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Introduction

I Hybrid Systems are systems that exhibit di�erent dynamics in
di�erent regions of the state space, with a logical rule governing
transitions between dynamics.

I The hybrid system framework is used to model a variety of natural
and man-made systems such as systems with embedded
microprocessors, electrical circuits with switching, air tra�c control,
the bouncing ball.

I Hybrid systems also exhibit unique phenomeona, such as Zeno
behavior.

I Zeno behavior is the phenomenon of in�nite transitions occurring in
�nite time.

I Similar to chattering.
I Causes simulations to fail.
I Arises in models of a number of system: robotic joints,

communication networks, optimal control, or even simple systems
(the bouncing ball)

I Our goal: To develop computational methods to analyze this
behavior.



A Motivating Example: Modeling a Bouncing Ball

Model must contain the following information:

I Dynamics of the ball

I Domain of the dynamics

I Location of collisions

I E�ect of collision on dynamics

A Solution: hybrid systems

Figure: A bouncing basketball (courtesy of Wikipedia)



Hybrid Systems

De�nition 1: Hybrid System
A hybrid system H is modeled by the tuple

H = (Q,E ,D,F ,G ,R)

where

I Q is the collection of discrete states.

I E ⊂ Q × Q provides the set of transitions between discrete states.
For each e = (q, q′), we say q = s(e) and q′ = t(e).

I D := {DQ}q∈Q is the collection of domains

I F := {fq}q∈Q is the collection of vector �elds, where for each
q ∈ Q, fq : Dq → Rn

I G := {Ge}e∈E is the collection of guard sets

I R := {φe}e∈E is the collection of Reset Maps where for each e ∈ E ,
φe : Ge → Dt(e).



Modeling a Bouncing Ball with a Hybrid System

We model the bouncing ball with the tuple

B = (Q,E ,D,F ,G ,R)

where

I Q = {q0}
I E = {(q0, q0)}
I D := {x ∈ R2 : x1 ≥ 0}
I F := {f }, where

f =

(
ẋ1
ẋ2

)
=

(
x2
−g

)
I G := {G(q0,q0)} where G(q0,q0) := {x ∈ R2 : x1 = 0, x2 < 0}
I R = φ(x) = [0,−cx2]T . Here, c is a coe�cient of restitution.



An Important Assumption

Assumption 1

I Each Dq ∈ D will be of the form

Dq := {x ∈ Rn : gqk(x) ≥ 0, q ∈ Q, k = 1, ...,Kq}

where each gqk is a polynomial, and Kq is some positive integer.

I Each Ge ∈ G will be of the form

Ge = {x ∈ Rn : he0(x) = 0, hek(x) ≥ 0, e ∈ E , k = 1, 2, ...,Nq}

where each he0, hek are polynomials, and Ke is some positive integer.

I Each φe ∈ R : Rn → Rn is of the form

φe = [φe1, ..., φen]T

where each φei is a polynomial.



Hybrid System Execution

De�nition 2: Hybrid System Execution
The tuple

χ = (I ,T , p,C )

where

I I ⊆ N is the index set

I T = {Ti}i∈I where Ti = (ti−1, ti )

I p : I → C describes the evolution of the elements of Q

I C = {ci (t)}i∈I provides a set of continuous functions

is an execution of a hybrid system H = (Q,E ,D,F ,G ,R) if

I ċi (t) = fp(i)(ci (t)); t ∈ Ti

I ci (t) ∈ Dp(i),∀t ∈ Ti

I ci (ti+1) ∈ Gp(i),p(i+1) for all Ti ∈ T .



Zeno Equilibria and Executions
De�nition 3: Zeno Execution
An execution χ of a hybrid system H = (Q,E ,D,F ,G ,R) is said to be
Zeno if

I I ≡ N
I
∑∞

i=1 ti − ti−1 <∞

Figure: Zeno behavior in a bouncing ball



Zeno Stability

De�nition 4: Zeno Equilibria
A Zeno equilibrium of a hybrid system H = (Q,E ,D,F ,G ,R) is a set
z = {zq}q∈Q satisfying

I fq(zq) 6= 0

I For each edge e = (q, q′), zq ∈ Ge .

I Similarly, for each edge e = (q, q′), Re(zq) = zq′

De�nition 5: Zeno Stability
Let H = (Q,E ,D,F ,G ,R) be a hybrid system. The set z is Zeno stable
if, for each q ∈ Q, there exist neighborhoods Zq, where zq ∈ Zq, such
that for any initial condition x0 ∈

⋃
q∈Q Zq, the execution

χ = (I ,T , p,C ), with co(t0) = x0 is Zeno, and converges to z .

I We can consider Zeno stability to be a form of �nite-time
asymptotic stability.



Cyclic Hybrid Systems

De�nition 6: Cyclic Hybrid Systems
A hybrid system H = (Q,E ,D,F ,G ,R) is cyclic if the pair Γ = (Q,E )
describes a directed cycle, where Q represents the vertices, and E

represents the edges.

Remark
If a hybrid system contains a Zeno equilibrium, then the graph
representing the hybrid system must contain a cycle.



Necessary and Su�cient Conditions for Zeno Stability
Theorem 1 (Lamperski and Ames)
Consider a hybrid system H = (Q,E ,D,F ,G ,R), with an isolated Zeno
equilibrium {zq}q∈Q . Let {Wq}q∈Q be a collection of open
neighborhoods of {zq}q∈Q . Suppose there exist continuously
di�erentiable functions Vq : Rn → R and Bq : Rn → R, and non-negative
constants {rq}q∈Q , γa, and γb, where rq ∈ [0, 1], and rq < 1 for some q
and such that

Vq(x) > 0 for all x ∈Wq\zq, q ∈ Q (1)

Vq(zq) = 0, for all q ∈ Q (2)

∇V T
q (x)fq(x) ≤ 0 for all x ∈Wq, q ∈ Q (3)

Bq(x) ≥ 0 for all x ∈Wq, q ∈ Q (4)

∇BT
q (x)fq(x) < 0 for all x ∈Wq, q ∈ Q (5)

Vq′(R(q,q′)(x)) ≤ rqVq(x), (6)

for all e = (q, q′) ∈ E and x ∈ Ge ∩Wq

Bq(R(q′,q)(x)) ≤ γb
(
Vq(R(q,q′)(x))

)γa
(7)

for all e = (q, q′) ∈ E and x ∈ Ge ∩Wq.

Then {zq}q∈Q is Zeno stable.



A Simpli�cation of Theorem 1

We can simplify Theorem 1 as follows:

Theorem 2:
Let H = (Q,E ,D,F ,G ,R) be a cyclic hybrid system with Zeno
equilibrium z = {zq}q∈Q . Let {Wq ⊂ Dq}q∈Q , be a collection of
neighborhoods of the {zq}q∈Q . Suppose that there exist continuously
di�erentiable functions Vq : Wq → R, and positive constants {rq}q∈Q
and γ, where rq ∈ (0, 1], and rq < 1 for some q and such that

Vq(x) > 0 for all x ∈Wq\zq, q ∈ Q (8)

Vq(zq) = 0, for all q ∈ Q (9)

∇V T
q (x)fq(x) ≤ −γ for all x ∈Wq, q ∈ Q (10)

rqVq(x) ≥ Vq′(φe(x)) (11)

for all e = (q, q′) ∈ E and x ∈ Ge ∩Wq.

then z is Zeno stable.



Advantages of Method

I Theorems 1 and 2 provide necessary and su�cient conditions for
Zeno stability.

I They allow for the veri�cation of Zeno stability even for systems
where calculating total time of executions analytically is di�cult.

I Theorem 1 has also been used to develop Lyapunov conditions for
the existence of Zeno executions in Lagrangian Hybrid systems.

I More importantly, each Vq can be constructed algorithmically. Here,
we use Sum-of-Squares programming.

I We construct our SOS conditions using the Positivstellensatz.



Sum of Squares Polynomials

I A polynomial p is said to be Sum of Squares if it can be expressed as

p =
∑
i

f 2i

where each fi ∈ R[x ]. The set of all SOS polynomials is denoted by
Σx .

Theorem 3
Consider a polynomial p of degree 2d . Then, the following two
statements are equivalent:

I p is SOS.

I There exists a positive semide�nite matrix Q and a vector Z of all
monomials of degree upto d such that

p = ZTQZ



Use of Sum-of-Squares polynomials

I Verifying polynomial nonnegtivity cannot be accomplished in
polynomial time.

I However, verifying whether a polynomial is SOS has been shown to
be decidable in polynomial time.

I We use SOSTOOLS to solve such problems.

A simple example
Consider p(x) = x2 + 2x + 1 = (x + 1)2:
If we choose Z = [1, x ]T , we search for a 2× 2 matrix Q. We can then
�nd

Q =

(
1 1
1 1

)



Verifying Zeno Stability with Sum of Squares Programming
I We apply the Positivstellensatz to Theorem 2:

Let H = (Q,E ,D,F ,G ,R) be a hybrid system with a Zeno equilibrium
{zq}q∈Q . Let {Wq}q∈Q be a collection of neighborhoods of {zq}q∈Q .
Moreover, suppose that each Wq is a semialgebraic set de�ned as

Wq := {x ∈ Rn : wqk(x) > 0, k = 1, 2, ...,Kqw}

where wqk ∈ R[x ].

Feasibility Problem 1
For hybrid system H = (Q,E ,D,F ,G ,R), �nd

I aqk , cqk , iqk , ∈ Σx , for k = 1, 2, ...,Kqw and q ∈ Q;

I bqk , dqk , jqk ∈ Σx , for k = 1, 2, ...,Kq and q ∈ Q.

I me,l ∈ Σx for e ∈ E and l = 1, 2, ...,Nq

I Vq, me,0 ∈ R[x ] for e ∈ E and q ∈ Q.

I Constants α, γ > 0, {rq}q∈Q ∈ (0, 1] such that rq < 1 for some
q ∈ Q.

such that (continued on next slide)



Feasibility Problem 1 (continued)

Vq − αxT x −
Kqw∑
k=1

aqkwqk −
Kq∑
k=1

bqkgqk ∈ Σx for all q ∈ Q (12)

Vq(zq) = 0 for all q ∈ Q (13)

−∇V T
q fq − γ −

Kqw∑
k=1

cqkwqk −
Kq∑
k=1

dqkgqk ∈ Σx for all q ∈ Q (14)

rqVq − Vq′(φe)−me,0he,0 −
Nq∑
l=1

me,lhe,l

−
Kqw∑
k=1

iqkwqk −
Kq∑
k=1

jqkgqk ∈ Σx for all e = (q, q′) ∈ E (15)



A Theorem for Verifying Zeno Stability

Using the notation de�ned previously, and Feasibility Problem 1, we state
the main theorem:

Theorem 4
Let z = {zq}q∈Q be an isolated Zeno equilibrium of a hybrid system
H = (Q,E ,D,F ,G ,R). If Feasibility Problem 1 has a solution, then z is
Zeno stable.



Nonlinear Numerical Example (1)

Nonlinear Bouncing Ball
The nonlinear bouncing ball hybrid system can be represented by the
tuple:

H = (Q,E ,D,F ,G ,R)

where

I Q = {q0}
I E = {(q0, q0)}
I D := {x ∈ R2 : x1 ≥ 0}
I G := {x ∈ R2 : x1 = 0, x2 ≤ 0}
I F = {f }, where

ẋ = f (x) =

(
x2

−g + c1x
2
2

)
I R = φ(x) = [0,−c2x2(1− c3x

2
2 )]T . Here, c1, c2, and c3 are positive

constants satisfying ci < 1.



Numerical Example (2)
Simulation Results

I The Zeno equilibrium is z = (0, 0)T .

I We choose
Wq := {x ∈ Rn : x1 ≥ 0, 1− x21 − x22 > 0} for Feasibility Problem 1

I We search for a 4-th order V (x) that solves Feasibility Problem 1.
We were unable to obtain an explicit range of values of c1, c2, and
c3 such that N was stable.

I We �x each ci at certain values, and plot values of the other
constants such that N was Zeno stable (next slide).

Figure: Execution of nonlinear hybrid system



Numerical Example (3)

Simulation Results: Plots of stable values of c1, c2, and c3

Figure: Stable values of c2 and c3 with c1 �xed

Figure: Stable values of c1 and c2 with c3 �xed



Zeno Stability for Systems with Uncertainty

I We now present a method to verify Zeno stability in systems with
time-invariant parametric uncertainty.

I Treat the set of uncertain parameters as a semialgebraic set.

I Apply the positivstellensatz to Theorem 2 and the uncertain set.



Another Important Assumption
De�ne the vector of uncertain parameters to lie in the semialgebraic set

P := {p ∈ R : p̃k(p) ≥ 0, k = 1, 2, ...,K1}
where p̃k(p) are polynomials.

Assumption 2

I Each Dq ∈ D will be of the form

Dq := {x ∈ Rn : gqk(x , p) ≥ 0, q ∈ Q, k = 1, ...,Kq}

where each gqk ∈ R[x , p], Kq ∈ N.
I Each Ge ∈ G will be of the form

Ge = {x ∈ Rn : he0(x , p) = 0, hek(x , p) ≥ 0, e ∈ E , k = 1, 2, ...,Nq}

where each he0, hek ∈ R[x , p], and Ke ∈ N.
I Each φe ∈ R : Rn → Rn is of the form

φe = [φe1, ..., φen]T

where each φei ∈ R[x , p].



Feasibility Problem 2

For hybrid system H = (Q,E ,D,F ,G ,R), �nd

I aqk , cqk , iqk , ∈ Σx,p, for k = 1, 2, ...,Kqw and q ∈ Q;

I bqk , dqk , jqk ∈ Σx,p, for k = 1, 2, ...,Kq and q ∈ Q.

I ηqk , βqk , ζqk ∈ Σx,p, for k = 1, 2, ...,K1 and q ∈ Q.

I me,l ∈ Σx,p for e ∈ E and l = 1, 2, ...,Nq

I Vq, me,0 ∈ R[x , p] for e ∈ E and q ∈ Q.

I Constants α, γ > 0, {rq}q∈Q ∈ (0, 1] such that rq < 1 for some
q ∈ Q.

such that (continued on next slide)



Feasibility Problem 2 (continued)

Vq − αxT x −
Kqw∑
k=1

aqkwqk −
Kq∑
k=1

bqkgqk

−
K1∑

k1=1

ηqk1 p̃qk ∈ Σx,p for all q ∈ Q (16)

Vq(zq, p) = 0 for all q ∈ Q (17)

−∇V T
q fq − γ −

Kqw∑
k=1

cqkwqk −
Kq∑
k=1

dqkgqk

−
K1∑

k1=1

βqk1 p̃qk ∈ Σx,p for all q ∈ Q (18)

rqVq − Vq′(φe)−me,0he,0 −
Nq∑
l=1

me,lhe,l −
Kqw∑
k=1

iqkwqk

−
Kq∑
k=1

jqkgqk −
K1∑
k=1

ζqk p̃qk ∈ Σx,p for all e = (q, q′) ∈ E . (19)



A Theorem for Zeno Stability in Systems with Uncertainties

Theorem 5
Let z = {zq}q∈Q be a Zeno equilibrium of a hybrid system
H = (Q,E ,D,F ,G ,R). If there is a solution to Feasibility Problem 2,
then z is Zeno stable for all p ∈ P.



Numerical Example for uncertain hybrid systems
Bouncing ball with uncertain coe�cient of restitution
We now consider a bouncing ball with an uncertain coe�cient of
restitution: A bouncing ball with parametric uncertainties in the reset
map can be described by Bp which is the tuple:

Bp = (Q,E ,D,F ,G ,R)

where

I Q = {q0}, which provides the discrete state

I E = {(q0, q0)}, which is the single edge from q0 to itself

I D := {x ∈ R2 : x1 ≥ 0} provides the domain. Thus, gq0 = x1.

I G = {x ∈ R2 : x1 = 0, x2 ≤ 0} provides the guard. Thus,
h(q0,q0),0 = x1, and h(q0,q0),1 = −x2.

I R = φ(x) = [0,−px2]T provides the reset map.

I F = f (x) provides a vector �eld mapping D to itself, and where

ẋ = f (x) =

(
x2
−g

)



Numerical Example: Bouncing Ball with uncertainty (2)

Simulation Results

I We consider p ∈ (0,C ).

I Construct semialgebraic set:

P := {p ∈ R : p(C − p) ≤ 0}

I Analytically, we know that for Zeno stability, the largest C that
allows for Zeno stability is 1.

I We search for a 4-th order V (x) and sos multipliers that solves
Feasibility Problem 2.

I 4th order V (x) allows us verify Zeno stability for uncertain
parameters on the set (0.001, 0.999).



Hybrid System with Multiple Modes and Nonlinear Vector
Fields (1)

I Often, we need to analyze Zeno stability of hybrid systems with
multiple modes and nonlinear vector �elds.

I Very di�cult to accomplish this analytically.

We considered a nonliear hybrid system with 3 discrete modes:

Nonlinear Hybrid Systems with 3 discrete modes
Consider the hybrid system H = (Q,E ,D,F ,G ,R), where

I Q = {q1, q2, q3}
I E = {(q1, q2), (q2, q3), (q3, q1)}
I D := {D1,D2,D3} where

D1 = {x ∈ R2 : x1 > 0, x2 +
1

2
x1 ≥ 0} (20)

D2 = {x ∈ R2 : x2 −
1

2
x1 ≥ 0, x2 +

1

2
x1 < 0} (21)

D3 = {x ∈ R2 : x1 < 0, x2 +
1

2
x1 ≥ 0} (22)



Hybrid System with Multiple Modes and Nonlinear Vector
Fields (2)

Nonlinear hybrid system with 3 discrete modes

I G := {G12,G23,G31} where

G12 :=

{
x ∈ R2 : x2 ≤ 0,

1

2
x1 + x2 = 0

}
(23)

G23 :=

{
x ∈ R2 : x2 ≤ 0,

1

2
x1 − x2 = 0

}
(24)

G31 :=
{
x ∈ R2 : x2 > 0, x1 = 0

}
(25)

I F = {f1, f2, f3}, where

ẋ = f1(x) = (x2,−5x21 − x2)T (26)

ẋ = f2(x) = (−x21 − 3, 2x22 −
1

2
x21 )T (27)

ẋ = f3(x) = (x22 + x2,−x1)T (28)

I R = {φ12(x), φ23(x), φ31(x)} where each φij(x) = x .



Hybrid System with Multiple Modes and Nonlinear Vector
Fields (3)

Simulation Results

Figure: Phase Portrait of a hybrid system with 3 modes and nonlinear vector
�elds

I We analyzed Zeno stability of z = {z1, z2, z3}, z1 = z2 = z3 = 0.

I Analyzed Zeno stability of z in the unit ball

I Found degree 8 V1,V2, and V3 to solve feasibility problem 2.



Systems with Variable Structure Controllers (1)

I Often, variable structure controllers (such as sliding mode,
bang-bang, and gain scheduling controllers) are required for
stabilization.

I However, chattering and Zeno behavior can occur in the closed loop
systems.

I This can be di�cult to verify analytically.

A system with a variable structure controller

I We consider the plant

ẋ = (x2, x
2
1 + x22 + u(x , t))T .

I Suppose the chosen controller is

u(x , t) = −2(x21 + x22 )sgn(s(x))

where s(x) = x1 + x2.



Systems with Variable Structure Controllers (2)

A system with a variable structure controller
We can model the closed loop system with a hybrid system
H = (Q,E ,D,F ,G ,R), where

I Q = {q1, q2}
I E = {(q1, q2), (q2, q1)

I D = {D1,D2} where

D1 := {x ∈ R2 : x1 + x2 ≥ 0}; D2 := {x ∈ R2 : x1 + x2 ≤ 0}
(29)

I F = {f1, f2} where

f1 = (x2,−(x22 + x21 ))T , f2 = (x2, 3(x22 + x21 ))T (30)

I G = {G12,G21} where

G12 = G21 := {x ∈ R2 : x1 + x2 = 0} (31)

I R = {φ12(x), φ21(x)} where each φij(x) = x .



Systems with Variable Structure Controllers (3)
Simulation Results
A phase portrait of the closed loop vector �eld is shown below:

Figure: Phase Portrait of a system with a variable structure controller
exhibiting Zeno behavior.

I We analyzed Zeno stability of z = {z1, z2} = (0, 0).

I We studied Zeno stability in the unit ball around z .

I We were able to �nd degree 8 V1 and V2 to solve feasibility problem
2.



Hybrid System with Uncertain Switching (1)

I Complete information regarding system parameters may be
unavailable to us - this is parametric uncertainty.

I In the case of hybrid systems, this results in uncertainty in the vector
�elds, as well as the transition rules: uncertainties may also be
present in the guard set and the reset map.

I We now consider a system with an uncertain guard set.

A hybrid system with an uncertain guard set
Let the uncertain parameters be de�ned by

P := {p ∈ R : p − C > 0}.

We then consider the hybrid system H = (Q,E ,D,F ,G ,R) which
satis�es assumption 2, where

I Q = {q1, q2}
I E = {(q1, q2), (q2, q1)



Hybrid System with Uncertain Switching (2)

A hybrid system with an uncertain guard set

I D = {D1,D2} where

D1 := {x ∈ R2 : x1 + x2 ≥ 0, px1 − x2 ≥ 0} (32)

D2 := {x ∈ R2 : −px1 + x2 ≥ 0} ∪ {x ∈ R2 : px1 − x2 ≥ 0,−x1 − x2 ≥ 0}
(33)

I F = {f1, f2} where

f1 = (−0.1, 2), f2 = (−x2 − x31 , x1) (34)

I G = {G12,G21} where

G12 = {x2 − px1} = 0 (35)

G21 := {x ∈ R2 : x1 + x2 = 0} (36)

I R = {φ12(x), φ21(x)} where each φij(x) = x .



Hybrid System with Uncertain Switching (3)

Simulation Results
Phase planes for di�erent values of p are given below:

Figure: Phase plane for p = 1



Hybrid System with Uncertain Switching (4)

Simulation Results (continued)

(a) Phase plane for p = 0.4 (b) Phase plane for p = 4



Hybrid System with Uncertain Switching (5)

Simulation Results (continued)

I We analyzed Zeno stability of z = {z1, z2}, z1 = z2 = (0, 0) in the
unit ball around z .

I We searched for V1 and V2 of increasing degree in order to obtain
lower bounds on C . This is shown in the table below:

Table: Bound on C obtained for di�erent degrees of feasible V1,V2.

Degree of V1,V2 Bound on C

8 2.11
10 1.87
12 1.73



Conclusions

Conclusions

II Hybrid systems are dynamical systems that exhibit both continuous
and discrete behavior. Zeno behavior is a phenomenon unique to
hybrid systems.

I Necessary and su�cient conditions for Zeno stability were provided.

I Veri�cation of Zeno stability is accomplished by solving Feasibility
Problem 1.

I It is possible to verify Zeno stability for a hybrid system with
uncertainties by solving Feasibility Problem 2.

Future Work

I Determine methods to decrease or alleviate the computational cost
of the method.

I Apply the technique to veri�cation of Zeno stability in network
congestion problems.

I Possible applications of convex optimization and sum-of-squares
programming to regularization of Zeno hybrid systems.



END
Thank you for listening!
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