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We Focus on Two Distinct Topics
Computational focus, Energy focus

Topic 1: Application of parallel computing in controls

◮ Discussing intractable problems in control and their real-world applications

◮ Formulating these problems as optimization problems with a special structure

◮ Designing parallel algorithms capable of exploiting the structure

Topic 2: Optimal thermostat programming in an smart-grid environment

◮ Determining optimal interior temperature given electricity prices & building parameters

◮ Benefit to residential customers: minimizing electricity bills

◮ Potential benefit to utility companies: reducing cost of generation
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Research Goal:
Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of
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Research Goal:
Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of

1. System of n linear ODEs with m uncertain parameters (n > 100, m > 10)

ẋ(t) = A(α)x(t), α ∈ Q ⊂ R
m

Application in aerospace:
Linearized equations of symmetric flight:
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ẇ
ṗ
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︸ ︷︷ ︸
x(t)

Problem: Find the uncertainty set Q such that for all the aerodynamic coefficients
Xu, Xw, · · · ∈ Q, the aircraft is stable.
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Research Goal:
Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of

2. Systems of n nonlinear ODEs (n > 10)

ẋ(t) = f(x(t))

Application in power systems:
Three-machine, nine-bus power generating system:

δ̇1(t) = ω1(t)

δ̇2(t) = ω2(t)

δ̇3(t) = ω3(t)

ω̇1(t)=
1

m
(d1ω1(t) + Pm1 − Pe1 (δ1(t), δ2(t), δ3(t)))

ω̇2(t)=
1

m
(d2ω2(t) + Pm2 − Pe2 (δ1(t), δ2(t), δ3(t)))

ω̇3(t)=
1

m
(d3ω3(t) + Pm3 − Pe3 (δ1(t), δ2(t), δ3(t)))

Problem: Find the set of initial phase angles
δi(0) and frequencies ωi(0) such that δi(t)
and ωi(t) converge to a stable equilibrium.

5/45

Generator 1

Generator 2Generator 3

Bus Bus Bus

Bus Bus

Bus

Bus Bus

Bus



Research Goal:
Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of
3. PDEs with uncertain parameters

∂

∂t
u(x, t) = α0u(x, t) +

m∑

i=1

αi

∂i

∂xi
u(x, t), α ∈ Q

Application in ecology:

Modelling of population density in a 2D landscape:

ut(x, y, t) = α
(
uxx(x, y, t) + uyy(x, y, t)

)

︸ ︷︷ ︸

population diffusion

+ β
(
ux(x, y, t) + uy(x, y, t)

)

︸ ︷︷ ︸

population drift

+ γu(x, y, t)
︸ ︷︷ ︸

population growth

xy
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Research Goal:
Computational focus, Energy focus

Finding ways to solve fundamentally difficult and large-scale problems in control.
Problems involving stability and/or control of

4. Systems of linear ODEs with time-delay

ẋ(t) =
m∑

i=1

Aix(t − τi)

Application in immunology:

A linearized model for immune system response:
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T
∗(t− τ) allows for a time delay between the moment of infection and the

recognition of the infected cells.
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What Are The Computational Challenges?

◮ NP-hardness: Most likely there exists no algorithm which can find exact solutions
to these problems in polynomial-time.

�

e.g., Stability analysis of ẋ(t) = A(α)x(t) using the converse Lyapunov theory:

P (α) > 0, A
T (α)P (α) + P (α)A(α) < 0

The question of feasibility of parameter-dependent Lyapunov inequalities is NP-hard.

◮ Dimension: The required memory for the existing algorithms scales exponentially
with the dimension of the problem and accuracy of the solutions.

�

Even a “rough” discretization of a 2D PDE can create hundreds of states!

�

e.g., current algebraic geometry techniques (SOS) require 1 TB of memory to verify
stability of a nonlinear system with 10 states.
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SOS Method To The Rescue!
Polynomial-time asymptotic solutions

◮ The SOS method defines a sequence of convex optimization problems (SOS
programs) whose solutions converge to a solution of the intractable problem.

◮ SOS programs admit polynomial-time solutions - complexity ∼ nO(d).
n : state-space dimension, d : degree of the Lyapunov function

Example: Robust stability

System ẋ(t) = A(α)x(t), α ∈ [0, 1] is stable if and only if ∃P (α) :

P (α) > 0 and − A(α)T P (α)− P (α)A(α) > 0 for all α ∈ [0, 1]

Instead one can solve

P (α) = S0(α) + α(1− α)S1(α)

−A(α)T P (α)− P (α)A(α) = S2(α) + α(1− α)S3(α)

◮ S0, S1, S2, S3 are SOS polynomials, i.e., Si(α) =
∑

i

Gi(α)
2.
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Is Polynomial-Time Good Enough?

◮ Polynomial-time algorithms have been perceived as the gold standard for what
the solution to a control problem should look like.

◮ However, polynomial-time algorithms are NOT always practical!

�

e.g., computing a Lyapunov function for a 10-state nonlinear system by the SOS
algorithm requires 116 DAYS!

◮ A polynomial-time algorithm is “good” when the ratio of its complexity to the
computing power of current computers is reasonably low (technology-dependent).

◮ The per-core speed of commercial CPUs has saturated, while majority of controls
algorithms and software can use only a single core.
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Our Contribution: Using Fast-growing Computational Resources For Control
Introducing parallel computation to controls community

◮ The real problem with computation in control is not the availability of resources,
but rather the lack of algorithms capable of efficiently utilizing those resources.

◮ We look for algorithms capable of using those computational resources which
have the fastest growth in speed: cluster-computing, supercomputing.

◮ Surprisingly there has been little study on
the use of parallel computation for control!

◮ No surprise! The mathematical machinery
for analysis and control is based on two
inherently sequential algorithms:
Linear Programming (LP) &
Semi-Definite Programming (SDP)

◮ How then parallel computing can help? Is it sufficient to focus on parallelizing
SDPs with “special structure”?

11/45

2009: Cray XT5-HE goes live

2009: First world-class GPU-powered supercomputer

2005: Millennium run simulation

2008: Petaflop barrier broken

2003: Human genome mapped

1999: ASCI blue pacific live

1993: CM-5/1024 supercomputer
1984: M-13 supercomputer

1976: Cray 1 goes live

1960: Univac LARC goes live

2018: Exaflop barrier to be reached

1960                  1970                 1980                   1990                 2000                 2010                2020

2012: Titan - Cray XK7 goes live

2014: Tianhe 2 (Milky-way) goes live



A Closer Look At Semi-Definite Programming (SDP)
Definition

Semi-Definite Programming:

Optimization over the cone of positive semi-definite matrices

min
y,Z

aT y

subject to
K∑

i=1

yiBi − C = Z

Z ≥ 0

◮ Decision variables: y ∈ RK , Z ∈ Sn (symmetric matrix)

◮ SDP elements (given): Bi, C ∈ Sn and a ∈ RK

◮ SDPs can be solved efficiently using interior-point algorithms.
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A Closer Look At Semi-Definite Programming
Interior-Point algorithms for Semi-Definite Programming

Interior-point algorithms solve SDPs in TWO steps:

1. Reducing the SDP to a sequence of optimization programs with only equality
constraints

Dual SDP Approximation using barrier function

min
y,Z

aT y

subject to
K∑

i=1

Biyi − C = Z

Z ≥ 0

min
y,Z

aT y − µ log(det(Z))

subject to
K∑

i=1

Biyi − C = Z

2. Applying a descent algorithm, e.g., Newton’s algorithm, to solve the equality
constrained problems

yk+1 = yk + t∆yk

Zk+1 = Zk + t∆Zk

Xk+1 = Xk + t∆Xk

◮ ∆yk ,∆Zk,∆Xk are the step directions.

◮ Calculating the step directions is the most
computationally expensive part
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What If The SDP Elements Have a Special Structure?
Block-diagonality is preserved through iterations

Assumption: The SDP elements Bi and C are block-diagonal matrices.

Primal step: ∆Xk = −Xk + Zk−1

(

−
K∑

i=1

Biy
k
i + Zk + C

)
K∑

i=1

Bi∆yki X
k

Observations:

◮ If X0 and Z0 are block-diagonal, then ∆Xk and ∆Zk are block-diagonal ∀k.

◮ Then Xk and Zk are also block-diagonal for all k because

Xk+1 = Xk + t∆Xk Zk+1 = Zk + t∆Zk.

◮ We decentralize the computation of step directions ∆X,∆Z by assigning each
block to a processor.
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Can Stability/Control Problems Reduce To Block-diagonal SDPs?
Alternatives to SOS algorithm

◮ Unfortunately SOS algorithm does NOT yield block-diagonal SDPs.

Example: Is f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 ≥ 0?

If ∃M :=





M1 M2 M3

M2 M3 M4

M3 M4 M5



 ≥ 0 such that f =





x2

xy

y2





T

M





x2

xy

y2



⇒ f is SOS

◮ We identified alternatives to SOS - Theorems which reformulate polynomial
positivity (e.g., V > 0, V̇ < 0) as feasibility of block-diagonal SDPs and LPs:

◮ Polya’s Theorem (positivity over the standard unit simplex)

◮ Bernstein’s Theorem (positivity over simplex)

◮ Handelman’s Theorem (positivity over polytopes)
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Polya’s Theorem
A test for non-negativity over the standard simplex

Example: Is p(x, y) = 2x4 − 0.11x+ y3 ≥ 0?

Step 1) Homogenizing p(x, y):

p̃(x, y) = 2x4 − 0.11x(x+ y)3 + y3(x+ y)

Step 2) Polya’s iterations on p̃(x):

Multiply p̃(x, y) by (x+ y) until all the coefficients are positive.

Iteration #1:

(x + y)p̃(x, y) = 1.89x5 + 1.56x4
y – 0.66x3

y
2 + 0.56x2

y
3 + 1.89xy4 + y

5

Iteration #2:

(x + y)2p̃(x, y) = 1.89x6 + 3.45x5
y + 0.9x4

y
2 – 0.1x3

y
3 + 2.45x2

y
4 + 2.89xy5 + y

6

Iteration #3:

(x + y)3p̃(x, y) = 1.89x7 + 5.34x6
y + 4.35x5

y
2 + 0.8x4

y
3 + 2.35x3

y
4 + 5.34x2

y
5 + 3.89xy6 + y

7
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Applying Polya’s Theorem To Robust Stability Problem ẋ(t) = A(α)x(t)
Enforcing P (α) > 0 over the unit simplex

◮ Recall that ẋ(t) = A(α)x(t), α ∈ ∆ is stable if and only if ∃P (α) :

P (α) > 0 and −A(α)T P (α)− P (α)A(α) > 0 for all α ∈ ∆

◮ Let P (α) be of the form

P (α) = P1α
2
1 + P2α1α2 + P3α

2
2 (Pi ∈ S

m are unknown)

Then by calculating the coefficients of (α1 + α2)P (α) as

(α1 + α2)P (α) = P1 α1
3 + (P1 + P2)α1

2 α2 + (P2 + P3)α1 α2
2 + P3 α2

3,

positive definiteness of P (α) is guaranteed if ∃P1, P2, P3 such that







P1 0 0 0
0 P1 + P2 0 0
0 0 P2 + P3 0
0 0 0 P3






> 0.

◮ Similarly, we can apply Polya’s theorem to A(α)TP (α) + P (α)A(α) ≤ 0.
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The Resulting SDPs Are Large!
The required memory for setup and solving the SDPs is beyond desktop/shared-memory computers

Memory required for storing the SDP Number of monomials in (
∑

αi)
dATP + PA
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◮ Number of SDP variables: ∼ n2 ldp

◮ Number of SDP constraints: ∼ n ldp+da+d

Recall:
n : state-space dimension l : number of uncertain parameters
d : number of Polya’s iterations dp, da : degrees of P (α) and A(α)
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We Designed And Implemented TWO Parallel Algorithms: Setup & Solver

◮ Parallel setup algorithm:

1. Distributes monomials of P (α) and A(α) among processors, evenly.

2. Each processor applies Polya’s iteration to its monomials:

Q1 =
(∑

i

αi

)

P (α) and Q2 =
(∑

i

αi

)

A
T
(α)P (α) + P (α)A(α)

3. Redistributes the monomials of Q1 and Q2 among processors, evenly (Communication)

◮ Parallel SDP solver:

◮ Recall that the step directions ∆X and ∆Z are block-diagonal.

∆X = diag{∆X1, · · · ,∆XM} ∆Z = diag{∆Z1, · · · ,∆ZM}

◮ Having N Processors, each processor computes at least floor
(
M
N

)
blocks and updates

Xi = Xi + t∆Xi, Zi = Zi + t∆Zi for i = 1, · · · , floor
(M

N

)

Setup

A(α)

degree of P(α) 

No. of Polya's iterations

Solver
Blockdiagonal

 SDP

≥0

P1, ... , PN

V(x)=xT(ΣPi α
h )x  i

✻
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Per-Core Complexity of The Algorithms Is O(n7)

Assumptions:

1. Having sufficiently large number of processors (≥ number of blocks)

2. Number of states, n ≫ number of uncertain parameters, l

Then

1. Our algorithms solve robust stability problem

AT (α)P (α) + P (α)A(α) < 0 α ∈ ∆l

with the same per-core cost O(n7) as required for solving the stability problem

ATP + PA < 0.

2. Increasing accuracy (performing Polya’s iterations) does NOT add any per-core
computation and communication.
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Theoretically Our Algorithms Achieve Linear Speed-up

Speed-up: The ratio of the execution time using one core to the execution time using
N ≥ 1 cores.

◮ Potential speed-up is calculated as

SP =
N

D +NC

D: decentralized computation C: centralized computation

◮ For sufficiently large number of processors, we have shown

lim
n→∞

D(n) = 1 and lim
n→∞

C(n) = 0.

⇒ lim
n→∞

SP(n) = lim
n→∞

N

D(n) +NC(n)
= N (Linear speed-up)
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Linear Experimental Speed-up of Our Parallel SDP Solver
Our parallel SDP solver outperforms the general purpose parallel SDP solver, SDPARA, in terms of speed-up
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Linear Experimental Speed-up of Our Parallel Set-up Algorithm

Computation time of the set-up algorithm scales log-linearly with number of cores
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Executed on IBM’s Blue-Gene supercomputer at Argonne National Laboratory
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How Big A Problem Can The Algorithms Solve?

The proposed decentralized algorithms can solve problems with 100+ state-space
dimension
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Conservatism Reduces As Degree of P & No. of Polya’s Iterations Increase

d
1
=d

2
=0

d
1
=d

2
=1

d
1
=d

2
=2

d
1
=d

2
=3

d
1
=d

2
=4

d
1
=d

2
=5

d
1
=d

2
=6

d
1
=d

2
=7

d
1
=d

2
=8

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Degree of P(�), d
p

|L

�

L
o
p
t|/

|L
o
p
t|

d
1
=d

2
=0

d
1
=d

2
=1

d
1
=d

2
=2

d
1
=d

2
=3

d
1
=d

2
=4

d
1
=d

2
=5

d
1
=d

2
=6

d
1
=d

2
=7

d
1
=d

2
=8

SOS 

Out of Memory

N
o
r
m

a
li
z
e
d

 e
r
r
o
r

Degree of P( )

Error of algorithm’s approximation for the largest r such that ẋ(t) = A(α)x(t) is stable ∀α ∈ ∆r

∆r := {α ∈ R
l :

l∑

i=1

αi = r, αi ≥ 0}

◮ SOS algorithm runs out of memory for dp ≥ 2
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Summary of Contributions
Computational focus, Energy focus

◮ Designed a parallel SDP solver for block-diagonal SDPs (ACC 2012)

◮ Designed a parallel setup algorithm to apply Polya’s theorem to robust stability
over the simplex (TAC 2013)

∆n := {x ∈ R
n :

n∑

i=1

xi = 1, xi ≥ 0}

◮ Extending Polya’s theorem for robust stability over hypercubes (CDC 2012)

Φn
r := {x ∈ R

n : |xi| ≤ ri, i = 1, · · · , n}

◮ Extension to nonlinear local stability/region of attraction estimation inside
hypercubes (CDC 2013)

◮ Extension to stability over arbitrary polytopes using Handelman’s theorem (CDC
2014)

ΓK := {x ∈ R
n : wT

i x+ ui ≥ 0, i = 1, · · · ,K}

◮ A survey on alternatives to SOS (Polya, Handelman, Bernstein, Blossoms, · · · )
(DCDS 2015)
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Some of The Ongoing And Future Works
Computational focus, Energy focus

◮ Generalizing our parallel set-up algorithm to apply Polya’s theorem to arbitrary
parameter-dependent inequalities of the form:

N∑

i=1

(

Ai(α)X(α)Bi(α) + BT
i (α)X(α)AT

i (α) +Ri(α)
)

< −γI for all α ∈ Q,

◮ Parallel algorithm for Optimal Control:

J∗ := min
uk∈U

∞∑

k=0

βkg(xk, uk)

subject to xk+1 = f(xk , uk) for k = 1, 2, 3, · · ·

xk ∈ X, x0 = z for k = 1, 2, 3, · · ·

By searching for polynomial value functions V which satisfy Bellman’s formula:

V (z) = inf
v∈U

{g(z, v) + β V (f(z, v))} ∀z ∈ X.

Then V (z) = J∗.
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Transition To Our Second Topic: Optimal Thermostat Programming
Computational focus, Energy focus

◮ Computing optimal response of residential customers to electricity prices

◮ Quantifying the benefits of using energy storage and solar by the customers

◮ Minimizing the electricity bill by designing optimal thermostats for HVAC systems

◮ Economical implications for power companies

◮ Optimal electricity pricing for minimizing cost of generating electricity

◮ Optimal unit scheduling

Charging schedule

Monthly bill
Load schedule

Weather forecast
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Power Companies Pay For Fuel And Building/Maintenance of Generators

A simplified model for cost of generating electricity is a combination of

1. Cost of fuel required to generate the total energy (kWh) consumed by users

A common model is: cost of fuel = a

∫

q(t)dt

◮ q(t) (kW): power consumed by users
◮ a ($/kWh): cost of fuel required to produce the next kWh

2. Cost of building & maintaining generators to accommodate for the maximum
total power (kW) consumed by users

A simple model can be:

Cost of building & maintaining generators = b sup
t∈on-peak

q(t)

◮ b ($/kW): cost of installing the next kW of generating capacity
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Current Pricing Strategies Do Not Charge For Peak Consumption

◮ Most power companies use flat or Time-of-Use (ToU) pricing

�

Flat pricing: Charges are independent of when energy is used
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Large peak does not necessarily result
in a higher monthly bill!
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Current Pricing Strategies Are Problematic For Power Companies

◮ Fact 1: The ratio of maximum power used per year to average power used per
year is setting records in the US!

�

Partially due to increasing integration of renewables, e.g., solar.
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◮ Fact 2: Integration of renewables does NOT affect maximum power consumption,
but reduces the total power sold by power companies ⇒ revenue decreases

◮ Consequence: Power companies won’t have enough revenue to supply for
electricity without raising the prices
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Demand Charge: A Solution To The Revenue Problem

◮ Demand charge: A monthly charge proportional to the maximum power
consumed by the user during the on-peak hours of a month

◮ A combination of off-peak, on-peak and demand charges can differentiate
between “good” and “bad” user behavior
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Electricity Bill = poff

∫

t∈off-peak
q(t)dt

︸ ︷︷ ︸

on-peak period charge

+ pon

∫

t∈on-peak
q(t)dt

︸ ︷︷ ︸

off-peak period charge

+ pd sup
t∈on-peak

q(t)

︸ ︷︷ ︸

demand charge
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How Can Power Companies Optimize Their Prices?

Power companies can solve the following optimization problem:

◮ Objective: minimize the cost of generating electricity

min
pon,poff,pd

(∫ t=24

t=0
(a g(t)2 + b g(t))dt

︸ ︷︷ ︸

fuel cost

+ c sup
t∈ on-peak period

g(t)

︸ ︷︷ ︸

cost of building generators

)

• g(t): power (kW) generated at time t
• a, b ($/kWh): fuel cost coefficients
• c ($/kW): cost of installing the next kW of production capacity

◮ Constraint:
• Equality of generation, g(t), and consumed power, quser(t):

g(t) = quser(t, poff, pon, pd) ∀t

◮ Variables: on-peak, off-peak and demand prices: pon, poff, pd
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Power Companies Need A Model For User Behavior

◮ To optimize electricity prices, we need a model for users’ power consumption

�

Model should Predict how much electricity would a rational user consume, given the
prices

◮ Question: How can a rational user reduce his electricity bill?

�

One way is to reduce HVAC load by using Energy storage

1. Energy storage in residential batteries allows users to shift
peaks from high-demand hours to other hours

2. Using walls/floors as thermal energy storage:
A free alternative to batteries
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Power Companies Need A Model For User Behavior

Precooling exploits thermal energy storage in walls to shift loads:

◮ Cool down walls/floors when electricity is cheap
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◮ Cold walls will reduce the load on HVAC during on-peak hours - thus reducing
the electricity bill
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How Do Thermostat Settings Affect Energy Consumption?

Power consumed by user is a combination of heat loss to outside and heat given
to/taken from interior walls

quser(t) = qloss(t) + qwall(t) ∀k

◮ Heat loss qloss(t) is modeled by a linear heat sink and can be controlled by
interior temperature Tin:

qloss(t) =
Tout(t) − Tin(t)

Rw

Tout : Outside temperature Rw: thermal resistance

◮ Heat thru walls qwall(k) is modeled by the Heat equation (PDE):

∂Tw(t, x)

∂t
= α

∂2Tw(t, x)

∂x2

qwall(k) = 2Cw
∂Tw

∂x
(t, 0)
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How Do Rational Users Minimize Their Electricity Bill Including Demand
Charges?

User can solve a discrete-time thermostat programming problem with

◮ Objective: minimize the electricity bill

min
Tin(k)

(

30 poff
∑

k∈Ioff

quser(k)

︸ ︷︷ ︸

OFF-peak period charge

+30 pon
∑

k∈Ion

quser(k)

︸ ︷︷ ︸

ON-peak period charge

+ pd sup
k∈Ion

quser(k)

︸ ︷︷ ︸

demand charge

)

◮ Constraints:
1. Interior temperature with a certain bound:

Tmin ≤ Tin(k) ≤ Tmax ∀k

2. Energy conservation:

quser(k) = qloss(Tin(k), Te(k)) + qwall(Tw(x, k)) ∀k

3. Discretized heat dynamics: Tw(k + 1) = ATw(k) + B Tin(k)

◮ Variables: Interior temperature Tin(k) over time
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A Reformulation of User’s Problem Can Be Solved By Dynamic
Programming

◮ We first reformulate the user’s problem

min
Tin(k)

30 poff

∑

k∈Ioff

q(k) + 30 pon

∑

k∈Ion

q(k) + pd sup
k∈Ion

q(k)

subject to q(k) = qloss(Tin, Tout) + qw(Tw) ∀k

Tw(k + 1) = f(Tw(k), Tin) ∀k

Tmin ≤ Tin(k) ≤ Tmax ∀k

as

min
Tin(k),γ∈R

30 poff

∑

k∈Ioff

q(k) + 30 pon

∑

k∈Ion

q(k) + pdγ

subject to
q(k) ≤ γ ∀k ∈ Ion

q(k) = qloss(Tin, Tout) + qw(Tw) ∀k

Tw(k + 1) = f(Tw(k), Tin) ∀k

Tmin ≤ Tin(k) ≤ Tmax ∀k

◮ For fixed γ, the reformulated problem can be solved by Dynamic Programming.

◮ γ is a scalar, so we use bisection over γ.
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Our Algorithm Can Reduce electricity Bills By Up To 25% (average 9.2%)

User’s consumption and interior temperature using prices from Arizona Public Service
(APS)
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Theorem 1 Precooling Constant GPOPS

Temperature setting Our algorithm GPOPS Pre-cooling Constant

Monthly bill 365.8$ 370.3$ 392.3$ 394.2$
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Increasing pd

poff
Helps Reducing Maximum Consumption during on-peak

◮ Weight of demand price relative to on-peak & off-peak prices affects maximum
consumption during on-peak hours
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Summary of Contributions on Thermostat Programming/Electricity Pricing

◮ Defined a new model for optimal behavior of a customer who minimizes his
electricity bill based on given prices (ACC 2015)

�

Including thermal energy storage using the heat equation�

including monthly demand charges

◮ Used our model to define a framework for optimization of electricity prices for
rational users (submitted to IEEE Transactions on Power Systems)

�

Minimizing the cost to the power company�

Considering integration of solar power

◮ A Multi-objective Approach To Optimal Battery Storage In The Presence of
Demand Charges (Under preparation for IBO Conference, 2016)
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Our Ongoing Research On Storage: Optimal Programming of Batteries

◮ Incorporating batteries, such as Tesla’s Powerwall & Tesla’s Powerpack in our
user’s models and utility model
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◮ Including stochasticity due to weather temperature and solar radiation in our
customer’s model - minimizing Eω{supu g(t, u, ω)}.
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Our Ongoing Research: Benefits of Battery Storage To Power Companies

◮ Optimal battery storage & unit scheduling to minimize generation costs

�

Fuel cost of various types of generating units

�

Unit commitment: Cost for bringing each generating unit online

�

Arbitrage: Selling/buying from electricity spot market

�

Spinning reserve and frequency regulation costs
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Conclusions & Achievements
Computational focus, Energy focus

Topic 1: Application of parallel computing in controls

◮ Developed a parallel optimization framework using Polya’s & Handelman’s theorems
for robust stability analysis over various geometries.

◮ Our algorithms achieve near-linear theoretical and experimental speed-up.

◮ Out algorithms enable robust stability analysis of systems 3 times larger than ANY
other algorithm (100+ states, tens of parameters).

Topic 2: Optimal thermostat programming in an smart-grid environment

◮ Developed a model for rational customers who exploit storage to minimize their
monthly bill

◮ Designed an algorithm for optimal thermostat programming, capable of reducing
monthly bills by up to 25%

◮ Proposed optimal combinations of on-peak, off-peak, demand prices which reduce both
peak consumption and generation costs

◮ Quantified the effects of solar integration on customers behavior and generation costs
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