TU/e

A Digital Twin for Controlling Thermo-Fluidic Processes

Amritam Das

Inkjet Printer

Interaction of solids and fluids

Fixation

What we want?

Achieve good print-quality without adding new sensors or actuators

Interaction of Solids and Fluids: Thermo-Fluidic Processes

Features

1 Interacting components

2 Quantities vary over space and time

Interaction of Solids and Fluids: Thermo-Fluidic Processes

Question: How to control thermo-fluidic processes to achieve best print-quality?

My Approach: Building a Digital Twin for Inkjet Printer

Virtual representation of the asset on a computer

My Approach: Building a Digital Twin for Inkjet Printer

Virtual representation of the asset on a computer

Modeling Thermo-Fluidic Processes

Contribution

• A systematic way to modularize and upscale the model

A set of alternative representations are available at user's disposal

Modeling Thermo-Fluidic Processes

Contribution

- A systematic way to modularize and upscale the model
- A set of alternative representations are available at user's disposal

Method 1: Using Lumping

Neglecting spatial variation

Contribution

1 Not compromising on model-accuracy

Contribution

• The interaction among adjacent components is preserved

Contribution

1 A new mathematical representation of thermo-fluidic processes

2 Tools for analysis and synthesis on PIE

3 A software package **PIETOOLS** is co-developed to perform functionalities of PIE

Digital Twin Shows How to Control Temperature of Jetting Liquid

Lumping based model

Digital Twin Shows How to Control Temperature of Jetting Liquid

Result

Without adding new sensors or actuators, fluctuation in liquid temperature among nozzles is kept below $\pm 0.3^\circ C$

How to control thermo-fluidic processes to achieve best print-quality?

1 Digital twin is a generic tool for controlling thermo-fluidic processes

2 Digital twin is flexible and modular for printers of industrial scale

3 Digital twin's three approaches provide computational tools and ways to control print-quality

Implication: What I show

- Easy to upscale the design for any number of nozzles
- Jetting process achieves desired performance without adding new sensors or actuators
- Moisture content of a paper can be optimally estimated during fixation
- Digital twin's framework is generic for other applications

TU/e

A Digital Twin for Controlling Thermo-Fluidic Processes

Amritam Das