Thesis Defense Analysis of Zeno Stability in Hybrid Dynamical Systems using Sum-of-Squares Programming

Chaitanya Murti¹

¹Department of Electrical and Computer Engineering Illinois Institute of Technology

November 23, 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Introduction

Hybrid Systems

Zeno Behavior

Computational Methods to verify Zeno Stability

Applications

Conclusions

(ロ)、

Introduction

- Hybrid Systems are systems that exhibit different dynamics in different regions of the state space, with a logical rule governing transitions between dynamics.
- The hybrid system framework is used to model a variety of natural and man-made systems such as systems with embedded microprocessors, electrical circuits with switching, air traffic control, the bouncing ball.
- Hybrid systems also exhibit unique phenomeona, such as Zeno behavior.
- Zeno behavior is the phenomenon of infinite transitions occurring in finite time.
 - Similar to chattering.
 - Causes simulations to fail.
 - Arises in models of a number of system: robotic joints, communication networks, optimal control, or even simple systems (the bouncing ball)
- Our goal: To develop computational methods to analyze this behavior.

A Motivating Example: Modeling a Bouncing Ball

Model must contain the following information:

- Dynamics of the ball
- Domain of the dynamics
- Location of collisions
- Effect of collision on dynamics

A Solution: hybrid systems

Figure: A bouncing basketball (courtesy of Wikipedia)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Hybrid Systems

Definition 1: Hybrid System

A hybrid system **H** is modeled by the tuple

 $\mathbf{H} = (Q, E, D, F, G, R)$

where

- ▶ Q is the collection of discrete states.
- ► $E \subset Q \times Q$ provides the set of transitions between discrete states. For each e = (q, q'), we say q = s(e) and q' = t(e).
- $D := \{D_Q\}_{q \in Q}$ is the collection of domains
- ▶ $F := \{f_q\}_{q \in Q}$ is the collection of vector fields, where for each $q \in Q$, $f_q : D_q \to \mathbb{R}^n$
- ▶ $G := \{G_e\}_{e \in E}$ is the collection of guard sets
- ▶ $R := \{\phi_e\}_{e \in E}$ is the collection of Reset Maps where for each $e \in E$, $\phi_e : G_e \to D_{t(e)}$.

Modeling a Bouncing Ball with a Hybrid System

We model the bouncing ball with the tuple

$$\mathbf{B} = (Q, E, D, F, G, R)$$

where

> Q = {q₀}
> E = {(q₀, q₀)}
> D := {x ∈ ℝ² : x₁ ≥ 0}
> F := {f}, where
f =
$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -g \end{pmatrix}$$

> G := {G_(q₀,q₀)} where G_(q₀,q₀) := {x ∈ ℝ² : x₁ = 0, x₂ < 0}

 $R = \phi(x) = [0, -cx_2]^T$. Here, *c* is a coefficient of restitution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An Important Assumption

Assumption 1

• Each $D_q \in D$ will be of the form

$$D_q := \{x \in \mathbb{R}^n : g_{qk}(x) \ge 0, q \in Q, k = 1, ..., K_q\}$$

where each g_{qk} is a polynomial, and K_q is some positive integer. • Each $G_e \in G$ will be of the form

$$G_e = \{x \in \mathbb{R}^n : h_{e0}(x) = 0, h_{ek}(x) \ge 0, e \in E, k = 1, 2, ..., N_q\}$$

where each h_{e0} , h_{ek} are polynomials, and K_e is some positive integer. • Each $\phi_e \in R : \mathbb{R}^n \to \mathbb{R}^n$ is of the form

$$\phi_e = [\phi_{e1}, ..., \phi_{en}]^T$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where each ϕ_{ei} is a polynomial.

Hybrid System Execution

Definition 2: Hybrid System Execution

The tuple

$$\chi = (I, T, p, C)$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

where

• $I \subseteq \mathbb{N}$ is the index set

•
$$T = \{T_i\}_{i \in I}$$
 where $T_i = (t_{i-1}, t_i)$

- $p: I \rightarrow C$ describes the evolution of the elements of Q
- $C = \{c_i(t)\}_{i \in I}$ provides a set of continuous functions

is an execution of a hybrid system H = (Q, E, D, F, G, R) if

•
$$\dot{c}_i(t) = f_{\rho(i)}(c_i(t)); \quad t \in T_i$$

$$\triangleright c_i(t) \in D_{p(i)}, \forall t \in T_i$$

•
$$c_i(t_{i+1}) \in G_{p(i),p(i+1)}$$
 for all $T_i \in T$.

Zeno Equilibria and Executions

Definition 3: Zeno Execution

An execution χ of a hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$ is said to be Zeno if

► $I \equiv \mathbb{N}$

$$\blacktriangleright \sum_{i=1}^{\infty} t_i - t_{i-1} < \infty$$

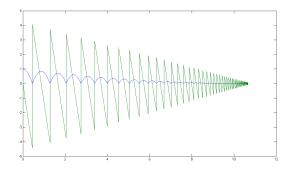


Figure: Zeno behavior in a bouncing ball

Zeno Stability

Definition 4: Zeno Equilibria

A Zeno equilibrium of a hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$ is a set $z = \{z_q\}_{q \in Q}$ satisfying

- $f_q(z_q) \neq 0$
- ▶ For each edge e = (q, q'), $z_q \in G_e$.
- ▶ Similarly, for each edge e = (q, q'), $R_e(z_q) = z_{q'}$

Definition 5: Zeno Stability

Let $\mathbf{H} = (Q, E, D, F, G, R)$ be a hybrid system. The set z is Zeno stable if, for each $q \in Q$, there exist neighborhoods Z_q , where $z_q \in Z_q$, such that for any initial condition $x_0 \in \bigcup_{q \in Q} Z_q$, the execution $\chi = (I, T, p, C)$, with $c_o(t_0) = x_0$ is Zeno, and converges to z.

 We can consider Zeno stability to be a form of finite-time asymptotic stability.

Cyclic Hybrid Systems

Definition 6: Cyclic Hybrid Systems

A hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$ is cyclic if the pair $\Gamma = (Q, E)$ describes a directed cycle, where Q represents the vertices, and E represents the edges.

ション ふゆ く 山 マ チャット しょうくしゃ

Remark

If a hybrid system contains a Zeno equilibrium, then the graph representing the hybrid system must contain a cycle.

Necessary and Sufficient Conditions for Zeno Stability Theorem 1 (Lamperski and Ames)

 $V_q(z_q)$

 $B_a(x)$

 $\nabla B_q^T(x) f_q(x)$ $V_{q'}(R_{(q,q')}(x))$

 $B_q(R_{(q',q)}(x))$

Consider a hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$, with an isolated Zeno equilibrium $\{z_q\}_{q \in Q}$. Let $\{W_q\}_{q \in Q}$ be a collection of open neighborhoods of $\{z_q\}_{q \in Q}$. Suppose there exist continuously differentiable functions $V_q : \mathbb{R}^n \to \mathbb{R}$ and $B_q : \mathbb{R}^n \to \mathbb{R}$, and non-negative constants $\{r_q\}_{q \in Q}$, γ_a , and γ_b , where $r_q \in [0, 1]$, and $r_q < 1$ for some q and such that

$$V_q(x)$$
 > 0 for all $x \in W_q \setminus z_q, q \in Q$ (1)

$$=0, \quad \text{for all } q \in Q \tag{2}$$

$$abla V_q^T(x) f_q(x) \leq 0 \quad \text{for all } x \in W_q, \ q \in Q$$
(3)

$$\geq 0$$
 for all $x \in W_q, q \in Q$ (4)

$$<0 \quad \text{for all } x \in W_q, \ q \in Q \tag{5}$$

$$\leq r_q V_q(x),$$
 (6)

for all
$$e = (q,q') \in E$$
 and $x \in G_e \cap W_q$

$$\leq \gamma_b \left(V_q(R_{(q,q')}(x)) \right)^{\gamma_a} \tag{7}$$

for all $e = (q,q') \in E$ and $x \in G_e \cap W_q$.

A Simplification of Theorem 1

We can simplify Theorem 1 as follows:

Theorem 2:

Let $\mathbf{H} = (Q, E, D, F, G, R)$ be a cyclic hybrid system with Zeno equilibrium $z = \{z_q\}_{q \in Q}$. Let $\{W_q \subset D_q\}_{q \in Q}$, be a collection of neighborhoods of the $\{z_q\}_{q \in Q}$. Suppose that there exist continuously differentiable functions $V_q : W_q \to \mathbb{R}$, and positive constants $\{r_q\}_{q \in Q}$ and γ , where $r_q \in (0,1]$, and $r_q < 1$ for some q and such that

$$V_q(x)$$
 > 0 for all $x \in W_q \setminus z_q, q \in Q$ (8)

$$=0, \quad \text{for all } q \in Q \tag{9}$$

ション ふゆ く 山 マ チャット しょうくしゃ

$$\leq -\gamma$$
 for all $x \in W_q, q \in Q$ (10)

$$r_q V_q(x) \ge V_{q'}(\phi_e(x)) \tag{11}$$

for all
$$e = (q, q') \in E$$
 and $x \in G_e \cap W_q$.

then z is Zeno stable.

 $V_a(z_a)$

 $\nabla V_a^T(x) f_q(x)$

Advantages of Method

- Theorems 1 and 2 provide necessary and sufficient conditions for Zeno stability.
- They allow for the verification of Zeno stability even for systems where calculating total time of executions analytically is difficult.
- Theorem 1 has also been used to develop Lyapunov conditions for the existence of Zeno executions in Lagrangian Hybrid systems.
- More importantly, each V_q can be constructed algorithmically. Here, we use Sum-of-Squares programming.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

• We construct our SOS conditions using the Positivstellensatz.

Sum of Squares Polynomials

A polynomial p is said to be Sum of Squares if it can be expressed as

$$p = \sum_{i} f_i^2$$

where each $f_i \in \mathbf{R}[x]$. The set of all SOS polynomials is denoted by Σ_x .

Theorem 3

Consider a polynomial p of degree 2d. Then, the following two statements are equivalent:

- p is SOS.
- There exists a positive semidefinite matrix Q and a vector Z of all monomials of degree upto d such that

$$p = Z^T Q Z$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

Use of Sum-of-Squares polynomials

- Verifying polynomial nonnegtivity cannot be accomplished in polynomial time.
- However, verifying whether a polynomial is SOS has been shown to be decidable in polynomial time.
- ► We use SOSTOOLS to solve such problems.

A simple example

Consider $p(x) = x^2 + 2x + 1 = (x + 1)^2$: If we choose $Z = [1, x]^T$, we search for a 2 × 2 matrix Q. We can then find

$$Q = \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right)$$

ション ふゆ く 山 マ チャット しょうくしゃ

Verifying Zeno Stability with Sum of Squares Programming

• We apply the Positivstellensatz to Theorem 2:

Let $\mathbf{H} = (Q, E, D, F, G, R)$ be a hybrid system with a Zeno equilibrium $\{z_q\}_{q \in Q}$. Let $\{W_q\}_{q \in Q}$ be a collection of neighborhoods of $\{z_q\}_{q \in Q}$. Moreover, suppose that each W_q is a semialgebraic set defined as

$$W_q := \{x \in \mathbb{R}^n : w_{qk}(x) > 0, k = 1, 2, ..., K_{qw}\}$$

where $w_{qk} \in \mathbf{R}[x]$.

Feasibility Problem 1

For hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$, find

- ► a_{qk} , c_{qk} , i_{qk} , $\in \Sigma_{x}$, for $k = 1, 2, ..., K_{qw}$ and $q \in Q$;
- ► b_{qk} , d_{qk} , $j_{qk} \in \Sigma_x$, for $k = 1, 2, ..., K_q$ and $q \in Q$.
- $m_{e,l} \in \Sigma_x$ for $e \in E$ and $l = 1, 2, ..., N_q$
- V_q , $m_{e,0} \in \mathbf{R}[x]$ for $e \in E$ and $q \in Q$.
- ▶ Constants $\alpha, \gamma > 0$, $\{r_q\}_{q \in Q} \in (0, 1]$ such that $r_q < 1$ for some $q \in Q$.

(日) (伊) (日) (日) (日) (0) (0)

such that (continued on next slide)

Feasibility Problem 1 (continued)

$$V_q - \alpha x^T x - \sum_{k=1}^{K_{qw}} a_{qk} w_{qk} - \sum_{k=1}^{K_q} b_{qk} g_{qk} \in \Sigma_x \quad \text{for all } q \in Q$$
(12)

$$V_q(z_q) = 0$$
 for all $q \in Q$ (13)

$$-\nabla V_{q}^{T}f_{q}-\gamma-\sum_{k=1}^{K_{qw}}c_{qk}w_{qk}-\sum_{k=1}^{K_{q}}d_{qk}g_{qk}\in\Sigma_{x} \quad \text{for all } q\in Q \quad (14)$$

$$r_q V_q - V_{q'}(\phi_e) - m_{e,0} h_{e,0} - \sum_{l=1}^{N_q} m_{e,l} h_{e,l}$$

$$-\sum_{k=1}^{K_{qw}} i_{qk} w_{qk} - \sum_{k=1}^{K_q} j_{qk} g_{qk} \in \Sigma_x \quad \text{for all } e = (q, q') \in E \qquad (15)$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

A Theorem for Verifying Zeno Stability

Using the notation defined previously, and Feasibility Problem 1, we state the main theorem:

Theorem 4 Let $z = \{z_q\}_{q \in Q}$ be an isolated Zeno equilibrium of a hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$. If Feasibility Problem 1 has a solution, then z is Zeno stable.

ション ふゆ アメリア メリア しょうくの

Nonlinear Numerical Example (1)

Nonlinear Bouncing Ball

The nonlinear bouncing ball hybrid system can be represented by the tuple:

$$H = (Q, E, D, F, G, R)$$

where

• $Q = \{q_0\}$ • $E = \{(q_0, q_0)\}$ • $D := \{x \in \mathbb{R}^2 : x_1 \ge 0\}$ • $G := \{x \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0\}$ • $F = \{f\}$, where

$$\dot{x} = f(x) = \left(\begin{array}{c} x_2 \\ -g + c_1 x_2^2 \end{array} \right)$$

► $R = \phi(x) = [0, -c_2x_2(1 - c_3x_2^2)]^T$. Here, c_1 , c_2 , and c_3 are positive constants satisfying $c_i < 1$.

ション ふゆ アメリア メリア しょうくの

Numerical Example (2)

Simulation Results

- The Zeno equilibrium is $z = (0, 0)^T$.
- ► We choose

 $\mathcal{W}_q := \{x \in \mathbb{R}^n : x_1 \geq 0, 1-x_1^2-x_2^2 > 0\}$ for Feasibility Problem 1

- ▶ We search for a 4-th order V(x) that solves Feasibility Problem 1. We were unable to obtain an explicit range of values of c_1 , c_2 , and c_3 such that **N** was stable.
- ▶ We fix each c_i at certain values, and plot values of the other constants such that **N** was Zeno stable (next slide).

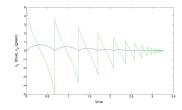


Figure: Execution of nonlinear hybrid system

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Numerical Example (3)

Simulation Results: Plots of stable values of c_1 , c_2 , and c_3

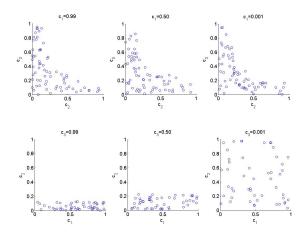


Figure: Stable values of c_1 and c_2 with c_3 fixed

Zeno Stability for Systems with Uncertainty

- We now present a method to verify Zeno stability in systems with time-invariant parametric uncertainty.
- Treat the set of uncertain parameters as a semialgebraic set.
- > Apply the positivstellensatz to Theorem 2 and the uncertain set.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Another Important Assumption

Define the vector of uncertain parameters to lie in the semialgebraic set

$$P := \{ p \in \mathbb{R} : \tilde{p}_k(p) \ge 0, k = 1, 2, ..., K_1 \}$$

where $\tilde{p}_k(p)$ are polynomials.

Assumption 2

• Each $D_q \in D$ will be of the form

$$D_q := \{x \in \mathbb{R}^n : g_{qk}(x,p) \ge 0, q \in Q, k = 1, ..., K_q\}$$

where each $g_{qk} \in \mathbf{R}[x, p]$, $K_q \in \mathbb{N}$.

• Each $G_e \in G$ will be of the form

$$G_e = \{x \in \mathbb{R}^n : h_{e0}(x,p) = 0, h_{ek}(x,p) \ge 0, e \in E, k = 1, 2, ..., N_q\}$$

where each $h_{e0}, h_{ek} \in \mathbf{R}[x, p]$, and $K_e \in \mathbb{N}$. • Each $\phi_e \in R : \mathbb{R}^n \to \mathbb{R}^n$ is of the form

$$\phi_e = [\phi_{e1}, ..., \phi_{en}]^T$$

where each $\phi_{ei} \in \mathbf{R}[x, p]$.

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 → のへで

Feasibility Problem 2

For hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$, find

►
$$a_{qk}$$
, c_{qk} , i_{qk} , $\in \Sigma_{x,p}$, for $k = 1, 2, ..., K_{qw}$ and $q \in Q$;

►
$$b_{qk}$$
, d_{qk} , $j_{qk} \in \Sigma_{x,p}$, for $k = 1, 2, ..., K_q$ and $q \in Q$.

►
$$\eta_{qk}$$
, β_{qk} , $\zeta_{qk} \in \Sigma_{x,p}$, for $k = 1, 2, ..., K_1$ and $q \in Q$.

•
$$m_{e,l} \in \Sigma_{x,p}$$
 for $e \in E$ and $l = 1, 2, ..., N_q$

▶
$$V_q$$
, $m_{e,0} \in \mathbf{R}[x,p]$ for $e \in E$ and $q \in Q$.

▶ Constants $\alpha, \gamma > 0$, $\{r_q\}_{q \in Q} \in (0, 1]$ such that $r_q < 1$ for some $q \in Q$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

such that (continued on next slide)

Feasibility Problem 2 (continued)

$$V_{q} - \alpha x^{T} x - \sum_{k=1}^{K_{qw}} a_{qk} w_{qk} - \sum_{k=1}^{K_{q}} b_{qk} g_{qk}$$
$$- \sum_{k_{1}=1}^{K_{1}} \eta_{qk_{1}} \tilde{p}_{qk} \in \Sigma_{x,p} \quad \text{for all } q \in Q$$
(16)

 $V_q(z_q,p) = 0$ for all $q \in Q$ (17)

$$-\nabla V_{q}^{T} f_{q} - \gamma - \sum_{k=1}^{K_{qw}} c_{qk} w_{qk} - \sum_{k=1}^{K_{q}} d_{qk} g_{qk}$$
$$- \sum_{k_{1}=1}^{K_{1}} \beta_{qk_{1}} \tilde{p}_{qk} \in \Sigma_{x,p} \quad \text{for all } q \in Q$$
(18)

$$r_{q}V_{q} - V_{q'}(\phi_{e}) - m_{e,0}h_{e,0} - \sum_{l=1}^{N_{q}} m_{e,l}h_{e,l} - \sum_{k=1}^{K_{qw}} i_{qk}w_{qk}$$

$$-\sum_{k=1}^{K_q} j_{qk}g_{qk} - \sum_{k=1}^{K_1} \zeta_{qk}\tilde{p}_{qk} \in \Sigma_{x,p} \quad \text{for all } e = (q,q') \in E.$$
(19)

A Theorem for Zeno Stability in Systems with Uncertainties

Theorem 5 Let $z = \{z_q\}_{q \in Q}$ be a Zeno equilibrium of a hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$. If there is a solution to Feasibility Problem 2, then z is Zeno stable for all $p \in P$.

ション ふゆ アメリア メリア しょうくの

Numerical Example for uncertain hybrid systems Bouncing ball with uncertain coefficient of restitution We now consider a bouncing ball with an uncertain coefficient of restitution: A bouncing ball with parametric uncertainties in the reset map can be described by \mathbf{B}_p which is the tuple:

$$\mathbf{B}_p = (Q, E, D, F, G, R)$$

where

- Q = {q₀}, which provides the discrete state
 E = {(q₀, q₀)}, which is the single edge from q₀ to itself
 D := {x ∈ ℝ² : x₁ ≥ 0} provides the domain. Thus, g_{q0} = x₁.
 G = {x ∈ ℝ² : x₁ = 0, x₂ ≤ 0} provides the guard. Thus, h_{(q0,q0),0} = x₁, and h_{(q0,q0),1} = -x₂.
 R = φ(x) = [0, -px₂]^T provides the reset map.
- F = f(x) provides a vector field mapping D to itself, and where

$$\dot{x} = f(x) = \begin{pmatrix} x_2 \\ -g \end{pmatrix}$$

Numerical Example: Bouncing Ball with uncertainty (2)

Simulation Results

- We consider $p \in (0, C)$.
- Construct semialgebraic set:

$$\mathcal{P} := \{ p \in \mathbb{R} : p(C - p) \leq 0 \}$$

- Analytically, we know that for Zeno stability, the largest C that allows for Zeno stability is 1.
- ► We search for a 4-th order V(x) and sos multipliers that solves Feasibility Problem 2.
- 4th order V(x) allows us verify Zeno stability for uncertain parameters on the set (0.001, 0.999).

Hybrid System with Multiple Modes and Nonlinear Vector Fields (1)

- Often, we need to analyze Zeno stability of hybrid systems with multiple modes and nonlinear vector fields.
- Very difficult to accomplish this analytically.

We considered a nonliear hybrid system with 3 discrete modes:

Nonlinear Hybrid Systems with 3 discrete modes Consider the hybrid system $\mathbf{H} = (Q, E, D, F, G, R)$, where

•
$$Q = \{q_1, q_2, q_3\}$$

• $E = \{(q_1, q_2), (q_2, q_3), (q_3, q_1)\}$
• $D := \{D_1, D_2, D_3\}$ where
 $D = \{x \in \mathbb{P}^2 : x \ge 0, x + \frac{1}{2}x \ge 0\}$

$$D_1 = \{ x \in \mathbb{R}^2 : x_1 > 0, x_2 + \frac{1}{2}x_1 \ge 0 \}$$
(20)

$$D_2 = \{ x \in \mathbb{R}^2 : x_2 - \frac{1}{2} x_1 \ge 0, x_2 + \frac{1}{2} x_1 < 0 \}$$
(21)

$$D_3 = \{ x \in \mathbb{R}^2 : x_1 < 0, x_2 + \frac{1}{2} x_1 \ge 0 \}$$
 (22)

Hybrid System with Multiple Modes and Nonlinear Vector Fields (2)

Nonlinear hybrid system with 3 discrete modes

• $G := \{G_{12}, G_{23}, G_{31}\}$ where

$$G_{12} := \left\{ x \in \mathbb{R}^2 : x_2 \le 0, \frac{1}{2}x_1 + x_2 = 0 \right\}$$
(23)

$$G_{23} := \left\{ x \in \mathbb{R}^2 : x_2 \le 0, \frac{1}{2}x_1 - x_2 = 0 \right\}$$
(24)

$$G_{31} := \left\{ x \in \mathbb{R}^2 : x_2 > 0, x_1 = 0 \right\}$$
(25)

▶ $F = \{f_1, f_2, f_3\}$, where

$$\dot{x} = f_1(x) = (x_2, -5x_1^2 - x_2)^T$$
 (26)

$$\dot{x} = f_2(x) = (-x_1^2 - 3, 2x_2^2 - \frac{1}{2}x_1^2)^T$$
 (27)

$$\dot{x} = f_3(x) = (x_2^2 + x_2, -x_1)^T$$
 (28)

• $R = \{\phi_{12}(x), \phi_{23}(x), \phi_{31}(x)\}$ where each $\phi_{ij}(x) = x$.

Hybrid System with Multiple Modes and Nonlinear Vector Fields (3)

Simulation Results

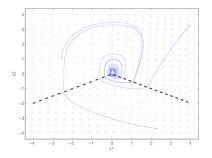


Figure: Phase Portrait of a hybrid system with 3 modes and nonlinear vector fields

- We analyzed Zeno stability of $z = \{z_1, z_2, z_3\}, z_1 = z_2 = z_3 = 0$.
- Analyzed Zeno stability of z in the unit ball
- ▶ Found degree 8 V₁, V₂, and V₃ to solve feasibility problem 2.

Systems with Variable Structure Controllers (1)

- Often, variable structure controllers (such as sliding mode, bang-bang, and gain scheduling controllers) are required for stabilization.
- However, chattering and Zeno behavior can occur in the closed loop systems.
- This can be difficult to verify analytically.

A system with a variable structure controller

We consider the plant

$$\dot{x} = (x_2, x_1^2 + x_2^2 + u(x, t))^T.$$

Suppose the chosen controller is

$$u(x,t) = -2(x_1^2 + x_2^2) \operatorname{sgn}(s(x))$$

where $s(x) = x_1 + x_2$.

Systems with Variable Structure Controllers (2)

A system with a variable structure controller We can model the closed loop system with a hybrid system H = (Q, E, D, F, G, R), where

►
$$F = \{f_1, f_2\}$$
 where
 $f_1 = (x_2, -(x_2^2 + x_1^2))^T, f_2 = (x_2, 3(x_2^2 + x_1^2))^T$ (30)
► $G = \{G_{12}, G_{21}\}$ where
 $G_{12} = G_{21} := \{x \in \mathbb{R}^2 : x_1 + x_2 = 0\}$ (31)

• $R = \{\phi_{12}(x), \phi_{21}(x)\}$ where each $\phi_{ij}(x) = x$.

Systems with Variable Structure Controllers (3)

Simulation Results

A phase portrait of the closed loop vector field is shown below:

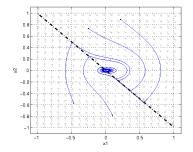


Figure: Phase Portrait of a system with a variable structure controller exhibiting Zeno behavior.

- We analyzed Zeno stability of $z = \{z_1, z_2\} = (0, 0)$.
- We studied Zeno stability in the unit ball around z.
- ► We were able to find degree 8 V₁ and V₂ to solve feasibility problem 2.

Hybrid System with Uncertain Switching (1)

- Complete information regarding system parameters may be unavailable to us - this is parametric uncertainty.
- In the case of hybrid systems, this results in uncertainty in the vector fields, as well as the transition rules: uncertainties may also be present in the guard set and the reset map.
- ▶ We now consider a system with an uncertain guard set.

A hybrid system with an uncertain guard set

Let the uncertain parameters be defined by

$$P:=\{p\in\mathbb{R}:p-C>0\}.$$

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

We then consider the hybrid system H = (Q, E, D, F, G, R) which satisfies assumption 2, where

- $Q = \{q_1, q_2\}$
- $E = \{(q_1, q_2), (q_2, q_1)\}$

Hybrid System with Uncertain Switching (2)

A hybrid system with an uncertain guard set

▶
$$D = \{D_1, D_2\}$$
 where

$$D_{1} := \{x \in \mathbb{R}^{2} : x_{1} + x_{2} \ge 0, px_{1} - x_{2} \ge 0\}$$
(32)
$$D_{2} := \{x \in \mathbb{R}^{2} : -px_{1} + x_{2} \ge 0\} \cup \{x \in \mathbb{R}^{2} : px_{1} - x_{2} \ge 0, -x_{1} - x_{2} \ge 0\}$$
(33)

▶ $F = \{f_1, f_2\}$ where

$$f_1 = (-0.1, 2), \ f_2 = (-x_2 - x_1^3, x_1)$$
 (34)

▶ $G = \{G_{12}, G_{21}\}$ where

$$G_{12} = \{x_2 - px_1\} = 0 \tag{35}$$

$$G_{21} := \{ x \in \mathbb{R}^2 : x_1 + x_2 = 0 \}$$
(36)

• $R = \{\phi_{12}(x), \phi_{21}(x)\}$ where each $\phi_{ij}(x) = x$.

Hybrid System with Uncertain Switching (3)

Simulation Results

Phase planes for different values of p are given below:

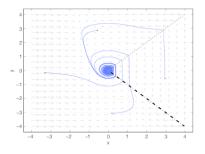
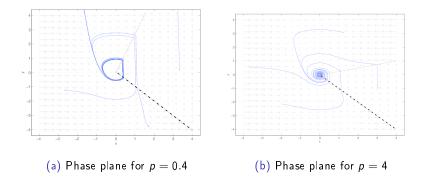


Figure: Phase plane for p = 1

イロト イ理ト イヨト イヨト

Hybrid System with Uncertain Switching (4)

Simulation Results (continued)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hybrid System with Uncertain Switching (5)

Simulation Results (continued)

- We analyzed Zeno stability of z = {z₁, z₂}, z₁ = z₂ = (0,0) in the unit ball around z.
- ► We searched for V₁ and V₂ of increasing degree in order to obtain lower bounds on C. This is shown in the table below:

Table: Bound on C obtained for different degrees of feasible V_1, V_2 .

Degree of V_1, V_2	Bound on C
8	2.11
10	1.87
12	1.73

▲□▶ ▲□▶ ★ □▶ ★ □▶ = ● ● ●

Conclusions

Conclusions

- Hybrid systems are dynamical systems that exhibit both continuous and discrete behavior. Zeno behavior is a phenomenon unique to hybrid systems.
- ► Necessary and sufficient conditions for Zeno stability were provided.
- Verification of Zeno stability is accomplished by solving Feasibility Problem 1.
- It is possible to verify Zeno stability for a hybrid system with uncertainties by solving Feasibility Problem 2.

Future Work

- Determine methods to decrease or alleviate the computational cost of the method.
- Apply the technique to verification of Zeno stability in network congestion problems.
- Possible applications of convex optimization and sum-of-squares programming to regularization of Zeno hybrid systems.

END Thank you for listening!

◆□ > < 個 > < E > < E > E 9 < 0</p>