live

2009: Cray XTS-HE goes live
2009: First world-class GPU-poweres mputer
2008: Petaflop b:

ken

» No surprise! The mathematical machinery

2005: Millennium run simulation.

for analysis and control is based on two — 250 o s agied . .
inherently sequential algorithms: PR e 5 “ACM-E/I“2¢§nPenvmpu‘er
Linear Programming (LP) &

. 2 ; e oy 1 s
Semi-Definite Programming (SDP) .%’mw.m

10" |
1960 1970 1980 1990 2000 010 2020

» How then parallel computing can help? Is it sufficient to focus on parallelizing
SDPs with “special structure”?

11/45



A Closer Look At Semi-Definite Programming (SDP)

Definition

Semi-Definite Programming;:

Optimization over the cone of positive semi-definite matrices

. T
vz Y
K
subject to Z%‘Bi -C=Z
i=1
Z >0

» Decision variables: y € RE| Z € S® (symmetric matrix)
> SDP elements (given): B;,C € S™ and a € R¥

> SDPs can be solved efficiently using interior-point algorithms.
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A Closer Look At Semi-Definite Programming

Interior-Point algorithms for Semi-Definite Programming

Interior-point algorithms solve SDPs in TWO steps:

1. Reducing the SDP to a sequence of optimization programs with only equality
constraints

Dual SDP Approximation using barrier function
Izlf’lzl’l aTy I;llél aly — plog(det(2))
K K
subject to Z By, —C=2 subject to Z By, —C=2
=1 i=1
Z >0

2. Applying a descent algorithm, e.g., Newton's algorithm, to solve the equality
constrained problems

YR = yF Lt AyR
ZF = ZF L AZF
Xk = xk L eAxk

> AyF AZF AXPF are the step directions.

> Calculating the step directions is the most
computationally expensive part
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What If The SDP Elements Have a Special Structure?

Block-diagonality is preserved through iterations

Assumption: The SDP elements B; and C' are block-diagonal matrices.

K K
Primal step: AXF=_XxF 4 zF! <—ZBHJ§ + 78+ C> ZBiAnyk
i=1 i=1

Observations:
> If X0 and Z° are block-diagonal, then AX* and AZF are block-diagonal Vk.

» Then X* and Z* are also block-diagonal for all k because

Xk = xF LA XE Zktt = zk L tAZE.

» We decentralize the computation of step directions AX, AZ by assigning each
block to a processor.
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Can Stability/Control Problems Reduce To Block-diagonal SDPs?

Alternatives to SOS algorithm

» Unfortunately SOS algorithm does NOT yield block-diagonal SDPs.

Example: Is f(x) = 4z + 423y — 722y — 2293 + 10y* > 07

M1 M2 M3 :172 T :172
If 3M := [ M2 Ms My > 0suchthat f= {zy| M |xy| = fis SOS
Mz Ms Ms Y2 Y2

> We identified alternatives to SOS - Theorems which reformulate polynomial
positivity (e.g., V > 0,V < 0) as feasibility of block-diagonal SDPs and LPs:

> Polya’s Theorem (positivity over the standard unit simplex)
> Bernstein’s Theorem (positivity over simplex)

> Handelman’s Theorem (positivity over polytopes)
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Polya's Theorem

A test for non-negativity over the standard simplex

2-D simplex 3-D simplex

Example: Is p(z,y) = 2z* — 0.11z + y3 > 0? 1-D simplex

Step 1) Homogenizing p(z,y):

P, y) = 22" — 0.11z(z +y)° + y° (2 +y)

Step 2) Polya’s iterations on p(z):
Multiply p(z,y) by (x + y) until all the coefficients are positive.

Iteration #1:

(z 4 v)p(z, y) = 1.89z° + 1.56z"y — 0.66z°y> + 0.562°y> + 1.89zy* + ¢°
Iteration #2:

(x + y)z;ﬁ(r, y) = 1.892°% + 3.45z5y + 0.9r4y2 - 0.1:1:37;3 + 2.45z2y4 + 2.89zy5 + y6

Iteration #3:
(@ + y)°p(z,y) = 1.8927 + 5.342% + 4.352°y* + 0.82%y> + 2.352%y* + 5.342%y° + 3.892y% + 7
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Applying Polya’s Theorem To Robust Stability Problem &(t) = A(a)xz(t)

Enforcing P(ca) > 0 over the unit simplex

> Recall that ©(¢t) = A(a)z(t), o € A is stable if and only if 3 P(c) :

P(a) >0 and — A(0)" P(a) ~ P(a)A(a) >0 forall acA

» Let P(«) be of the form
Pla) = Plaf + Pyoyag + Pgag (P; € S™ are unknown)
Then by calculating the coefficients of (a1 + a2)P(«) as
(o1 +a2) P(a) = Pron® + (P1 + Pa)ar? az + (12 + P3) o1 a® + I3 a2,

positive definiteness of P(«) is guaranteed if 3P, P>, P3 such that

Py 0 0 0
0 P +P 0 0
0 0 Py, o] >0
0 0 0 P3

> Similarly, we can apply Polya’s theorem to A(a)” P(a) + P(a)A(a) < 0.
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The Resulting SDPs Are Large!

The required memory for setup and solving the SDPs is beyond desktop/shared-memory computers

Memory required for storing the SDP Number of monomials in (3" o;)?ATP + PA

10° 10%
10°
10°
10°
10°

»—d,=d,=0 »

o

B and H coeffs (Gbytes)

10

1073

Number of H coefficients

Memory required to store

78910 2 3 4 5 6 7 8910
Number of uncertain parameters |

2 3 4 5 6
Number of uncertain parameters |

» Number of SDP variables:

» Number of SDP constraints:

Recall:

n : state-space dimension  : number of uncertain parameters

d : number of Polya's iterations dp,dq : degrees of P(a) and A(a)
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We Designed And Implemented TWO Parallel Algorithms: Setup & Solver

> Parallel setup algorithm:

1. Distributes monomials of P(a) and A(«) among processors, evenly.

2. Each processor applies Polya's iteration to its monomials:

T Q1 = (Zai)P(a) and Qs = (Zai)AT(a)P(a) + P(a)A(@)

3. Redistributes the monomials of Q1 and Q2 among processors, evenly (Communication)

> Parallel SDP solver:
> Recall that the step directions AX and AZ are block-diagonal.
AX = diag{AX1, -+ ,AXpu} AZ =diag{AZ1,--- ,AZn}

» Having N Processors, each processor computes at least floor(%) blocks and updates

M
X = X +tAX,, Z,=2Z; +tAZ; fori=1,-- 7f100r(ﬁ)
L"‘), Blockdiagonal b b
degree of P(a) Setup SDP 1s e Py
No. of Polya's iterations 0 V(x)=x"(XP; a)x
[l
§] =0
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Per-Core Complexity of The Algorithms Is O(n")

Assumptions:
1. Having sufficiently large number of processors (> number of blocks)

2. Number of states, n > number of uncertain parameters, [

Then

1. Our algorithms solve robust stability problem
AT(a)P(a) + P(@)A(e) <0 ac Al
with the same per-core cost O(n”) as required for solving the stability problem
ATP+PA<O.

2. Increasing accuracy (performing Polya’s iterations) does NOT add any per-core
computation and communication.
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Theoretically Our Algorithms Achieve Linear Speed-up

Speed-up: The ratio of the execution time using one core to the execution time using
N > 1 cores.

» Potential speed-up is calculated as

N

sP=_——
D+NC

D: decentralized computation C': centralized computation

» For sufficiently large number of processors, we have shown
lim D(n)=1and lim C(n)=0.
n—oo n— oo
N

= nlew SP(n) = nli{go D) ENCw) = N (Linear speed-up)

—A-n=5
—o-n=10
—o—n=25
——n=50
50} | —e—n=100

0 10 20 30 40 50 60 70
No. of Processors
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Linear Experimental Speed-up of Our Parallel SDP Solver

Our parallel SDP solver outperforms the general purpose parallel SDP solver, SDPARA, in terms of speed-up

45 T T T
—O— (L+M)n=200, K=50
40| | —O— (L+M)n=385, K=00
—P— (L+M)n=1092, K=224
- -3 - (L+M)n=200, K=50, SDPARA
35r| - -0 - (L+M)n=385, K=90, SDPARA
- (L+M)n=1092, K=224, SDPARA

40 60 80
Number of processors N

20
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Linear Experimental Speed-up of Our Parallel Set-up Algorithm

Computation time of the set-up algorithm scales log-linearly with number of cores

w

10° :

—

&L

o 10° |

pat ——n=10, I=5

2 10t | ||—==n=10, I=10

£ —e—n=10, =15

g— ——n=10, I=20

S .0 -B>-n=20, I=5

© 10 -o-n=20, =10

-\8-n=20, =15
-1 -¢-n=20, =20
10 L L

4 10 20 40 6080 120 200
No. of processors

Executed on IBM’s Blue-Gene supercomputer at Argonne National Laboratory
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How Big A Problem Can The Algorithms Solve?

The proposed decentralized algorithms can solve problems with 100+ state-space
dimension

25 T T T T T

—»—d=1, 216 Gig
—e—d=2, 216 Gig
—&—d=3, 216 Gig

20 —A—d=4, 216 Gig||
- p-d=1, 24 Gig
‘ -©-d=2, 24 Gig
15 -8-d=3,24 Gig
- >-d=4, 24 Gig

Largest No. of uncertain parameters |

20 30 40 50 60 70 80 90 100
Dimension of uncertain system n

Executed on one and nine nodes of Karlin cluster computer with 24GByte/node RAM
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Conservatism Reduces As Degree of P & No. of Polya's Iterations Increase

- d,=d,=0
I S0S | d = A1
Out of Mermory d=d.=

Normalized error

2 3 4
Degree of P(a)

Error of algorithm’s approximation for the largest r such that #(t) = A(«a)z(t) is stable Voo € A,
l
AT::{aERL:Zai:r, o; > 0}

i=1

> SOS algorithm runs out of memory for dp > 2
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Summary of Contributions

Computational focus, Energy focus
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Designed a parallel SDP solver for block-diagonal SDPs (ACC 2012)

Designed a parallel setup algorithm to apply Polya’s theorem to robust stability
over the simplex (TAC 2013)

n
A" :i={z €R": Y x; =1,z >0}
i=1
Extending Polya’s theorem for robust stability over hypercubes (CDC 2012)
O i={zeR":|z;|<ry,i=1,---,n}

Extension to nonlinear local stability/region of attraction estimation inside
hypercubes (CDC 2013)

Extension to stability over arbitrary polytopes using Handelman's theorem (CDC
2014)
X .={zeR™: wiTaz—i—ui >0,i=1,--- ,K}

A survey on alternatives to SOS (Polya, Handelman, Bernstein, Blossoms, - - )
(DCDS 2015)



Some of The Ongoing And Future Works

Computational focus, Energy focus
» Generalizing our parallel set-up algorithm to apply Polya’s theorem to arbitrary
parameter-dependent inequalities of the form:

N

> (Ai(@)X(0)Bi(@) + B () X()AT (a) + Ri(a)) < =T forall a€Q,

i=1

> Parallel algorithm for Optimal Control:

:= min Zﬁ g(z, ug)

upeU

subject to zp41 = f(zg, uk) fork=1,2,3,---
T € X, xog =2 fork=1,2,3,---

By searching for polynomial value functions V' which satisfy Bellman's formula:

V(z) = Uigg{g(z,v) + BV (f(z,v)} VzeX.

Then V(z) = J*.
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Transition To Our Second Topic: Optimal Thermostat Programming

Computational focus, Energy focus
» Computing optimal response of residential customers to electricity prices

> Quantifying the benefits of using energy storage and solar by the customers

> Minimizing the electricity bill by designing optimal thermostats for HVAC systems

» Economical implications for power companies

> Optimal electricity pricing for minimizing cost of generating electricity

> Optimal unit scheduling

Weather forecast i
-l ¥ —
%ﬁ / Algorithm \

Load schedule

Monthly bill
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Power Companies Pay For Fuel And Building/Maintenance of Generators

A simplified model for cost of generating electricity is a combination of

1. Cost of fuel required to generate the total energy (kWh) consumed by users

A common model is: cost of fuel = a/q(t)dt

> q(t) (kW): power consumed by users
> a ($/kWh): cost of fuel required to produce the next kWh

2. Cost of building & maintaining generators to accommodate for the maximum

total power (kW) consumed by users

A simple model can be:

Cost of building & maintaining generators = b

sup
tEon-peak

q(t)

> b ($/kW): cost of installing the next kW of generating capacity
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Current Pricing Strategies Do Not Charge For Peak Consumption
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» Most power companies use flat or Time-of-Use (ToU) pricing

I—) Flat pricing: Charges are independent of when energy is used

A

3
E E . . .
X / tltxp“ce:/Atdtxpme
8% a O h a2(t)dt X oo
50

-]
E 2 Electricity bills independent of g1 max & g2 max

|—> ToU pricing: Does not explicitly charge for max power used

off-peak period on-peak period off-peak period
A b, (s/kwh) Pon ($/kWh) Poy ($/kWh)

Elect. Bill = poff/ q(t)dt
off-peak

q(t)
on d
/\ +p ‘/;n’peakq(t) n

Amax

Power consumed
by user (kW)

in a higher monthly bill!

>,

>
12 AM eM\_/ 9PM 12 AM

Large peak does not necessarily result



Current Pricing Strategies Are Problematic For Power Companies

» Fact 1: The ratio of maximum power used per year to average power used per
year is setting records in the US!

I->Partia|ly due to increasing integration of renewables, e.g., solar.

o

*  Real data - California ° a
Trendline - New England o 0
519 © Real data - New England| © 3
o il Trendline - California . - > “
£ d Q..-="""" 2 High solar
3 < output -
9 1.8 Q
8 £
% 1.7 a d * High
2 . : ¢ demand
x ] <
S [¥]
216 5
H
1 4
-~ 1995 2000 2005 2010
Year Time

» Fact 2: Integration of renewables does NOT affect maximum power consumption,
but reduces the total power sold by power companies =- revenue decreases

» Consequence: Power companies won't have enough revenue to supply for
electricity without raising the prices
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Demand Charge: A Solution To The Revenue Problem

> Demand charge: A monthly charge proportional to the maximum power
consumed by the user during the on-peak hours of a month

> A combination of off-peak, on-peak and demand charges can differentiate
between “good” and "bad” user behavior

off-peak period on-peak period off-peak period

A Post ($/kWh) | Pon ($/kWh) | Por ($7kWh)
EE Omax q(t)
E é qmax 7 N\
2 / —
v n
§ > q(t)
2 a
o
o

12 AM 12 PM 9 PM 12 AM

Electricity Bill = pef / t)dt + pon / t)dt+pa  sup q(t)
teoff- peak tEon- peak tEon-peak

on-peak period charge  off-peak period charge demand charge
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How Can Power Companies Optimize Their Prices?

Power companies can solve the following optimization problem:

> Objective: minimize the cost of generating electricity

t=24
min </tO (agt)? +bgt))dt+ ¢ sup g(t) )

PonPoffsPd t€ on-peak period

fuel cost cost of building generators

(t): power (kW) generated at time ¢
b ($/kWh): fuel cost coefficients
($/kW): cost of installing the next kW of production capacity

° g
° a,
e c

» Constraint:
e Equality of generation, g(t), and consumed power, qyser(t):

9(t) = quser(t, Pofts Pon, Pa) Vi

» Variables: on-peak, off-peak and demand prices: pon, Poff; Pd
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Power Companies Need A Model For User Behavior

> To optimize electricity prices, we need a model for users’ power consumption

|—> Model should Predict how much electricity would a rational user consume, given the
prices

» Question: How can a rational user reduce his electricity bill?
I—> One way is to reduce HVAC load by using Energy storage
1. Energy storage in residential batteries allows users to shift

peaks from high-demand hours to other hours

2. Using walls/floors as thermal energy storage:
A free alternative to batteries

i T
nese ¢ Heat - nhriw::Heat Heat
foss g flux : Wall wﬂux loss

i HH

Floor
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Power Companies Need A Model For User Behavior

Precooling exploits thermal energy storage in walls to shift loads:

» Cool down walls/floors when electricity is cheap

off-peak period | on-peak period off-peak perio
Ao simwn) Pen ($/KWH) Py ($/kWh)

4
T Tl ;
Heat H 2 Heat g
5! Heat Heat ea -3
loss <~ > S Tin(t
; flux wall flux : loss é in(t)
H -~ = = 5
T
11 1 L
£
Floor 12 AM 12 PM 9 PM 12 AM

> Cold walls will reduce the load on HVAC during on-peak hours - thus reducing
the electricity bill

AT T
Heat .: Heat _[Interior Heat g Heat
loss 'g flux > wall [ flux % loss

e o ] <~ N

I
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How Do Thermostat Settings Affect Energy Consumption?

Power consumed by user is a combination of heat loss to outside and heat given
to/taken from interior walls

QUser(t) = qloss(t) + qwall(t) vk

» Heat loss gioss(t) is modeled by a linear heat sink and can be controlled by
interior temperature Ti,:

Qloss (t) = w

Tout : Outside temperature  R,,: thermal resistance
» Heat thru walls gy, (k) is modeled by the Heat equation (PDE):

Ou(t,x) _  0*Tu(t) e 18 HEN Vv B e
ot oz IR i 1wl
- > =
Tou(K Tout(k)
9Ty, Tin(k) quj Tin(k)
anII(k) =2Cy — (t7 0) T, (%K),
oe N tl| IR
Floor
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How Do Rational Users Minimize Their Electricity Bill Including Demand
Charges?
User can solve a discrete-time thermostat programming problem with

> Objective: minimize the electricity bill

min (30poff > quser(k) +30pon > quser(k) +pa sup Quser(k))
Tin (k) k€ o k€ Ion k€ lon

demand charge

OFF-peak period charge ON-peak period charge

» Constraints:
1. Interior temperature with a certain bound:

Tmin S ,Tln(k) S Tmax vk
2. Energy conservation:

Quser (k) = Gioss(Tin (k) Te (k) + quan (Tw (2, k)  Vk

3. Discretized heat dynamics: Ty, (k + 1) = ATy (k) + B Tin (k)

> Variables: Interior temperature T}, (k) over time
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A Reformulation of User's Problem Can Be Solved By Dynamic
Programming

> We first reformulate the user's problem

%n“k] 30 pofr Z k) + 30 pon Z q(k) +| pa sup q(k)
*) =y k€Elon k& Ton
subject to q(k) = qioss(Tin; Tout) + qw(Tw) vk
Tw(k+1) = f(Tw(k), Tin) vk
Tmin S ,Tln(k:) S Tmax Vk

as

min 30 pofr Z q(k) + 30 pon Z q(k) + pay

Tin (k)7 €R
in (k). 7€ =y k€Elon

subject to a(k) < Vk € I,

q(k) = QIoss(,Tiny Tout) + QW(Tw) Vk
Tw(k +1) = f(Tw(k), Tin) vk
Tinin < Tin(k) < Tmax vk

> For fixed =, the reformulated problem can be solved by Dynamic Programming.

> v is a scalar, so we use bisection over .
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Our Algorithm Can Reduce electricity Bills By Up To 25% (average 9.2%)

User’s consumption and interior temperature using prices from Arizona Public Service
(APS)

Our Algorithm Precooling Constant GPOPS
E T T T T
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Interior temperature (°C)

40
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[ Temperature setting [ Our algorithm | GPOPS | Pre-cooling [ Constant |
[ Monthly bil ]| 36585 | 37035 | 39235 | 39425 ]
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Increasing 24 Helps Reducing Maximum Consumption during on-peak

> Weight of demand price relative to on-peak & off-peak prices affects maximum
consumption during on-peak hours

demand/offpeak = 2000 - - - - demand/offpeak = 1000 - - - demand/offpeak = 200

Power consumption (W)

o
L
e TR i
2 ol :
S -
£ ! '
8 24j| 1 :
'
5 ' :
= 22 L
2 1 1 1 1 L
£ [] 10 20 30 40 50 60 70
prices=[0.007,0.010,13.616] Time (hr)
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Summary of Contributions on Thermostat Programming/Electricity Pricing

> Defined a new model for optimal behavior of a customer who minimizes his
electricity bill based on given prices (ACC 2015)

|—> Including thermal energy storage using the heat equation
I—) including monthly demand charges

> Used our model to define a framework for optimization of electricity prices for
rational users (submitted to IEEE Transactions on Power Systems)

I—) Minimizing the cost to the power company

I—) Considering integration of solar power

> A Multi-objective Approach To Optimal Battery Storage In The Presence of
Demand Charges (Under preparation for IBO Conference, 2016)
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Our Ongoing Research On Storage: Optimal Programming of Batteries

> Incorporating batteries, such as Tesla's Powerwall & Tesla's Powerpack in our
user's models and utility model

Power from
Grid (W)

Power from
HVAC(W)

Solar

power (W) generation(W)

Battery

Battery
energy level
g
;

Time (hr)

> Including stochasticity due to weather temperature and solar radiation in our
customer’s model - minimizing E,, {sup,, g(t, u,w)}.
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Our Ongoing Research: Benefits of Battery Storage To Power Companies
> Optimal battery storage & unit scheduling to minimize generation costs
|—> Fuel cost of various types of generating units
|-> Unit commitment: Cost for bringing each generating unit online
|—> Arbitrage: Selling/buying from electricity spot market

|-> Spinning reserve and frequency regulation costs

A Combined
Cycles

2
=
<
L
i3 Nuclear
-] Geothermal Combustion
(Y] Turbines
Solar PV -~
Wind Solar
storage

riable/Inflexible Less Flexible Semi-Flexible | Flexible]
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Conclusions & Achievements

Computational focus, Energy focus

Topic 1: Application of parallel computing in controls

> Developed a parallel optimization framework using Polya’s & Handelman’s theorems
for robust stability analysis over various geometries.

» Our algorithms achieve near-linear theoretical and experimental speed-up.

> QOut algorithms enable robust stability analysis of systems 3 times larger than ANY
other algorithm (100+ states, tens of parameters).

Topic 2: Optimal thermostat programming in an smart-grid environment

»> Developed a model for rational customers who exploit storage to minimize their
monthly bill

> Designed an algorithm for optimal thermostat programming, capable of reducing
monthly bills by up to 25%

> Proposed optimal combinations of on-peak, off-peak, demand prices which reduce both
peak consumption and generation costs

> Quantified the effects of solar integration on customers behavior and generation costs
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