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ABSTRACT

Hybrid dynamical systems are systems that combine continuous dynamics with

discrete transitions. Such systems can exhibit many unique phenomena, such as Zeno

behavior. Zeno behavior is the occurrence of infinite discrete transitions in finite

time. This phenomenon has been likened to a form of finite-time asymptotic stabil-

ity, wherein trajectories converge asymptotically to compact sets in finite time whilst

undergoing infinite transitions. Corresponding Lyapunov theorems have been devel-

oped. The main objective of our research was to develop computational techniques to

determine whether or not a given hybrid system exhibits this Zeno phenomenon. In

this thesis, we propose a method to algorithmically construct Lyapunov functions to

prove Zeno stability of compact sets in hybrid systems. We use sum-of-squares pro-

gramming to construct Lyapunov functions that allow us to prove Zeno stability of

compact sets for hybrid systems with polynomial vector fields. Examples illustrating

the use of the proposed technique are also provided. Finally, we provide a method

using sum-of-squares programming to show Zeno stability of compact sets for systems

with parametric uncertainties in the vector field, guard sets and domains, and tran-

sition maps. We then discuss potential applications of the proposed methods, along

with examples.

viii
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CHAPTER 1

INTRODUCTION

In recent years, there has been an increasing prevalence of systems that com-

bine continuous dynamics with discrete behavior or logical switching. The reasons for

this are twofold. First, many systems that are of interest or importance require dis-

continuous controllers. Such controllers are called variable structure controllers, such

as bang-bang and sliding mode controllers. Since the control inputs are discontinu-

ous, the result is that the associated closed loop systems also reflect the discontinuous

structure of the controller. One can think of such systems as having interacting con-

tinuous and logical components.

Secondly, with the advent of small, cheap, and efficient microprocessors, many

systems are designed with computers interacting with physical phenomena - indeed,

the entire field of embedded systems is built upon this idea. Embedded systems are

physical systems managed or controlled by a dedicated microprocessor. With the

increasing prevalence of such systems, a need arose for formal methods for modeling

and analyzing them. It was from these twin causes that hybrid systems theory was

developed.

Hybrid systems are systems crafted from the interaction between continuous

dynamical systems and logical switching rules. The formal paradigms for modeling

hybrid systems can be applied to myriad physical and man made phenomena. Mod-

els of hybrid systems are referred to as hybrid automata, or, more simply, hybrid

models. Simple physical systems, such as Newton’s pendulum, can be modeled as

hybrid systems. Newton’s pendulum can be thought of as a hybrid system with two

discrete modes, each corresponding to one of the bobs being stationary. Extremely

complex systems, such as networks, and air traffic control can also be modeled as
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hybrid systems. Moreover, the discontinuous nature of hybrid systems means that

they exhibit many unique phenomena. For instance, as shown in Figure 1.1, with

correct switching rules, it is possible to generate a stable system from a collection of

both stable and unstable subsystems. In the case of Figure 1.1, we partition R2 into

4 separate domains (corresponding to each quadrant of R2), where each vector field

is active. We can define the system with the following differential equations: ẋ

ẏ

 = f(x, y) =

 −1

1.1

 when x ≥ 0, y > 0

 ẋ

ẏ

 = f(x, y) =

 −y

x

 when x < 0, y ≥ 0

 ẋ

ẏ

 = f(x, y) =

 y3

x3

 when x ≤ 0, y < 0

 ẋ

ẏ

 = f(x, y) =

 y2/10

x2

 when x > 0, y ≤ 0.

One of the most important phenomena unique to hybrid systems is Zeno be-

havior. The Zeno phenomenon is that of infinite discrete transitions occurring in a

finite time period. It is similar to the chattering phenomenon observed in variable

structure control; however, it must be noted here that the two are distinct. Zeno

behavior arises in models of a variety of hybrid systems. A simple example of a hy-

brid system which exhibits Zeno behavior is that of the bouncing ball. We model a

bouncing ball as a hybrid system with one domain and vector field, and resets occur
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Figure 1.1. A hybrid system constructed from 4 dynamical systems

when the ball impacts with the surface. The dynamics of the ball are given by ẋ1

ẋ2

 =

 x2

−g

 (1.1)

We assume that a coefficient of restitution c ∈ (0, 1) reduces the value of x2 at each

impact (when x1(t) = 0 when t > 0). First, since the coefficient of restitution never

allows x2 (the velocity of the ball) to become 0 at the impact, the model allows for

infinite such impacts.

Second, we need to show that these transitions occur in finite time. Con-

sider an initial condition x1(0), x2(0). Suppose the velocity of the ball at the first

impact is −x∗
2. Then, after n impacts, the velocity of the ball immediately following

the impact will be cnx∗
2. We can then calculate the time until the n+ 1th impact as

tn+1 − tn =
2cnx∗

2

g
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If we sum the above expression over all n ∈ N, we get

∞∑
n=1

=
2x∗

2

g

∞∑
n=1

cn

=
2x∗

2

g

1

1− c

which is finite. Furthermore, the initial interval t1 − t0 (that is, the time before the

first impact) will also be finite as long as the initial conditions are finite. Hence, we

see that every execution of the bouncing ball hybrid system will be Zeno.

While the Zeno phenomenon cannot occur in nature, it can occur even in

highly sophisticated models of physical or man-made systems. It can be undesirable

for several reasons - first, the fact that it involves infinite transitions means that it can

often cause simulations to fail. Second, if a system whose model exhibits Zeno behav-

ior is physically implemented, the fast transitions may lead to physical failures as well.

The main goal of this thesis is to address the problem of detecting Zeno behav-

ior. We do so by framing the Zeno phenomenon as a form of stability. From there, we

modify existing Lyapunov based conditions for this stability, and create algorithmic

methods for testing those conditions. We then demonstrate our technique on various

example hybrid systems.

1.1 Background and Related Work

1.1.1 Hybrid Systems. There is a large body of research into the modeling and

analysis of hybrid systems. The use of finite state machines to capture the interac-

tion between continuous dynamics and discrete transitions is described in detail in

[1]. This modeling framework is used throughout this document, and is described in

detail in Chapter 3.
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Alternatively, much work has gone into using set valued maps to describe

hybrid systems. A mapping A : X ⇒ Y is called a set valued mapping if for each

x ∈ X, A(x) ⊂ Y . Typically, hybrid systems have piecewise continuous vector fields

(that is, continuous almost everywhere). This in turn translates into different vector

fields being active in different regions of the state space. As such, set valued maps

between collections of domains and collections of vector fields are apt models of hy-

brid systems. A more comprehensive treatment of these modeling paradigms can be

found in [2].

As mentioned previously, numerous physical and man-made systems can be

modeled using hybrid models. For instance, in [3], hybrid systems were used to model

systems with embedded microprocessors. Similarly, circuits with switches, notably

power electronic converters, can be modeled with hybrid systems, such as in [4] and

[5]. Hybrid systems are also used successfully to model communications networks, as

is the case in [6] and [7]. Hybrid systems are used in the development of air traffic

control management, as described in [8].

Apart from modeling paradigms, there has been a great deal of work into the

field of non-smooth dynamical systems. The analysis of discontinuous vector fields

is critical to the study of hybrid systems. A seminal work in this field is [9], which

lays the groundwork for the analysis of discontinuous dynamical systems and differ-

ential inclusions. In that work, generalizations to concepts of continuity, existence

and uniqueness, and solutions are described for discontinuous differential equations.

Other important work is the generalizations of classical derivatives (notably gradi-

ents) to discontinuous vector fields, such as the development of generalized gradients

by Clarke [10].
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The analysis of hybrid systems has also progressed a great deal. There are

extensions to the notions of controllability and observability, as described in [11].

Similarly, there is a rich body of work on the stability of hybrid systems, particularly

in Lyapunov stability theorems for hybrid systems, such as [12], [13], and [14]. More-

over, research has been done on means to construct Lyapunov functions for hybrid

systems, such as in [15], where a technique to construct piecewise quadratic Lyapunov

functions is discussed. More recently, techniques using sum-of-squares programming

have been used to construct Lyapunov functions for hybrid systems, as described in

[16] and [17].

Zeno behavior has also garnered significant interest. Zeno hybrid systems

are described in detail in, for example, [18]. Zeno behavior can cause simulations to

halt or fail, since infinitely many transitions would need to be simulated, as noted in,

e.g., [18]. This problem was addressed in [19] and [20], which describe methods to

“regularize” hybrid systems to ensure that trajectories continue after the Zeno equi-

librium. Sufficient conditions for Zeno behavior for a limited class of hybrid systems

- first quadrant hybrid systems - were given in [21], and further sufficient conditions

for systems with nonlinear vector fields based on constant approximations were given

in [22]. More recently, necessary and sufficient Lyapunov conditions for the existence

of isolated Zeno equilibrium were first given in [23]. These results were extended in

[24], where the concept of Zeno stability was described as an extension of finite-time

asymptotic stability. Moreover, [24] provided Lyapunov conditions for Zeno stability

of compact sets. Ames and Lamperski also extended the results in [23] to non-isolated

Zeno equilibrium were given in [25]. In that paper, the authors map hybrid systems to

a 2-dimensional first quadrant hybrid system, which serve as two dimensional analogs

to Lyapunov functions. Note that this technique cannot be implemented using sum-

of-squares programming, as the conditions require the solution of a problem with a
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rational expression in the decision variables. Also, a Lyapunov characterization of

Filippov solutions (see [9] for more details) was given in [26].

1.1.2 Positive Polynomials and Sum-of-Squares Programming. One of the

key areas of study in algebraic geometry is the study of positivity of polynomials over

semialgebraic sets. Positivstellensatz theorems are results that allow us to certify

positivity of polynomials over semialgebraic sets. Notable positivstellensatz theorems

are given in [27], [28], and [29]. Other notable results on the positivity of polynomials

can be found in the survey [30].

Positive polynomials are integral to numerous disciplines, including systems

analysis, optimization, and control. However, as noted by Blum in [31], determining

whether a polynomial is positive is undecidable in polynomial time. To overcome

the intractability of checking polynomial positivity, we can check whether a polyno-

mial is a sum-of-squares (SOS) of other polynomials. As noted in, say, [32], checking

whether a polynomial of degree 2d is a sum of squares is equivalent to finding a

positive semidefinite matrix Q such that

p(x) = Z(x)TQZ(x)

where Z is a vector of monomials of degree d or less. With the advent of efficient

solvers for Linear Matrix Inequalities (LMIs), verifying whether a polynomial is a

sum of squares is possible in polynomial time. This in turn led to the creation of the

popular MATLAB toolbox, SOSTOOLS [33][34].

Using sum-of-squares techniques in systems analysis and control has led to

numerous advances in those fields. The key reason for this is that finding Lyapunov

functions for nonlinear systems can be accomplished using SOS programming. Sum

of squares techniques have been applied to stability analysis of nonlinear systems [35],
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time delay systems [36], and, as noted earlier, hybrid systems [16][17]. Furthermore,

SOS techniques can even be used in controller synthesis, as noted in [37][38]. This

technique has been used in the analysis of various real world systems, such as [39] and

[40]. SOS techniques have also been successfully applied to stochastic hybrid systems

[41][42][43].

1.2 Summary of Contributions and Outline

The key contributions of this thesis are as follows. First, we provide a method

to construct Lyapunov functions to prove Zeno stability using sum-of-squares pro-

gramming. This result is useful because it enables us to verify whether or not a

hybrid system exhibits Zeno behavior algorithmically. Furthermore, we also provide

a means to verify Zeno stability for systems with parametric uncertainties. We also

provide illustrative examples and important uses of the given techniques.

The outline of the thesis is as follows:

• Chapter 2 provides a discussion of some of the key results used in this research.

Specifically, we discuss sum-of-squares polynomials, and their connection to

semidefinite programming. We also discuss the Stengle’s positivstellensatz, a

theorem in algebraic geometry that is key to our analysis. Chapter 2 also

provides a brief discussion on continuous dynamical systems. Most importantly,

we discuss Lyapunov stability, and the use of Lyapunov functions to prove

stability.

• In Chapter 3, we lay the groundwork for our analysis of hybrid systems. We

provide formal definitions for hybrid systems, and introduce executions of hybrid

systems, which are analogous to solutions or flows of continuous dynamical

systems. We state results for the existence and uniqueness of executions. Lastly,
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Chapter 3 provides basic definitions pertinent to Zeno behavior - namely, Zeno

equilibria, and Zeno stability.

• In Chapter 4, we give the main results. Lyapunov characterizations of Zeno

stability are presented. We then provide our technique for constructing Lya-

punov functions to prove Zeno stability. Simple numerical examples illustrating

the use of the technique are also provided. We then provide a technique to

verify Zeno stability for hybrid systems with parametric uncertainties. Again,

numerical examples are provided.

• In Chapter 5, we discuss applications of the given technique. We apply our

technique to a hybrid system with a nonlinear vector field, as well as a system

controlled with a sliding mode controller with imperfect switching. We also

demonstrate the use of our robustness result by analyzing Zeno stability of a

hybrid system with uncertain switching.
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CHAPTER 2

MATHEMATICAL BACKGROUND

The goal of this chapter is to define the mathematical tools used in this re-

search. First, an overview of Sum-of-Squares programming is provided. Next, basic

definitions and conditions of stability of continuous-time dynamical systems are dis-

cussed. We discuss these concepts because much of the analysis of hybrid systems is

requires an understanding of the analysis of continuous-time dynamical systems.

2.1 Sum of Squares Polynomials and the Positivstellensatz

One of the key problems in the study of systems and controls is showing the

global nonnegativity of polynomials, possibly under some constraints. This problem

is, as described in [32], NP-hard. This means that no algorithm exists to verify global

positivity of polynomials in polynomial time. As such, finding tractable relaxations

for such problems becomes valuable. One technique of accomplishing this is showing

that polynomials are sums of squares, which, as will be demonstrated shortly, can be

accomplished in polynomial time.

2.1.1 Sum of Squares Polynomials.

Definition 1. (Sum of Squares Polynomial) A polynomial p(x) : Rn → R is said

to be Sum of Squares (SOS) if there exist polynomials fi(x) : Rn → R such that

p(x) =
∑
i

(fi(x))
2

We use p ∈ Σx ⊂ R[x] to denote that p is SOS.

We now present a theorem that gives a polynomial-time complexity test to

determine whether a polynomial is SOS.
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Theorem 1. Suppose p ∈ R[x] has degree 2d. The following two statements are

equivalent:

1. p(x) is SOS

2. There exists a positive semidefinite matrix Q, such that

p(x) = Z(x)TQZ(x)

where Z(x) is a vector of all monomials of degree d or less

We now present a proof of the above theorem. Similar proofs can be found in,

say, [32].

Proof:

1. First, we show that (2) implies (1).

We have

p(x) = Z(x)TQZ(x)

Since Q is positive semidefinite, there exists a matrix A such that Q = A∗A,

where A∗ denotes the conjugate transpose of A. Thus, we get

p(x) = Z(x)TA∗AZ(x)

= (AZ(x))∗(AZ(x))

We can write

AZ(x) = F (x)

where F (x) is a vector of polynomials. Hence,

p(x) = F (x)∗F (x) ∈ Σx
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Thus, if there exists a positive semidefinite matrix Q, and a vector Z(x) of

monomials up to degree d, and p(x) = ZT (x)QZ(x), then p is a sum of squares.

2. To show (1) implies (2):

If p ∈ Σx, and is of degree 2d then p(x) =
∑n

i=1 fi(x)
2, where {fi}i=1,..,n are

polynomials of degree less than or equal to d. Define

F (x) = [f1(x), ..., fn(x)]
T .

Thus, we can write

p(x) = F (x)TF (x).

Furthermore, let {mj(x)}j=1,...,M be monomials in x of degree less than or equal

to d, and let {aij}i=1,..,N,j=1,...,M be constants. Then,

Z(x) = (m1, ...,mM)T

and

fi(x) =
M∑
j=1

aijmj(x).

It follows that

F (x) =



∑M
j=1 a1jmj(x)

...∑M
j=1 aNjmj(x)



=


a11 . . . a1M

...
. . .

...

aN1 . . . aNM




m1(x)

...

mM(x)


= AZ(x)
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where

A =


a11 . . . a1M

...
. . .

...

aN1 . . . aNM


.

Thus, p(x) = F (x)TF (x) = Z(x)TATAZ(x). Since ATA is positive semidefinite,

we have (2).

�

Therefore, checking whether a polynomial is SOS is equivalent to checking the

existence of a positive-semidefinite matrix Q under some affine constraints which has

been shown to be decidable in polynomial time. Thus, we see that while checking

polynomial positivity is NP-hard, checking whether a polynomial is SOS is decidable

in polynomial time. We also provide a simple example that illustrates the use of

Theorem 1:

Example 1.

Consider the polynomial p(x) = x2 + 2x + 1 = (x + 1)2. Obviously, this

polynomial is SOS. We choose Z = [1, x]T , and we search for a 2 × 2 matrix Q. We

can then find

Q =

 1 1

1 1


which is positive-semidefinite. We see that 1

x


T  1 1

1 1


 1

x

 = x2 + 2x+ 1
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Positive Polynomials are not always Sum-of-Squares

While sum-of-squares polynomials provide a tractable relaxation for problems

of positivity of polynomials, such techniques are conservative. This is because not

every nonnegative polynomial can be decomposed to a sum-of-squares form. Further

discussion on this matter can be found in [32].

A classic example of a polynomial that is positive but not SOS is the Motzkin poly-

nomial

M(x1, x2, x3) = x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3 (2.1)

which has been shown to be globally nonnegative. However, as demonstrated in

[32], 2.1 admits no SOS decomposition.

2.1.2 The Positivstellensatz. A positivstellensatz is a theorem from real alge-

braic geometry which provides a means to verify the positivity of a polynomial over

a semialgebraic set. For this section, we use N0 = N ∪ {0}

Definition 2. (Semialgebraic Set) A semialgebraic set is a set of the form

S := {x ∈ Rn : fi(x) ≥ 0, i = 1, ..., n1, gi(x) = 0, i = 1, ..., n2}

where each fi ∈ R[x], and gi ∈ R[x].

In simple terms, a semialgebraic set is a set defined by polynomial equalities

and inequalities. Examples of semialgebraic sets include:

1. The unit disc in R2:

B := {x ∈ R2 : x2
1 + x2

2 − 1 ≤ 0},

2. The half circle H formed by intersection of the unit disc and a half-plane:

H := {x ∈ R2 : x2
1 + x2

2 − 1 ≤ 0, x1 − 2x2 ≥ 0}.



15

Definition 3. (Multiplicative Monoid) A multiplicative monoid M generated by

elements {f1, ..., fn} ∈ R[x] is the set

M :=

{
p ∈ R[x] : p =

n∏
i=1

fki
i , ki ∈ N0

}
Thus, M is the set of of finite products of {f1, ..., fn}.

An illustrative example is given below:

Example 2.

Consider the polynomials f1 and f2. The multiplicative monoid generated

by f1 and f2 is the set

M := {p ∈ R[x] : p =
∏

f i
1f

j
2 , i, j ∈ N0}

As such, elements of M will include 1, f1, f2, f1f2, f
2
1 , f

2
2 , f

3
1 f

4
2 and so on. This set

contains all possible products of f1 and f2

Definition 4. (Cone) For given elements {f1, ..., fn} ∈ R[x], let M̄ ⊂ M be the

set of products defined by

M̄ :=

{
p ∈ R[x] : p =

n∏
i=1

fki
i , ki ∈ {0, 1}

}

and letM denote the cardinality of M̄. We say the cone P generated by {f1, ..., fn} ∈

R[x] is the subset of R[x] defined as

P :=

{
p ∈ R[x] : p = s0 +

M∑
i=1

simi, mi ∈ M̄, si ∈ Σx

}
.

P satisfies the following properties:

1. a, b ∈ P implies a+ b ∈ P

2. a, b ∈ P implies a · b ∈ P
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3. a ∈ R[x1, ..., xn] implies a2 ∈ P

Below, we provide some illustrative exampes:

Example 3.

Consider the polynomials f1 and f2. The cone P generated by these polyno-

mials is given by

P := {p ∈ R[x] : p = s0 + s1f1 + s2f2 + s3f1f2; si ∈ Σx}

Example 4.

The cone generated by the empty set is Σx. It is the smallest such cone

possible.

Definition 5. (Ideal) The Ideal I generated by {f1, ..., fn} ∈ R[x] is defined as

I :=

{
p ∈ R[x] : p =

n∑
i=1

qifi, qi ∈ R[x]

}

Note that I must satisfy

1. a, b ∈ I implies a+ b ∈ I

2. a ∈ I; b ∈ R[x] implies ab ∈ I

Intuitively, the ideal generated by a collection of polynomials is the set of

polynomials that vanishes when all of the generating polynomials vanishes. Provided

below is an illustrative example:
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Example 5.

Consider the polynomials f1 = x1+x2 and f2 = x2
1+x1. The ideal generated

by f1 and f2 is the set

I := {p ∈ R[x] : p = s1f1 + s2f2; s1, s2 ∈ R[x]}

Clearly, every element of I vanishes when both f1 and f2 vanish.

Theorem 2. (Stengle’s Positivstellensatz) Consider the polynomials {f1, f2, ..., fn1} ∈

R[x], {g1, g2, ..., gn2} ∈ R[x], and {h1, h2, ..., hn3} ∈ R[x]. Let P be the cone generated

by {fi}i=1,2,...,n1, M be the multiplicative monoid generated by {gj}j=1,2,...,n2, and I be

the Ideal generated by {hk}k=1,2,...,n3. Then, the following statements are equivalent:

1. {x ∈ Rn : fi(x) ≥ 0, gj(x) ̸= 0, hk(x) = 0, i = 1, ...n1, j = 1, ..., n2, k =

1, ..., n3} = ∅

2. ∃f ∈ P , ∃g ∈ M, ∃h ∈ I s.t.

f + g2 + h ≡ 0

The positivstellensatz has been described as a generalization of the S-procedure

(described in [44]). However, while the S-procedure provides information regarding

the positivity of quadratic forms such that other quadratic forms are also positive,

the positivstellensatz can be used to obtain certificates of positivity for polynomials

of arbitrary degree over semialgebraic sets. We use the positivstellensatz extensively

in this thesis to construct Lyapunov functions which are positive on bounded sets

(see chapter 4).

For further details and proofs, we refer to [27] and [32]. Also, provided below

are examples illustrating the use of the positivstellensatz.
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Example 6.

Consider the sets given by

D1 := {x ∈ R2 : 1− x2
1 − x2

2 ≥ 0}

and

D2 := {x ∈ R2 : x2
1 + x2

2 − 2 = 0}

We can use the positivstellensatz to show that these two sets do not intersect.

We need to show that the set

{x ∈ R2 : x2
1 + x2

2 − 2 ≥ 0, 1− x2
1 − x2

2 ≥ 0} = ∅

We then apply the positivstellensatz- if the above is true, then we can find SOS

polynomials s0, s1, and a polynomial t such that

s0(x) + s1(x)(1− x2
1 − x2

2) + t(x)(x2
1 + x2

2 − 2) = 0

We can choose s0(x) = s1(x) = t(x) = 1 to give us the desired result.

2.2 Continuous Time Dynamical Systems

In this subsection, we briefly describe properties of finite dimensional continu-

ous dynamical systems. Understanding the properties of such systems is crucial to the

understanding of more complex systems, including hybrid systems. Here, we describe

basic notions of stability.

2.2.1 Stability and Continuous Time Dynamical Systems. In this subsection,

we define stability for continuous time dynamical systems, and provide theorems for

the stability of continuous time dynamical systems.



19

Definition 6. (Solution map) Consider a dynamical system

ẋ = f(x(t)) x(0) = x0 (2.2)

where x0 ∈ D, and f ∈ C1(D,Rn). A function ϕ : Rn × R is a solution map of 2.2 if

d

dt
ϕ(x0, t) = f(ϕ(x0, t)) (2.3)

ϕ(ϕ(x0, t), s) = ϕ(x0, t+ s) (2.4)

ϕ(x0, 0) = x0 for all x0 ∈ D. (2.5)

Definition 7. (Stability) Consider the dynamical system

ẋ(t) = f(x(t)); x(0) = x0 (2.6)

where x0 ∈ D, and f ∈ C1(D,Rn), and let f(x∗) = 0. Suppose 2.6 generates the

solution map ϕ(x0, t).

• x∗ is said to be a Lyapunov stable equilibrium of f if, for each ε > 0, there

exists a δ > 0 such that for any x0 satisfying |x0 − x∗|< δ, |ϕ(x0, t)− x∗|< ε.

• x∗ is said to be a locally asymptotically stable equilibrium of f if it is Lyapunov

stable, and there exists some δ > 0 such that for any x0 satisfying |x0 − x∗|< δ,

limt→∞ ϕ(x0, t) = x∗.

• x∗ is said to be a globally asymptotically stable equilibrium of f if it is Lyapunov

stable, and for all x0 ∈ D, limt→∞ ϕ(x0, t) = x∗.

• x∗ is said to be a locally exponentially stable equilibrium of f if there exist

α, β, γ > 0 such that for any x0 satisfying |x0 − x∗|< δ, |ϕ(x0, t) − x∗|≤

α|x0 − x∗|e−βt .

• x∗ is said to be a globally exponentially stable equilibrium of f if there exist

α, β, γ > 0 such that for all x0 ∈ D, |ϕ(x0, t) − x∗|≤ α|x0 − x∗|e−βt for all

x0 ∈ D.
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To prove stability of dynamical systems, we use Lyapunov’s method, which is

described below in Theorem 3 :

Theorem 3. Consider the dynamical system

ẋ(t) = f(x(t)); x(0) = x0 (2.7)

where x0 ∈ D ⊂ Rn, and f ∈ C1(Rn,Rn), and let x∗ be an equilibrium of the system.

Assume a unique solution x(t) = ϕ(x0, t) to 2.7 exists for each x0 ∈ D. If there exists

a function V : D → R that satisfies

V (x(t)) > 0 ∀x(t) ∈ D\x∗

V (x∗) = 0

⟨∇V (x(t)), f(x(t))⟩ ≤ 0 ∀x ∈ Rn

(2.8)

then x∗ is a Lyapunov stable equilibrium of the system. Furthermore, if

⟨∇V (x(t)), f(x(t))⟩ < 0 ∀x ∈ Rn

then x∗ is an asymptotically stable equilibrium. If there exist constants α, β, and γ,

and p ≥ 0 such that

α|x(t)|p≤ V (x(t)) ≤ β|x(t)|p ∀x ∈ Rn

⟨∇V (x(t)), f(x(t))⟩ ≤ γV (x(t)) ∀x ∈ Rn

then x∗ is an exponentially stable equilibrium.

Further modifications to the above are also possible. For instance, it is pos-

sible to find Lyapunov functions that prove that system trajectories converge to the

equilibrium in finite time. For a more detailed discussion of Lyapunov stability, refer
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to [45] or [46].

We now provide a simple example that demonstrates the application of Theorem 3

to a nonlinear dynamical system.

Example 7.

We want to prove stability of the vector field

ẋ = f(x) =

 −x3
1 − x1x

2
2

−x2 − 3x2
1x

3
2


We see that x∗ = (0, 0) is an equilibrium of the system. If we choose V (x) = x2 + y2,

we notice that

• V (0) = 0

• V (x) > 0 for all x ∈ R2\{0}.

• ⟨∇V (x), f(x)⟩ = (−x4
1 − x2

1x
2
2) + (−x2

2 − 3x2
1x

4
2)

Since −(−x4
1−x2

1x
2
2)−(−x2

2−3x2
1x

4
2) ∈ Σx, we note that ⟨∇V (x), f(x)⟩ ≤ 0. Thus, we

satisfy the conditions of Theorem 3 and prove Lyapunov stability of the equilibrium

of the given vector field.

There are several interesting points to note regarding Lyapunov functions. A

Lyapunov function can be considered to be a measure of energy for a given system.

Thus, Theorem 3 can be interpreted as showing that the energy of the system de-

creases to 0 until the equilibrium, thus showing that the system is stable. Also of

note is the fact that Lyapunov functions are not unique - there may exist multiple
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functions that satisfy the conditions of Theorem 3 for a given vector field.

However, in recent years, the use of Lyapunov functions and techniques as-

sociated with them have become especially important. The availability of efficient

optimization algorithms means the ability to find Lyapunov functions no longer de-

pends on the analytical skill of the investigator. For example, for the linear system

ẋ = Ax

the Lyapunov function can be found by finding a positive semidefinite matrix P that

satisfies

ATP + PA ≼ 0. (2.9)

In this case, the Lyapunov function V (x) is given by V (x) = xTPx. With the advent

of efficient solvers for Linear Matrix Inequalities (LMIs), it is relatively simple to

find Lyapunov functions for linear systems. For a more detailed treatment of such

techniques, refer to, say, [47]. Moreover, using SOS techniques, it is possible to find

Lyapunov functions for polynomial vector fields [35].
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CHAPTER 3

HYBRID SYSTEMS

Hybrid systems are, as mentioned previously, systems that exhibit both “flow”

and “jump” properties. As such, it becomes necessary to define a modeling paradigm

that allows us to capture both aspects of the system’s behavior. Furthermore, this

extension of the model of a dynamical system also necessitates an extension of the

idea of a solution. Extending the idea of the solution to one that captures both

continuous flows and discrete transitions raises further questions. For instance, under

what conditions can the existence and uniqueness of solutions be guaranteed? What

does it mean for a hybrid system to be stable? How can we know whether or not a

hybrid system is stable?

The aim of this chapter is to answer four questions. First, how can we model

systems that exhibit both continuous flows and discrete transitions? Second, how do

we define solutions to hybrid systems? Third, under what conditions do solutions

exist for such systems, and when are these solutions unique? Lastly, how can we

verify stability for such systems?

3.1 Modeling Hybrid Systems

In this section, we define hybrid systems and their executions. We use similar

notation to that given in [1] and, more recently, [23].

Definition 8. (Hybrid System) A hybrid system H is a tuple:

H = (Q,E,D, F,G,R)

where

• Q is a finite collection of discrete states or indices.
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• E ⊂ Q×Q is a collection of edges. For any edge e = (q, q′) we use the functions

s and t to denote the start and end, so that for e = (q, q′), s(e) = q and t(e) = q′.

• D = {Dq}q∈Q is a collection of Domains, where for each q ∈ Q, Dq ⊆ Rn.

• F = {fq}q∈Q is a collection of vector fields, where for each q ∈ Q, fq : Dq → Rn.

• G = {Ge}e∈E is a collection of guard sets, where for each e = (q, q′) ∈ E,

Ge ⊂ Dq

• R = {ϕe}e∈E is a collection of Reset Maps, where for each e = (q, q′) ∈ E,

ϕe : Ge → Dq′ .

This framework modeling hybrid systems combines differential equations and

finite state machines, which simultaneously describe the continuous evolution and

discrete evolution.

We now provide two illustrative examples for the modeling of hybrid systems.

Example 8.

The first example is the bouncing ball on a flat surface. The bouncing ball

(in an ideal, frictionless universe) can be easily modeled with a hybrid system. In

this case, the bouncing ball system B is modeled by a tuple:

B = (Q,E,D, F,G,R)

where

• Q = {q0}

• E = {(q0, q0)}

• D := {x ∈ R2 : x1 ≥ 0}
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• F = {f}, where

ẋ = f(x) =

 x2

−g


where g is the acceleration caused by gravity.

• G := {x ∈ R2 : x1 = 0, x2 ≤ 0}

• R = ϕ(x) = [0,−cx2]
T . Here, c is a coefficient of restitution.

In this model of the bouncing ball, there is only one discrete state, corresponding

to the ball bouncing, and one transition that occurs every time the ball reaches the

surface. The only domain corresponds to the space above the surface, and the only

system dynamics are those caused by force of gravity on the ball. The guard set

corresponds to the surface. The reset maps reflects the behavior of the bounce - the

velocity of the ball when it reaches the surface is reversed, and scaled by the coefficient

of restitution.

Example 9.

Another example of a simple physical system that can be modeled with a

hybrid system is Newton’s pendulum. The system can be simplified to 2 pendula, with

one motionless while the other swings. The bobs collide at the trough, whereupon

momentum is transferred elastically from one pendulum to the other. In this model,

we take x1 and x2 to be the angular position and velocity of the first bob, and x3 and

x4 to be the angular position and velocity of the second bob. With this framework,

we model Newton’s pendulum with the hybrid system P = (Q,E,D, F,G,R) where

• Q = {q1, q2}. Here, q1 describes the scenario when the first bob is moving and

the second is stationary. The opposite occurs in q2,
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• E = {(q1, q2), (q2, q1)}

• D := {D1, D2} where

D1 = {x ∈ R4 : x1 < 0, x2 > 0, x3 = x4 = 0}

D2 = {x ∈ R4 : x3 < 0, x4 > 0, x1 = x2 = 0}

• F = {f1, f2}, where

f1(x) = (−k1x2, k2x1, 0, 0)
T

f1(x) = (0, 0, k3x4,−k4x3)
T

where k1, k2, k3 and k4 are constants. where g is the acceleration caused by

gravity.

• G := {G12, G21} where

G12 :=
{
x ∈ R4 : x1 = 0, x2 ≥ 0, x3 = 0, x4 = 0

}
G21 :=

{
x ∈ R4 : x1 = 0, x2 = 0, x3 = 0, x4 ≤ 0

}
• R = {ϕ12(x), ϕ21(x)} where

ϕ12 = [0, 0, 0, cx2]

ϕ21 = [0, cx4, 0, 0]

and c is a coefficient of restitution.

In the Newton’s cradle hybrid model, there are two discrete modes, 1 and 2, each

corresponding to the motion of a single bob. There are transitions form mode 1 to

2 and 2 to 1. Each domain corresponds to one bob moving - D1 corresponds to the

first bob moving, and D2 corresponds to the second bob moving. The guard sets are
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reached when the two bobs collide. Each reset maps the velocity of the moving bob

to the stationary bob, scaled by the coefficient of restitution.

There are other means of defining hybrid systems as well. In the next defini-

tion, we use set valued maps to model hybrid systems, as described in, say, [2].

Definition 9. (Set Valued Map) Consider two sets X and Y . If for each x ∈ X,

there is a corresponding set given by F (x) ⊂ Y , then we say F is a set valued map.

We use F : X ⇒ Y to denote that F is a set valued map.

Definition 10. (Alternative Definition for Hybrid Systems) A hybrid system

H is the tuple (Q,F,G,C,D) where

• C ⊂ Rn

• D ⊂ Rn

• F : C ×Q ⇒ Rn

• G : D ×Q ⇒ Rn ×Q

and which satisfy:

ẋ ∈ F (x) x ∈ C x+

q+

 ∈ G(x) x ∈ D, q ∈ Q

A third form of hybrid systems are switched systems. Switched systems are

hybrid systems without discrete jumps when mode transitions occur. Consequently,

such systems admit continuous solutions (described in detail in [9]). A formal defini-

tion for switched systems is provided below:
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Definition 11. (Switched system) A switched system is a hybrid system HS =

(Q,E,D, F,G,R), which satisfies:

• For each q, q′ ∈ Q, intDq ∩ intDq′ = ∅

• For each e = (q, q′) ∈ Q, Ge ∈ ∂Dq ∩ ∂Dq′

• For each e = (q, q′) ∈ E, ϕe(x) = x

We now introduce cyclic hybrid systems. Cyclic hybrid systems are those

hybrid systems for which the pair (Q,E) forms a directed graph - Q is the collection

of vertices, and E the collection of edges.

Definition 12. A cyclic hybrid system Hc is a hybrid system where for each domain

q ∈ Q, we can associate a unique edge e(q) = (q, qi) ∈ E such that s(e(q)) = q and

such that for any q ∈ Q, q = t(e(t(e(· · · t(e(t(e(q)))))))). That is, the set of edges

forms a directed graph.

3.2 Executions, Existence and Uniqueness, and Stability

We now consider the notion of a solution to a hybrid system. The classical

definitions for solutions of dynamical systems are insufficient. A generalization of the

idea of a solution is required. To address this issue, we use the idea of the execution

of hybrid systems, described below.

Definition 13. (Hybrid System Execution) The tuple

χ = (I, T, p, C)

where

• I ⊆ N is index of intervals.
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• T = {Ti}i∈I are a set of open time intervals associated with points in time τi as

Ti = (τi, τi+1) ⊂ Rn+ where Ti+1 = (τi+1, τi+2).

• p : I → Q maps each interval to a domain.

• C = {ci(t)}i∈I is a set of continuously differentiable

is an execution of a hybrid system H = (Q,E,D, F,G,R) starting from (q0, x0) ∈

Q× ∪q∈QDq if

1. cp(1)(0) = x0 and p(1) = q0

2. ċi(t) = fp(i)(ci(t)) for t ∈ Ti and for all i ∈ I.

3. ci(t) ∈ Dp(i) for t ∈ Ti and for all i ∈ I.

4. ci(τi+1) ∈ G(p(i),p(i+1)) for all i ∈ I.

5. ci+1(τt+1) = ϕ(p(i),p(i+1))(ci(τi)) for all i ∈ I.

Executions of hybrid systems are analogous to solutions of classical dynami-

cal systems. However, since a classical solution map may not correctly model jumps

caused by discrete maps.

We now introduce some concepts necessary for understanding existence and

uniqueness of hybrid systems.

Definition 14. (Infinite Execution) An execution is called infinite if I ≡ N, and

finite if maxi∈I i < ∞

An infinite execution is one where infinite transitions occur (as opposed to

finite executions, where only a finite number of transitions occur).
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Definition 15. (Maximal Executions) Consider a hybrid systemH = (Q,E,D, F,G,R)

with execution χ = (I, T, p, C). χ starting from (q0, x0) ∈ Q × ∪q∈QDq is called a

maximal execution of H if there exists no execution χ′ = (I ′, T ′, p′, C ′) starting from

(q0, x0) such that Σi∈Iτi+1 − τi < Σi′∈I′τi′+1 − τ ′i .

Definition 16. (Reachable State) Consider a hybrid systemH = (Q,E,D, F,G,R).

The pair (q∗, x∗) ∈ Q × Rn is a reachable state of H if, for some execution χ =

(I, T, p, C) of H, starting from some initial condition (q0, x0) ∈ Q × ∪q∈QDQ, there

exists an interval (tf−1, tf ) ∈ T such that cp(f)(tf ) = x∗ and p(f) = q∗.

We use ReachH to denote the set of all states reachable by a hybrid system H.

Next, we define the set of all points from which no further continuous evolution

can occur for any given q ∈ Q.

Definition 17. (Out(H)) Consider a hybrid system H = (Q,E,D, F,G,R), with

executions χ ∈ ΨH(q0, x0), where χ = (I, T, p, C). The set of all reachable cq(t) ∈ Dq

from which no continuous evolution can occur, denoted by {Outq}q∈Q, is given by

Outq := {cq(t) ∈ Dq : ∀ ε > 0, ∃τ ∈ [0, ε) such that˙̧q(t+ τ) /∈ Dq}

Note that for switched systems (defined in the previous section), we consider

Out(q) ⊂ ∂Dq, since for switched systems, Gq,q′ ⊆ ∂Dq ∩ ∂Dq′ .

Definition 18. (Non-blocking Hybrid System)A hybrid systemH = (Q,E,D, F,G,R)

is said to be non-blocking if an infinite execution exists for each initial condition

(q0, x0) ∈ Q× ∪q∈QDq.

Lemma 1. We say a hybrid system H = (Q,E,D, F,G,R) is non-blocking if for any

reachable state (q, x) ∈ Out(q), there exists a (q, q′) ∈ E such that
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1. x ∈ Gq,q′

2. Rq,q′(x) ̸= ∅

Refer to [48] for a proof.

Definition 19. (Deterministic Hybrid System) A hybrid system is said to be

deterministic if for each initial condition (q0, x0) ∈ Q × ∪q∈QDq, only one maximal

execution exists.

We now present a theorem for the existence and uniqueness of hybrid system

executions:

Theorem 4. Consider a hybrid system H = (Q,E,D, F,G,R). For any initial

condition (q0, x0) ∈ Q × Rn, there exists a unique infinite execution χ = (I, T, p, C)

if H is non-blocking and deterministic.

For a proof, refer to [48].

3.3 Stability of Hybrid Systems

As with continuous dynamical systems, determining stability of hybrid systems

is a leading area. For the most part, we are able to extend basic concepts of contin-

uous dynamical systems, such as stability to hybrid systems. In the last 30 years,

much work has gone into determining means to prove stability of hybrid systems.

Of particular importance is the extension of Lyapunov theorems. First, Branicky

showed in [14] that the existence of a Lyapunov function that is globally nonnegative

and monotonically decreasing along system trajectories, and non-increasing at dis-

crete events, was sufficient to show stability of a hybrid system.This result was then

extended to the use of multiple Lyapunov functions for hybrid systems, such as in

[49]. The use of multiple Lyapunov functions for stability analysis of hybrid systems
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can be summarized in Theorem 5 given below:

Theorem 5. Consider a non-blocking and deterministic hybrid system

H = (Q,E,D, F,G,R), with executions χ = (I, T, p, C). Let x∗ ∈ ∪q∈QDq be an

equilibrium of the system H. If for each q ∈ Q, there exists a function Vq : Dq → R

that satisfies

Vq(cq(t)) > 0 for all cq(t) ∈ Dq\x∗, q ∈ Q (3.1)

Vq(x
∗) = 0, for some q ∈ Q (3.2)

⟨∇Vq, (cq(t))fq(cq(t))⟩ ≤ 0 for all cq(t) ∈ Dq, , q ∈ Q (3.3)

Vq(cq(t)) ≥ Vq′(ϕe(cq(t)))for all e = (q, q′) ∈ E and cq(t) ∈ Ge (3.4)

then x∗ is an asymptotically stable equilibrium of H.

Note that the Lyapunov function is not necessarily continuous. However, it

still satisfies the conditions given in [13] and [14]. That is, the Lyapunov function is

decreasing everywhere, including over transitions.

As noted previously, Lyapunov functions provide a useful deductive means to

verify stability of dynamical systems. Computational techniques for the computation

of multiple Lyapunov functions have been developed, such as in [15]. More recently,

techniques to construct multiple Lyapunov functions for hybrid systems using sum-

of-squares techniques were provided in [17] and [16]. Much of the work presented in

the aforementioned papers has been the inspiration for the current work.

3.4 Zeno Executions and Equilibria

We now present definitions of Zeno executions, equilibria, and stability.

3.4.1 Zeno Executions. In this section, we describe Zeno executions.
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Definition 20. (Zeno Execution) We say an execution χ = (I, T, p, C) of a hybrid

System H = (Q,E,D, F,G,R) is Zeno if

1. I = N

2. limi→∞ τi < ∞

We see from the above that Zeno executions undergo infinite transitions in

finite time.

3.4.2 Zeno Stability. In this subsection, we describe Zeno equilibria and stability.

Unlike the equilibria of continuous dynamical systems, or, for that matter, hybrid

systems without Zeno executions, Zeno equilibria are similar to limit cycles. We also

frame Zeno behavior as a form of finite-time asymptotic stability.

Definition 21. (Zeno Equilibrium) A set z = {zq}q∈Q is a Zeno equilibrium of a

Hybrid System H = (Q,E,D, F,G,R) if it satisfies

1. For each edge e = (q, q′) ∈ E, zq ∈ Ge and ϕe(zq) = zq′ .

2. fq(zq) ̸= 0 for all q ∈ Q.

Note that for any z ∈ {zq}q∈Q, where {zq}q∈Q is a Zeno equilibrium of a cyclic hybrid

system Hc,

(ϕi−1 ◦ · · · ◦ ϕ0 · · ·ϕi)(z) = z

We now define isolated Zeno equilibria.

Definition 22. (Isolated Zeno Equilibrium) A set {zq}q∈Q is called an isolated

Zeno equilibrium if there exists a collection of neighborhoods {Wq ⊂ Dq}q∈Q, with

zq ∈ Wq, and such that for any q, q′ ∈ Q, zq′ /∈ Wq unless zq = zq′ .
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Next, we define Zeno stability:

Definition 23. (Zeno Stability) Let H = (Q,E,D, F,G,R) be a hybrid system,

and let z = {zq}q∈Q be a compact set. The set z is Zeno stable if, for each q ∈ Q,

there exist neighborhoods Zq, where zq ∈ Zq, such that for any initial condition

x0 ∈
∪

q∈Q Zq, the execution χ = (I, T, p, C), with co(t0) = x0 is Zeno, and converges

to z.

Note that this definition of Zeno stability is equivalent to both the definition

of “bounded time asymptotic Zeno stability” given in [25] and the definition of “Zeno

asymptotic stability” given in [24]. This definition is applicable to the analysis of iso-

lated Zeno equilibria (as noted in [23]) or compact sets [24]. A study of non-isolated

Zeno equilibria is given in [25].
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CHAPTER 4

ZENO STABILITY IN HYBRID SYSTEMS

In this chapter, we describe the Zeno phenomenon, which, as mentioned pre-

viously, occurs only in hybrid systems. In the previous chapter, we described Zeno

executions of hybrid systems, and since Zeno executions asymptotically converge to

Zeno equilibria, we are able to frame the phenomenon as a form of asymptotic stabil-

ity. In this chapter, we present Lyapunov characterizations of Zeno stability (based

on the work in [23] and [24]). Last, we present a method to algorithmically construct

Lyapunov functions to prove Zeno stability utilizing sum-of-squares programming.

Moreover, we extend the result to the verification of Zeno stability for systems with

parametric uncertainties, where the uncertainties lie in semialgebraic sets.

4.1 A Lyapunov Characterization of Zeno Stability

The motivation for a Lyapunov methods for the analysis Zeno stability is sim-

ilar to that of Lyapunov methods for “classical” stability analysis; that is, it is often

difficult to verify stability of dynamical systems by directly solving the associated

differential equations. Similarly, to ascertain Zeno stability using this method not

only requires the solution of a hybrid system, but also a verification that the Zeno

equilibrium is asymptotically approached in finite time. And while it is not difficult

to verify Zeno stability for elementary systems such as the bouncing ball, even slightly

more complex systems provide significant challenges in this regard. As such, devel-

oping Lyapunov methods to verify Zeno stability becomes a valuable undertaking.

First, consider Assumption 1 below:

Assumption 1:

In this work, we consider hybrid systems with polynomial vector fields and

resets, and semialgebraic domains and guard sets. We implicitly assume every hy-
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brid system is of this form and that associated with every hybrid system is a set of

polynomials gqi, he,k for q ∈ Q, e ∈ E, i = k = 1, · · · , Kq and k = 1, · · · , Nq for some

Kq, Nq > 0. In this framework, the domains of the hybrid system H are defined as

Dq = {x ∈ Rn : gqk(x) ≥ 0, k = 1, 2, · · · , Kq} (4.1)

where gqk ∈ R[x], and Kq ∈ N. Similarly, the guard sets are defined as

Ge = {x ∈ Rn : he,0(x) = 0, he,k(x) ≥ 0, k = 1, 2, · · · , Nq} (4.2)

where each hek ∈ R[x], and Nq ∈ N. Lastly, for each e = (q, q′) ∈ E, the reset map

ϕe is given by the vector-valued polynomial function

ϕe = [ϕe,1, · · · , ϕe,n]
T (4.3)

where ϕe,j ∈ R[x] for j = 1, · · · , n.

We now reiterate the Lyapunov conditions for the stability of Zeno equilibria

in cyclic hybrid systems presented in [23], which are as follows:

Theorem 6. (Lamperski and Ames) Consider a hybrid system H = (Q,E,D, F,G,R),

with an isolated Zeno equilibrium {zq}q∈Q. Let {Wq}q∈Q be a collection of open

neighborhoods of {zq}q∈Q. Suppose there exist continuously differentiable functions

Vq : Rn → R and Bq : Rn → R, and non-negative constants {rq}q∈Q, γa, and γb,
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where rq ∈ [0, 1], and rq < 1 for some q and such that

Vq(x) > 0 for all x ∈ Wq\zq, q ∈ Q (4.4)

Vq(zq) = 0, for all q ∈ Q (4.5)

∇V T
q (x)fq(x) ≤ 0 for all x ∈ Wq, q ∈ Q (4.6)

Bq(x) ≥ 0 for all x ∈ Wq, q ∈ Q (4.7)

∇BT
q (x)fq(x) < 0 for all x ∈ Wq, q ∈ Q (4.8)

Vq′(R(q,q′)(x)) ≤ rqVq(x), (4.9)

for all e = (q, q′) ∈ E and x ∈ Ge ∩Wq

Bq(R(q′,q)(x)) ≤ γb
(
Vq(R(q,q′)(x))

)γa
(4.10)

for all e = (q, q′) ∈ E and x ∈ Ge ∩Wq.

Then {zq}q∈Q is Zeno stable.

Theorem 6 is used to prove stability of isolated Zeno equilibria. In [24, Propo-

sitions 5.1,5.2], sufficient conditions for Zeno stability of compact sets were presented.

Moreover, the conditions of [24, Proposition 5.2] which prove Zeno stability of a com-

pact set, were shown to be equivalent to those in [23]. As noted in [24], satisfying

4.4-4.10 guarantees asymptotic Zeno stability of a collection of compact sets. To sim-

plify notation, we will use the sufficient conditions of the previous theorem as follows

in Theorem 7. Note that our subsequent theorem can be easily applied directly to

the conditions of Theorem 6; and in our numerical examples we have tested both sets

of conditions and they yield similar results.

Theorem 7. Let H = (Q,E,D, F,G,R) be a cyclic hybrid system, and let z =

{zq}q∈Q be a collection of compact sets. Let {Wq ⊂ Dq}q∈Q, be a collection of neigh-

borhoods of the {zq}q∈Q. Suppose that there exist continuously differentiable functions

Vq : Wq → R, and positive constants {rq}q∈Q and γ, where rq ∈ (0, 1], and rq < 1 for
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some q and such that

Vq(x) > 0 for all x ∈ Wq\zq, q ∈ Q (4.11)

Vq(zq) = 0, for all q ∈ Q (4.12)

∇V T
q (x)fq(x) ≤ −γ for all x ∈ Wq, q ∈ Q (4.13)

rqVq(x) ≥ Vq′(ϕe(x)) (4.14)

for all e = (q, q′) ∈ E and x ∈ Ge ∩Wq.

then z is a stable Zeno equilibrium.

Proof:

We show that if for each q ∈ Q, we can find a Vq such that (4.11)-(4.14) are satisfied,

then the same Vq also satisfies (4.4)-(4.10). From inspection, it is clear that if Vq

satisfies (4.11)-(4.14), then (4.4)-(4.6) and (4.9) are satisfied. Second, choose Bq = Vq

for each q ∈ Q. From inspection, it is clear that Vq also satisfies (4.7) and (4.8). Last,

if γa = γb = 1, we get Vq ≤ Vq, where the equality holds. From this, we see that for

each q ∈ Q, Vq also satisfies (4.10). Thus, the theorem is proved. �

4.2 Using Sum-of-Squares Programming to Verify Zeno Stability

While using Lyapunov functions to verify Zeno stability is certainly simpler

than directly solving the associated differential equations, it may still be difficult to

find a Lyapunov function that satisfies the conditions listed in the theorems above.

This necessitates an algorithmic method for the construction of Lyapunov functions

that satisfy Theorem 7. To this end, we use SOS programming. SOS programming

allows us to search for polynomial Lyapunov functions using semidefinite program-

ming, whose associated problems can be solved in finite time.

Theorem 8 provides sufficient conditions for Zeno stability in cyclic hybrid
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systems. We now show that these conditions can be enforced using SOS.

Let H = (Q,E,D, F,G,R) be a hybrid system, and let {zq}q∈Q be a collection

of compact sets. Let {Wq}q∈Q be a collection of neighborhoods of {zq}q∈Q. Moreover,

suppose that each Wq is a semialgebraic set defined as

Wq := {x ∈ Rn : wqk(x) > 0, k = 1, 2, ..., Kqw}

where wqk ∈ R[x].

We define feasibility problem 1:

Feasibility Problem 1:

For hybrid system H = (Q,E,D, F,G,R), find

• aqk, cqk, iqk, ∈ Σx, for k = 1, 2, ..., Kqw and q ∈ Q;

• bqk, dqk, jqk ∈ Σx, for k = 1, 2, ..., Kq and q ∈ Q.

• me,l ∈ Σx for e ∈ E and l = 1, 2, ..., Nq

• Vq, me,0 ∈ R[x] for e ∈ E and q ∈ Q.

• Constants α, γ > 0, {rq}q∈Q ∈ (0, 1] such that rq < 1 for some q ∈ Q.
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such that

Vq − αxTx−
Kqw∑
k=1

aqkwqk −
Kq∑
k=1

bqkgqk ∈ Σx for all q ∈ Q (4.15)

Vq(zq) = 0 for all q ∈ Q (4.16)

−∇V T
q fq − γ −

Kqw∑
k=1

cqkwqk −
Kq∑
k=1

dqkgqk ∈ Σx for all q ∈ Q (4.17)

rqVq − Vq′(ϕe)−me,0he,0 −
Nq∑
l=1

me,lhe,l

−
Kqw∑
k=1

iqkwqk −
Kq∑
k=1

jqkgqk ∈ Σx for all e = (q, q′) ∈ E (4.18)

Theorem 8. Consider a hybrid system H = (Q,E,D, F,G,R) and let z = {zq}q∈Q

a compact set. If Feasibility Problem 1 has a solution, then z is Zeno stable.

Proof:

To prove the theorem we show that if Vq, q ∈ Q are elements of a solution of Feasibility

Problem 1, then for each q ∈ Q, the same Vq also satisfy (4.4)-(4.9) of Theorem 4.

That is, we show that if the Vq satisfy (4.15)-(4.18), then the same Vq also satisfies

(4.11)-(4.14).

First, we observe that (4.16) directly implies (4.12). Next, from (4.15), we know that

Vq(x) ≥
Kqw∑
k=1

aqk(x)wqk(x) +

Kq∑
k=1

bqk(x)gqk(x) + αxTx

Since aqk(x) and bqk(x) are SOS, and thus, always nonnegative, by the Positivstellen-

satz and the definitions ofWq andDq, we have that Vq(x) ≥ αxTx for all x ∈ Wq ⊂ Dq.

Thus, (4.15) implies (4.11) is satisfied. Similarly, from (4.17),

−∇V T
q (x)fq(x)− γ ≥

Kqw∑
k=1

cqk(x)wqk(x) +

Kq∑
k=1

dqk(x)gqk(x).
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Since cqk(x) and dqk(x) are always nonnegative, by the definition of Dq and Wq,

∇Vq(x)
Tfq(x) ≤ −γ for x ∈ {x ∈ Rn : gqk(x) ≥ 0, wqk(x) ≥ 0} = Dq ∩ Wq which

implies (4.13) is satisfied. Next, from (4.18) we have that for all e = (q, q′) ∈ Q,

rqVq(x)− Vq′(ϕe(x)) ≥ me,0(x)he,0(x) +

Nq∑
l=1

me,l(x)he,l(x)

+

Kq∑
k=1

iqk(x)wqk(x) +

Kq∑
k=1

jqk(x)gqk(x).

First note that he,0(x) = 0 and hence me,0(x)he,0(x) = 0 on Ge. Since me,l ∈ Σx, we

have me,l(x)he,l(x) ≥ 0 on Ge. Similarly jqk(x)gqk(x) ≥ 0 on Dq and iqk(x)wqk(x) ≥ 0

on Wq. It follows that rqVq(x) − Vq′(ϕe(x)) ≥ 0 when x ∈ Ge ∩ Wq ∩ Dq for all

e = (q, q′) ∈ E. Thus, we have shown that (4.18) implies (4.14).

Thus we conclude that the solution elements Vq of Feasibility Problem 1 satisfy the

conditions (4.11)-(4.14) of Theorem 4. Thus by Theorem 4 we conclude Zeno stability

of z. �

4.2.1 Numerical Examples.

The Bouncing Ball:

We first consider a very simple model of the bouncing ball:

Example 10.

A bouncing ball B is modeled by a tuple:

B = (Q,E,D, F,G,R)

where

• Q = {q0}

• E = {(q0, q0)}
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• D := {x ∈ R2 : x1 ≥ 0}

• F = {f}, where

ẋ = f(x) =

 x2

−g


• G := {x ∈ R2 : x1 = 0, x2 ≤ 0}

• R = ϕ(x) = [0,−cx2]
T . Here, c is a coefficient of restitution.

Results: The Zeno equilibrium is z = (0, 0)T . We consider stability on the unit ball
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Figure 4.1. Bouncing Ball with c = 0.9

Wq := {x ∈ Rn : x1 ≥ 0, 1− x2
1 − x2

2 < 0} for feasibility problem 1.

Using SOSTOOLS to implement the conditions given in Feasibility Problem 1, for

values of c ∈ [0, .999] we were able to find a 4th–order V (x) which verifies stability of

Zeno executions using SOS polynomial multipliers of second order.
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Water Tank Problem:

A classic example of a hybrid system exhibiting Zeno behavior is the dual

water tank, as described in [50]. The system consists of two water tanks sharing a

single supply pipe, which pumps water at the constant rate W . Moreover, each tank

leaks at a constant rate (v1 and v2). The supply pipe switches to tank i when the

water level falls below a prescribed level ri.

Example 11.

The two-tank system can be modeled by a hybrid system T, which is the

tuple

T = (Q,E,D, F,G,R)

where

• Q = q1, q2

• E = {(q1, q2), (q2, q1)}

• D = {Dq1 , Dq2} , where

Dq1 := {x ∈ R2 : x2 − r2 ≥ 0, x1 ≥ 0}

and

Dq2 := {x ∈ R2 : x1 − r1 ≥ 0, x2 ≥ 0}

• F = {f1, f2}, where

f1 =

 W − v1

−v2


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and

f2 =

 −v1

W − v2


• G = {Gq1q2 , Gq2q1}, where

Gq1q2 := {x ∈ R2 : r2 − x2 ≥ 0}

and

Gq2q1 := {x ∈ R2 : r1 − x1 ≥ 0}

• R = {Rq1q2 , Rq2q1}, where

Rq1q2 = Rq2q1 = x

Results:

The Zeno equilibrium is z = [r1, r2]
T . For solving Feasibility problem 1, we

again consider the unit ball in both domains.

Wq := {x ∈ R2 : ||x− z||2≤ 1}

We then obtain fourth order V1(x) and V2(x) by solving Feasibility Problem 1. Ex-

ploring values of the parameter space, we find our algorithm is able to prove stability

when v1 + v2 < W .
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System with nonlinear resets and vector field:

We now consider a more difficult model similar to that of the bouncing ball,

but with a nonlinear vector field and a nonlinear reset.

Example 12.

The nonlinear hybrid system can be represented by N, which is the tuple:

N = (Q,E,D, F,G,R)

where

• Q = {q0}

• E = {(q0, q0)}

• D := {x ∈ R2 : x1 ≥ 0}

• G := {x ∈ R2 : x1 = 0, x2 ≤ 0}

• F = {f}, where

ẋ = f(x) =

 x2

−g + c1x
2
2


• R = ϕ(x) = [0,−c2x2(1 − c3x

2
2)]

T . Here, c1, c2, and c3 are positive constants

satisfying ci < 1.

Results:

The Zeno equilibrium is z = (0, 0). We searched for a 4th-order V (x) and

multipliers that solves Feasibility Problem 1 using SOSTOOLS. While the range of

Zeno-stable parameters was complicated, we were able to show Zeno-stability on the

unit ball for a range of values.
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Figure 4.2. Nonlinear Hybrid System with c1 = 0.5, c2 = 0.8, c3 = 0.001

We fix each ci at certain values, and plot the other constants. In Figure 4.3, we set

c1 = 0.99, 0.50, and 0.001, and plot corresponding values of c1 and c2 such that N

was stable.

Figure 4.3. Values of c2 and c3 such that N for fixed c1

We note from Figure 4.3 that the range of values of c1 and c2 for which N is

stable does not depend on c1. In Figure 4.4, we set c2 to some constant values, and

plot values of c1 and c3 such that N is stable.

Last, in Figure 4.5, we set c3 equal to some constant values, and plot values

of c1 and c2 such that N is stable.
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Figure 4.4. Values of c1 and c3 for fixed c2

Figure 4.5. Values of c1 and c2 for fixed c3

4.3 Zeno Stability for Systems with Parametric Uncertainty

We now present a method to verify Zeno stability in cyclic hybrid systems

with time-invariant uncertainties in the guards, vector fields, and resets. We define

the vector of parametric uncertainties P to lie within a semialgebraic set

P := {p ∈ R : p̃k(p) ≥ 0, k = 1, 2, ..., K1}. (4.19)

We assume implicitly that all hybrid systems in this section satisfy Assumption 2,

given below.

Assumption 2

Let P be defined as in (4.19). Associated with every hybrid system is a set of poly-

nomials gqi(x, p), he,k(x, p) for q ∈ Q, e ∈ E, i = k = 1, · · · , Kq and k = 1, · · · , Nq for

some Kq, Nq > 0, and p ∈ P .



48

In this framework, the domains of the hybrid system H are defined as

Dq = {x ∈ Rn : gqk(x, p) ≥ 0, k = 1, 2, · · · , Kq} (4.20)

where gqk ∈ R[x, p], Kq ∈ N, and p ∈ P . The guard sets are defined as

Ge = {x ∈ Rn : he,0(x, p) = 0, he,k(x, p) ≥ 0, k = 1, 2, · · · , Nq} (4.21)

where each hek ∈ R[x, p], Nq ∈ N, and p ∈ P . Lastly, for each e = (q, q′) ∈ E, the

reset map ϕe is given by the vector-valued polynomial function

ϕe = [ϕe,1(x, p), · · · , ϕe,n(x, p)]
T (4.22)

where ϕe,j ∈ R[x, p] for j = 1, · · · , n, and p ∈ P .

Let H = (Q,E,D, F,G,R) be a hybrid system, and let {zq}q∈Q be a collection of

compact sets. Let {Wq}q∈Q be a collection of neighborhoods of {zq}q∈Q. We consider

Wq of the form

Wq := {x ∈ Rn : wqk(x) > 0, k = 1, 2, ..., Kq}

where each wqk(x) ∈ R[x].

Consider feasibility problem 2:

Feasibility Problem 2:

For hybrid system H = (Q,E,D, F,G,R), find

• aqk, cqk, iqk, ∈ Σx,p, for k = 1, 2, ..., Kqw and q ∈ Q;

• bqk, dqk, jqk ∈ Σx,p, for k = 1, 2, ..., Kq and q ∈ Q.

• ηqk, βqk, ζqk ∈ Σx,p, for k = 1, 2, ..., K1 and q ∈ Q.

• me,l ∈ Σx,p for e ∈ E and l = 1, 2, ..., Nq
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• Vq, me,0 ∈ R[x, p] for e ∈ E and q ∈ Q.

• Constants α, γ > 0, {rq}q∈Q ∈ (0, 1] such that rq < 1 for some q ∈ Q.

such that

Vq − αxTx−
Kqw∑
k=1

aqkwqk −
Kq∑
k=1

bqkgqk

−
K1∑

k1=1

ηqk1 p̃qk ∈ Σx,p for all q ∈ Q (4.23)

Vq(zq, p) = 0 for all q ∈ Q (4.24)

−∇V T
q fq − γ −

Kqw∑
k=1

cqkwqk −
Kq∑
k=1

dqkgqk

−
K1∑

k1=1

βqk1 p̃qk ∈ Σx,p for all q ∈ Q (4.25)

rqVq − Vq′(ϕe)−me,0he,0 −
Nq∑
l=1

me,lhe,l −
Kqw∑
k=1

iqkwqk

−
Kq∑
k=1

jqkgqk −
K1∑
k=1

ζqkp̃qk ∈ Σx,p for all e = (q, q′) ∈ E. (4.26)

Theorem 9. Consider a hybrid system H = (Q,E,D, F,G,R) and let z = {zq}q∈Q

be a compact set. If there is a solution to Feasibility Problem 2, then z is Zeno stable

for all p ∈ P .

Proof:

Suppose the problem is feasible. If p is in P , p̃k(p) ≥ 0. Thus, by similar logic to

that employed in the proof of Theorem 6, we can show that Vq satisfies Conditions

(4.11)-(4.14) for all p ∈ P . By Theorem 4, this implies that the Zeno equilibrium is

stable for all p ∈ P �
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4.3.1 Illustrative Example: Bouncing Ball with Uncertainy. We use a

variant of the bouncing ball model to illustrate computational analysis of robust

Zeno stability using SOS as described above. Here, the coefficient of restitution is a

time-invariant uncertain parameter.

Example 13.

A bouncing ball with parametric uncertainties in the reset map can be de-

scribed by Bp which is the tuple:

Bp = (Q,E,D, F,G,R)

where

• Q = {q0}, which provides the discrete state

• E = {(q0, q0)}, which is the single edge from q0 to itself

• D := {x ∈ R2 : x1 ≥ 0} provides the domain. Thus, gq0 = x1.

• G = {x ∈ R2 : x1 = 0, x2 ≤ 0} provides the guard. Thus, h(q0,q0),0 = x1, and

h(q0,q0),1 = −x2.

• R = ϕ(x) = [0,−px2]
T provides the reset map.

• F = f(x) provides a vector field mapping D to itself, and where

ẋ = f(x) =

 x2

−g


We would like to prove stability of the Zeno equilibrium for p ∈ (0, C) where C ∈ [0, 1).

We define P = {p ∈ R : p̃(p) := p(p − C) ≤ 0} to describe the set of possible values

of the uncertainty p.
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Results:

From previous analysis, we see that the system exhibits Zeno behavior when

C < 1. The Zeno equilibrium z is (0,0). Thus we search for a parameter-dependent

variables which establish this property. Specifically, we choose a maximum values of

C search for a 4th degree V (x) along with SOS and polynomial multipliers. As a

result, we were able to verify stability for C = 0.99, which agrees with the known

analytical result to a high degree of accuracy.
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CHAPTER 5

APPLICATIONS

In the previous chapter, we provided techniques to verify Zeno stability uti-

lizing sum-of-squares programming. Moreover, we demonstrated the use of those

techniques on simple examples of hybrid systems exhibiting Zeno stability. The true

test of the techniques presented in the previous chapter is verifying Zeno stability in

more complex systems. Often, Zeno behavior may occur in hybrid or variable struc-

ture systems with nonlinear vector fields and multiple domains. In this chapter, we

investigate Zeno stability in three such hybrid systems.

5.1 Zeno Behavior in systems with nonlinear vector fields

The most obvious application of the techniques discussed in the previous chap-

ter is Zeno behavior in hybrid systems with nonlinear vector fields. The utility of our

technique in this regard is fairly obvious - not only is it difficult to solve the asso-

ciated differential equations, it is difficult to ascertain whether or not executions of

the hybrid systems either undergo infinite transitions, or converge to an equilibrium

in finite time. Moreover, even with Lyapunov conditions to deductively prove Zeno

stability, finding Lyapunov functions for nonlinear systems can be extremely difficult.

We illustrate this usage with the example below:

Example 14.

Consider the hybrid system H = (Q,E,D, F,G,R), where

• Q = {q1, q2, q3}

• E = {(q1, q2), (q2, q3), (q3, q1)}
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• D := {D1, D2, D3} where

D1 = {x ∈ R2 : x1 > 0, x2 +
1

2
x1 ≥ 0}

D2 = {x ∈ R2 : x2 −
1

2
x1 ≥ 0, x2 +

1

2
x1 < 0}

D3 = {x ∈ R2 : x1 < 0, x2 +
1

2
x1 ≥ 0}

• G := {G12, G23, G31} where

G12 :=

{
x ∈ R2 : x2 ≤ 0,

1

2
x1 + x2 = 0

}
G23 :=

{
x ∈ R2 : x2 ≤ 0,

1

2
x1 − x2 = 0

}
G31 :=

{
x ∈ R2 : x2 > 0, x1 = 0

}
• F = {f1, f2, f3}, where

ẋ = f1(x) =

 x2

−5x2
1 − x2



ẋ = f2(x) =

 −x2
1 − 3

2x2
2 − 1

2
x2
1



ẋ = f3(x) =

 x2
2 + x2

−x1


• R = {ϕ12(x), ϕ23(x), ϕ31(x)} where each ϕij(x) = x.

We note that this hybrid system is cyclical, as the pair (Q,E) forms a directed cycle,

with vertices Q and edges E. Clearly, discrete transitions only occur between

Provided below is a phase plane plot:
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Figure 5.1. Hybrid System in Example 15. Dashed line indicates G12, dash-dotted
line indicates G23 and dotted line indicates G31

Results:

We wish to analyze Zeno stability for z1 = z2 = z3 = [0, 0]T . To solve Feasi-

bility Problem 1, we consider each

Wq := B2 ∩Dq

where B2 := {x ∈ R2 : |x|≤ 1}.

We then search for 3 degree 8 polynomials to solve Feasibility Problem 1. Since we

are able to solve Feasibility Problem 1 with such polynomials, we show via Theorem 8

that x = [0, 0]T is Zeno stable for H.

5.2 Sliding Modes and Filippov Solutions

Often, Zeno behavior can occur in systems utilizing variable structure con-

trollers. It is well known that chattering arises in systems with sliding mode controllers

[51]. In sliding mode control, a variable structure controller is used to stabilize the
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system, which is accomplished by forcing the system trajectories to “slide” along a

predetermined manifold. This in turn is accomplished by choosing a controller which

forces the vector field toward the sliding surface, which, under ideal conditions, causes

that manifold to become invariant. For a more thorough treatment of the subject

matter, refer to [46] or [51]. The occurrence of infinite transitions in discrete time

also occurs with other variable structure controllers, such as the bang-bang optimal

controllers studied by Fuller in [52].

Zeno behavior is often difficult to verify in systems with variable structure controllers,

especially since many of the closed loop vector fields are nonlinear, and cannot be

solved easily. Thus, our method can be utilized to demonstrate Zeno stability in

variable structure control systems. In this section, we present an example of a sys-

tem with a variable structure controller which exhibits Zeno behavior, and use the

proposed technique to demonstrate Zeno stability.

Example 15.

In this example, we consider the utilization of a variable structure controller

for the plant

ẋ =

 x2

x2
1 + x2

2 + u(x, t)


With 0 input, the system is unstable. We wish system trajectories to converge to the

equilibrium (0, 0) along the line s(x) = x1 + x2 = 0. Correspondingly, the controller

u(x, t) should be given by u(x, t) = |u(x, t)|sign(s(x)) = u0(x, t)sign(s(x)). In this

case, we can choose u0(x, t) = 2(x2
1 + x2

2). We can then construct the hybrid system

described below. We consider the hybrid system H = (Q,E,D, F,G,R) where
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• Q = {q1, q2}

• E = {(q1, q2), (q2, q1)

• D = {D1, D2} where

D1 := {x ∈ R2 : x1 + x2 ≥ 0}

D2 := {x ∈ R2 : x1 + x2 ≤ 0}

• F = {f1, f2} where

f1 =

 x2

3(x2
2 + x2

1)



f2 =

 x2

−(x2
2 + x2

1)


• G = {Gq1q2 , Gq2q1 where

Gq1q2 = Gq2q1 := {x ∈ R2 : x1 + x2 = 0}

• R = {ϕ12(x), ϕ21(x)} where each ϕij(x) = x.

A simulation of the closed loop system is shown below in Figure 5.2:

Results:

We wish to analyze the Zeno stability of z = {z1, z2} is z1 = z2 = (0, 0). It is

clear that this hybrid system is cyclic, as the pair (Q,E) forms a directed graph. For

our analysis, we analyze Zeno stability in the set W = W1∪W2 := {x ∈ R2 : |x|< 1}.

We are able to find degree 8 V1(x) and V2(x) to solve feasibility problem 1, which in

turn demonstrates Zeno stability of z.
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Figure 5.2. Closed loop system of Example 16. The dashed line indicates s(x).

5.3 Uncertain Switching

There are often instances when perfect measurements and information regard-

ing a system may not be available. For continuous time dynamical systems, this is

usually due to incomplete information in the vector field. However, for hybrid sys-

tems, incomplete information on the state may translate into incomplete information

regarding the transition rules. Here, we provide an example where exact information

regarding the switching rule may be absent.

Note that all hybrid systems discussed in this section satisfy Assumption 2 of Chapter

4.

Example 16.

Consider the hybrid system H = (Q,E,D, F,G,R) with uncertain parameter
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p ∈ (c1, c2) where

• Q = {q1, q2}

• E = {(q1, q2), (q2, q1)

• D = {D1, D2} where

D1 := {x ∈ R2 : x1 + x2 ≥ 0, p ∗ x1 − x2 ≥ 0}

D2 := {x ∈ R2 : −p ∗ x1 + x2 ≥ 0} ∪ {x ∈ R2 : p ∗ x1 − x2 ≥ 0,−x1 − x2 ≥ 0}

• F = {f1, f2} where

f1 =

 −0.1

2



f2 =

 −x2 − x3
1

x1


• G = {Gq1q2 , Gq2q1 where

Gq1q2 = x2− p ∗ x1 = 0

Gq2q1 := {x ∈ R2 : x1 + x2 = 0}

• R = {ϕ12(x), ϕ21(x)} where each ϕij(x) = x.

In this example, the uncertain parameter affects the switching rule. Provided

below are simulations with 3 different fixed values of p. First, we consider the case

when p = 1, in figure 5.3:

We note that the origin is Zeno stable. Furthermore, if we consider figure 5.4,

we see that even if we increase p (thereby increasing the slope of G21), we notice that

the system remains Zeno stable.
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Figure 5.3. Trajectories of Hybrid System in Example 17 with p=1. Dotted line
indicates G12 and dash-dotted line indicates G21
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Figure 5.4. Trajectories of Hybrid System in Example 17 with p=4. Dotted line
indicates G12 and dash-dotted line indicates G21

However, when we reduce the value of p, we notice that the system exhibits

different asymptotic behavior. First, it is evident that if p ≤ −0.1, the system will

no longer be Zeno stable. Indeed, in that circumstance, the system would not display

any form of stable behavior. This is because the trajectories in D1 would never reach

the guard set (since the direction of the vector field would be parallel to the guard

set). But even if p ∈ (−0.1, 1), we notice that the system asymptotically converges

to limit cycles, as seen in figure 5.5:

Results:
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Figure 5.5. Trajectories of Hybrid System in Example 17 with p=0.4. Dotted line
indicates G12 and dash-dotted line indicates G21

For our computational analysis, we first divide D2 into D21 and D22. We then search

for a common Lyapunov function for both domains. The set of uncertain parameters

is given by the inequality P := {p ∈ R : p− C > 0}, where C is determined a priori.

We use W = W1 ∪ W2 = {x ∈ R2 : x2
1 + x2

2 < 5}. We then search for Lyapunov

functions of varying degrees for different values of C. We note that as we increase

the degree of V1 and V2, we obtain a tighter bound. These results are given below in

table 5.1:

Table 5.1. Bound on C obtained for different degrees of feasible V1, V2.

Degree of V1, V2 Bound on C

8 2.11

10 1.87

12 1.73

We were unable to find a feasible V1 and V2 of degree less than 8. Unfortu-

nately, we were unable to search for polynomials of degree greater than 12 owing to

computational limitations.
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CHAPTER 6

CONCLUSIONS

In this thesis, we considered Zeno behavior, a phenomenon unique to hybrid

systems. Zeno behavior is the phenomenon of infinite transitions between discrete

modes occurring in finite time. This behavior is undesirable, and is most often caused

by abstractions in modeling. Zeno behavior may result in simulation failures, since

finite time is required to simulate each transition. Moreover, if a hybrid system ex-

hibiting Zeno behavior is physically implemented, it can cause equipment failure (as

is the case with the related chattering phenomenon).

Determining whether a hybrid system exhibits Zeno behavior is difficult. The

principal characteristic of Zeno behavior is that infinite discrete transitions occur in

finite time. While it is simple to show that infinite transitions occur in finite time for

simple hybrid systems, such as the bouncing ball, by solving the associated differential

equations, this is not possible for more complicated systems. To remedy this, Zeno

behavior was framed as a form of asymptotic stability, aptly named Zeno stability.

Accordingly, Lyapunov based techniques were developed to prove Zeno stability for

hybrid systems.

The goal of our research was to answer the question, “how can we use com-

putational techniques to determine whether a hybrid system is Zeno stable?” The

technique we used was to construct Lyapunov functions using sum-of-squares opti-

mization. To accomplish this, we chose to model the invariant domains and guard sets

of hybrid systems using semialgebraic sets, and chose hybrid systems with polynomial

vector fields and reset maps. We then used Stengle’s positivstellensatz to construct

constraints for our sum-of-squares program. We also developed a technique to verify

Zeno stability for systems with time-invariant parametric uncertainties. We modeled
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the set of uncertain parameters as a semialgebraic set, which allowed us to use the pos-

itivstellensatz to construct a sum-of-squares program for the uncertain hybrid system.

We then applied our technique to various hybrid systems. We first demon-

strated the use of our technique on hybrid systems that were known to be Zeno, such

as the bouncing ball and the two-tank system. We then used our technique to verify

Zeno stability to more complex systems, such as a nonlinear hybrid system and a sys-

tem with a sliding mode controller. Lastly, we also used our technique for verifying

robust Zeno stability to determine the range of parametric values for which a hybrid

system with an uncertain guard set was Zeno stable.

There are numerous avenues for future work. Hybrid systems are used ex-

tensively in robotics; in fact, Zeno behavior was observed in models of knee joints

bipedal robots. Our technique could be used to analyze Zeno stability in such sys-

tems, even in the presence of uncertain parameters. Moreover, given the growing

prevalence of hybrid systems in modeling of complex systems, determining whether

models exhibit Zeno stability will become a necessity.
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