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ABSTRACT

Modern life is full of challenging optimization problems that we unknowingly attempt

to solve. For instance, a common dilemma often encountered is the decision of picking

a parking spot while trying to minimize both the distance to the goal destination and

time spent searching for parking; one strategy is to drive as close as possible to the goal

destination but risk a penalty cost if no parking spaces can be found. Optimization

problems of this class all have underlying time-varying processes that can be altered

by a decision/input to minimize some cost. Such optimization problems are commonly

solved by a class of methods called Dynamic Programming (DP) that breaks down

a complex optimization problem into a simpler family of sub-problems. In the 1950s

Richard Bellman introduced a class of DP methods that broke down Multi-Stage

Optimization Problems (MSOP) into a nested sequence of “tail problems”. Bellman

showed that for any MSOP with a cost function that satisfies a condition called

additive separability, the solution to the tail problem of the MSOP initialized at

time-stage k > 0 can be used to solve the tail problem initialized at time-stage

k − 1. Therefore, by recursively solving each tail problem of the MSOP, a solution

to the original MSOP can be found. This dissertation extends Bellman‘s theory to a

broader class of MSOPs involving non-additively separable costs by introducing a new

state augmentation solution method and generalizing the Bellman Equation. This

dissertation also considers the analogous continuous-time counterpart to discrete-time

MSOPs, called Optimal Control Problems (OCPs). OCPs can be solved by solving

a nonlinear Partial Differential Equation (PDE) called the Hamilton-Jacobi-Bellman

(HJB) PDE. Unfortunately, it is rarely possible to obtain an analytical solution to

the HJB PDE. This dissertation proposes a method for approximately solving the

HJB PDE based on Sum-Of-Squares (SOS) programming. This SOS algorithm can

be used to synthesize controllers, hence solving the OCP, and also compute outer
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bounds of reachable sets of dynamical systems. This methodology is then extended

to infinite time horizons, by proposing SOS algorithms that yield Lyapunov functions

that can approximate regions of attraction and attractor sets of nonlinear dynamical

systems arbitrarily well.
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Chapter 1

INTRODUCTION

[Gottfried Leibniz] conceives God in the creation

of the world like a mathematician who is solving

a minimum problem.

Emil du Bois-Reymond

In 2012, it was reported in Solar Energy Power Association (2013), that 95,000 new

distributed solar PhotoVoltaic (PV) systems were installed nationally across the USA,

a 36% increase from 2011 and yielding a total of approximately 300,000 installations.

Further, utility-scale PV generating capacity has increased at an even faster rate,

it was reported in Sherwood (2013), that 2012 installations more than doubled that

of 2011. Meanwhile, it has been reported in Conti (2014), that partially due to the

development of energy-efficient appliances and new insulation materials, US electricity

demand has plateaued. As a consequence of these trends, utility companies are faced

with the problem that demand peaks continue to grow while total US electricity

demand remains stagnant. Specifically, as per the US EIA Shear (2014), the ratio of

peak demand to average demand has increased dramatically over the last 20 years.

The situation in Nevada, California, and Arizona is particularly challenging. Hydro

electrical power generators can come online in a matter of minutes to meet sudden

unpredictable demand surges; see Kirmani et al. (2021). However, due to record low

levels in the Lake Mead reservoir, the yearly power supplied to Nevada, California,

and Arizona by the Hoover dam has consistently reduced over the years. As reported

in Penmetsa (2020), the available energy from Hoover Dam has decreased 2.4% from

2004-2016 with an expected decrease of 3% from 2017-2050.
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Fundamentally, the problem faced by utilities is that consumers are typically

charged based on total electricity consumption, while utility costs are based on both

electricity consumption and maintaining the generating capacity necessary to meet

peak demand. Recently, several public and private utilities have moved to address

this imbalance by charging residential consumers based on both the total electricity

consumed - a cost referred to as Time-of-Use (TOU) charge, and the maximum rate

($ per kW) of consumption - a cost referred to as a demand charge. Specifically,

in Arizona, both major utilities SRP and APS have mandatory demand charges for

residential consumers, see SRP (2015).

For consumers, residential electrical power requirements are relatively inflexible,

hence the most direct approach to minimizing the effect of demand charges is the

use of battery storage devices such as the Tesla Powerwall considered in Farhangi

(2010); Mohd et al. (2008); Dunn et al. (2011). These devices allow consumers to

shift electricity consumption away from periods of peak demand, thereby minimizing

the effect of demand charges. This naturally leads to a control problem of finding the

optimal way to charge and discharge a residential battery in order to minimize the

residential electricity cost (involving both the demand charge and TOU charge).

An Optimization Problem for Optimal Battery Scheduling to Minimize

Electricity Costs Let us mathematically formulate the problem of designing opti-

mal charge/discharge residential battery schedules to minimize household consumer

electricity costs. We consider a billing period given by {0, ...., T}, where the times

denoting the beginning of on-peak and off peak billing hours, ton and toff respectively,

are such that 0 ≤ ton < toff ≤ T . The TOU charge then is given by,

JTOU(u) = poff

ton−1∑
k=0

(q(k) + u(k)) + pon

toff−1∑
k=ton

(q(k) + u(k)) + poff

T∑
k=toff

(q(k) + u(k)),
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where pon ∈ R and poff ∈ R are cost conversion constants for on-peak and off peak

hours respectively, u = (u(0), ..., u(T − 1)), u(k) is the amount of electricity used by

the battery to charge (if u(k) > 0) or discharge (if u(k) < 0) at time stage k, and

q(k) ∈ R is the amount of electrical energy used by household appliances at time

stage k. Note that the total electrical energy required by the household at time stage

k is equal to the appliance energy plus the electrical energy required by the battery,

q(k) + u(k).

The demand charge is given by,

JD(u) = pd max
k∈{ton,....,toff−1}

{q(k) + u(k)},

where pd ∈ R is a electrical energy request to cost conversion constant.

We model the energy stored in the battery by a Markov time process:

e(k + 1) = α(e(k) + ηu(k)), (1.1)

where e(k) denotes the energy stored in the battery at time step k, α > 0 is the bleed

rate of the battery and η ∈ [0, 1] is the efficiency of the battery.

Assuming the electrical power required by the residential unit at each time stage,

q(k) for k ∈ {0, ..., T}, is fixed and known (due to consumer inflexibility), we can

formulate the battery scheduling problem as an optimization problem of the following

form,

min
u
{JTOU(u) + JD(u)} subject to (1.2)

e(k + 1) = α(e(k) + ηu(k)) for k = 0, ..., T − 1

e(0) = 0 , e(k) ∈ [e, ē], u(k) ∈ [u, ū] for k = 0, ..., T,

u = (u(0), ..., u(T − 1)),

where u and ū are bounds on the maximum and minimum rates we can charge/discharge,

and e and ē are lower and upper storage capacity bounds on the battery.
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Optimization Problem (1.2) is challenging to solve because it has an objective

function involving a point-wise maximum term (due to the demand charge) that

cannot be separated into costs that only depend on state and inputs at each time

stage. The goal of this dissertation is to develop new techniques and methods to

solve such challenging optimization problems.

Multi-Stage Optimization Problems and Optimal Control Problems Prob-

lems such as the Battery Scheduling Problem (1.2), as well as many other optimization

problems commonly encountered throughout Engineering, Economics, and Mathe-

matics, all feature a constraint representing an underlying time-varying process that

is controlled over a finite number of time-stages with the goal of minimizing some

cost. In this dissertation we develop new methods and techniques to solve and ana-

lyze such optimization problems. Specifically, we consider optimization problems in

either of the following forms, initialized at some (x0, t0):

(u∗,x∗) ∈ arg inf
u

{
Jt0(u,x)

}
subject to: (1.3)

u = (u(t0), ..., u(T − 1)),x = (x(t0), ..., x(T ))

x(t0) = x0, x(t+ 1) = f(x(t), u(t))

for all t = t0, .., T − 1,

x(t) ∈ Ω ⊂ Rn, u(t) ∈ U ⊂ Rm

for all t = t0, .., T.

(u∗, x∗) ∈ arg inf
u

{
∫ T

t0

c(x(t),u(t), t)dt+ g(x(T ))

}
subject to: (1.4)

x(t0) = x0, ẋ(t) = f(x(t),u(t))

for all t ∈ [t0, T ],

x(t) ∈ Ω ⊂ Rn, u(t) ∈ U ⊂ Rm

for all t ∈ [t0, T ].

Throughout this dissertation, we will refer to optimization problems of the Form (1.3)

as Multi-Stage Optimization Problems (MSOPs) and optimization problems of the
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Form (1.4) as Optimal Control Problems (OCPs). Both MSOPs and OCPs are solved

by finding a policy/controller, denoted by u, that minimizes the objective/cost func-

tion. This dissertation is split into two parts considering the discrete-time case of

MSOPs and the continuous-time case of OCPs separately.

We focus on a particular class of methods used to solve MSOPs and OCPs called

Dynamic Programming (DP). DP is a general class of numerical algorithms used

to solve optimization problems with the following properties: 1) They break down

the optimization problem into a family of simpler sub-problems that are sequentially

solved. 2) The solution to each sub-problem is stored in computer memory. 3)

Previously stored solutions are used to solve the next sequential sub-problem. 4) A

solution to the optimization problem is constructed after solving all members of the

family of sub-problems.

An alternative to DP is brute force methods, such methods solve optimization

problems by computing and storing the value of the objective function evaluated at

every feasible solution, for which there could be an uncountable number, and then

outputting the feasible solution that produces the smallest object value when the

algorithm terminates. Intuitively, DP methods solve optimization problems more

efficiently than brute force methods because DP methods harness computer memory

in a way that avoids repeating computations. Rather than repeating the computation,

DP methods recall the outcome of such calculations from stored memory.

Aside from computational efficiency concerns, MSOPs (1.3) and OCPs (1.4) are

often solved using DP methods due to the fact that they can easily be broken down

into a family of simpler sub-problems, their “tail problems”. Specifically, both MSOPs

and OCPs have underlying time varying processes, x(t+1) = f(x(t), u(t)) and ẋ(t) =

f(x(t), u(t)) respectively. This naturally leads to a family of sub-problems consisting

of the “tail problems” indexed by t ∈ {t0, ...., T} for MSOPs and t ∈ [t0, T ] for
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OCPs. The optimal value of the objective function for each “tail problem” can then

be computed and stored in a function called the Value Function (VF).

1.0.1 Part 1: Discrete Time

Part 1 is concerned with MSOPs of Form (1.3). Classically, MSOPs have cost func-

tions of the form Jt0(u,x) =
∑T−1

t=t0
ct (x (t) , u (t)) + cT (x (T )), we call such functions

additively separable functions. For MSOPs with additively separable cost functions

Richard Bellman derived necessary and sufficient conditions, encapsulated in Bell-

man’s Equation (BE), for an input and state sequence to be optimal, see Bellman

(1966). Specifically, Bellman showed that in the additively separable case if we can

find a function F that satisfies the BE:

F (x, T ) = cT (x) for all x ∈ Ω (1.5)

F (x, t) = inf
u∈Γx

{
ct(x, u) + F (f(x, u), t+ 1)

}
for all x ∈ Ω, t ∈ {t0, .., T − 1},

where Γx := {u ∈ U : f(x, u) ∈ Ω}, then a necessary and sufficient condition for a

feasible input and state sequence, u = (u(t0), ..., u(T − 1)) and x = (x(t0), ..., x(T )),

to solve the MSOP (1.3) initialized at x0 is,

u(t) ∈ arg inf
u∈Γx(t)

{
ct(x(t), u) + F (f(x(t), u), t+ 1)

}
for all t ∈ {t0, .., T − 1},

x(t0) = x0 and x(t+ 1) = f(x(t), u(t)) for all t ∈ {t0, .., T}.

Since Bellman first introduced the BE, special cases of MSOPs with additively

separable cost functions have been extensively studied. For instance, the Riccatti

Equations, important in Linear Quadratic Regulator (LQR) control, can be de-

rived from the BE in the special case when the cost function is quadratic of form

ct (x (t) , u (t)) = x (t)T Qx (t) + u (t)T Ru (t), where Q,R > 0. In more recent years

heuristic algorithms have been developed to approximately solve MSOPs with addi-
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tively separable cost functions, known as reinforcement learning, see Bertsekas (2019).

However, little attention has been paid to more general cost functions that do not

exhibit additively separable structure. In Chapters 3 and 4 we extend the class of

known DP methods to solve MSOPs with non-additively separable cost functions.

A Generalization of Bellman’s Equation Let us consider an MSOP (1.3) that

is solved by finding the input sequence, u, that drives some time varying process,

governed by some map f , to some goal set, S ⊂ Rn. It follows that the cost

function for this MSOP is J(u,x) = min{T, {k ∈ {0, ..., T} : x(k) ∈ S}}. It is

not immediately clear if it is possible to write J in the additively separable form,

J(u,x) =
∑T−1

t=0 ct (x (t) , u (t)) + cT (x (T )). Therefore, for this fundamental path

planning problem we are unable to immediately solve the MSOP by applying classi-

cal DP (ie solving Bellman’s Equation (1.5)). In Chapter 3 we propose an extension

on the classical DP theory to solve MSOPs whose cost function is not necessarily

additively separable (like the cost function associated with path planning).

Specifically, we generalize the class of additively separable cost functions to a class

of functions we call Monotonically Backward Separable Functions (MBSF), functions

that can be written as a nested composition of maps backwards in time, taking the

form:

Jt0(u,x) = φt0(x(t0), u(t0), φt0+1(x(t0 + 1), u(t0 + 1), . . . φT (x(T )) . . . )).

Analogous to Bellman we derive necessary and sufficient conditions for optimality

for problems with cost functions of this form. In order to do this, we provide a

generalization of Bellman‘s Equation.

For MSOPs with monotonically backward separable cost functions we show in
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Chapter 3 that if we can find a function V that satisfies,

V (x, T ) = φT (x) for all x ∈ Ω (1.6)

V (x, t) = inf
u∈Γx,t

{
φt(x, u, V (f(x, u, t), t+ 1))

}
for all x ∈ Ω, t ∈ {t0, .., T − 1},

where Γx,t := {u ∈ U : f(x, u, t) ∈ Ω}, then a necessary and sufficient for a feasible

input and state sequence, u = (u(t0), ..., u(T − 1)) and x = (x(t0), ..., x(T )), to solve

the MSOP (1.3) initialized at x0 is

u(t) ∈ arg inf
u∈Γx(t),t

{
φt (x(t), u, V (f(x(t), u, t), t+ 1))

}
for all t ∈ {t0, .., T − 1}

x(0) = x0 and x(t+ 1) = f(x(t), u(t)) for all t ∈ {t0, .., T}.

Equation (1.6) can be thought of as a generalization of Bellman’s Equation (1.5); since

we show that in the case when the cost function is additively separable (a special case

of monotonically backward separable functions) Equation (1.6) reduces to Bellman’s

Equation (1.5).

Formalizing The Principle Of Optimality Given an MSOP, for DP to work

efficiently, stored solutions of each of the “tail” problems of the MSOP, should be

used to help solve the next sequential sub-problem. In Chapter 3 we show that

DP can be used to efficiently solve MSOPs with backward separable cost functions

by breaking the problem down into tractable sub-problems based on the “tails” of

the MSOP. This method is equivalent to solving the GBE (1.6) backwards in time

starting from the terminal time T ∈ N. However, given an MSOP with an objective

function not known to be a backward separable function, how do we know if it is

possible to efficiently solve the MSOP by solving its “tail” problems backwards in

time? Richard Bellman answered this question by showing MSOPs that satisfy the

Principle of Optimality can be efficiently solved using DP methods. In Bellman’s
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own words, an MSOP satisfies the Principle of Optimality if “An optimal policy has

the property that whatever the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard to the state resulting from

the first decision”, see Bellman (1966).

In Chapter 3 we propose a mathematical formulation of Bellman’s principle of

optimality. We show that any MSOP with a monotonically backward separable cost

function must satisfy our definition of the principle of optimality. Therefore, our

definition of the principle of optimality provides a necessary condition to be able to

solve an MSOP using the GBE (1.6). Furthermore, we conjecture that a necessary

and sufficient condition for a function J to be a monotonically backward separable

function is that every MSOP (with any vector field f , state and input constraints Ω

and U) with cost function J satisfies our definition of the principle of optimality.

Using our proposed definition of the principle of optimality we are able to show not

all functions are monotonically backward separable. For instance, we show J(x,u) =

max{max0≤k≤T−1{dk(u(k), x(k))}, dT (x(T ))}+
∑T−1

s=0 cs(x(s), u(s)) + cT (x(T )) is not

monotonically backward separable. Hence, we are unable to solve MSOPs with cost

functions with the form of J using the GBE (1.6).

State Augmentation Methods for Dynamic Programming In Chapter 3 we

show that

J(x,u) = max{ max
0≤k≤T−1

{dk(u(k), x(k))}, dT (x(T ))}+
T−1∑
s=0

cs(x(s), u(s)) + cT (x(T ))

is not monotonically backward separable. Hence, we cannot use the GBE (1.6) to solve

MSOPs with J as a cost function. Unfortunately, the battery scheduling problem,

given in Eq. (1.2), has a cost function that is of this form. In Chapter 4 we introduce

a new technique, based on state augmentation, that allows us to solve MSOPs with

cost functions that may not be monotonically backward separable. In order to do this
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we consider a class of cost functions we call forward separable functions, functions

that can be written as a nested composition of maps forwards in time taking the form:

Jt0(u,x) = ψT (x (T ) , ψT−1 (x (T − 1) , u (T − 1) , . . . ., ψt0 (x (t0) , u (t0)) . . . ..)) .

We show in general MSOPs with forward separable cost functions do not satisfy

the principle of optimality, and therefore it is not possible to derive necessary and

sufficient optimality conditions analogous to the BE without modification or refor-

mulation. To solve such MSOPs, with forward separable cost functions, we show

that extending the state space by introducing a new state variable, z(t + 1) =

ψt(x(t), u(t), z(t)), an equivalent MSOP with additively separable cost function can

be constructed. The equivalent MSOP with additively separable cost function can

then be solved using classical DP methods.

Solving The Battery Scheduling Problem for Minimizing Consumer Elec-

tricity Costs The battery scheduling problem given in Eq. (1.2) has a cost func-

tion that is non-additively separable and also non-monotonically backward separable.

However, we show in Chapter 4, that this cost function is forward separable. We

then use our proposed state augmentation method combined with classical DP to

solve Opt. (1.2). Our derived controller successfully minimizes residential electric-

ity costs by charging the battery during off-peak hours and discharging the battery

during peak hours in order to minimize both TOU and demand charges.

1.0.2 Part 2: Continuous Time

Engineered systems are becoming increasingly common and autonomous. Such

systems may be designed to operate for months or years without direct human inter-

vention. Thus, in modern societies, there is an increasing need for safety diagnosis

tools that can determine whether or not an autonomous system will enter an unsafe
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region, where the probability of failure is known to be high. In Part 2 of this dis-

sertation, we develop several safety diagnosis tools that can determine the long-term

properties of continuous-time systems described by Ordinary Differential Equations

(ODEs). Specifically, we develop methods to bound reachable sets, regions of at-

traction, and attractor sets. We also derive performance bounds for controllers con-

structed from approximated value functions. In order to do this, we consider OCPs

of Form (1.4).

An SOS Algorithm for Approximately Solving the HJB Equation Analo-

gous to the Bellman Equation (1.5) associated with MSOPs (considered in Part 1),

necessary and sufficient conditions for optimality of OCPs can be expressed as an

equation, called the Hamilton Jacobi Bellman (HJB) Partial Differential Equation

(PDE). Specifically, it can be shown that if a function, V : Rn × [0, T ]→ R, satisfies

the following equation, known as the HJB PDE,

∇tV (x, t) + inf
u∈U

{
c(x, u, t) +∇xV (x, t)Tf(x, u)

}
= 0 for all (x, t) ∈ Rn × (0, T ),

V (x, T ) = g(x) for all x ∈ Rn, (1.7)

then a solution to the OCP (1.4) can be constructed as follows

u∗(t) = k(x∗(t), t),where ẋ∗(t) = f(x∗(t), k(x∗(t), t)),

and k(x, t) ∈ arg inf
u∈U

{
c(x, u, t) +∇xV (x, t)Tf(x, u)

}
. (1.8)

For a given OCP of Form (1.4) a function, V , that satisfies Eq. (1.7) is referred to

as a Value Function (VF) and determines the optimal objective to the OCP (1.4)

initialized at (x0, t0) ∈ Rn × [0, T ].

Eq. (1.8) shows that VFs can be used to solve OCPs. In Chapter 5 we consider

the problem of computing an approximate VF. In order to do this, we consider the
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problem of finding a solution to the HJB PDE (1.7) from a computational perspective

as a feasibility (optimization) problem. As the HJB PDE is nonlinear in V , the set of

functions that satisfy the HJB PDE is non-convex. Therefore the feasibility problem

of finding a solution to the HJB PDE is computationally intractable. To overcome this

intractability, we relax the feasibility problem to the problem of finding a function that

satisfies linear differential inequalities. We then tighten this problem to a sequence

of SOS programming problems, indexed by their degree d ∈ N, each of which yield

a polynomial, Pd. We show the sequence of polynomials {Pd}d∈N converges to the

solution to the HJB PDE as d→∞ with respect to the L1 norm.

Controller Construction From Approximate Value Functions With Perfor-

mance Bounds For a given OCP, if V in Eq. (1.8) is not the true VF of the OCP

then the resulting controller may not be optimal. In Chapter 5 we proposed a compu-

tational method for approximating VFs, however, it is unknown how well a controller

constructed from such an approximated VF will perform. In Chapter 6 we consider

the problem of bounding the distance from optimality of a controller constructed from

some approximate VF (derived from our method proposed in Chapter 5 or any other

method). We show that the sub-optimality in performance of a controller constructed

using a candidate VF is bounded by the “closeness” of the candidate VF and true VF

with respect to some norm. Specifically, we define the sub-optimality in performance

of an input, u, as the difference between the objective function in the OCP (1.4)

evaluated using u and the infimum of the objective function. We then show that the

sub-optimality in performance of a controller constructed according to Eq. (1.8) using

some approximated VF, P , is bounded by C||V − P ||W 1,∞ , where C > 0 and V is a

VF associated with the OCP (1.4).
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Analyzing the Long Term Properties of Autonomous Systems Unlike in

Chapters 5 and 6, in Chapters 7 and 8 we assume that the input, u, is fixed and given;

hence we assume u is absorbed into the vector field, f . Therefore, in Chapters 7 and 8

we consider systems defined by nonlinear autonomous ODEs of the form,

ẋ(t) = f(x(t)) x(0) = x0. (1.9)

We denote the solution map of the ODE (1.9) by φf : Rn × R→ Rn which satisfies

d

dt
φf (x, t) = f(φf (x, t)) for all x ∈ Rn and t ≥ 0,

φf (x, 0) = x for all x ∈ Rn.

In both Chapters 7 and 8 we analyze the long term properties of the solution map to

the ODE (1.9) as t→∞.

Specifically, in Chapter 7 will propose an SOS optimization problem that yields an

inner approximation of the maximal Region of Attraction (ROA) of the ODE given in

Eq. (1.9). For a given equilibrium point, a ROA of a nonlinear Ordinary Differential

Equation (ODE) is defined as a set of initial conditions for which the solution map

of the ODE tends to that equilibrium point with respect to the euclidean norm.

The maximal ROA of an equilibrium point, meanwhile, is defined as the ROA which

contains all other ROAs of that equilibrium point. Without loss of generality in

Chapter 7 we will assume the equilibrium point of the ODE is at the origin, that is

f(0) = 0 (note that a linear change of variables allows for any equilibrium point to

be transformed to the origin). The maximal ROA is then defined as

ROAf := {x ∈ Rn : lim
t→∞
||φf (x, t)||2 = 0}.

The problem of computing sets which accurately approximate the ROA with re-

spect to some set metric plays a central role in the stability analysis of many engi-

neering applications. An inner approximation of the ROA (a set that is certifiably
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contained inside of the ROA) provides a set of initial conditions for which solu-

tions to the ODE converge towards some stable equilibrium point and hence can be

used to rule out non-steady unsafe solution trajectories. For instance, knowledge of

the ROA provides a metric for the susceptibility of the F/A-18 Hornet aircraft ex-

periencing an unsafe out-of-control flight departure phenomenon, called falling leaf

mode Chakraborty et al. (2011a,b).

In Chapter 8 we will propose an SOS optimization problem that yields an ap-

proximation of the minimal attractor set of a given ODE. An attractor set of an

ODE (1.9) is a set with the following properties: 1) It is compact and nonempty. 2)

It is invariant, that is, any solution map initialized in the set will remain in the set

for all time. 3) It is locally attracting, that is, it possesses a neighborhood of initial

conditions for which the solution map converges towards the set.

Attractor sets can be thought of as generalized equilibrium points and hence

provide a generalized notion of stability of nonlinear ODEs. Thus knowledge of

the attractor set of an ODE can be used to certify whether a solution of an ODE

will remain in some compact set or become unbounded at t → ∞. Aside from

providing a generalized notion of stability, attractor sets are used in secure private

communications Cuomo et al. (1993); Zhao et al. (2018), the computation of Unstable

Periodic Orbits (UPOs) Lakshmi et al. (2020), and risk quantification of financial

systems Gao et al. (2018).

Converse Lyapunov Functions for Region of Attraction Approximation

Unfortunately, there is no general analytical expression for the ROA of the nonlinear

ODE. Rather than trying to solve the ODE (for which no general method exists)

and then construct ROA from the solution of the ODE, arguably the most widely

used technique for computing ROAs has been to use Lyapunov‘s second method.
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Lyapunov‘s second method involves searching for a “generalized energy function”,

called a Lyapunov function. A Lyapunov function of an ODE is any function that is

positive everywhere, apart from the origin where it is zero, and is strictly decreasing

along the solution map of the ODE. Specifically, if we can find a function V such

that V (0) = 0 and V (x) > 0 for all x 6= 0, then if ∇V (x)Tf(x) is negative over the

sublevel set {x ∈ Rn : V (x) ≤ a} we have that {x ∈ Rn : V (x) ≤ a} ⊆ ROAf is a

ROA.

The feasibility and accuracy of using Lyapunov‘s second method can be deduced

using converse Lyapunov theory. Given an ODE with a stable equilibrium point,

converse Lyapunov theory seeks to answer the following questions: Under what con-

ditions does there exist a Lyapunov function to certify the stability of the ODE and

furthermore, under what conditions does this Lyapunov function yield the ROA of

the ODE? In this dissertation, we are particularly interested in showing the existence

of polynomial converse Lyapunov functions that enable us to design SOS algorithms

for ROA approximation.

In Vannelli and Vidyasagar (1985) a converse Lyapunov function, called the max-

imal Lyapunov function, was proposed, taking the form,

V (x) =

∫ ∞
0

α (||φf (x, t)||2) dt, (1.10)

where α : R → [0,∞). It was shown that for any given asymptotically stable ODE

there exists a maximal Lyapunov function whose ∞-sublevel set is equal to the re-

gion of attraction of the ODE. However, since by definition any maximal Lyapunov

function is unbounded outside of the region of attraction it cannot be approximated

arbitrarily well (with respect to any norm) by a polynomial over any compact set that

contains points outside of the region of attraction (since polynomials are bounded over

compact sets). Thus, it is not possible to design an SOS-based algorithm that can
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approximate maximal Lyapunov functions arbitrarily well.

In Chapter 7 we propose a new converse Lyapunov function of the form,

Wλ,β(x) :=


1− exp(−λ

∫∞
0
||φf (x, t)||2β2 dt) when x ∈ ROAf

1 otherwise,

(1.11)

where λ > 0 and β ∈ N. We show that for any given locally exponentially stable ODE

the 1-sublevel set of the function Wλ,β is equal to the ROA of the ODE. Moreover, for

sufficiently large λ > 0 and β ∈ N we show that Wλ,β is globally Lipschitz continuous.

Furthermore, we show that for sufficiently large λ > 0 and β ∈ N Wλ,β satisfies the

following PDE,

∇Wλ,β(x)Tf(x) = −λ||x||2β2 (1−Wλ,β(x)) for almost every x ∈ Rn. (1.12)

The problem of computing the ROA of a given ODE is now reduced to the problem

of solving the PDE (1.12).

Previously, in Chapter 5 we consider the problem of finding a solution to the HJB

PDE (1.7) from a computational perspective as a feasibility (optimization) problem.

Similarly, in Chapter 7 we view the problem of approximating the ROA from a com-

putational perspective as a feasibility (optimization) problem that is solved by solving

the PDE (1.12). We approximately solve the PDE (1.12) by relaxing the PDE to a

Partial Differential Inequality (PDI) while minimizing the L1 norm between solutions

to the PDI and Wλ,β. We then tighten this optimization problem to a family of d-

degree SOS optimization problems. We show that the sequence of solutions to each

of our d-degree SOS optimization problems yields a sequence of 1-sublevel sets that

tends to the ROA as d→∞ in the volume metric.

Of course, there is no coincidence between the similarity of the methods proposed

in Chapter 5 and Chapter 7. Converse Lyapunov functions can be thought of as value

functions associated with infinite time horizon OCPs with positive cost functions that
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are zero at the origin. Therefore, each converse Lyapunov function should satisfy an

HJB-“type” PDE which can be solved using a similar method to the SOS-based

method proposed in Chapter 5.

A Lyapunov Type Condition For Minimal Attractor Set Approximation

In Lin et al. (1996) it was shown that A ⊂ Rn is an attractor set of an ODE defined

by f if and only if there exists V ∈ C∞(Rn, [0,∞)) such that

κ1

(
inf
y∈A
||x− y||2

)
≤ V (x) ≤ κ2

(
inf
y∈A
||x− y||2

)
for all x ∈ Rn, (1.13)

∇V (x)Tf(x) ≤ −κ3

(
inf
y∈A
||x− y||2

)
for all x ∈ Rn/A, (1.14)

where κ1 and κ2 are class K∞ functions (where a function k is of class K∞ if k : R→ R

is monotonically increasing, k(0) = 0 and limr→∞ k(r) = ∞) and κ3 : R → (0,∞) is

a continuous positive definite function.

We can show A ⊂ Rn is an attractor set of an ODE by solving an optimiza-

tion (feasibility) problem by finding V satisfying the inequality constraints given in

Eqs. (1.13) and (1.14). However, given an ODE, in general the attractor sets of

the ODE are unknown. In the case when A and V are unknown, the optimization

problem with inequality constraints given in Eqs. (1.13) and (1.14) is nonlinear (in

terms of the decision variable A ⊂ Rn). To overcome this challenge, in Chapter 8, we

propose a new Lyapunov type condition that only involves a single decision variable

V and which can yield an attractor set of a given ODE. Specifically, we show that if

V ∈ C1(Rn,R) satisfies

∇V (x)Tf(x) ≤ −(V (x)− 1) for all x ∈ Ω, (1.15)

{x ∈ Ω : V (x) ≤ 1} ⊆ Ω◦, (1.16)

{x ∈ Ω : V (x) ≤ 1} 6= ∅, (1.17)
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where Ω ⊂ Rn is a compact set, then {x ∈ Ω : V (x) ≤ 1} is an attractor set of the

ODE defined by f .

Unlike the conditions in Eqs. (1.13) and (1.14) the conditions in Eqs. (1.15), (1.16),

and (1.17) only involve one unknown variable V . In Chapter 8 we propose a sequence

of d-degree SOS optimization problems, each being solved by an SOS polynomial, V ,

with minimal 1-sublevel set volume while satisfying Eqs. (1.15), (1.16), and (1.17).

We show, given an ODE defined by f , as d → ∞ the sequence of 1-sublevel sets

constructed from the solutions to our SOS optimization problem converge to the

minimal attractor set of the ODE in the volume metric.

Unfortunately, given an SOS polynomial V (x) = zd(x)TPzd(x) where P > 0,

there is no known convex analytic expression for the volume of the 1-sublevel set

of an SOS polynomial, {x ∈ Rn : V (x) ≤ 1}. Therefore, for implementation, we

propose an alternative sequence of SOS optimization problems with the objective of

maximizing log det(P ), a function known to be convex. Heuristically, maximizing

the determinate of a positive matrix maximizes the eigenvalues of the matrix. Thus,

V (x) = zd(x)TPzd(x) is maximized for each x ∈ Rn, implying that the volume of

1-sublevel set of V is minimized. We show in several numerical examples, including

the Lorenz attractor and Van-der-Poll oscillator, that this heuristic implementation

is able to produce tight approximations of minimal attractor sets associated with

nonlinear ODEs.

Summary of Contribution In this dissertation, we consider both discrete-time

and continuous-time problems. In discrete-time we extend classical DP methods to

handle MSOPs with non-additively separable cost functions, namely, monotonically

backward separable functions and forward separable functions. Our proposed meth-

ods are able to solve MSOPs of practical importance, such as those associated with
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battery scheduling or path planning.

In continuous-time we propose an SOS-based algorithm that approximately solves

the HJB PDE, yielding a VF that can be used to construct a solution to the OCP.

For approximate VFs we derive performance bounds, showing that controllers con-

structed from approximated VFs are bounded in sub-optimality by the Sobolev dis-

tance between the approximated VF and the true VF. Applying the intuition gained

by solving HJB PDEs associated with finite-time horizon OCPs we then propose an

SOS-based algorithm for approximating ROAs of nonlinear ODEs. In order for us to

design such an SOS algorithm, we propose a new converse Lyapunov function that

can be considered as a special case of a VF associated with an infinite-time horizon

OCP. Finally, we propose a new Lyapunov condition that we show is well suited to

the problem of computing optimal outer approximations of minimal attractors.

We note that the work presented in this dissertation is based on the following

papers:

• Chapter 3 is based on“A Generalization of Bellman’s Equation with Application

to Path Planning, Obstacle Avoidance and Invariant Set Estimation,” Jones and

Peet (2021d).

• Chapter 4 is based on “Extensions of the Dynamic Programming Framework:

Battery Scheduling, Demand Charges, and Renewable Integration,” Jones and

Peet (2021c).

• Chapters 5 and 6 are based on “Polynomial Approximation of Value Functions

and Nonlinear Controller Design with Performance Bounds,” Jones and Peet

(2021e).

• Chapter 7 is based on “Converse Lyapunov Functions and Converging Inner

19



Approximations to Maximal Regions of Attraction of Nonlinear Systems,” Jones

and Peet (2021a).

• Chapter 8 is based on “A Converse Sum-of-Squares Lyapunov Function for

Outer Approximation of Minimal Attractor Sets of Nonlinear Systems,” Jones

and Peet (2021b).
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Chapter 2

NOTATION

We could, of course, use any notation we want;

do not laugh at notations; invent them, they are

powerful. In fact,mathematics is, to a large

extent, invention of better notations.

Richard Feynman

MSOP and OCP Notation: MDiscrete
Addative is the class of additively separable MSOPs

(Defn. 3.4). MDiscrete
Backward is the class of naturally backward separable MSOPs (Defn. 3.4).

MDiscrete
F inite is the class of naturally backward separable with finite cardinality state and

input spaces (Defn. 3.7). MDiscrete
Path is the class of MSOPs associated with the path

planning problem appearing in Section 3.5.1. MDiscrete
Forward is the class of naturally for-

ward separable MSOPs (Defn. 4.3). MContinuous
Lip is the class of Lipschitz continuous

OCPs (Defn. 5.2). MContinuous
Poly is the class of polynomial OCPs (Defn. 5.10).

Set Notation: We denote the power set of Rn, the set of all subsets of Rn, as

P (Rn) = {X : X ⊂ Rn}. For two sets A,B ∈ Rn we denote A/B = {x ∈ A : x /∈ B}.

For x ∈ Rn and p ∈ N we denote ||x||p = (
∑n

i=1 x
p
i )

1
p . We denote the minimal distance

between a point, x ∈ Rn, and a set, A ⊂ Rn, by D(x,A) := infy∈A{||x − y||2}. For

η > 0 and a point y ∈ Rn we denote the set Bη(y) = {x ∈ Rn : ||x − y||2 < η}. For

η > 0 and a set A ⊂ Rn we denote the set Bη(A) = ∪x∈ABη(x). For a set X ⊂ Rn we

say x ∈ X is an interior point of X if there exists ε > 0 such that {y ∈ Rn : ||x−y|| <

ε} ⊂ X. We denote the set of all interior points of X by X◦. The point x ∈ X is a
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limit point of X if for all ε > 0 there exists y ∈ {y ∈ Rn/{x} : ||x−y|| < ε} such that

y ∈ X; we denote the set of all limit points of X, called the closure of X, as (X)cl.

Moreover, we denote the boundary of X by ∂X = (X)cl/X◦. For A ⊂ Rn we denote

the indicator function by 1A : Rn → R that is defined as 1A(x) =


1 if x ∈ A

0 otherwise.

For B ⊆ Rn, µ(B) :=
∫
Rn 1B(x)dx is the Lebesgue measure of B. For sets A,B ⊂ Rn,

we denote the volume metric as DV (A,B), where DV (A,B) := µ((A/B) ∪ (B/A)).

We note that DV is a metric (Defn. A.1), as shown in Lem. A.1. Let us denote

bounded subsets of Rn by B := {B ⊂ Rn : µ(B) <∞}. If M is a subspace of a vector

space X we denote equivalence relation ∼M for x, y ∈ X by x ∼M y if x − y ∈ M .

We denote quotient space by X (mod M) := {{y ∈ X : y ∼M x} : x ∈ X}. For an

open set Ω ⊂ Rn and σ > 0 we denote < Ω >σ:= {x ∈ Ω : Bσ(x) ⊂ Ω}. We denote

the set of n× n matrices with strictly positive eigenvalues as S++
n .

Function and Continuity Notation: For a function f : X → Y we denote the im-

age set of the function as Image{f} := {y ∈ Y : there exists x ∈ X such that f(x) =

y}. Let C(Ω,Θ) be the set of continuous functions with domain Ω ⊂ Rn and image

Θ ⊂ Rm. We denote the set of locally and uniformly Lipschitz continuous func-

tions on Θ1 and Θ2, Defn. 5.1, by LocLip(Θ1,Θ2) and Lip(Θ1,Θ2) respectively. For

α ∈ Nn we denote the partial derivative Dαf(x) := Πn
i=1

∂αif

∂x
αi
i

(x) where by convention

if α = [0, .., 0]T we denote Dαf(x) := f(x). We denote the set of i continuously

differentiable functions by Ci(Ω,Θ) := {f ∈ C(Ω,Θ) : Dαf ∈ C(Ω,Θ) for all α ∈

Nn such that
∑n

j=1 αj ≤ i}. For V ∈ C1(Rn,R) we denote ∇V := ( ∂V
∂x1
, ...., ∂V

∂xn
)T

and for V ∈ C1(Rn × R,R) we denote ∇xV := ( ∂V
∂x1
, ...., ∂V

∂xn
)T and ∇tV = ∂V

∂xn+1
. We

denote the essential supremum by ess supx∈X f(x) := inf{a ∈ R : µ({x ∈ X : f(x) >

a}) = 0}. We say k : R→ R is a class K∞ function (used in (8.10)), denoted k ∈ K∞,
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if k : R→ R is monotonically increasing, k(0) = 0, and limr→∞ k(r) =∞.

Sobolev Space Notation: For an open set Ω ⊂ Rn and p ∈ [1,∞) we de-

note the set of p-integrable functions by Lp(Ω,R) := {f : Ω → R measurable :∫
Ω
|f |p < ∞}, in the case p = ∞ we denote L∞(Ω,R) := {f : Ω → R measurable :

ess supx∈Ω |f(x)| < ∞}. For k ∈ N and 1 ≤ p ≤ ∞ we denote the Sobolev space

of functions with weak derivatives (Defn. B.1) by W k,p(Ω,R) := {u ∈ Lp(Ω,R) :

Dαu ∈ Lp(Ω,R) for all |α| ≤ k}. For u ∈ W k,p(Ω,R) we denote the Sobolev norm

||u||Wk,p(Ω,R) :=


(∑

|α|≤k
∫

Ω
(Dαu(x))pdx

) 1
p

if 1 ≤ p <∞∑
|α|≤k ess supx∈Ω{|Dαu(x)|} if p =∞.

In the case k = 0 we

have W 0,p(Ω,R) = Lp(Ω,R) and thus we use the notation || · ||Lp(Ω,R) := || · ||W 0,p(Ω,R).

The σ-mollification of a function V ∈ L1(Ω,R) is denoted by [V ]σ :< Ω >σ→ R and

defined in Eq. (B.2).

Polynomial Notation: We denote the space of polynomials p : Ω→ Θ by P(Ω,Θ)

and polynomials with degree at most d ∈ N by Pd(Ω,Θ). We say p ∈ P2d(Rn,R) is

Sum-of-Squares (SOS) if for k ∈ {1, ...k} ⊂ N there exists pi ∈ Pd(Rn,R) such

that p(x) =
∑k

i=1(pi(x))2. We denote
∑d

SOS to be the set of SOS polynomials of

at most degree d ∈ N and the set of all SOS polynomials as
∑

SOS. We denote

Zd : Rn × R → RNd as the vector of monomials of degree d ∈ N or less, where

Nd :=
(
d+n
d

)
.
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DISCRETE TIME
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Chapter 3

MULTI-STAGE OPTIMIZATION PROBLEMS WITH BACKWARD

SEPARABLE COSTS

In my next life I want to live my life backwards.

You start out dead and get that out of the way.

Then you wake up in an old people’s home

feeling better every day.

Woody Allen

3.1 Background and Motivation

Consider Multi-Stage Optimization Problems (MSOPs) of the following form,

inf

{
J(u(0), ..., u(T − 1), x(0), ..., x(T ))

}
x(t+ 1) = f(x(t), u(t), t) for t = 0, .., T − 1, and x(0) = x0,

x(t) ∈ Xt ⊂ Rn, u(t) ∈ U ⊂ Rm for t = 0, .., T.

Such problems consist of 1) a cost function J : Rm×T×Rn×(T+1) → R, 2) an underlying

discrete-time dynamical system governed by the plant equation f : Rn×Rm×N→ Rn,

3) a state spaceXt ⊂ Rn, 4) an admissible input space U ⊂ Rm, and 5) a terminal time

T > 0. Examples of such optimization problems include: optimal battery scheduling

to minimize consumer electricity bills considered in Jones and Peet (2017); energy-

optimal speed planning for road vehicles considered in Zeng and Wang (2018); optimal

maintenance of manufacturing systems considered in Liu et al. (2019); etc.

MSOPs are members of the class of constrained nonlinear optimization problems.

Such optimization problems over small time horizons can be solved using nonlin-
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ear solvers such as SNOPT, found in Gill et al. (2005). However, arguably the

most commonly used class of methods for solving MSOPs is Dynamic Program-

ming (DP), see Bertsekas (1995). DP methods exploit the structure of MSOPs

to decompose the optimization problem into lower dimensional sub-problems that

can be solved recursively to give the solution to the original higher dimensional

MSOP. Typically, DP is used to solve problems with cost functions of the form

J(u,x) =
∑T−1

t=0 ct(x(t), u(t)) + cT (x(T )). These functions, defined in Definition 3.2,

are called additively separable functions, as they can be additively separated into

sub-functions, each of which only depend on a single time-stage, t ∈ {0, ..., T}. In

the additively separable case it was shown in Bellman (1966) that if we can find a

function F that satisfies Bellman’s Equation,

F (x, T ) = cT (x) for all x ∈ XT

F (x, t) = inf
u∈Γx,t

{
ct(x, u) + F (f(x, u, t), t+ 1)

}
for all x ∈ Xt, t ∈ {0, .., T − 1},

where Γx,t := {u ∈ U : f(x, u, t) ∈ Xt}, then a necessary and sufficient condition for

a feasible input and state sequence, u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )),

to be optimal is

u(t) ∈ arg inf
u∈Γx(t),t

{
ct(x(t), u) + F (f(x(t), u, t), t+ 1)

}
for all t ∈ {0, .., T − 1}.

We consider MSOPs with cost functions of the more general form

J(u,x) = φ0(x(0), u(0), φ1(x(1), u(1), . . . φT (x(T )) . . . )), where maps φt : Xt × U ×

R → R are monotonic in their third argument for t = 0, · · ·T − 1. Such functions

are called monotonically backward separable, defined in Definition 3.3, and shown to

contain the class of additively separable functions in Lemma 3.1. For MSOPs with

monotonically backward separable cost functions we show in Theorem 3.2 that if we
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can find a function V that satisfies

V (x, T ) = φT (x) for all x ∈ XT (3.1)

V (x, t) = inf
u∈Γx,t

{
φt(x, u, V (f(x, u, t), t+ 1))

}
for all x ∈ Xt, t ∈ {0, .., T − 1},

where Γx,t := {u ∈ U : f(x, u, t) ∈ Xt}, then a necessary and sufficient for a feasible

input and state sequence, u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )), to be

optimal is

u(t) ∈ arg inf
u∈Γx(t),t

{
φt (x(t), u, V (f(x(t), u, t), t+ 1))

}
for all t ∈ {0, .., T − 1}.

Equation (3.1) can be thought of as a generalization of Bellman’s Equation; as it is

shown in Corollary 3.2 that in the special case when the cost function is additively

separable Equation (3.1) reduces to Bellman’s Equation. We therefore refer to Equa-

tion (3.1) as the Generalized Bellman’s Equation (GBE). Through several examples

we show a solution, V , to the GBE can be obtained numerically by recursively solving

the GBE backwards in time for each element of Xt, the same way Bellman’s Equation

is solved, thereby extending traditional DP methods to solve a larger class of MSOPs

with non-additively separable cost functions.

By recursively solving the GBE it is possible to synthesize optimal input se-

quences for many important practical problems. In this chapter we consider two

such problems; path planning with obstacle avoidance and maximal invariant sets.

First, we define the path planning problem as the search for a sequence of inputs

that drives a dynamical system to a target set in minimum time while avoiding

obstacles defined by subsets of the state-space. In Section 3.5 we show that such

problems can be formulated as an MSOP with monotonically backward separable

objective, of form J(u,x) = min {inf {t ∈ [0, T ] : x(t) ∈ S} , T}, implying that the

solution to the path planning problem can be found using the solution to the GBE.
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Similarly, in Section 3.6 we show that computation of maximal invariant sets can be

formulated as an MSOP with monotonically backward separable objective of form

J(u,x) = max{max0≤k≤T−1{ck(u(k), x(k))}, cT (x(T ))}.

Path planning with obstacle avoidance has been extensively studied (see the sur-

veys given in Dreyfus (1969), and Gallo and Pallottino (1988)) and has many appli-

cations; including UAV surveillance considered in Xie et al. (2019). In Rippel et al.

(2005) the path planning problem is separated into two separate problems: the “geo-

metric problem”, in which the shortest curve, x̃(t), between the initial set and target

set is calculated, and the “tracking problem”, in which a controller, u(t), is synthe-

sized so that
∑T

t=0 ||x(t) − x̃(t)||22 is minimized, where x(t + 1) = f(x(t), u(t), t) and

|| · ||2 is the Euclidean norm. Separating the path planning problem allows for the use

of efficient algorithms such as A∗-search to solve the “geometric problem” and LQR

control to solve the “tracking problem”, however, there is no guaranteed that this

method will produce the true solution to the original path planning problem. The

same approach is used in Cowlagi and Tsiotras (2011), where it is shown through

numerical examples that a controller closer to optimality can be derived when the

state space is augmented with historic trajectory information. Our approach of using

the GBE to solve the path planning does not separate the problem into the “geo-

metric or “tracking” problem and thus does not require any state augmentation. For

systems described in continuous time (rather than the discrete systems considered

in this chapter) with obstacles that satisfy certain boundary curvature assumptions,

assumptions not made in this chapter, it has been shown in Savkin and Hoy (2013)

that a path planning sliding mode controller can be efficiently computed. Further-

more, this sliding mode controller can be used for effective path planning in unknown

environments, a case not considered in this chapter.

The GBE can also be used in the application of computing the Finite Time Horizon
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Maximal Invariant Set (FTHMIS), defined as the largest set of initial conditions for

a discrete time process such that there exists a feasible input sequence for which the

state of the system never violates a time-varying constraint. Knowledge of this set

can be used to design controllers that ensure the system never violates given safety

constraints. We show that FTHMISs are equivalent to the sublevel set of solutions to

the GBE. To the best of the authors knowledge the problem of computing FTHMISs

has not previously been addressed in the literature. However, a proposed methodology

for computing maximal invariant sets over infinite time horizons can be found in Xue

and Zhan (2018); Esterhuizen et al. (2019); Wang et al. (2019). Similar continuous-

time formulations of this problem can be found in Jones and Peet (2019c,b).

Substantial work on generalizations of Bellman’s Equation for both infinite and

finite time MSOPs can be found in Bertsekas (2018). Our work differs from Bertsekas

(2018) as rather than attempting to generalize the “Bellman’s operator”, as Bertsekas

(2018) does, we consider a wider class of cost functions associated with MSOPs,

introducing monotonically backward separable cost functions, leading to a derivation

of the GBE (3.1). Unlike in Bertsekas (2018), we formalize the link between the

cost function of an MSOP and the GBE (3.1). Other examples in the literature of

MSOPs with non-additively separable cost functions can be found in the pioneering

work of Li and Haimes (1991, 1990b,a); Li (1990). Li considered MSOPs with k-

separable cost functions; functions of the form J(u,x) = H(J1(u,x), ..., Jk(u,x)),

where H : Rk → R is strictly increasing and differentiable, and each of the functions,

Ji, are differentiable monotonically backward separable functions. Li showed that for

problems in this class of MSOP, an equivalent multi-objective optimization problem

with k-separable cost functions can be constructed. The multi-objective optimization

problem can then be analytically solved, using methods relying of the differentiability

of the cost function, to find the optimal input sequence for the MSOP. We do not
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assume, as in Li, that the cost function is differentiable or k-separable and our solution

does not require the solution of a multi-objective optimization problem.

In related work, coherent risk measures, from Shapiro and Ugurlu (2016); Shapiro

(2009); Ruszczyński (2010), result in MSOPs with non-additively separable cost func-

tions of the form J(u,x) = c0(x(0), u(0))+ρ1(c1(x(1), u(1))+ρ2(c2(x(2), u(2))+ ....+

ρT (cT (x(T )))....)). Such MSOPs are solved recursively using a modified Bellman’s

Equation. Coherent risk measure functions are a special case of monotonically back-

ward separable functions; in this case our GBE reduces to the previously proposed

modified Bellman’s equation.

3.2 Monotonically Backward Separable Functions

In this section we formally define the general class of optimization problems called

Multi-Stage Optimization Problems (MSOPs) we are concerned with. We show this

class contains the class of problems that classical Dynamic Programming (DP) theory

is able to solve; MSOPs with additively separable cost functions Eq. (3.3). We then

propose a more general class of cost functions called monotonically backward sepa-

rable functions, Eq. (3.4), that contains the class of additively separable functions.

Using this framework we are then able to derive necessary and sufficient conditions

for an input sequence to solve an MSOP with monotonically backward separable cost

function. Such conditions are shown to reduce to the classical conditions proposed

by Bellman (1966) in the special case when the cost function is additively separable.

Definition 3.1. For a given initial condition x0 ∈ Rn, for every tuple of the form

{J, f, {Xt}0≤t≤T , U, T}, where J : Rm×T × Rn×(T+1) → R, f : Rn × Rm × N → Rn,
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Xt ⊂ Rn, U ⊂ Rm, and T ∈ N, we associate a MSOP of the following form

(u∗,x∗)∈ arg inf
u,x

J(u,x) subject to: (3.2)

x(t+ 1) = f(x(t), u(t), t) for t = 0, .., T − 1

x(0) = x0, x(t) ∈ Xt ⊂ Rn for t = 0, .., T

u(t) ∈ U ⊂ Rm for t = 0, .., T − 1

u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T ))

For a given tuple {J, f, {Xt}0≤t≤T , U, T}, the function J represents the cost func-

tion, f represents the plant dynamics, Xt represents the set of admissible states at

time step t ∈ {0, ..., T}, and U represents the set of admissible inputs.

Classical DP theory is concerned with the special case when the cost function,

J : Rm×T × Rn×(T+1) → R, has an additively separable structure defined as follows.

Definition 3.2. The function J : UT×ΠT
t=0Xt → R is said to be additively separa-

ble if there exists functions, cT (x) : XT → R, and ct : Xt×U → R for t = 0, · · ·T −1

such that,

J(u,x) =
T−1∑
t=0

ct(x(t), u(t)) + cT (x(T )), (3.3)

where u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )).

We consider the class of “monotonic backward separable” cost functions defined

next. The definition of this class of functions uses the image set of a function.

Specifically, for a function f : X → Y we denote the image set of the function

as Image{f} := {y ∈ Y : there exists x ∈ X such that f(x) = y}.

Definition 3.3. The function J : UT ×ΠT
t=0Xt → R, where U ⊂ Rm and Xt ⊂ Rn is

said to be monotonically backward separable if there exists representation maps,
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φT : XT → R, and φt : Xt × U × Image{φt+1} → R for t = 0, · · ·T − 1 such that the

following holds:

1. The function J can be expressed as the composition of representation maps,

{φt}Tt=0, ordered backwards in time. That is J satisfies

J(u,x) = φ0(x(0), u(0), φ1(x(1), u(1), . . . φT (x(T )) . . . )), (3.4)

where u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )).

2. Each representation map, φt, is monotonic in its third argument. That is if

z, w ∈ Image{φt+1} are such that z ≥ w then

φt(x, u, z) ≥ φt(x, u, w) for all (x, u) ∈ Xt × U (3.5)

Moreover if J also satisfies the following properties than we say J is naturally

monotonically backward separable:

1. Each representation map, φt, is upper semi-continuous in its third argument.

That is for any t ∈ {0, .., T − 1}, x ∈ Xt, u ∈ U and any monotonically

decreasing sequence {zn}n∈N ⊂ Image{φt+1}, such that zn+1 ≤ zn for all n ∈ N,

then

lim
n→∞

φt(x, u, zn) = φt(x, u, lim
n→∞

zn). (3.6)

2. Each representation map, φt, satisfies the following boundedness property. For

any t ∈ {0, ..., T−1} and (x, u, z) ∈ Xt×U×Image{φt+1} we have |φt(x, u, z)| <

∞ and for all x ∈ XT we have |φT (x)| <∞; that is for each t ∈ {0, ..., T} there

exists R > 0 such that

Image{φt} ⊂ {x ∈ R : |x| < R}. (3.7)
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We show in Sec. 3.3 that monotonically backward separable functions share a

deep connection with Bellman’s Principle of Optimality (Defn. 3.6). However, we

also consider naturally monotonically backward separable functions as the added

semi-continuity and boundedness properties are used in the derivation of necessary

and sufficient conditions for an input sequence to solve an MSOP with naturally

monotonically backward separable cost function (Theorem 3.2). These necessary

and sufficient conditions are later used in Section 3.4 to design efficient numerical

algorithms for solving MSOPs with naturally monotonically backward separable cost

functions.

Before proceeding we next introduce notation for the class of MSOPs with natu-

rally monotonically backward separable cost functions and additively separable cost

functions. We will later in Lemma 3.1 show that the class MSOPs with naturally

monotonically backward separable cost functions contains the class of MSOPs with

additively separable cost functions.

Definition 3.4. We say the five tuple {J, f, {Xt}0≤t≤T , U, T} is a naturally back-

ward separable MSOP or {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward if J is a naturally

monotonically backward separable function, f : Rn × Rm × N → Rn, Xt ⊂ Rn,

U ⊂ Rm, and T ∈ N. Moreover, if instead J is an additively separable function

with associated cost functions, {ct}Tt=0, that are bounded over their domains, we say

that the five tuple {J, f, {Xt}0≤t≤T , U, T} is an additively separable MSOP or

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Additive.

We next show the class of backward separable MSOPs contains the class of addi-

tively separable MSOPs.

Lemma 3.1. MDiscrete
Additive ⊆MDiscrete

Backward.

Proof. To prove Lemma 3.1 we must show every additively separable function with
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bounded cost functions is a naturally monotonically backward separable function.

Given an additively separable function, J , we know there exists functions {ct}0≤t≤T

such that Eq. (3.3) holds. To prove J is monotonically backward separable we con-

struct representation maps {φt}Tt=0 such that Eqs. (3.4) and (3.5) hold. We define

these representation maps as follows:

φi(x, u, z) = ci(x, u) + z for i = 0, · · · , T − 1 (3.8)

φT (x,w) = cT (x).

Now, ∂φt(x,y,z)
∂z

= 1 > 0 for all t ∈ {0, ...., T − 1}, x ∈ Xt and u ∈ U , implying the

monotonicity property in Eq. (3.5).

Now assuming the functions {ct}Tt=0 are bounded over Xt × U it follows trivially

that the representation maps {φt}Tt=0, given in Eq. (3.8), satisfy the semi-continuity

and boundedness properties given in Eqs. (3.6) and (3.7). Thus J is naturally mono-

tonically backward separable function.

Lemma 3.1 showed MDiscrete
Additive ⊆ MDiscrete

Backward. We next strengthen this result by

showing MDiscrete
Additive is a strict subset of MDiscrete

Backward, that is MDiscrete
Additive ⊂MDiscrete

Backward.

Corollary 3.1. MDiscrete
Additive ⊂MDiscrete

Backward.

Proof. By Lemma 3.1 we have that MDiscrete
Additive ⊆ MDiscrete

Backward. Therefore, to show

MDiscrete
Additive ⊂MDiscrete

Backward we must show there exists a naturally monotonically backward

separable function (Defn. 3.3) that is not additively separable. Consider the function

J : [0, 1]2 → R defined by J(x(0), x(1)) = x(0)x(1). Then J is clearly a naturally

monotonically backward separable function since it can be written in the Form (3.4)

using the representation maps,

φ0(x, z) = xz and φ1(x) = x, (3.9)
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it satisfies Eq. (3.6) since φ0 and φ1 are both clearly continuous, and it satisfies

Eq. (3.7) since Image{φ0} ⊆ {x ∈ R : |x| ≤ 1}.

Now, for contradiction suppose J is an additively separable function (Defn. 3.2).

Then there exists c0 : [0, 1] → R and c1 : [0, 1] → R such that J(x(1), x(2)) =

c0(x(0)) + c1(x(1)) and therefore

x(1)x(2) = c0(x(0)) + c1(x(1)) for all x(1), x(2) ∈ [0, 1]2. (3.10)

Hence, by Eq. (3.10) it now follows

0 = c0(0) + c1(0) by subsituting x(0) = 0 and x(1) = 0. (3.11)

0 = c0(x) + c1(0) by subsituting x(0) = x ∈ [0, 1] and x(1) = 0.

By Eq. (3.11) we get that c0(x) = c0(0) for all x ∈ [0, 1]. By a similar argument we

get c1(x) = c1(0) for all x ∈ [0, 1]. Now, by substituting (x(1), x(2)) = (0.5, 0.5) into

Eq. (3.10) we get 0.25 = c0(0)+c1(0). Alternatively, substituting (x(1), x(2)) = (1, 1)

into Eq. (3.10) we get 1 = c0(0) + c1(0). Thus it follows 0.25 = c0(0) + c1(0) = 1,

providing a contradiction. We conclude that J is monotonically backward separable

but not additively separable.

Later, in Section 3.2.3, we will provide several more examples of monotonically

backward separable functions (Defn. 3.3), different from J(x(1), x(2)) = x(1)x(2) in

Corollary 3.1, that are not necessarily additively separable (Defn. 3.2).

3.2.1 Interchanging the Order of Composition and Infimum in Monotonically

Backward Separable Functions

As we will show in Lemma 3.2, naturally monotonically backward separable func-

tions have the special property that the order of an infimum and composition of

representation maps can be interchanged. To show this we must use the monotonic

convergence theorem.
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Theorem 3.1 (Monotone Convergence Theorem). Suppose {zn}n∈N ⊂ R is a bounded

sequence that is monotonically decreasing, zn+1 ≤ zn for all n ∈ N. Then limn→∞ zn =

infn∈N zn.

Before proving in Lemma 3.2 we introduce notation for the set of feasible controls.

Given a tuple {J, f, {Xt}0≤t≤T , U, T} for x ∈ Xt and s ∈ {0, ..., T − 1} we denote

Γx,s := {u ∈ U : f(x, u, s) ∈ Xs+1}.

Moreover we say

(u(s), ..., u(T − 1)) ∈ Γx0,[s,T−1] (3.12)

if u(t) ∈ Γx(t),t for all t ∈ {s, ..., T−1}, where x(s) = x0 and x(k+1) = f(x(k), u(k), k)

for k ∈ {s, ..., T − 1}.

Lemma 3.2 (Interchanging the order of composition and infimum). Consider an

MSOP of Form (3.2) associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward. Suppose

Γx,t 6= ∅ for all (x, t) ∈ Xt×{0, ..., T −1}. Then for k ∈ {0, ..., T −1} and any x ∈ Xk

we have

inf
u(k)∈Γx,k

{
φk

(
x(k), u(k), inf

(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

{
φk+1(

x(k + 1), u(k + 1), φk+2(x(k + 2), u(k + 2), ...φT (x(T ))...))

})}
= inf

(u(k),...,u(T−1))∈Γx,[k,T−1]

{
φk(x(k), u(k), φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...))

}
,

(3.13)

where {φt}Tt=0 are the representation maps of J : UT ×ΠT
t=0Xt → R, and x(t+ 1) =

f(x(t), u(t), t) for t ∈ {k, ..., T − 1} and x(k) = x.

Proof. To show Eq. (3.13) we will split the proof into two parts. In Part 1 we will

show the left hand side of Eq. (3.13) is less than or equal to the right hand side of
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Eq. (3.13). In Part 2 we will show the right hand side of Eq. (3.13) is less than or

equal to the left hand side of Eq. (3.13).

Part 1 of proof: By the definition of the infimum it follows for all y ∈ Xk+1

that

inf
(u(k+1),...,u(T−1))∈Γy,[k+1,T−1]

φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...) (3.14)

≤ φk+1(x̃(k + 1), ũ(k + 1), ...φT (x̃(T ))...),

for any (ũ(k + 1), ..., ũ(T − 1)) ∈ Γx(k+1),[k+1,T−1], where x̃(t + 1) = f(x̃(t), ũ(t), t),

x(t+ 1) = f(x(t), u(t), t) for t ∈ {k + 1, ...T − 1}, and x(k + 1) = x̃(k + 1) = y.

Since φk is monotonic in its third argument (Eq. (3.5)) it follows from Eq. (3.14)

that for any (x, u) ∈ Xk × Γx,k that

φk(x(k), u(k), inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

{φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...)}

≤ φk(x(k), u(k), φk+1(x̃(k + 1), ũ(k + 1), ...φT (x̃(T ))...)), (3.15)

for any (ũ(k + 1), ..., ũ(T − 1)) ∈ Γx(k+1),[k+1,T−1], where x̃(t + 1) = f(x̃(t), ũ(t), t),

x(t+ 1) = f(x(t), u(t), t) for t ∈ {k, ...T − 1}, x(k) = x̃(k) = x, and u(k) = u.

Now, since Eq. (3.15) holds for any u ∈ Γx,k and (ũ(k + 1), ..., ũ(T − 1)) ∈

Γx(k+1),[k+1,T−1] we are able to take the infimum over these in Eq. (3.15), deducing the

left hand side of Eq. (3.13) is less or than or equal to its right hand side.

Part 2 of proof: Let us fix (x, u) ∈ Xk × Γx(k),k. Since Γx,t 6= ∅ for all (x, t) ∈

Xt × {0, ..., T − 1} it follows from the definition of the infimum for all n ∈ N there

exists (un(k + 1), ..., un(T − 1)) ∈ Γx(k+1),[k+1,T−1] such that

inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...)

≤ φk+1(xn(k + 1), un(k + 1), ...φT (xn(T ))...) (3.16)

≤ inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...) +
1

n
,
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where xn(t+ 1) = f(xn(t), un(t), t) for t ∈ {k + 1, ..., T − 1}, and

xn(k + 1) = x(k + 1) = f(x, u, k).

Now, let us denote an := φk+1(xn(k + 1), un(k + 1), ...φT (xn(T ))...).

It follows from Eq. (3.16) that,

lim
n→∞

an = inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...),

and

an ≥ inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...) for all n ∈ N.

Since {an}n∈N converges to some limit from above there exists a monotonically de-

creasing subsequence {bn}n∈N ⊆ {an}n∈N such that bn+1 ≤ bn for n ∈ N. Using

{bn}n∈N we now define

zn := φk(x, u, bn).

Since φk is monotonic in its third argument (Eq. (3.5)) and bn+1 ≤ bn it follows

zn+1 = φk(x, u, bn+1) ≤ φk(x, u, bn) ≤ zn. Hence {zn}n∈N is a monotonically de-

creasing sequence. Moreover, since φk has the property that it is a bounded over

Xk × U × Image{φk+1} (Eq. (3.7)) it follows that {zn}n∈N is a bounded sequence.

Now by the monotone convergence theorem (Theorem 3.1) we have that infn∈N zn =

limn→∞ zn.

It now follows since φk is upper semi-continuous (Eq. (3.6)) in its third argument
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that

inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k,T−1]

{φk(x, u, φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...))} (3.17)

≤ inf
n∈N

φk(x, u, φk+1(xn(k + 1), un(k + 1), ...φT (xn(T ))...))

≤ inf
n∈N

zn = lim
n→∞

zn

= lim
n→∞

φk(x, u, bn) = φk(x, u, lim
n→∞

bn) = φk(x, u, lim
n→∞

an)

= φk(x, u, inf
(u(k+1),...,u(T−1))∈Γx(k+1),[k+1,T−1]

{φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...)}.

Since Eq. (3.17) holds for any arbitrarily selected (x, u) ∈ Xk × Γx,k we are able to

take the infimum with respect to u ∈ Γx,k, showing the right hand side of Eq. (3.13)

is less than or equal to its left hand side.

In Part 1 of the proof we have shown that the left hand side of Eq. (3.13) is less

than or equal to the right hand side of Eq. (3.13). In Part 2 of the proof we have

shown that the right hand side of Eq. (3.13) is less than or equal to the left hand side

of Eq. (3.13). Putting these two parts together we deduce the left hand side must

equal the right hand side, therefore completing the proof and showing Eq. (3.13)

holds.

3.2.2 A Generalization of Bellman’s Equation

Additively separable MSOPs, {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Additive, can be solved

recursively using Bellman’s Equation, shown in Bellman (1966). In this section we

show that a similar approach can be used to solve backward separable MSOPs,

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward.

We next define conditions under which a function, V , is said to be a value function

for an associated MSOP.

Definition 3.5. Consider the following backward separable MSOP,
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{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward, where J : Rm×T × Rn×(T+1) → R has represen-

tation functions {φt}0≤t≤T . We say the function V : Rn × [0, T ] → R is a value

function of the MSOP {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward if for all x ∈ XT

V (x, T ) = φT (x), (3.18)

and for all x ∈ Xt and t ∈ {0, ..., T − 1}

V (x, t) = inf
u(t)∈Γx,t,....,u(T−1)∈Γx(T−1),T−1

{
(3.19)

φt(x(t), u(t), φt+1(x(t+ 1), u(t+ 1), ...φT (x(T ))...))

}
,

where x(t) = x and x(k + 1) = f(x(k), u(k), k) for k ∈ {t, ..., T − 1}.

We note that the value function has the special property that V (x0, 0) = J∗, where

J∗ is the minimum value of the cost function of the MSOP (3.2). In the special case

when J is an additively separable function the value function reduces to the optimal

cost-to-go function.

Proposition 3.1 (Generalized Bellman’s Equation (GBE)). Consider an MSOP of

Form (3.2) associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward. Suppose {φt}Tt=0 are

the representation maps of J : UT × ΠT
t=0Xt → R (Defn. 3.3) and Γx,t 6= ∅ for all

(x, t) ∈ Xt × {0, ..., T − 1}. Then if F : Rn × [0, T ]→ R satisfies

F (x, T ) = φT (x) for all x ∈ XT and (3.20)

F (x, t) = inf
u∈Γx,t

{
φt(x, u, F (f(x, u, t), t+ 1))

}
for all x ∈ Xt, t ∈ {0, .., T − 1},

then F is a value function (Defn. 3.5) of the backward separable MSOP

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward.

Proof. Suppose F satisfies Eq. (3.20). To show F is a value function of the backward

separable MSOP {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward we must show it satisfies Equa-

tions (3.18) and (3.19). We prove this using backward induction in the time variable
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of F . Clearly F satisfies Eq. (3.18) for k = T . Now, for our induction hypothesis, let

us assume for some k ∈ {0, ..., T − 1} that F satisfies Eq. (3.19) at time-stage k + 1

for all x ∈ Xk+1. We will now show that the induction hypothesis implies F must

also satisfy Eq. (3.19) at time-stage k for all x ∈ Xk. Letting x ∈ Xk we have

F (x, k) = inf
u∈Γx,k

{
φk(x, u, F (f(x, u, k), k + 1))

}
= inf

u∈Γx,k

{
φk

(
x, u, inf

u(k+1)∈Γx(k+1),k+1,....,u(T−1)∈Γx(T−1),T−1

{
φk+1(

x(k + 1), u(k + 1), φk+2(x(k + 2), u(k + 2), ...φT (x(T ))...))

})}
= inf
u(k)∈Γx,k,....,u(T−1)∈Γx(T−1),T−1

{
φk(x(k), u(k), φk+1(x(k + 1), u(k + 1), ...φT (x(T ))...))

}
,

where x(k) = x and x(t+ 1) = f(x(t), u(t), t) for t ∈ {k, ..., T − 1}. The first equal-

ity follows as F satisfies Eq. (3.20); the second equality follows from the induction

hypothesis; the third equality follows by Lemma 3.2.

Therefore, by backward induction, we conclude F satisfies Eqs. (3.18) and (3.19)

and hence is a value function for the MSOP associated with the tuple

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward.

We next propose sufficient conditions showing an input sequence is optimal if it

recursively minimizes the right hand side of the GBE (3.20). Later in Theorem 3.2

we propose necessary and sufficient conditions involving the GBE (3.20).

Proposition 3.2 (Sufficient conditions for optimality). Consider an MSOP of

Form (3.2) associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward. Suppose {φt}Tt=0

are the representation maps of J : UT × ΠT
t=0Xt → R (Defn. 3.3), Γx,t 6= ∅ for all

(x, t) ∈ Xt × {0, ..., T − 1}, V : Rn × [0, T ] → R satisfies the GBE (3.20), and the

state sequence x∗ = (x∗(0), ..., x∗(T )) and input sequence u∗ = (u∗(0), ..., u∗(T − 1))
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satisfy

u∗(k) ∈ arg inf
u∈Γx∗(k),k

{
φt(x

∗(k), u, V (f(x∗(k), u, k), k + 1))

}
for k ∈ {0, ..., T − 1}.

(3.21)

x∗(0) = x0, x∗(k + 1) = f(x∗(k), u∗(k), k) for k ∈ {0, ..., T − 1}. (3.22)

Then (u∗,x∗) solve the MSOP given in Eq. (3.2), associated with the tuple

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward.

Proof. Suppose (u∗,x∗) satisfy Eqs. (3.21) and (3.22). It follows the pair (u∗,x∗) is a

feasible solution for the MSOP {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward since Eq. (3.21)

implies u∗(k) ∈ Γx∗(k),k, thus u∗(k) ∈ U and, using Eq. (3.22),

x∗(k + 1) = f(x∗(k), u∗(k), k) ∈ Xk+1 for all k ∈ {0, ..., T − 1}.

By Eq. (3.21) it follows that

inf
u∈Γx∗(k),k

{
φk(x

∗(k), u, V (f(x∗(k), u, k), k + 1))

}
(3.23)

= φk(x
∗(k), u∗(k), V (f(x∗(k), u∗(k), k), k + 1)) for all k ∈ {0, ..., T − 1}.
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We will now show Eq. (3.23) implies (u∗,x∗) solve the MSOP.

inf
u∈Γx0,[0,T−1]

J(u,x) = V (x0, 0)

= inf
u∈Γx∗(0),0

{
φ0(x∗(0), u, V (f(x∗(0), u, 0), 1))

}
= φ0(x∗(0), u∗(0), V (x∗(1), 1))

= φ0

(
x∗(0), u∗(0), inf

u∈Γx∗(1),1

{
φ1(x∗(1), u, V (f(x∗(1), u, 1), 2))

})
...

= φ0

(
x∗(0), u∗(0), ..., φk

(
x∗(k), u∗(k),

φk+1

(
x∗(k + 1), u∗(k + 1), ....φT (x∗(T ))

)
...

)
...

)
= J(u∗,x∗),

where the first equality follows as it was shown in Prop. 3.1 that V is a value function

of the MSOP, the second equality follows since V satisfies the GBE (3.20) and using

x∗(0) = x0, the third equality follows by Eq. (3.23), the fourth inequality follows

again using the GBE (3.20), and the fifth inequality follows by recursively using the

GBE (3.20) together with Eq. (3.23). Thus, if (u∗,x∗) satisfies Eqs. (3.22) and (3.21)

then (u∗,x∗) solves the MSOP {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward.

Consider an MSOP associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward. As we

will show next, if the representation maps {φt}Tt=0, associated with J are strictly

monotonic (Eq. (3.24)) then Eqs. (3.21) and (3.22) of Prop. 3.2 become sufficient

and necessary for optimality. In Sec. 3.2.3 we will give several examples of naturally

monotonically backward functions with associated strictly monotonic representation

maps.

Theorem 3.2 (Necessary and sufficient conditions for optimality). Consider an

MSOP of Form (3.2) associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward. Suppose
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{φt}Tt=0 are the representation maps of J : UT×ΠT
t=0Xt → R (Defn. 3.3), and Γx,t 6= ∅

for all (x, t) ∈ Xt×{0, ..., T − 1}. Furthermore, suppose the representation maps are

strictly monotonic in their third argument. That is if z, w ∈ Image{φt+1} are such

that z > w then

φt(x, u, z) > φt(x, u, w) for all (x, u) ∈ Xt × U. (3.24)

Then (u∗,x∗) solves the MSOP if and only if (u∗,x∗) satisfies Eqs. (3.21) and (3.22).

Proof. If (u∗,x∗) satisfies Eqs. (3.21) and (3.22) then Prop. 3.2 shows (u∗,x∗) solves

the MSOP associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward.

Now assume the representation maps {φt}Tt=0 are strictly monotonic in their third

argument (Eq. (3.24)) and (u∗,x∗) solves the MSOP associated with the tuple

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward. As we have assumed (u∗,x∗) is a solution to

the MSOP, it follows that (u∗,x∗) is feasible and thus Eq. (3.22) is trivially satisfied.

To prove Eq. (3.21) is also satisfied let us suppose for contradiction the negation of

Eq. (3.21), that there exists k ∈ {0, ..., T − 1} such that

u∗(k) /∈ arg inf
u∈Γx∗(k),k

{
φt(x

∗(k), u, V (f(x∗(k), u, k), k + 1))

}
,

where V : Rn × [0, T ]→ R satisfies the GBE (3.20), and hence it follows

inf
u∈Γx,t

{
φk(x

∗(k), u, V (f(x∗(k), u, k), k + 1))

}
(3.25)

< φk(x
∗(k), u∗(k), V (f(x∗(k), u∗(k), k), k + 1)).
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Using Eq. (3.25) we have that,

J(u∗,x∗) = inf
u∈Γx0,[0,T−1]

J((u(0), .., u(T − 1)), (x(0), ..., x(T ))) (3.26)

≤ inf
w∈Γx∗(k),[k,T−1]

J((u∗(0), .., u∗(k − 1), w(k), .., w(T − 1)),

(x∗(0), ..., x∗(k), z(k + 1), ..., z(T )))

= φ0

(
x∗(0), u∗(0), ..., inf

w(k)∈Γx∗(k),k

{
φk(x

∗(k), w(k),

inf
w∈Γf(x∗(k),w(k),k),[k+1,T−1]

φk+1(z(k + 1), w(k + 1), ....φT (z(T ))...)

}
...

)
= φ0

(
x∗(0), u∗(0), ..., inf

w(k)∈Γx∗(k),k

{
φk(x

∗(k), w(k), V (f(x∗(k), w(k), k), k + 1))

}
, ...

)
< φ0(x∗(0), u∗(0), ..., φk(x

∗(k), u∗(k), V (f(x∗(k), u∗(k), k), k + 1)), .., )

= φ0

(
x∗(0), u∗(0), ..., φk

(
x∗(k), u∗(k), inf

w∈Γf(x∗(k),w(k),k),[k+1,T−1]{
φk+1(z(k + 1), w(k + 1), ...φT (z(T )))...)

})
...

)
≤ φ0

(
x∗(0), u∗(0), ..., φk

(
x∗(k), u∗(k),

φk+1

(
x∗(k + 1), u∗(k + 1), ....φT (x∗(T ))

)
...

)
...

)
= J(u∗,x∗).

Where the first equality in Eq. (3.26) follows as the pair (u∗,x∗) is assumed to solve

the MSOP. The first inequality in Eq. (3.26) follows by taking the infimum only over

the input and state sequences from time stage k + 1 onwards and fixing the first

k input and state sequences as (u∗(0), .., u∗(k − 1)) and (x∗(0), ..., x∗(k)) (which are

known to be feasible as the pair (u∗,x∗) is assumed to solve the MSOP). The second

equality in Eq. (3.26) follows by Lemma 3.2. The third equality follows by Prop. 3.1

that shows V is the value function. The second inequality in Eq. (3.26) follows from

Eq. (3.25) and using the assumed strict monotonic property of the representation

maps (Eq. (3.24)). The fourth equality in Eq. (3.26) follows using Prop. 3.1, that
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shows V is the value function. The third inequality in Eq. (3.26) follows by fixing the

decision variables of the infimum to (u∗(k), ..., u∗(T − 1)) and (x∗(k + 1), ..., x∗(T ))

(which are known to be feasible as the pair (u∗,x∗) is assumed to solve the MSOP)

and using monotonic property of the representation maps (Eq. (3.5)).

Eq. (3.26) therefore provides a contradiction, that J(u∗,x∗) < J(u∗,x∗); showing

if (u∗,x∗) solves the MSOP then Eqs. (3.22) and (3.21) must hold.

In the next corollary we show that when the cost function, J , is additively sepa-

rable, the GBE (3.20) reduces to Bellman’s Equation (3.27); thus showing Bellman’s

Equation is an implication of the GBE. Therefore we have generalized the neces-

sary and sufficient conditions for optimality, encapsulated in Bellman’s Equation, to

the GBE that provides such optimality conditions for a larger class of MSOPs with

monotonically backward separable cost functions; that no longer need be additively

separable.

Corollary 3.2 (Bellman’s Equation). Consider an MSOP of Form (3.2) associated

with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Addative. Suppose the cost functions, {ct}Tt=0, asso-

ciated with J : UT × ΠT
t=0Xt → R (Defn. 3.2), are bounded over Xt × U . Then if

F : Rn × [0, T ]→ R satisfies

F (x, T ) = cT (x) for all x ∈ XT , (3.27)

F (x, t) = inf
u∈Γx,t

{
ct(x, u) + F (f(x, u, t), t+ 1)

}
for all x ∈ Xt, t ∈ {0, .., T − 1},

then F is a value function (Defn. 3.5) for the MSOP associated with the tuple

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Addative.

Moreover, if Γx,t 6= ∅ for all (x, t) ∈ Xt × {0, ..., T} then x∗ = (x∗(0), ..., x∗(T ))

46



and u∗ = (u∗(0), ..., u∗(T −1)) solve the MSOP if and only if the following is satisfied

u∗(k) ∈ arg inf
u∈Γx∗(k),k

{ck(x∗(k), u) + F (f(x∗(k), u, k), k + 1)}, (3.28)

x∗(0) = x0, x∗(k + 1) = f(x∗(k), u∗(k), k) for k ∈ {0, ..., T − 1}. (3.29)

Proof. By Lemma 3.1 it follows J is naturally monotonically backward separable

and can be written in Form (3.4) using the representation maps given in Eq. (3.8).

Substituting the representation maps in Eq. (3.8) into the GBE (3.20), we obtain

Bellman’s Equation (3.27). Prop. 3.1 then shows F is a value function for the MSOP,

associated with the tuple {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Addative.

Moreover as the representation maps in Eq. (3.8) are clearly strictly monotonic

in their third argument (Eq. (3.24)) it follows by Theorem 3.2 that (x∗,u∗) solve the

MSOP if and only if (x∗,u∗) satisfy Eqs. (3.28) and (3.29).

3.2.3 Examples: Backward Separable Functions

In Subsection 3.2.2, we have shown that MSOPs with cost functions that are nat-

urally monotonically backward separable (Defn. 3.3) can be solved efficiently using

the GBE in Eq. (3.20). We now give examples of non-additively separable, yet mono-

tonically backward separable cost functions which may be of significant interest. We

note that this is not a complete list of all monotonically backward separable func-

tions. Currently little is known about size and structure of the set of all monotonically

backward separable functions.

The first function we consider is the point-wise maximum function. This function

occurs in MSOPs when demand charges are present, see Chapter 4 and Jones and

Peet (2021c), and in maximal invariant set estimation, see Xue and Zhan (2018).

Example 3.1 (Point wise maximum function). Suppose J : UT × ΠT
i=0Xt → R is
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of the form

J(u,x) = max

{
max

0≤k≤T−1
{dk(x(k), u(k))}, dT (x(T ))

}
,

where u = (u(0), ..., u(T−1)), x = (x(0), ..., x(T )), U ⊂ Rm and Xt ⊂ Rn are compact

sets, dk : Xk×U → R for 0 ≤ k ≤ T−1 and dT : XT → R. Then J is a monotonically

backward separable function. Moreover, if {dt}Tt=0 are bounded functions, then J is

naturally monotonically backward separable.

Proof. We can write J in Form (3.4) using the representation functions

φT (x) = dT (x), φi(x, u, z) = max{di(x, u), z} for all i ∈ {0, .., T − 1}. (3.30)

The monotonicity property in (3.5) follows since if y ≥ z then for all

i ∈ {0, .., T − 1} we have that

φi(x, u, y) = max{di(x, u), y} ≥ max{di(x, u), z} = φi(x, u, z),

where the above inequality follows by separately considering the cases

di(x, u) ≥ y and di(x, u) < y.

Assuming {dt}Tt=0 are bounded functions the boundedness property, given in

Eq. (3.7), is clearly satisfied by the representation maps given in Eq. (3.30) by induc-

tion on i ∈ {0, ..., T − 1}. The semi-continuity property (Eq. (3.6)) follow since the

point-wise max function, ie f(x) = max1≤i≤n{xi}, is Lipschitz continuous and hence

upper semi-continuous.

In the next example we consider multiplicative costs. A special case of this cost

function, of the form J(u,x) = Ew[exp(
∑T−1

t=0 ct(x(t), u(t), w(t))+ cT (x(T ), w(t)))] :=∫
exp(

∑T−1
t=0 ct(x(t), u(t), w(t)) + cT (x(T ), w(t)))p(w)dw, where p(w) is the probabil-

ity density function of w = (w(0), ..., w(T )), has previously appeared in Jacobson

(1973) and Glover and Doyle (1988).
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Example 3.2 (Stochastic multiplicative functions). Suppose J : UT × ΠT
i=0Xt → R

is of the form

J(u,x) = Ew[cT (x(T ), w(T ))ΠT−1
t=0 ct(x(t), u(t), w(t))]

:=

∫
I0×..IT

cT (x(T ), w(T ))ΠT−1
t=0 ct(x(t), u(t), w(t))

pT (x(T ), w(T ))ΠT−1
t=0 pt(x(t), u(t), w(t))dw(0)...dw(T ),

where u = (u(0), ..., u(T − 1)), x = (x(0), ..., x(T )), w = (w(0), ..., w(T )), U ⊂ Rm

and Xt ⊂ Rn are compact sets, It ⊂ Rk, ct : Xt×U × It → R+ for 0 ≤ t ≤ T −1, cT :

XT×IT → R, and pt : Xt×U×It → R+, pT : XT×IT → R satisfy
∫
It
pt(x, u, w)dw = 1

and
∫
IT
pT (x,w)dw = 1 for 0 ≤ t ≤ T − 1. Then J is a monotonically backward

separable function. Moreover, if {ct}Tt=0 and {pt}Tt=0 are bounded functions, and sets

{It}Tt=0 have finite measure, then J is naturally monotonically backward separable.

Furthermore, if
∫
Ii
pi(x, u, w)ci(x, u, w)dw 6= 0 for all (x, u, i) ∈ Xi×U×{0, ..., T−1}

then the associated representation maps are strictly monotonic (Eq. (3.24)).

Proof. We can write J in Form (3.4) using the representation functions

φT (x) =

∫
IT

cT (x,w)pT (x,w)dw, (3.31)

φi(x, u, z) =

∫
Ii

zpi(x, u, w)ci(x, u, w)dw for all i ∈ {0, .., T − 1}.

The monotonicity property (3.5) follows as ci(x, u, w) ≥ 0 and pi(x, u, w) ≥ 0 for all

(x, u, w) ∈ Rn × Rm × Rk and i ∈ {0, ..., T − 1}. Furthermore, if∫
Ii
pi(x, u, w)ci(x, u, w)dw 6= 0 for all (x, u, i) ∈ Xi × U × {0, ..., T − 1}, then clearly

the representation maps are strictly monotonic (Eq. (3.24)).

Assuming {ct}Tt=0 and {pt}Tt=0 are bounded functions, and sets {It}Tt=0 have finite

measure, the representation maps in Eq. (3.31) clearly satisfy the boundedness prop-

erty (Eq. (3.7)) by induction on i ∈ {0, ..., T − 1}. For fixed i ∈ {0, .., T − 1} and
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(x, u) ∈ Xi × U it follows that φi(x, u, z) = λz, where λ ≥ 0 is some constant that

depends on (x, u, i), is clearly upper semi continuous (as in Eq. (3.6)).

In the next example we consider a function that can be interpreted as the expec-

tation of cumulative additive costs, where at each time stage, t ∈ {0, ..., T −1}, a cost

ct(x(t), u(t)) is added and there is an independent probability, pt(x(t), u(t)) ∈ [0, 1],

of stopping, incurring no further future costs. For a state and input trajectory,

(u,x) ∈ Rm×T ×Rn×(T+1), let us denote the stopping time by T (u,x); it then follows

the distribution of this random variable is given as

P(T (u,x) = T ) = pT (x(T ))ΠT−1
i=1 (1− pi(x(i), u(i))),

and P(T (u,x) = t) = pt(x(t), u(t))Πt−1
i=1(1− pi(x(i), u(i))) for all t ∈ N, (3.32)

where we slightly abuse notation to write Π−1
i=1(1− pi(x(i), u(i))) = 1 so

P(T (u,x) = 0) = p0(x(0), u(0)).

The stopped additive function is then given as

J(u,x) = ET (u,x)

[min{T (u,x),T−1}∑
t=0

ct(x(t), u(t)) (3.33)

+ 1{(u,x)∈UT×ΠTt=0Xt:T (u,x)=T}(u,x)cT (x(T ))

]
.

To show the function in Eq. (3.33) is monotonically backward separable we will as-

sume that the probability of the stopping time occurring inside the finite time hori-

zon {0, ..., T} is one; this gives us the following “law of total probability“ equation:∑T
t=0 P(T (u,x) = t) = 1 for all (u,x) ∈ Rm×T ×Rn×(T+1), which can be rewritten in

terms of its probability density functions as,

T−1∑
t=0

pt(x(t), u(t))Πt−1
i=1(1− pi(x(i), u(i))) + pT (x(T ))ΠT−1

i=1 (1− pi(x(i), u(i))) ≡ 1.

(3.34)

50



Note, if pT (x(T )) ≡ 1 then trivially (3.34) holds for any functions pi : Rn×Rm → [0, 1].

Assuming Eq. (3.34) holds and using the law of total expectation, conditioning on

the probability of each stopping time, it follows

J(u,x) (3.35)

= ET (u,x)

[min{T (u,x),T−1}∑
t=0

ct(x(t), u(t)) + 1{(u,x)∈UT×ΠTt=0Xt:T (u,x)=T}(u,x)cT (x(T ))

]

=

T−1∑
t=0

( t∑
s=0

cs(x(s), u(s))

)
P(T (u,x) = t)

+

( T∑
s=0

cs(x(s), u(s)) + cT (x(T ))

)
P(T (u,x) = T )

=

T−1∑
t=0

( t∑
s=0

cs(x(s)u(s))

)
pt(x(t), u(t))Πt−1

i=0(1− pi(x(i), u(i)))

+

( T−1∑
t=0

ct(x(t), u(t)) + cT (x(T ))

)
pT (x(T ))ΠT−1

i=0 (1− pi(x(i), u(i))).

We next state and prove that the function J given in Eq. (3.35) is monotonically

backward separable.

Example 3.3 (Stochastically stopped additive cost). Suppose

J : UT × ΠT
i=0Xt → R is of the form

J(u,x) =
T−1∑
t=1

( t∑
s=0

cs(x(s)u(s))

)
pt(x(t), u(t))Πt−1

i=0(1− pi(x(i), u(i))) (3.36)

+

( T−1∑
t=0

ct(x(t), u(t)) + cT (x(T ))

)
pT (x(T ))ΠT−1

i=0 (1− pi(x(i), u(i))),

where pk : Xk×U → [0, 1] and pT : XT → [0, 1] satisfy Eq. (3.34), u = (u(0), ..., u(T−

1)), x = (x(0), ..., x(T )), U ⊂ Rm and Xt ⊂ Rn, ck : Xk × U → R and cT : XT → R.

Then J is a monotonically backward separable function. Moreover, if {ct}Tt=0 are

bounded functions, then J is naturally monotonically backward separable. Further-

more, if pi(x, u) 6= 1 for all (x, u, i) ∈ Xi × U × {0, ..., T − 1} then the associated

representation maps are strictly monotonic (Eq. (3.24)).
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Proof. Before writing J in the backward separable form, given in Equation (3.4),

we first simplify J by switching the order of the double summation in Eq. (3.36).

Let T (u,x) be a random variable with distribution given in Eq. (3.32). As it is

assumed {pt}0≤t≤T satisfy Eq. (3.34) and each time-stage has independent probability

of stopping it follows
∑T

t=s P(T (u,x) = t) = P(T (u,x) ≥ s) = P(∩s−1
i=0T (u,x) 6= s) =

Πs−1
i=0P(T (u,x) 6= s). Now,

J(u,x) =
T−1∑
t=0

( T∑
s=0

cs(x(s), u(s))

)
P(T (u,x) = t)

+

( t∑
s=0

cs(x(s), u(s)) + cT (x(T ))

)
P(T (u,x) = T )

=
T−1∑
s=0

cs(x(s), u(s))P(T (u,x) ≥ s) + cT (x(T ))P(T (u,x) ≥ T )

=
T−1∑
s=0

cs(x(s), u(s))Πs−1
i=0P(T (u,x) 6= i) + cT (x(T ))ΠT−1

i=0 P(T (u,x) 6= i)

=
T−1∑
s=0

cs(x(s), u(s))Πs−1
i=0 (1− pi(x(i), u(i))) + cT (x(T ))pT (x(T ))ΠT−1

i=0 (1− pi(x(i), u(i))).

It then follows J satisfies Eq. (3.4) using the representation maps

φi(x, u, z) = ci(x, u) + z(1− pi(x, u)) for all i ∈ {0, .., T − 1},

φT (x) = cT (x)pT (x). (3.37)

The monotonicity property in Eq. (3.5) follows as (1 − pi(x, u)) ≥ 0 for all (x, u) ∈

Xi ×U and i ∈ {0, ..., T − 1}. Strict monotonicity (Eq. (3.24)) trivially follows when

pi(x, u) 6= 1 for all (x, u, i) ∈ Xi × U × {0, ..., T − 1}.

Assuming {ct}Tt=0 are bounded functions the representation maps, given in

Eq. (3.37), clearly satisfy the boundedness property (Eq. (3.7)) by induction on i ∈

{0, ..., T − 1}. For fixed i ∈ {0, .., T − 1} and (x, u) ∈ Xi × U it follows φi(x, u, z) =

c0 + c1z, where c0, c1 ∈ R are constants that depends on (x, u, i), clearly satisfies the

upper semi continuity property (Eq. (3.6)).
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In the next example we introduce a function representing the number of time-steps

a trajectory spends outside some target set. Later, in Section 3.5, we will use this

function as the cost function for path planning problems.

Example 3.4 (Minimum time set entry function). Suppose J : UT ×ΠT
t=0Xt → R is

of the form

J(u,x) = min

{
inf

{
t ∈ [0, T ] : x(t) ∈ S

}
, T

}
, (3.38)

where u = (u(0), ..., u(T − 1)), u(t) ∈ Rm, x = (x(0), ..., x(T )), x(t) ∈ Rn, U ⊂ Rm

and Xt ⊂ Rn, and S ⊂ Rn. If the set {t ∈ [0, T ] : x(t) ∈ S} is empty, we define

the infimum to be infinity. Then J is a naturally monotonically backward separable

function.

Proof. The function given in Eq. (3.38) is actually a special case of the function given

in Eq. (3.36) with

pT (x) ≡ 1, pt(x, u) = 1S(x) for t ∈ {0, ..., T − 1},

cT (x) ≡ T, ct(x, u) ≡ t.

Note, the functions {pk}0≤k≤T trivially satisfy Eq. (3.34) as pT (x) ≡ 1. Moreover

clearly {ct}Tt=0 are bounded functions. Therefore J is naturally monotonically back-

ward separable by Example 3.3.

3.3 The Principle of Optimality: A Necessary Condition for Monotonic Backward

Separability

Given a function, J : Rm×T ×Rn×(T+1) → R, there is no obvious way to determine

whether J is monotonically backward separable. Instead, in this section we will recall

a necessary condition proposed in Bellman (1966), called the Principle of Optimality
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(Defn. 3.6), that we show in Prop. 3.3 that all MSOPs with monotonically back-

ward separable cost functions satisfy. Before recalling the definition of the Principle

of Optimality it is useful to consider a family of MSOPs with different initializa-

tions, rather than a single MSOP (as we have been doing so in previous sections).

Specifically, let us consider a family of MSOPs, associated with the sequence of tuples

{Jt0 , f, {Xt}t0≤t≤T , U, T}Tt0=0, each initialized at (x0, t0) ∈ Rn × {0, ...., T}, and of the

form:

(u∗,x∗)∈ arg min
u,x

Jt0(u,x) subject to: (3.39)

x(t+ 1) = f(x(t), u(t), t) for t = t0, .., T − 1

x(t0) = x0, x(t) ∈ Xt ⊂ Rn for t = t0, .., T

u(t) ∈ U ⊂ Rm for t = t0, .., T − 1

u = (u(t0), ..., u(T − 1)) and x = (x(t0), ..., x(T ))

Definition 3.6. We say the family of MSOPs of Form (3.39), associated with the se-

quence of tuples {Jt0 , f, {Xt}t0≤t≤T , U, T}Tt0=0, satisfies the Principle of Optimal-

ity at x0 ∈ X0 if the following holds. For any t ∈ {0, ..., T} if u = (u(0), ..., u(T − 1))

and x = (x(0), ..., x(T )) solve the MSOP initialized at (x0, 0) then v = (u(t), ..., u(T−

1)) and h = (x(t), ..., x(T )) solve the MSOP initialized at (x(t), t).

Proposition 3.3. Consider a family of MSOPs of Form (3.39) associated with the

sequence of tuples {Jt, f, {Xt}t≤s≤T , U, T}Tt=0. Suppose either of the following are sat-

isfied:

(A) The MSOP initialized at (x0, 0) has a unique solution and Jt is monotonically

backward separable (Defn. 3.3) for t ∈ {0, ..., T}.

(B) The function Jt is monotonically backward separable (Defn. 3.3) for t ∈ {0, ..., T}
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with representation maps that are strictly monotonic, that is the representation

maps satisfy Eq. (3.24).

Then the family of MSOPs satisfies the Principle of Optimality at x0 ∈ X0 (Defn. 3.6).

Proof. First, let us deal with Case (A) by assuming the MSOP initialized at (x0, 0)

has a unique solution and Jt is monotonically backward separable (Defn. 3.3) for

t ∈ {0, ..., T}.

Since Jt is monotonically backward separable (Defn. 3.3) for t ∈ {0, ..., T} there

exists representation maps {φt}0≤t≤T such that

Jt(u,x) = φt(x(t), u(t), φt+1(x(t+ 1), u(t+ 1), . . . φT (x(T )) . . . )).

Now, suppose u∗ = (u(0), ..., u(T −1)) and x∗ = (x(0), ..., x(T )) solve the MSOP ini-

tialized at (x0, 0) of Form (3.39) associated with the sequence of tuples

{Jt, f, {Xt}t≤s≤T , U, T}Tt=0. Furthermore, suppose for contradiction that there exists

some t ≥ 0 such that 0 ≤ t < T and v = (u(t), ..., u(T − 1)) and h = (x(t), ..., x(T ))

do not solve MSOP initialized at (x(t), t). We will show that this implies that the

MSOP initialized at (x0, 0) does not have a unique solution, thus providing a contra-

diction and verifying the conditions of the Principle of Optimality. If (v,h) do not

solve MSOP initialized at (x(t), t), then there exist feasible w = (w(t), ..., w(T − 1))

and z = (z(t), ..., z(T )) such that Jt(w, z) < Jt(v,h). i.e.

Jt(w, z) = φt(z(t), w(t), φt+1(z(t+ 1), w(t+ 1), . . . φT (z(T )) . . . )) (3.40)

< φt(x(t), u(t), φt+1(x(t+ 1), u(t+ 1), . . . φT (x(T )) . . . ))

= Jt(v,h).

Now, consider the proposed feasible sequences û = (u(0), ..., u(t−1), w(t), ..., w(T−1))

and x̂ = (x(0), ..., x(t− 1), z(t), ..., z(T − 1)). It follows using the monotonicity prop-

erty (Eq. (3.5)) of monotonically backward separable functions and Inequality (3.40),
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that

J0(û, x̂) = φ0(x(0), u(0), φ1(x(1), u(1), . . . φt(z(t), w(t) . . . φT (z(T )) . . . )) . . . ) (3.41)

= φ0(x(0), u(0), . . . φt−1(x(t− 1), u(t− 1), Jt(w, z)) . . . )

≤ φ0(x(0), u(0), . . . φt−1(x(t− 1), u(t− 1), Jt(v,h)) . . . )

= J0(u∗,x∗),

which shows (û, x̂) is also an optimal solution, contradicting that (u∗,x∗) is the unique

solution of the MSOP at (x0, 0).

We next deal with Case (B) by assuming Jt is monotonically backward separable

(Defn. 3.3) for t ∈ {0, ..., T} with representation maps that are strictly monotonic

(Eq. (3.24)).

Suppose u∗ = (u(0), ..., u(T − 1)) and x∗ = (x(0), ..., x(T )) solve the MSOP ini-

tialized at (x0, 0) of Form (3.39). By following the same argument as in Case (A),

considering the same (û, x̂), we get that Eq. (3.41) holds. However, since the repre-

sentation maps {φt}Tt=0 are assumed to be strictly monotonic (Eq. (3.24)) we have that

the inequality in Eq. (3.41) holds strictly. That is J0(û, x̂) < J0(u∗,x∗), contradicting

the fact (u∗,x∗) is the optimal solution.

Prop. 3.3 shows the Principle of Optimality (Defn. 3.6) is a necessary condition

that all families of MSOPs with unique solutions and monotonically backward sep-

arable cost functions must satisfy. We now conjecture a necessary and sufficient

condition. The following notation is used in this conjecture. Given Jt, {Xt}0≤t≤T and

U let us denote the set F , where

(f, x0) ∈ F if x0 ∈ X0 and the MSOP associated with{J0, f, {Xt}0≤t≤T , U, T}

initialized at (x0, 0) has a unique solution. (3.42)
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Conjecture 3.1. Consider {Xt}0≤t≤T ⊂ Rn×T , U ⊂ Rm and Jt : UT−t × ΠT
s=tXs →

R. Then, for any (f, x0) ∈ F (where F is as in Eq. (3.42)) the family of MSOPs

associated with the sequence of tuples {Jt, f, {Xt}t≤s≤T , U, T}Tt=0 satisfies the Principle

of Optimality (Defn. 3.6) at x0 ∈ X0 if and only if Jt is monotonically backward

separable (Defn. 3.3).

Regardless of whether Conjecture 3.1 is true, Prop. 3.3 is useful. Prop. 3.3 provides

a way of proving a function Jt : UT−t × ΠT
s=tXs → R is not monotonically backward

separable. Rather than showing Jt does not satisfy Defn. 3.3 for every family of

representation maps {φs}Ts=t, for which there are an uncountably many, we find any

f for which the family of MSOP’s associated with {Jt, f, {Xs}t≤s≤T , U, T}Tt=0 has a

unique solution for some initialization (x0, 0) and does not satisfy the Principle of

Optimality. Then Prop. 3.3 shows Jt is not monotonically backward separable. We

demonstrate this proof strategy in the following lemma.

Lemma 3.3. The function Jt : Rm×(T−t) × Rn×(T+1−t) → R, defined as

Jt(u,x) := max
t≤s≤T

d(x(s)) +
T−1∑
s=t

cs(x(s), u(s)), (3.43)

is not monotonically backward separable (Defn. 3.3) for all functions ck : Rn×Rm → R

and dk : Rn → R.

Proof. Let T = 3, n = 1 and m = 1. Consider the cost functions c0(x, u) = −u,

c1(x, u) = u, c2(x, u) = −u/2, and d(x) = x. Consider the dynamics f(x, u, t) = x+u

and constraints Xt = [0, h] and U = {−h, 0, h}, where h > 0. Let us consider

the MSOP of Form (3.39) associated with {J0, f, {Xt}0≤t≤3, U, 3} and initialized at
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Table 3.1: This table shows the corresponding cost of each feasible input sequence
of the MSOP given in Eq. (3.44) found in Lemma 3.3.

feasible u objective value feasible u objective value

(0, 0, 0) 0 (h, 0,−h) h/2

(0, 0, h) h/2 (h, 0, 0) 0

(0, h, 0) 2h (h,−h, 0) -h

(0, h,−h) (5/2)h (h,−h, h) -(3/2)h

(x0, t0) = (0, 0):

min
u,x

max
t0≤k≤3

x(k) +
2∑

t=min{t0,2}

ct(x(t), u(t)) (3.44)

subject to: x(t+ 1) = x(t) + u(t) for all t ∈ {t0, ..., 3},

x(t0) = x0, 0 ≤ x(t) ≤ h, u(t) ∈ {−h, 0, h},

It can be shown there are 33 = 27 input sequences in {−h, 0, h}3, only 8 of which are

feasible to the MSOP in Eq. (3.44) initialized at (x0, t0) = (0, 0). Table 3.1 presents

each feasible input sequence with associated cost. We deduce the unique optimal input

sequence is u = (h,−h, h), yielding a unique optimal trajectory of x = (0, h, 0, h).

Following the input sequence to t = 2 we examine the MSOP (3.44) initialized at

(x0, t0) = (0, 2). For the MSOP initialized at (x0, t0) = (0, 2) there are only two

feasible inputs: u(2) = 0 or u(2) = h. Of these, the first is optimal (cost of 0 vs

h/2). Thus although u = (h,−h, h) and x = (0, h, 0, h) solve the MSOP initialized at

(x0, t0) = (0, 0), v = (h) and h = (0, h) do not solve the MSOP initialized at (x0, t0) =

(0, 2). We conclude the family of MSOPs associated with {Jt, f, {Xs}t≤s≤3, U, 3}3
t=0

does not satisfy the Principle of Optimality at x0 = 0, although the MSOP initialized

at (x0, t0) = (0, 0) does have a unique solution. Therefore by Prop. 3.3 the function

Jt is not monotonically backward separable.
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Remark 3.1. The function given in Eq. (3.43) can clearly be expressed as the ad-

dition of two monotonically backward separable functions, J1(u,x) =
∑T−1

s=t cs(u(s))

(Lemma 3.1) and J2(u,x) = maxt≤s≤T d(x(s)) (Example 3.1). Therefore, Lemma 3.3

shows that the property of monotonically backward separability is not preserved under

addition.

3.4 Numerically Solving MSOPs with Backward Separable Costs

Before proceeding with applications (path planning in Section 3.5 and invariant set

estimation in Section 3.6) we address the numerical implementation of approximately

solving an MSOP with monotonically backward separable cost function, using the

necessary and sufficient conditions for optimality given in Theorem 3.2.

For implementation, we use a “discretization”/“look up tables” approximation

scheme that maps our class of MSOPs to a much simpler class of MSOPs with fi-

nite state and control spaces. For MSOPs with finite input and state spaces the

GBE (3.20) can be solved by enumeration. Similar numerical schemes with conver-

gence proofs can be found in Jones and Peet (2018) and Dufour and Prieto-Rumeau

(2012).

Unfortunately, it is well known that discretization techniques that solve MSOPs

suffer from the “curse of dimensionality”; where the number of grid points required to

uniformly sample a set grows exponentially with respect to the dimension of the set.

Therefore, the techniques presented in this section may not scale well with respect

to the input and state space dimension. We do note however, there is scope to

improve the scalability of discretization methods since such discretization schemes

are known to be parallelizable, see Maidens et al. (2016). Alternatively, we show

in Section 4.5 that rather than solving the GBE (3.20) at each grid point, as is

the case with discretization schemes, it is possible to use an Approximate Dynamic
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Programming (ADP)/Reinforcement Learning (RL) algorithm to heuristically solve

the MSOP. Such numerical schemes are shown to have lower computational times

when compared to methods that solve the GBE (3.20) exactly at each grid points.

This demonstrates that MSOPs with monotonically backward separable cost functions

can be heuristically solved using the same methods developed in the ADP literature

with the aid of the GBE (3.20). We do note however that ADP/RL algorithms

typically do not have theoretical performance bounds, that is given an MSOP there

is no guarantee that the feasible solution obtained using an ADP/RL algorithm is

“close” to the optimal solution. For this reason we prefer to consider discretization

based methods for solving MSOPs that have state and input spaces with a relatively

small dimension.

3.4.1 Discretization: A Map onto MSOPs with Finite Input and State Spaces

Consider an MSOP of Form (3.2) associated with the tuple

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards where the state space and input space are of

the form Xt = [x, x̄]n and U = [u, ū]m respectively. For MSOPs of this form it is

not generally possible to analytically solve GBE (3.20). We thus need to consider

a sequence of “close” MSOPs with finite state and control spaces, for which the

GBE (3.20) can be solved by enumeration. We define such MSOPs with finite state

and control spaces next.

Definition 3.7. Given {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards we say

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
F inite if the cardinality of the sets {Xt}0≤t≤T and U

are finite.

Given an MSOP, associated with the tuple

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards, and some k ∈ N we now consider a “discretized”
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MSOP, associated with a tuple in MDiscrete
F inite , initialized at x0 ∈ X0,

min
u,x

φ0(x(0), u(0), φ1(x(1), u(1), . . . φT (x(T )) . . . )) (3.45)

subject to:

x(t+ 1) = arg min
y∈Xk
{||y − f(x(t), u(t), t)||2},

x(t0) = x0, x(t) ∈ Xk ⊂ Rn, u(t) ∈ Uk ⊂ Rm for t = 0, .., T,

u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )),

where Xk = {x1, ..., xk}n such that x = x1 < x2 < ... < xk = x̄ and ||xi+1−xi||2 = x̄−x
k

for 1 ≤ i ≤ k − 1, and Uk = {u1, ..., uk}m such that u = u1 < u2 < ... < uk = ū and

||ui+1 − ui||2 = ū−u
k

for 1 ≤ i ≤ k − 1.

We now consider the map that sends MSOPs with tuples inMDiscrete
Backwards to MSOPs

of Form (3.45) with tuples in MDiscrete
F inite . Specifically, we denote the approximation

map χ : MDiscrete
Backwards × N → MDiscrete

F inite which is defined for {J, f, {Xt}0≤t≤T , U, T} ∈

MDiscrete
Backwards, where Xt = [x, x̄]n and U = [u, ū]m, by

χ(J, f, {Xt}0≤t≤T , U, T}, k) := {J, f̃ , {X̃}0≤t≤T , Ũ , T}, (3.46)

where X̃ = {x1, ..., xk}n such that x = x1 < x2 < ... < xk = x̄ and ||xi+1−xi||2 = x̄−x
k

for 1 ≤ i ≤ k − 1, Ũk = {u1, ..., uk}m such that u = u1 < u2 < ... < uk = ū and

||ui+1− ui||2 = ū−u
k

for 1 ≤ i ≤ k− 1, and f̃(x, u, t) = arg miny∈Xk{||y− f(x, u, t)||2}.

Now given an MSOP in MDiscrete
Backwards and a discretization level k ∈ N, we use the

approximation map, χ, to map this MSOP to a “discretized” MSOP of classMDiscrete
F inite .

For MSOPs of classMDiscrete
F inite the GBE (3.20) can be solved by enumeration yielding

an analytical solution to the “discretized” MSOP. In the following sub-sections we

show how a feasible input sequence to the original MSOP can then be constructed

from the solution to the “discretized” MSOP.
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3.4.2 Constructing a Feasible Solution to an MSOP using Discretization

Consider an MSOP associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards.

For k ∈ N consider the discretized MSOP χ(J, f, {Xt}0≤t≤T , U, T}, k) :=

{J, f̃ , {X̃}0≤t≤T , Ũ , T}. By iteratively solving the GBE (3.20) we can find an op-

timal solution to the “discretized” MSOP associated with {J, f̃ , {X̃}0≤t≤T , Ũ , T},

which we denote as (vk,hk). Note that (vk,hk) does not necessary solve, or is nec-

essary feasible to the original MSOP, {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards. How-

ever, (vk,hk) can be used to construct a feasible solution for MSOP associated with

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards initialized at x0 ∈ X0 in the following way,

uk(t) := arg min
u∈Γt,x

||vk(t)− u||2 for all t ∈ {0, ...., T − 1}, (3.47)

xk(t+ 1) := f(xk(t), uk(t)) for all t ∈ {0, ...., T − 1} and xk(0) = x0,

where we recall Γt,x is the set of feasible inputs such that if u ∈ Γt,x then u ∈ U

and f(x, u, t) ∈ Xt. Then, (uk,xk), where uk = (uk(0), ..., uk(T − 1)) and xk =

(xk(0), ..., xk(T )), is feasible for the MSOP associated with {J, f, {Xt}0≤t≤T , U, T} ∈

MDiscrete
Backwards.

3.4.3 Convergence of Feasible Solutions Constructed using Discretization

Consider an MSOP associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards. Sup-

pose (uk,xk) is as in Eq. (3.47). It follows that (uk,xk) is a feasible solution to the

MSOP associated with {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards. In the case J is addi-

tively separable (Defn. 3.2) it was shown in Theorem 2 from Jones and Peet (2018)

that if {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards satisfies certain continuity assumptions

then

lim
k→∞
|J(uk,xk)− J∗| = 0, (3.48)
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where J∗ is the optimal value of the objective function of the MSOP associated with

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backwards. Furthermore, it can be shown that Eq. (3.48)

holds in the more general case when J is naturally monotonically backward separable

(Defn. 3.3) using a similar argument to Jones and Peet (2018).

3.5 Application: Path Planning and Obstacle Avoidance

In this section we design a full state feedback controller (Markov Policy) for a

discrete time dynamical system with the objective of reaching a target set in minimum

time while avoiding moving obstacles. In order to do this we solve the GBE (3.20)

using discretization schemes outlined in Section 3.4.

3.5.1 Path Planning MSOPs

We say {J, f, {Xt}0≤t≤T , U, T} is a path planning MSOP, or {J, f, {Xt}0≤t≤T , U, T} ∈

MDiscrete
Path , if

• J(u,x) = min

{
inf

{
t ∈ [0, T ] : x(t) ∈ S

}
, T

}
.

• S = {x ∈ Rn : g(x) < 0}, where g : Rn → R.

• Xt = Rn/(∪Ni=1Ot,i), where Ot,i = {x ∈ Rn : ht,i(x) < 0} and ht,i : Rn → R.

• There exits a feasible solution, (u,x), to the MSOP (3.2) associated with the

tuple {J, f, {Xt}0≤t≤T , U, T} such that x(k) ∈ S for some k ∈ {0, ..., T}.

Clearly, solving an the MSOP (3.2) associated with a path planning problem tuple,

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Path , is equivalent to finding the input sequence that

drives a discrete time system, governed by the vector field f , to a target set S in

minimum time while avoiding the moving obstacles, represented as sets Ot,i ⊂ Rn.

Moreover, as shown in Example 3.4, the function J(u,x) = min

{
inf

{
t ∈ [0, T ] :
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x(t) ∈ S
}
, T

}
is a naturally monotonically backward separable function (Defn. 3.3),

and hence MDiscrete
Path ⊂MDiscrete

Backward.

3.5.2 Path Planning for Dubin’s Car

We now numerically solve a path planning MSOP {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Path

with dynamics as defined in Maidens et al. (2018); also known as the Dubin’s car

dynamics, which is given as

f (x, u, t) =
[
x1 + v cos(x3), x2 + v sin(x3), x3 +

v

L
tan(u)

]T
, (3.49)

where (x1, x2) ∈ R2 is the position of the car, x3 ∈ R denotes the angle the car is

pointing, u ∈ R is the steering angle input, v ∈ R is the fixed speed of the car, and

L is a parameter that determines the turning radius of the car.

We solve the path planning MSOP using the discretization scheme from Sec-

tion 3.4. The target set, obstacles, state space, and input constraint sets are given

by

S = {(x1, x2) ∈ R2 : −0.25 < x1 − 0.75 < 0.25,−0.25 < x2 + 0.75 < 0.25},

Ot,i = {(x1, x2) ∈ R2 : (x1 −Xi)
2 + (x2 − Yi)2 −R2

i < 0}

for all i ∈ {1, ..., 15} and t ∈ {0, ..., T},

Xt = [−1, 1]2 × R for all t ∈ {0, ..., T}, U = [−1, 1],

where X, Y,R ∈ R15 are randomly generated vectors. The parameters of the system

are set to v = 0.1 and L = 1/6.

Figure 3.1 shows three approximately optimal state sequences starting from dif-

ferent initial conditions. These state sequences are found by numerically solving

the GBE, Equation (3.20), where {φt}Tt=0 are as in Example 3.4. To numerically

solve the GBE the state space, Xt ⊂ R3, is discretized as a 60 × 60 × 60-grid
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Figure 3.1: Graph showing approximate optimal trajectories, shown as the gold,
black and green curves, with dynamics given in Eq. (3.49) and the goal of reaching
the target set, shown as the blue square, while avoiding obstacles, shown as red circles.

Figure 3.2: Graph showing approximate optimal trajectories, shown as the green
curves, with dynamics given in Eq. (3.50) and the goal of reaching the target set,
shown as the blue cube, while avoiding obstacles, shown as red spheres.
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between [−1, 1]2 × [0, 2π] and the input space, U ⊂ R, is discretized as 100 grid

points within [−1, 1]. The first state sequence was chosen to have initial condition

[−0.8, 1,−0.55π]T ∈ R3 (the furthest of the three trajectories from the target) and

took 25 steps to reach its goal. The second state sequence was chosen to have initial

condition [0.275, 0.25, 0.75π]T ∈ R3; in this case as x3(0) = 0.75π Dunbin’s car ini-

tially is directed towards the top left corner. The input sequence successfully turns

the car downwards between two obstacles and into the target set, taking 18 steps. The

third trajectory was chosen to have initial condition [−0.2, 0.95, 0.5π]T ∈ R3-starting

very closely to an obstacle facing upwards. This trajectory had to use the full turning

radius of the car to navigate around the obstacle towards the target set and took 10

steps.

3.5.3 Path Planning in 3D

We now numerically solve a path planning MSOP {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Path

problem with dynamics given by

f (x, u, t) = [x1 + u1, x2 + u2, x3 + u3]T . (3.50)

The target set, obstacles, state space and input constraint set were respectively are

given by

S = {(x1, x2, x3) ∈ R2 : −0.25 < x1 − 0.75 < 0.25,

− 0.25 < x2 + 0.75 < 0.25,−0.25 < x2 + 0.75 < 0.25}

Ot,i = {(x1, x2, x3) ∈ R3 : (x1 − Ai − αit)2 + (x2 −Bi − βit)2

+ (x2 − Ci − γit)2 −R2
i < 0} for all i ∈ {1, ..., 35}, t ∈ {0, ..., T}

Xt − [−1, 1]3 for all t ∈ {0, ..., T}, U = [−0.05, 0.05]3,
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where A,B,C, α, β, γ, R ∈ R35 are randomly generated vectors. Note, when α, β, γ

are non-zero the center of the spherical obstacles moves with time. For presentation

purposes in this chapter we consider stationary obstacles, selecting α = β = γ = 0,

however, a downloadable .gif file showing the numerical solution for moving obstacles

can be found at Jones and Peet (2020).

using the discretization scheme from Section 3.4 by computing the solution at

each grid point to

This path planning MSOP can be numerically solved by computing the solution

to the GBE (3.20), where {φt}Tt=0 are as in Example 3.4. To numerically solve the

GBE we use the discretization scheme from Section 3.4, discretizing the state and

input space, Xt ⊂ R and U ⊂ R3, as a 40 × 40 × 40 uniform grid on [−1, 1]3 and a

5 × 5 × 5 uniform grid on [−0.05, 0.05]3 respectively. Figure 3.2 shows four optimal

state sequences, shown as green lines, starting from various initial conditions. All

trajectories successfully avoid the obstacles, represented as red spheres, and reach

the target set, shown as a blue cube.

GPU Implementation All DP methods involving discretization fall prey to

the curse of dimensionality, where the number of points required to sample a space

increases exponentially with respect to the dimension of the space. For this reason

solving MSOP’s in dimensions greater than three can be computationally challenging.

Fortunately, our discretization approach to solving the GBE (Equation (3.20)), can be

parallelized at each time-step. To improve the scalability of the proposed approach,

we have therefore constructed in Matlab a GPU accelerated DP algorithm for solving

the 3D path planning problem. This code is available for download at Code Ocean,

see Jones and Peet (2019a).
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3.6 Application: Maximal Invariant Sets

The Finite Time Horizon Maximal Invariant Set (FTHMIS) is the largest set of

initial conditions such that there exists an input sequence that produces a feasible

state sequence over a finite time period. Computation of the maximal robust invariant

sets over infinite time horizons was considered in Xue and Zhan (2018). Before we

define the FTHMIS we introduce some notation.

For f : Rn × Rm × N → Rn we say the map ρf : Rn × R × Rm×(T−1) → Rn

is the solution map associated with f if for any T > 0 the following holds for all

t ∈ {0, ..., T}

ρf (x0, t,u) = x(t), (3.51)

where u = (u(0), ..., u(T − 1)), x(k + 1) = f(x(k), u(k), k) for all k ∈ {0, .., k − 1},

and x(0) = x0.

Definition 3.8. For f : Rn×Rm×N→ Rn, Xt ⊆ Rn, U ⊂ Rm, T ∈ N, and At ⊆ Rn

we define the Finite Time Horizon Maximal Invariant Set (FTHMIS), denoted by R,

by

R :=

{
x0 ∈ Rn : there exists u ∈ Γx0,[0,T−1] such that ρf (x0, t,u) ∈ At

for all t ∈ {0, ..., T}
}
,

where the notation Γx0,[0,T−1] is as in Eq. (3.12).

We next show that the sublevel set of the value function (Defn. 3.5) associated with

a certain MSOP, {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward, can completely characterize the

FTHMIS (Defn. 3.8).

Theorem 3.3. Consider the sets At = {x ∈ Rn : gt(x) < 0}, where gt : Rn → R.

Suppose V is a value function (Defn. 3.5) associated with the MSOP, defined by the
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tuple {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward, where J(u,x) = max0≤k≤T gk(x(k)). Then

R = {x ∈ Rn : V (x, 0) < 0}, (3.52)

where the set R ⊂ Rn is the FTHMIS as in Definition 3.8.

Proof. The function J(u,x) = max0≤k≤T gk(x(k)) is monotonically backward separa-

ble as shown in Example 3.1 using representation maps given by

φi(x, u, z) = max{gi(x), z} for all i ∈ {0, .., T − 1}

φT (x) = gT (x).

Therefore by Definition 3.5 any value function, V : Rn → R, associated with

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward satisfies

V (x, T ) = gT (x) for all x ∈ XT , (3.53)

and for all t ∈ {0, 1, .., T − 1} and x ∈ Xt

V (x, t) = inf
u∈Γx,[0,T−1]

max
t≤k≤T

gk(ρf (x, k,u)). (3.54)

We will first show thatR ⊆ {x ∈ Rn : V (x, 0) < 0}. Let x0 ∈ R then by Definition 3.8

there exists u0 ∈ Γx0,[0,T−1] such that

ρf (x0, t,u0) ∈ At for all t ∈ {0, ..., T}.

Since At = {x ∈ Rn : gt(x) < 0} we deduce from the above equation that

gt(ρf (x0, t,u0)) < 0 for all t ∈ {0, ..., T}. (3.55)

Therefore,

V (x0, 0) = inf
u∈Γx0,[0,T−1]

max
0≤k≤T

gk(ρf (x0, k,u)) ≤ max
0≤k≤T

gk(ρf (x0, k,u0)) < 0,
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where the second inequality follows by (3.55). We therefore deduce x0 ∈ {x ∈ Rn :

V (x, 0) < 0} and hence R ⊆ {x ∈ Rn : V (x, 0) < 0}.

We next show {x ∈ Rn : V (x, 0) < 0} ⊆ R. Let x0 ∈ {x ∈ Rn : V (x, 0) < 0} then,

inf
u∈Γx0,[0,T−1]

max
0≤k≤T

gk(ρf (x0, k,u)) = V (x0, 0) < 0.

Therefore as the above inequality is strict, there exists some ε > 0 such that

inf
u∈Γx0

max
0≤k≤T

gk(ρf (x0, k,u)) = V (x0, 0) < −ε. (3.56)

By the definition of the infimum for any δ > 0 there exits w ∈ Γx0,[0,T−1] such that

max
0≤k≤T

gk(ρf (x0, k,w)) < inf
u∈Γx0,[0,T−1]

max
0≤k≤T

gk(ρf (x0, k,u)) + δ. (3.57)

Hence by letting 0 < δ < ε we get

max
0≤k≤T

gk(ρf (x0, k,w)) < inf
u∈Γx0,[0,T−1]

max
0≤k≤T

gk(ρf (x0, k,u)) + δ < −ε+ δ < 0, (3.58)

where the first inequality follows by (3.57), the second inequality follows from (3.56),

and the third inequality follows from selecting δ < ε.

Therefore by (3.58) there exists w ∈ Γx0,[0,T−1] such that max0≤k≤T gk(ρf (x0, k,w)) <

0. We now deduce that for any t ∈ {0, ..., T}

gt(ρf (x0, t,w)) ≤ max
0≤k≤T

gk(ρf (x0, k,w)) < 0.

Thus ρf (x0, t,u0) ∈ At, implying x0 ∈ R. Therefore {x ∈ Rn : V (x, 0) < 0} ⊆ R.

3.6.1 Numerical Example: Maximal Invariant Sets

Value functions can characterize FTHMISs, as shown by Theorem 3.3. We now

approximate a FTHMIS by computing a value function associated with an MSOP

{J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Backward, where J(u,x) = max0≤k≤T gk(x(k)). To com-

pute the value function we use solve the GBE (3.20) for representations maps {φt}Tt=0
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as given in Example 3.1 using the discretization scheme outlined in Section 3.4. Let

us consider a discrete time switching system, whose Robust Maximal Invariant Set

(RMIS) was previously computed in Xue and Zhan (2018):

f(x, u, t) =



 x1

(0.5 + u)x1 − 0.1x2

 if 1− (x1 − 1)2 − x2
2 ≤ 0

 x2

0.2x1 − (0.1 + u)x2 + x2
2

 otherwise.

(3.59)

We now compute the FTHMIS, denoted by R, associated with

At = {x ∈ R2 : gt(x) ≤ 0} for all t ∈ {0, .., T},

gt(x) =

(
x1 −

(t− 1)

4

)2

+

(
x2 −

(t+ 1)

4

)2

− 1.5,

Xt = [−1, 1]2 for all t ∈ {0, .., T},

U = {u ∈ R : u2 − 0.01 ≤ 0}, T = 4.

Figure 3.3 shows the FTHMIS,R, found by using the discretization scheme outlined in

Section 3.4 to solve the GBE (3.20) for 5×5 state grid points in [−1, 1]2. To represent

R in R2, once the value function, V , is found at each grid point a polynomial function

is fitted and its zero-sublevel set, shown as the orange shaded region, approximately

gives R.
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Figure 3.3: Figure showing an approximation of L(V, 0) := {x ∈ Rn : V (x, 0) ≤ 0},
shown in the shaded orange region, where V is the value function of the MSOP asso-
ciated with (3.59). The z-axis represents time and the black circular lines represent
the boundary of At for t = 1, 2, 3, 4. Three sample trajectories, shown in blue, start
in L(V, 0) and remain in the sets At for the time-steps t = 1, 2, 3, 4; giving numerical
evidence that L(V, 0) is indeed an approximation of the FTHMIS.
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Chapter 4

MULTI-STAGE OPTIMIZATION PROBLEMS WITH FORWARD SEPARABLE

COSTS

The problems are solved, not by giving new

information, but by arranging what we have

known since long.

Ludwig Wittgenstein

4.1 Background and Motivation

In this chapter, as was the case in Chapter 3, we consider Multi-Stage Optimiza-

tion Problems (MSOPs) initialized at x0 ∈ Rn of the following form:

(x,u) ∈ arg inf J(x,u) subject to: (4.1)

u = (u(0), ..., u(T − 1)),x = (x(0), ..., x(T ))

x(0) = x0, x(t+ 1) = f(x(t), u(t), t) for t = 0, .., T − 1

x(t) ∈ Xt ⊂ Rn, u(t) ∈ U ⊂ Rm for t = 0, .., T.

In Chapter 3 we considered MSOPs of Form (4.1) with monotonically backward

separable cost functions, functions that can be written as a nested composition of

maps backwards in time taking the form

J(u,x) = φ0(x(0), u(0), φ1(x(1), u(1), . . . φT (x(T )) . . . )).

In this chapter we consider MSOPs of Form (4.1) with forward separable cost func-

tions, functions that can be written as a nested composition of maps forwards in time

taking the form

J(u,x) = ψT (x (T ) , ψT−1 (x (T − 1) , u (T − 1) , . . . ., ψ0 (x (0) , u (0)) . . . ..)) .
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Like monotonically backward separable functions, the class of forward separable

functions contains functions that are not be additively separable, functions the form

J(u,x) =
∑T−1

t=0 ct (x (t) , u (t))+cT (x (T )). Therefore, in general, it is not possible to

use classical DP theory (ie solving Bellman’s Equation) to solve MSOPs with forward

separable cost functions. Moreover, in general, it is also not possible to use methods

developed in Chapter 3 to solve MSOPs with forward separable costs that we consider

in this chapter. To see this let us consider a function of the following form,

J(u,x) := max
0≤t≤T

d(x(t)) +
T−1∑
s=0

cs(x(s), u(s)). (4.2)

It was shown in Lemma 3.3 found in Chapter 3 that J is not a monotonically backward

separable function (Defn. 3.3). Since J is not a monotonically backward separable

function we are not able to solve the MSOP of Form (4.1) associated with the tuple

{J, f, {Xt}0≤s≤T , U, T} using the GBE (3.20). However, as shown in Example (4.4)

the function J is forward separable and thus the MSOP of Form (4.1) associated with

the tuple {J, f, {Xt}0≤s≤T , U, T} is solvable using the methodology we will develop in

this chapter.

In this chapter we propose a state augmentation method for solving MSOPs with

forward separable cost functions that constructs equivalent MSOPs with additively

separable objective functions. Intuitively, this state augmentation method increases

the state space to include the necessary historic information required for a decision

maker to act optimally at some future time step. Such reformulated MSOPs then sat-

isfy the Principle of Optimality (Defn. 3.6) and can therefore be solved using classical

DP theory (ie by solving Bellman’s Equation). However, the resulting augmented-

state MSOP has a higher dimensional state space than the original MSOP - an issue

that can potentially render the augmented problem intractable due to the “curse of

dimensionality”. For this reason, we propose a complexity metric for the forward
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separable representation and show that in certain cases the dimensionality of the

augmented system does not significantly exceed the dimensionality of the original

problem - a case where Bellman’s equation can be used effectively, see Powell (2007),

and which we refer to as Naturally Forward Separable (NFS).

To illustrate the proposed methods, in Section 4.6 we consider battery scheduling

for mitigating the effect of variability in renewable energy resources. Specifically, we

consider historic data for renewable energy sources and design an input sequence for

a battery that attempts to minimize energy costs based on time-of-use while also

minimizing the maximum rate of energy consumption. Based on this model, we

formulate the battery storage problem as a MSOP with a non additively-separable

objective function consisting of both integrated time-of-use charges and a maximum

term representing the demand charge. The fundamental mathematical challenge with

MSOPs of this form is that, as previously shown in Lemma 3.3 (Chapter 3), problems

which include maximum terms in the objective in general do not satisfy the Principle

of Optimality. Thus MSOPs with cost functions including maximum terms cannot be

solved by recursively solving the Bellman equation. To overcome this difficulty, we

show that the battery scheduling problem is a special case of a MSOP with a NFS

objective function. We then apply our state-augmentation technique to numerically

solve the deterministic battery scheduling problem for given forecast solar data.

Remarkably, almost no work has been done on optimal use of batteries for reduc-

tion of demand charges. The exceptions include the heuristic algorithms of Maly and

Kwan (1995) and the pioneering work of Braun and Lee (2006) , which considered

only a demand charge. Recently this group used an ad-hoc algorithm to consider

a combined demand/consumption charge in Cai et al. (2016) using detailed mod-

els of cooling/load. Furthermore, in Zeinalzadeh and Gupta (2016) a similar energy

storage problem is solved using optimized curtailment and load shedding. An Lp
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approximation of the demand charge was used in combination with multi-objective

optimization in Kamyar and Peet (2016) and, in addition, the optimal use of building

mass for energy storage was considered in Kamyar and Peet (2015), wherein a bisec-

tion on the demand charges was used. We note that none of these approaches resolve

the fundamental mathematical problem of dynamic programming with non-additively

separable cost functions.

4.2 Forward Separable Functions

In this section we define a class of functions called forward separable functions.

We will show that for MSOPs with a forward separable cost functions, augmenting

the state variables allows us to use Bellman’s equation to obtain an optimal policy.

Forward separable functions were first defined in Li and Haimes (1987). Intuitively,

this is the class of functions that can be separated into a nested composition of maps

ordered forward in time. In the next definition we build upon the concept of forward

separability by introducing the notion of augmented dimension.

Definition 4.1. The function J : Rm×T × Rn×(T+1) → R is said to be forward

separable if there exist representation maps ψ0 : Rn×Rm → Rd0, ψT : Rn×RdT−1 →

R, and ψi : Rn × Rm × Rdi−1 → Rdi for i = 1, . . . , T − 1 such that

J(u,x) = ψT (x(T ), ψT−1(x(T − 1), u(T − 1), ψT−2(...., (4.3)

ψ1(x(1), u(1), ψ0(x(0), u(0)))), ....))),

where u = (u(0), ..., u(T − 1)) ∈ Rm×T and u(i) ∈ Rm for i ∈ {0, ..., T − 1}; x =

(x(0), ..., x(T )) ∈ Rn×(T+1) and x(i) ∈ Rn for i ∈ {0, ..., T}; di ∈ N for i ∈ {0, ..., T −

1}.

Moreover, we say J is forward separable and has a representation dimension

of l ∈ N if there exists {ψi}0≤i≤T that satisfies Eq. (4.3) and l = maxi∈{0,...,T−1}{di}
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where di = dim(Image{ψi}).

Note: The representation dimension of a forward separable function is a prop-

erty of the set {ψi}0≤i≤T chosen and not the function. However, the function itself

does dictate which sets {ψi}0≤i≤T are feasible (satisfy Eq. (4.3)). The representation

dimension of a forward separable function is not unique as there could be several

sets {ψi}0≤i≤T that satisfy Eq. (4.3). Moreover, the forward separable property of an

objective function is independent of the MSOP it is associated with; forward separa-

bility is solely a property of the function only and not whatever optimization problem

it is being used as an objective function in.

Clearly, any additively separable function of the form

J(u,x) =
∑T−1

t=0 ct(u(t), x(t)) + cT (x(T )) is forward separable and has a represen-

tation dimension of 1 using,

ψ0(x, u) = c0(x, u) (4.4)

ψi(x, u, w) = ci(x, u) + w for i = 1, · · · , T − 1

ψT (x,w) = cT (x) + w.

4.2.1 MSOPs with Forward Separable Costs May not Satisfy the Principle of

Optimality

Consider an MSOP of Form (4.1) associated with {J, f, {Xt}0≤t≤T , U, T}. Suppose

J is a forward separable function (Defn. 4.1) then the MSOP initialized at x0 ∈ Rn
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takes the form,

inf
u,x

ψT (x(T ), ψT−1(x(T − 1), u(T − 1), ψT−2(....ψ0(x(0), u(0)))....))) (4.5)

subject to:

x(t+ 1) = f(x(t), u(t), t) for t = 0, .., T − 1,

x(0) = x0, x(t) ∈ Xt ⊂ Rn for t = 0, .., T,

u(t) ∈ U ⊂ Rm for t = 0, .., T − 1,

u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )).

In Chapter 3 we showed in Lemma 3.3 that the Principle of Optimality (Defn. 3.6)

can be used to show if a function J is monotonically backward separable (Defn. 3.3).

If the objective function of an MSOP is monotonically backward separable then the

MSOP can be solved using the GBE (3.20). However, MSOPs of Form (4.5) with

forward separable costs may not satisfy the Principle of Optimality and thus cannot

be solved using the GBE (3.20). For instance, it was shown in Lemma 3.3 that the

MSOP given in Eq. (3.44) does not satisfy the Principle of Optimality. The objective

function of the MSOP given in Eq. (3.44) takes the form

J(u,x) := max
0≤t≤T

d(x(t)) +
T−1∑
s=0

cs(x(s), u(s)). (4.6)

We show in Example (4.4) that functions of the Form (4.6) are forward separable

(Defn 4.1). Therefore, the MSOP given in Eq. (3.44) is an MSOP that does not

satisfy the Principle of Optimality but is of the Form (4.5). Thus, in order to solve

MSOPs of Form (4.5) we next develop a new solution strategy based on state space

augmentation, that is independent of the methodology presented in Chapter 3.
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4.2.2 How State Augmentation Solves MSOPs with Forward Separable Costs

For any MSOP with forward separable cost function, of Form (4.5), we may as-

sociate a new augmented-state MSOP which is shown to be equivalent to MSOP (4.7)

(Lemma 4.1) and satisfies the Principle of Optimality (Corollary 4.1). The augmented-

state MSOP initialized at x0 ∈ Rn takes the following form,

inf
u,z

ψT (z1(T ), z2(T )) (4.7)

subject to:z1(t+ 1)

z2(t+ 1)

 =

 f(z1(t), u(t), t)

ψt(z1(t), u(t), z2(t))

 0 ≤ t < T − 1

z1(0)

z2(0)

 =

x0

∅

 , z1(t) ∈ Xt, u(t) ∈ U for t = 0, .., T

u = (u(0), ..., u(T − 1)) and z =


z1(0)

z2(0)

 , ...,
z1(T )

z2(T )


 ,

where z1(t) ∈ Rn, z2(t) ∈ Rdt , dt = dim(Image{ψt−1}) and u(t) ∈ Rm for all

t ∈ {0, ..., T}.

Lemma 4.1 (Equivalence of MSOPs). Consider the tuple {J, f, {Xt}0≤t≤T , U, T},

where J is a forward separable function (Defn. 4.1) with representation maps {φi}t0≤i≤T .

Consider the associated MSOP of Form (4.5) and its augmented MSOP of Form (4.7).

Then the following holds

1. J∗ = L∗ where J∗ and L∗ are the optimal objective functions of the MSOPs

given in Eqs. (4.5) and (4.7) respectively.

2. If u = (u(0), ..., u(T − 1)) and x = (x(0), ..., x(T )) solve MSOP (4.5) and

w = (w(0), ..., w(T − 1)) and z =


z1(0)

z2(0)

 , ...,
z1(T )

z2(T )


 solve MSOP (4.7).

Then u = w and x(t) = z1(t) for all t ∈ {0, ...., T}.
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Proof. Suppose (w, z) solve the state augmented MSOP given in Eq. (4.7). First we

show that w and z1 := (z1(0), ..., z1(T )) are feasible for the MSOP given in Eq. (4.5).

Clearly w(t) ∈ U for all t ∈ {0, ...., T} and if we let u = w, x(0) = x0, and x(t+ 1) =

f(x(t), u(t), t) for all t ∈ {0, ...., T} we get x(t) = z1(t) ∈ Xt for all t ∈ {0, ...., T},

where z1(0) = x0 and z1(t + 1) = f(z1(t), u(t), t) for all t ∈ {0, ...., T}. Hence u and

x = z1 are feasible for the MSOP given in Eq. (4.5).

We now observe

z2(T ) = ψT−1(z1(T − 1), u(T − 1), z2(T − 1)).

...

z2(1) = ψ0(z1(0), u(0)).

z2(0) = ∅.

Hence we have,

L(w, z) = ψT (z1(T ), z2(T ))

...

= ψT (x(T ), ψT−1(x(T − 1), u(T − 1), ψT−2(...., ψ1(x(1), u(1), ψ0(x(0), u(0)))), ....)))

= J(u,x).

Thus if (w, z) solve the state augmented MSOP given in Eq. (4.7) with objective

L∗ = ψT (z1(T ), z2(T )), then (w, z1) solve MSOP (4.5) with objective value J∗.

As shown in Section 4.2.1 MSOPs with forward separable costs, of Form (4.5), may

not satisfy the Principle of Optimality (Defn. 3.6). However, as we will show next the

associated augmented MSOP, of Form 4.7, does satisfy the Principle of Optimality.

Corollary 4.1 (Augmented MSOPs satisfy the Principle of Optimality). The family

of state augmented MSOP given in Eq. (4.7) satisfies the Principle of Optimality

(Definition 3.6)
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Proof. MSOP (4.7) has a cost function that only depends on the terminal state

(z1(T ), z2(T ))T . Therefore the cost function of MSOP (4.7) is additively separable

(Definition 3.2). It was shown in Lemma 3.1 that additively separable functions are

monotonically backward separable with representation maps that are strictly mono-

tonic (Eq. (3.24)). Therefore we deduce the family of MSOPs given in Eq. (4.7)

satisfies the Principle of Optimality by Proposition 3.3.

Lemma 4.1 tells us that for any MSOP with forward separable objective, given

in Eq. (4.5), there exists an equivalent state augmented MSOP given in Eq. (4.7).

Furthermore, Corollary 4.1 shows that MSOPs of Form (4.5) satisfy the Principle of

Optimality. Therefore, a solution for any MSOP of Form (4.5) can be found by using

DP methods that solve the associated augmented MSOP (4.7).

To understand the augmented approach intuitively, we note that DP methods

break a multi-period planning problem into simpler sub-problems indexed by each

time-stage. However, in order for a decision maker to make the optimal decision at

each time-stage when faced with an exotic cost function that may depend on historic

states, the decision maker may require past information about the system and not

just the current state of the system. In this context, the augmented state contains

the necessary information about the historic states taken by the system trajectories

required by a decision maker to act optimally at each time-stage. However, as we will

see next, by adding an augmented state we increase the state space dimension and

hence increase the complexity of the MSOP.

Corollary 4.2. Consider the tuple {J, f, {Xt}0≤t≤T , U, T}. Suppose J is a forward

separable function with representation dimension of l ∈ N. Consider the associated

MSOP of Form (4.5). If the MSOP has state space dimension n ∈ N and input space

of dimension m ∈ N, then the associated state augmented MSOP (4.7) has a state
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space of dimension l + n and input space of dimension m.

Proof. The state space dimension of the MSOP (4.7) is n + max0≤t≤T dt, where

dt = dim(Image{φt−1}). From the definition of representation dimension, we have

maxt0≤t≤T dt = l and hence it follows that the state space dimension of the MSOP (4.7)

is n+ maxt0≤t≤T dt = n+ l.

4.3 MSOPs for which the use of State Augmentation is Tractable

It is well known that solving MSOPs by discretizing the state space and recursively

solving Bellman’s equation (3.27) is computationally intractable when the state space

dimension is large; this is often called “the curse of dimensionality”. In the previous

Section 4.2.2, we proved that any MSOP, with forward separable cost function, of

state space dimension n ∈ N can be converted to an equivalent MSOP, with addi-

tively separable costs and with state-space dimension n + l ∈ N, where l ∈ N is the

representation dimension of the forward separable cost function. However, for some

representations, l may increase with respect to the MSOPs data; such as the state

space dimension, input space dimension and the number of time-stages of the MSOP-

thus triggering the curse of dimensionality. To address this problem, in this section,

we define a class of forward separable functions, called Naturally Forward Separable

(NFS) functions, with representation dimension, l ∈ N, that is independent of the

number of time-stages and the dimension of the state and input space.

Before we define NFS functions we motivate this new class of functions by showing

that it is possible to represent any function as a forward separable function (Defn. 4.1).

To do this we introduce some additional notation. Specifically, for a vector v =

(v1, ..., vn)T ∈ Rn we define [v]ji = (vi, ..., vj) for 1 ≤ i < j ≤ n.

Lemma 4.2. Any function J : Rm×T×Rn×(T+1) → R is forward separable (Defn. 4.1)
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with a representation of dimension l(n,m, T ) = T (n+m).

Proof. Consider a function J : Rm×T×Rn×(T+1) → R. To show J is forward separable

we define a forward separable representation {ψi}Ti=0 which satisfy Eq. (4.3) as follows.

First, define ψ0 : Rn × Rm → Rn+m as

ψ0(x, u) = [xT , uT ] =

[
x1, ..., xn, u1, ..., um

]
.

For i ∈ {1, ...T − 1} we define ψi : Rn × Rm × Ri(n+m) → R(i+1)(n+m) as

ψi(x, u, w) =

[
[w]ni1 , x

T , [w]
(i)(n+m)
ni+1 , uT

]
.

Lastly, define φT : Rn × RT (n+m) → R as

ψT (x,w) = J([[w]nT1 , x], [w]
T (n+m)
nT+1 ).

Clearly, this definition of {ψi}0≤i≤T satisfies Eq. (4.3). Furthermore, it can be seen

that the maximum dimension of the images of the maps {ψi}0≤i≤T is T (n+m) showing

the dimension of this representation of J is l(n,m, T ) = T (n+m).

In Lemma 4.2 we showed that any function J is forward separable by naively taking

the strategy of considering representation functions {ψi}0≤i≤T that act like memory

functions; that is to store the entire historic state trajectory and input sequence

used. If J is the objective function for some MSOP (4.5) then this approach would

result in the associated equivalent state-augmented MSOP (4.7), having a very large

state space dimension. Specifically, Corollary 4.2 shows that MSOP (4.7) has state

space dimension T (n + m) + n. Clearly, for a large number of time-stages, T ∈ N,

MSOP (4.7) is intractable. For this reason we next define a special class of forward

separable functions that have a representation with dimension independent of the

number of time-stages.
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Definition 4.2. We say a function J : Rm×T ×Rn×(T+1) → R is a Naturally Forward

Separable (NFS) function if there exists representation maps, {ψi}Ti=0, that satisfy

Eq. (4.3) with representation dimension independent of n, m and T .

In Chapter 3 we defined classes of MSOPs, MDiscrete
Addative and MDiscrete

Backward, that we

can tractably solve. We now add to this class by considering MSOPs with NFS cost

functions (Defn. 4.2) .

Definition 4.3. We say the five tuple {J, f, {Xt}0≤t≤T , U, T} is a naturally for-

ward separable MSOP or {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Forward if J is a naturally

forward separable function (Defn. 4.2), f : Rn × Rm × N → Rn, Xt ⊂ Rn, U ⊂ Rm,

and T ∈ N. Each element of MDiscrete
Forward is associated with a MSOP of Form (4.5).

4.3.1 An Algebra of Naturally Forward Separable Functions

Given a function, J : Rm×T × Rn×(T+1) → R, it was shown in Section 3.3 that

the Principle of Optimality can be used to show J is not monotonically backward

separable. However, in the case of forward separability, there is no obvious way

to determine whether J is NFS (Defn. 4.2). Instead, in this section, we show that

the set of NFS functions form an algebra, closed under multiplication and under

nonlinear transformations - implying that simple NFS functions (“building blocks”)

can be combined to construct new, more complex, NFS functions. In this way, one

might approach the problem of showing J is NFS by finding representation maps by

combining known NFS “building block” functions. Several examples of such “building

blocks” can be found in Subsection 4.3.2.

Lemma 4.3 (The set of NFS functions is closed under addition, multiplication,

and nonlinear mappings). Consider the function U : R → R and the NFS functions

(Defn. 4.2), J1 : Rm1×T1 × Rn1×(T1+1) → R and J2 : Rm2×T2 × Rn2×(T2+1) → R, with
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representation dimensions l1 ∈ N and l2 ∈ N respectively. The functions G1(u,x) :=

J1(u,x) + J2(u,x), G2(u,x) := J1(u,x) · J2(u,x) and G3(u,x) := U (J1(u,x)) are

NFS functions with representation dimension less than or equal to l1 +l2 ∈ N, l1 +l2 ∈

N, and l1 ∈ N, receptively.

Proof. For simplicity let us consider the case where T1 = T2; other cases follow by the

same argument. As J1 and J2 are forward separable functions there exist associated

representation maps {gi}0≤i≤T1 and {hi}0≤i≤T2 such that J1 and J2 can be written

in the Form (4.3) with associated representation dimensions l1 and l2, respectively.

We now show that G1 is forward separable by defining the associate representation

{ψi}0≤i≤T1 such that G1 can be written in the Form (4.3). Specifically, let

ψ0(x, u) =

g0(x, u)

h0(x, u)

 , (4.8)

ψi(x, u, w) =

 gi(x, u, [w]
di−1

1 )

hi(x, u, [w]
di−1+si−1

di−1+1 )

 for i ∈ {1, ...., T1 − 1},

ψT1(x,w) = gT (x, [w]
dT1−1

1 ) + hT (x, [w]
dT1−1+sT1−1

dT1−1+1 ),

where di = dim(Image{gi}) and si = dim(Image{hi}) for i ∈ {0, ..., T1 − 1}.

We conclude that G1 has a representation dimension, denoted lG1 , such that

lG1 = max
i∈{0,...,T1−1}

{di + si} ≤ max
i∈{0,...,T1−1}

{di}+ max
i∈{0,...,T1−1}

{si} = l1 + l2.

Furthermore, by a similar argument it can be shown that G2 and G3 are NFS

with representation dimension less than or equal to l1 + l2 and l1 respectively. We

are able to show this using the same representation maps {ψi}0≤i≤T1−1 from Eq. (4.8)

with the terminal representation map for G2 given by

ψT1(x,w) = gT

(
x, [w]

dT1−1

1

)
· hT

(
x, [w]

dT1−1+sT1−1

dT1−1+1

)
.
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For G3 we use representation maps ψt = gt for t ∈ {0, ..., T1 − 1} and the terminal

representation map for G3 given by

ψT1(x,w) = U
(
gT

(
x, [w]

dT1−1

1

))
.

4.3.2 Examples: Naturally Forward Separable Functions

The first example of a NFS function (Defn. 4.2) is found in problems involving

risk measures and certainty equivalents Bäuerle and Rieder (2013). In this case, we

have the function U(x) = 1
γ
eγx and apply the following:

Example 4.1. For any functions U : R→ R and ct : Rn × Rm → R,

J(u,x) = U

(
T−1∑
t=0

ct(x(t), u(t))

)
is NFS with representation dimension 1.

Proof. The additively separable function
∑T−1

t=0 ct(x(t), u(t)) is NFS using the repre-

sentation maps given in Eq. (4.4). It therefore follows J is NFS by Lemma 4.3.

Example 4.2. The mixed p-norm function given by

J(u,x) =
N∑
j=1

(
T−1∑
t=0

cj,t(x(t), u(t))pj

) 1
pj

,

where pj > 0 for all j ∈ {1, ..., N}, cj,t : Rn × Rm → R+, and N ∈ N, is NFS with

representation dimension N ∈ N.

Proof. Follows since J that can be written in the Form (4.3) using maps

ψ0(x, u) = [c1,t0(x(0), u(0))p1 , ..., cN,t0(x(0), u(0))pN ]T ,

ψi(x, u, w) = [c1,i(x(i), u(i))p1 + w1, ..., cN,i(x(i), u(i))pN + wN ]T for i ∈ {1, ..., T − 1},

ψT (x,w) =
N∑
j=1

w
1
pj

j .
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We next consider a function that appears as the objective function of an opti-

mization problem in Domingo and Sniedovich (1993).

Example 4.3. Consider the variance type function, J : Rm×T×Rn×(T+1) → R defined

as

J(u,x) =
T∑
t=0

[
at(x(t))− 1

T

T∑
s=0

as(x(s))

]2

(4.9)

where u = (u(0), ..., u(T − 1)), u(t) ∈ Rm, x = (x(0), ..., x(T )), x(t) ∈ Rn, and

at : Rn → R. Then J is NFS and has a representation dimension of 2.

Proof. Expanding the right hand side of (4.9) as in Domingo and Sniedovich (1993)

we get,

J(u,x) =
T∑
t=0

a2
t (x(t))− 2

T
at(x(t))

T∑
s=0

as(x(s)) +
1

T 2

(
T∑
s=0

as(x(s))

)2


=
T∑
t=0

a2
t (x(t))− 1

T

[
T∑
s=0

as(x(s))

]2

.

We now present functions J that can be written in the form of Eq. (4.3). We define

ψ0 : Rn × Rm → R2 as

ψ0(x, u) =

a2
1(x)

a1(x)

 .
We define ψi : Rn × Rm × R2 → R2 as

ψi(x, u, [w1, w2]T ) =

w1 + a2
i (x)

w2 + ai(x)

 for all 1 ≤ i ≤ T − 1.

Finally, ψT : Rn × R2 → R is given by,

ψT (x, [w1, w2]T ) = (w1 + a2
T (x))− 1

T
(w2 + aT (x))2 .

This definition of {ψi}Ti=0 satisfies (4.3). Moreover it can be seen that the maximum

dimension of the images of the maps {ψi}Ti=0 is 2 showing the dimension of this

representation of J is 2.
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We now show that the maximum function, that appears in the objective func-

tion of the battery scheduling problem in Section 4.6, is NFS. We also note that

in Lemma 3.3 it was shown functions of this form are not monotonically backward

separable (Defn. 3.3).

Example 4.4. Consider the function J : Rm×T × Rn×(T+1) → R such that,

J(u,x) = max{ max
0≤k≤T−1

{dk(u(k), x(k))}, dT (x(T ))}+
T−1∑
s=0

cs(x(s), u(s)) + cT (x(T ))

where u = (u(0), ..., u(T − 1)), u(t) ∈ Rm, x = (x(0), ..., x(T )), x(t) ∈ Rn, ck :

Rm × Rn → R and dk : Rm × Rn → R for 0 ≤ k ≤ T − 1, cT : Rn → R and

dT : Rn → R. Then J is NFS (Defn. 4.2) and has a representation dimension of 2.

Proof. To show J is NFS we first show that J can be written in the Form (4.3) using

the following representation maps. We define ψ0 : Rn × Rm → R2 as

ψ0(x, u) =

d0(x, u)

c0(x, u)

 .
The function ψi : Rn × Rm × R2 → R2 is defined by,

ψi(x, u, [w1, w2]T ) =

max(di(x, u), w1)

ci(x, u) + w2

 for all 1 ≤ i ≤ T − 1.

The function ψT : Rn × R2 → R is defined by,

ψT (x, [w1, w2]T ) = max(dT (x), w1) + cT (x) + w2.

The representation maps, {ψi}0≤i≤T , satisfy Eq. (4.3). Moreover, it can be seen

that the maximum dimension of the images of {ψi}Ti=0 is 2. Thus the dimension of

this representation of J is 2.
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4.4 Numerical Example: Solving MSOPs with NFS Cost Functions

Given a MSOP with a NFS (Defn. 4.2) cost function, with known representation

maps, we have shown in Section 4.2 how to use state augmentation to construct an

equivalent MSOP with additively separable (Defn. 3.2) cost functions. We have fur-

thermore proposed a discretization scheme in Section 3.4 to solve MSOPs with infinite

input and state spaces and additively separable cost functions. We now summarize

these results by proposing the following steps for solving a given general MSOP. Given

an MSOP of Form (4.5), associated with the tuple {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Forward,

we do the following:

1. Find a NFS representation of the objective function (Eq. (4.3)) with associated

representation maps {ψt}Tt=0. One approach to this is to use Section 4.3.1 which

details how to combine known NFS functions, with known representation maps,

in order to find potential representation maps for other NFS functions.

2. Construct the associated augmented MSOP of Form (4.7).

3. Use discretization to approximate the augmented MSOP (4.7) to an discretized

MSOP of Form (3.45).

4. Numerically solve the discretized MSOP (3.45) using recursive application of

Bellman’s Equation (3.27).

5. Construct a feasible policy for the original MSOP from an optimal policy ofthe

discretized MSOP (3.45) using Eq. (3.47).

To illustrate how we use state augmentation and discretization methods we con-
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sider the following MSOP from Li and Haimes (1991).

inf
u(0),u(1),u(2)

x(3)2[u(0)2 + u(1)2 + u(1)u(2)2]
1
2 + [u(0)2 + u(1)2 + u(1)u(2)2]2 (4.10)

subject to, x(t+ 1) =
x(t)

u(t)
for t ∈ {0, 1, 2}

x(0) = 10, u(0), u(1), u(2) ≥ 0.

Clearly the MSOP given in Eq. (4.10) can be written in the Form (4.5) with associated

tuple {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Forward, where J(u,x) = x(3)2[u(0)2 + u(1)2 +

u(1)u(2)2]
1
2 +[u(0)2 +u(1)2 +u(1)u(2)2]2 is NFS with representation maps later given

in Eq. (4.11), f(x, u, t) = x/u, Xt = R, U = [0,∞), and T = 3.

In Li and Haimes (1991) an analytic solution for Opt. (4.10) was found to be:

x∗ =



10

6.3943938

5.782475

3.8882658


, u∗ =


1.5638699

1.105823

1.4871604

 , J∗ = 74.767439.

The objective function in Opt. (4.10) is NFS (Defn. 4.2) and has a representation di-

mension of 2. This can be shown by writing the objective function J in the Form (4.3)

using the functions,

ψ0(x, u) = u2, ψ1 (x, u, w) =

w + u2

u

 (4.11)

ψ2

x, u,
w1

w2


 = w1 + w2

2u
2, ψ3 (x,w) = x2

√
w + w2.

The MSOP given in Eq. (4.10) can now be written in the form of the augmented
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MSOP given in Eq. (4.7) as follows,

min{z1(3)2
√
z3(3) + z3(3)2} (4.12)

subject to,

z1(t+ 1) =
z1(t)

u(t)
, z2(t+ 1) =


u(t) if t=1

0 otherwise

for all t ∈ {0, 1, 2},

z3(1) = u(1)2, z3(2) = z3(1) + u(1)2,

z3(3) = z3(2) + z2(2)2u(2),

z1(0) = 10, z2(0) = 0, z3(0) = 0 u(0), u(1), u(2) ≥ 0.

The MSOP given in Eq. (4.12) has a cost function that is additively separable

(Defn. 3.2) and so can be solved using the discretization methods in Section 3.4.

Moreover, by Lem. 4.1 the MSOP given in Eq. (4.12) is equivalent to the original

MSOP given in Eq. (4.10).

Figure 4.1 shows the state trajectories associated with input sequences constructed

using various discretization values k ∈ N. It is seen that for k = 200 the algorithm

produces a solution within three significant figures of the analytic optimal objective

function for the MSOP given in Eq. (4.10).

4.5 Comparison: State Augmentation Methods vs GBE Methods

The sets of naturally monotonically backward separable functions (Defn. 3.3) and

naturally forward separable functions (Defn. 4.2) are not disjoint. For instance, the

function

J(u,x) = max

{
max

0≤k≤T−1
{dk(x(k), u(k))}, dT (x(T ))

}
, (4.13)

is both a naturally monotonically backward separable function (as shown in Exam-

ple 3.1) and a naturally forward separable function (as shown in Example 4.4 setting
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Figure 4.1: State trajectories associated with input sequences constructed from
various discretization levels for the MSOP given in Eq. (4.10).

ck(x, u) ≡ 0 for all k ∈ {0, ..., T − 1} and cT (x) ≡ 0). Thus as we will show next, the

class of backward and forward separable MSOPs intersect.

Corollary 4.3. Recalling MDiscrete
Backward is given in Defn. 3.4 and MDiscrete

Forward is given in

Defn. 4.3 we have that

1. MDiscrete
Backward ∩MDiscrete

Forward 6= ∅.

2. MDiscrete
Forward *MDiscrete

Backward.

Proof. The MSOP associated with the tuple {J, f, {Xt}0≤t≤T , U, T} where J is given

in Eq. (4.13) is clearly an element of both MDiscrete
Backward and MDiscrete

Forward and thus

MDiscrete
Backward ∩MDiscrete

Forward 6= ∅. On the other hand if J is of the form

J(u,x) = max{ max
0≤k≤T−1

{dk(u(k), x(k))}, dT (x(T ))}+
T−1∑
s=0

cs(x(s), u(s)) + cT (x(T )),

(4.14)

then Example 4.4 shows {J, f, {Xt}0≤t≤T , U, T} is an element of MDiscrete
Forward and

Lemma 3.3 shows there exist {dk}Tk=0 and {ck}Tk=0 such that {J, f, {Xt}0≤t≤T , U, T}

is not an element of MDiscrete
Backward. Therefore, MDiscrete

Forward *MDiscrete
Backward.

92



For an MSOP with a cost function that is both backward and forward separable,

such as the function given in Eq. (4.13), we can solve the MSOP by recursive appli-

cation of the GBE (3.20) or we can solve the MSOP by constructing an equivalent

augmented MSOP (4.7) that can be solved using the BE (3.27). State augmenta-

tion methods involve increasing the dimension of the state space and therefore the

complexity of the MSOP. Therefore, we prefer to solve MSOPs without using state

augmentation methods whenever possible. The Principle of Optimality (Defn. 3.6)

can be used as a guide to determine whether a function is backward separable or not

(as shown in Lemma 3.3) and hence determine if an MSOP can be solved using the

GBE (3.20). Therefore the Principle of Optimality can be used as a guide to whether

state augmentation methods are required to solve an MSOP.

On the other hand, as shown in Lemma 4.2, every function is forward separa-

ble. Therefore, although state augmentation methods typically have the disadvan-

tage of large computation times, they do have the advantage that they can be used

to solve a larger class of problems when compared to methods involving the use of

the GBE (3.20). For instance, MSOPs with cost functions of the Form (4.14) are

members of MDiscrete
Forward, and hence can be tractably solved using state augmentation,

but such MSOPs may not be members of MDiscrete
Backward (Lemma 3.3) and thus cannot

be solved using the GBE (3.20).

We next provide a pathological example of an MSOP inMDiscrete
Backward but not clearly

in MDiscrete
Forward. We present the computation times for solving the MSOP using the

GBE (3.20) and using state augmentation methods. Since the cost function of the

MSOP is not clearly NFS (Defn. 4.2) we resort to the naive approach of writing

the cost function in forward separable Form (4.3) using representation maps that

store the entire historic state and input sequences, vastly increasing the complexity

of the MSOP once augmented. This pathological example demonstrates how superior
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computation times can be achieved by methods that solve MSOPs without the use

of state augmentation.

Consider an MSOP of Form (4.1) associated with tuple {J, f, {Xt}0≤t≤T , U, T},

where J(u,x) =

√
x(0) + u(0) +

√
.....
√
x(T − 1) + u(T − 1) +

√
x(T ), Xt = {1, 2},

U = {0.5, 1}, T ∈ N. Let us consider the MSOP initialized at (x0, t0) = (2, 0),

min
u,x

√
x(0) + u(0) +

√
.....

√
x(T − 1) + u(T − 1) +

√
x(T )

subject to: (4.15)

x(t+ 1) =


2 if u = 0.5

1 if u = 1

for t = 0, .., T,

x(0) = 2, x(t) ∈ {1, 2} for t = 0, .., T,

u(t) ∈ {0.5, 1} for t = 0, .., T − 1.

The cost function in the above MSOP is naturally monotonically backward separable

(Defn. 3.3) and can be written in the Form (3.4) with representation maps

φT (x) =
√
x, φt(x, u, z) =

√
x+ u+ z for t ∈ {0, .., T − 1}. (4.16)

Moreover the cost function is also forward separable and can be written in the

Form (4.3) with representation maps

ψ0(x, u) = [x, u]T , ψt(x, u, z) = [z, x, u]T , (4.17)

ψT (x, z) =

√
z1 + z2 +

√
....

√
z2T−1 + z2T +

√
x.

We solved the MSOP in Eq. (4.15) using both the GBE and the state augmentation

method, plotting the computation time results in Figure 4.2. We note that the

discretization methods presented in Section 3.4 were not needed to solve this MSOP
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Figure 4.2: Log log graph showing computation time for solving MSOP (4.15) using
state augmentation (red points), via exactly solving the GBE (green points), and via
approximately solving the GBE using the rollout (blue points) algorithm versus the
terminal time of the problem.

since the state and input spaces were already finite. The green points represent the

computation time required to construct the value function by solving the GBE (3.20)

with representation maps given in Eq. (4.16), and then to synthesize the optimal input

sequence using Eq. (3.21). The red points represent the computation time required

to construct the value function (Defn. 3.5) by solving Bellman’s Equation (3.27) for

the associated state augmented MSOP (4.7) and then to construct the optimal input

sequence. The green points increases linearly as a function of the terminal time,

T ∈ N, of order O(T ), whereas the red points increases exponentially with respect to

T , of order O(2T ) (due to the fact that using representation maps, given in Eq. (4.17),

results in an augmented state space of size 2T ). Moreover, Figure 4.2 also includes

blue dots representing computation times required to solve the GBE approximately,

as discussed in the next section.
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4.5.1 Approximate Dynamic Programming Using the GBE

Rather than solving the MSOP (4.15) exactly using the GBE (3.20), as we did

in the previous section, we now use an Approximate Dynamic Programming (ADP)

(also known as Reinforcement Learning (RL)) algorithm to heuristically solve the

MSOP and numerically show these algorithms can result in lower computational

times when compared to methods that solve the GBE exactly. This demonstrates that

MSOPs with monotonically backward separable cost functions can be heuristically

solved using the same methods developed in the ADP literature with the aid of the

methodology developed in this chapter.

Typically ADP methods use parametric function fitting (neural networks, linear

combinations of basis functions, decision tree’s, etc) to approximate the value function

(Defn. 3.5) from data. The approximated value function is then used to synthesize

a sub-optimal input sequence. To see how this works, suppose an ADP algorithm

constructs some approximate value function, denoted Ṽ , then an approximate optimal

input sequence, denoted ũ = (ũ(0), ..., ũ(T )), can be constructed by solving

ũ(k) ∈ arg inf
u∈Γx̃(k),k

{
φt(x̃(k), u, Ṽ (f(x̃(k), u, k), k + 1))

}
for k ∈ {0, ..., T − 1}.

(4.18)

x̃(0) = x0, x̃(k + 1) = f(x̃(k), ũ(k), k) for k ∈ {0, ..., T − 1}. (4.19)

One way to obtain an approximate value function, Ṽ , is to use the rollout algo-

rithm found in the textbook Bertsekas (1995). This algorithm supposes some base

feedback law, µbase : Rn×N→ U , that is “close” to the optimal feedback law is known

and approximates the value function as follows. For for some (x, t) ∈ Xt × {0, ...., T}
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the approximate value function is given by

Ṽ (x, t) = φt(x(t), u(t),φt+1(x(t+ 1), u(t+ 1), ...φT (x(T ))...)),

where u(s) = µbase(x(s), s) for all s ∈ {t, ..., T − 1},

x(s+ 1) = f(x(s), u(s), t) for all s ∈ {t, ..., T − 1},

x(t) = x.

Using the base policy µbase(x, t) =


1 if t/4 ∈ N

0.5 otherwise

we used the rollout algorithm

to solve the MSOP (4.15) for terminal times T = 8 to 106. Computation times are

plotted as the blue points in Figure 4.2 showing better performance than solving the

GBE exactly or using state augmentation. In this case the rollout algorithm yield

the optimal input sequence but in general the rollout algorithm may yield suboptimal

input sequences.

4.6 Application: Battery Scheduling

We apply our augmented DP methodology (developed in Section 4.2.2) to the

scheduling of batteries in the presence of demand and Time-of-Use (TOU) charges and

show that our proposed algorithm outperforms existing heuristics, such as Kamyar

and Peet (2016) (approximately $0.98 savings). To do this, we propose a simple model

for the dynamics of battery storage. We then formulate the objective/cost function

using electricity pricing plans which include demand charges. We then see that the

battery scheduling problem can be formulated as an MSOP of the Form (4.5); which

can be tractably solved as it has a NFS (Defn. 4.2) objective function. We will solve

the battery scheduling problem in the deterministic case based on real historical solar

data.
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Table 4.1: List of constant values associated with MSOP (4.22) (prices constants
correspond to Salt River Project E21 price plan).

Constant Value Constant Value

α 0.999791667 (W/h) toff 41

η 0.92 (%) pon 0.0633× 10−3 ($/KWh)

ū 4000 (Wh) poff 0.0423× 10−3 ($/KWh)

u -4000 (Wh) pd 0.2973 ($/KWh)

ē 8000 (Wh) ∆t 0.5 (h)

ton 27

Battery Dynamics We model the energy stored in the battery using the difference

equation:

e(k + 1) = α(e(k) + ηu(k)∆t), (4.20)

where e(k) denotes the energy stored in the battery at time step k, α is the bleed rate

of the battery, η is the efficiency of the battery, u(k) denotes the charging/discharging

(+/−) at time step k and ∆t is the amount of time passed between each time step.

Moreover we denote the maximum charge and discharge rate by ū and u respectively.

Thus we have the constraint that u(k) ∈ [u, ū] := U for all k. Similarly we also add

the constraint e(k) ∈ [e, ē] := X for all k where e and ē are the capacity constraints

of the battery (typically e = 0).

The Cost/Objective Function of the Battery Scheduling Problem: Let us

denote q(k) as the power supplied by the grid at time step k. Then,

q(k) = qa(k)− qs(k) + u(k), (4.21)

where qa(k) and qs(k) are the power consumed by HVAC/appliances and the power

supplied by solar photovoltaics at time step k respectively. It is assumed that both

qa(k) and qs(k) are known a priori.
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To define the cost of electricity we divide the day t ∈ [0, T ] into on-peak and

off-peak periods. We define an off peak period starting from 12am till ton and toff

till 12am. We define an on-peak period between ton till toff. The Time-of-Use (TOU,

$ per kWh) electricity cost during on-peak and off-peak is denoted by pon and poff

respectively. We further simplify this as pk = pon if k ∈ Ton and pk = poff if k ∈ Toff

where Ton and Toff are the on-peak and off-peak hours, respectively. These TOU

charges define the first part of the objective function as:

JTOU(u, e) = poff

ton−1∑
k=0

q(k)∆t+ pon

toff−1∑
k=ton

q(k)∆t+ poff

T∑
k=toff

q(k)∆t

=
∑
k∈[0,T ]

pk(qa(k)− qs(k))∆t+
∑
k∈[0,T ]

pku(k)∆t

where the daily terminal timestep is T = 24/∆t.

We also include a demand charge, which is a cost proportional to the maximum

rate of power taken from the grid during on-peak times. This cost is determined by

pd which is the price in $ per kW. Thus it follows the demand charge will be:

JD(u, e) = pd max
k∈{ton,....,toff−1}

{qa(k)− qs(k) + u(k)}.

4.6.1 Formulating the Battery Scheduling Problem as an MSOP

We may now define the MSOP for the battery scheduling problem in the presence

of demand and Time-of-Use charges initialized by (x0, t0) = (e0, 0),

min
u,e
{JTOU(u, e) + JD(u, e)} subject to (4.22)

e(k + 1) = α(e(k) + ηu(k)∆t) for k = 0, ..., T − 1

e0 = e0 , e(k) ∈ [e, ē], u(k) ∈ [u, ū] for k = 0, ..., T,

u = (u(0), ..., u(T − 1)) and e = (e(0), ..., e(T )).

Clearly, the MSOP in Eq. (4.22) is of Form (4.1) associated with the tuple

{J, f, {Xt}0≤t≤T , U, T}, where J(u,x) = JTOU(u,x) + JD(u,x), f(x, u, t) = α(x +
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ηu∆t), Xt = [e, ē], U = [u, ū], T ∈ N. Now, J is of the form J(u,x) = max0≤t≤T d(x(t))+∑T−1
s=0 cs(x(s), u(s)) which was shown in Example 4.4 to be NFS (Defn. 4.2). There-

fore, {J, f, {Xt}0≤t≤T , U, T} ∈ MDiscrete
Forward and thus the MSOP given in Eq. (4.22) can

be solved using the state augmentation methods presented in Section 4.2.2.

Numerically Solving the Battery Scheduling Problem: We now solve the bat-

tery scheduling problem given in Eq. (4.22) using the methodology of Section 4.2.2 to

construct an equivalent “augmented” MSOP of Form (4.7). We then use discretiza-

tion schemes presented in Section 3.4 to solve this “augmented” MSOP.

We used solar and usage data obtained by local utility Salt River Project (SRP)

in Tempe, AZ, for power variables qs and qa. We also use pricing data from SRP for

the parameters pon, poff and pd. Battery data obtained for the Tesla Powerwall was

used to determine the parameters α, η, ū, u and ē. The results of simulating the

numerically obtained input sequences are shown in Figure 4.3. The input sequence

used for this simulation was created using our augmentation and discretization level

of k = 20. Interpolation was used to aid in solving Bellman’s Equation (3.27) and

decrease the approximation error. These results show an improvement in accuracy

over results obtained for a similar problem in Kamyar and Peet (2016) (approximately

$0.98 savings). As expected, we see the battery charges during off-peak and then

discharges during on peak times to reduce ToU charges, while maintaining a reserve

which it uses to keep consumption flat during on peak times, thereby minimizing the

demand charge. As a result the power stabilizes during on peak times - becoming

constant.

Figure 4.4 shows how the monthly cost decreases when we input sequences con-

structed from the associated discretized MSOP as the discretization level, k ∈ N,

is increased. Although we do not get a monotonically decreasing sequence of costs,
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Figure 4.3: Graph showing state simulation from using an input sequence derived
from approximately solving the battery scheduling problem with deterministic solar
data. The maximum of the power is 0.7033(kw) and the cost is $46.389.

the error does decrease as k → ∞. Figure 4.5 also shows that augmenting and then

following our proposed discretization scheme for the battery scheduling problem re-

sults in an input sequence that reduces the consumption demand peak as k ∈ N is

increased. Figure 4.6 shows how the computational time required to solve the dis-

cretized battery scheduling problem appears to be of exponential nature with respect

to k ∈ N.
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Figure 4.4: The resulting monthly cost from using an input sequence found by
solving the discretized problem for optimal battery scheduling.
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Figure 4.5: The resulting maximum demand from using an input sequence found
by solving the discretized problem for optimal battery scheduling.
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CONTINUOUS TIME
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Chapter 5

POLYNOMIAL APPROXIMATIONS OF VALUE FUNCTIONS

Truth is much too complicated to allow anything

but approximations.

John Von Neumann

5.1 Background and Motivation

Consider a nested family of Optimal Control Problems (OCPs), each initialized

by (x0, t0) ∈ Rn × [0, T ], and each an optimization problem of the form

(u∗, x∗) ∈ arg inf
u,x

{∫ T

t0

c(x(t),u(t), t)dt+ g(x(T ))

}
subject to,

ẋ(t) = f(x(t),u(t)), u(t)∈U, for all t∈ [t0, T ], x(t0) =x0. (5.1)

The problem of solving OCPs (1.4) plays a central role in many practical appli-

cations, for instance in the design of non-pharmaceutical interventions in epidemics,

see Kantner and Koprucki (2020), optimal train operation, see Khmelnitsky (2000),

optimal maintenance strategies for manufacturing systems, see Huang et al. (2018),

etc.

Solving OCPs directly can be challenging. Fortunately, the problem of solving a

family of OCPs (1.4) can be reduced to the problem of solving a Partial Differential

Equation (PDE), see Liberzon (2011). From the principle of optimality, if (u∗, x∗)

solve the OCP for (x0, t0), then (τtu
∗, x∗(t)) (where τtu

∗(s) = u∗(t+ s) for all s ≥ 0)

solves the OCP initialized at (x∗(t), t) for any t ∈ [t0, T ]. This can be used to show
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that if a function, V , satisfies the Hamilton Jacobi Bellman (HJB) Partial Differential

Equation (PDE), defined as

∇tV (x, t) + inf
u∈U

{
c(x, u, t) +∇xV (x, t)Tf(x, u)

}
= 0 for all (x, t) ∈ Rn × (0, T ),

V (x, T ) = g(x) for all x ∈ Rn, (5.2)

then necessary and sufficient conditions for (u∗, x∗) to solve OCP (5.1) initialized by

(x0, t0) are

u∗(t) = k(x∗(t), t), ẋ∗(t) = f(x∗(t),u∗(t)), and x∗(t0) = x0,

where k(x, t) ∈ arg inf
u∈U

{
c(x, u, t) +∇xV (x, t)Tf(x, u)

}
. (5.3)

For a given family of OCPs of Form (5.1), if V satisfies Eq. (5.2), then V is

called the Value Function (VF) of the OCP. If V is the VF, then for any (x, t), the

value V (x, t) determines the optimal objective value of OCP (5.1) initialized by (x, t).

Furthermore, the VF yields a solution to the OCP (5.1) initialized by (x0, t0) through

application of Eq. (5.3). We call any k : Ω × [0, T ] → U that satisfies Eq. (5.3) a

controller and we say this controller is the optimal controller for the OCP when V is

the VF of the OCP.

Thus knowledge of the VF allows us to solve the nested family of OCPs in (5.1).

Unfortunately, to find the VF, we must solve the HJB PDE, given in Eq. (5.2), and

this PDE has no analytic solution. In the absence of an analytic solution, we often

parameterize a family of candidate VFs and search for one which satisfies the HJB

PDE. However, this is a non-convex optimization problem since the HJB PDE is

nonlinear. In this chapter we view the search for a VF through the lens of convex

optimization. Moreover, given an OCP, we are particularly interested in computing

a sub-VF, a function that is uniformly less than or equal to the VF of the OCP (ie

a function Ṽ such that Ṽ (x, t) ≤ V (x, t) for all (x, t) ∈ Rn × [0, T ] where V is the

VF of the OCP). We consider what happens when we relax the nonlinear equality
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constraints imposed by the HJB PDE to linear inequality constraints and tighten the

optimization problem’s feasible set to polynomials. In this chapter we consider the

following question:

Q1: Can we pose a sequence of convex optimization problems, each yielding a poly-

nomial sub-VF that can be made arbitrarily “close” to the VF of the OCP?

Over the years, many numerical methods have been proposed for solving the

HJB for a given OCP. Within this literature, a substantial number of the algo-

rithms are based on a finite-dimensional projection of the spatial domain (grid-

ing/meshing/discretization of the state space). In this class of algorithms we include

(mixed) finite elements methods - an important example of which is Gallistl et al.

(2020). Specifically, the approach in Gallistl et al. (2020) yields an approximate VF

with an error bound on the first order mixed L2 norm - a bound which converges as

the number of elements is increased (assuming the Cordes condition holds). Other ex-

amples of this class of methods include the discretization approaches in Achdou et al.

(2008); Kalise and Kunisch (2018). For example, in Achdou et al. (2008), we find an

algorithm which yields an approximate VF with an L∞ error bound which converges

as the level of discretization increases. Alternative non-grid based algorithms include

the method of characteristics found in Liberzon (2011), which can be used to compute

evaluations of VF at fixed (x, t) ∈ Rn, and max-plus methods found in McEneaney

(2007). The result in McEneaney (2007) considers an OCP with linear dynamics

and a cost function which is the point-wise maximum of quadratic functions. This

max-plus approach yields an approximate VF with a converging error bound which

holds on x ∈ Rn, but increases with |x|.

While all of these numerical methods yield approximate VFs with associated ap-

proximation error bounds, the use of these functions for controller synthesis (see Q2)
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and reachable set estimation has been more limited (the connection between VFs, the

HJB and reachable sets was made in Mitchell et al. (2005)). This is due to the fact

that the approximate VFs obtained from such discretization methods are difficult to

manipulate and apart from being close to the true VF, have relatively few provable

properties (such as being uniformly less than or greater to the true VF ie being sub

or super-VFs). Being a sub or super-VF is an important property of any approximate

VF. As shown in Cor. 5.1, sub/super-VFs can yield outer bounds on reachable sets

that can be used to certify that the underlying system does not transition into regions

of the state space deemed unsafe; a useful tool in the safety analysis of dynamical

systems.

To address these issues, in this chapter we focus on obtaining approximate VFs

which are both polynomial and sub-VFs. Specifically, the use of polynomials ensures

that the derivative of the approximated VFs can be efficiently computed (a useful

property for solving the controller synthesis Eq. (5.3)), while the use of sub-VFs

ensures that sublevel sets of the VF are guaranteed to contain the sublevel set of the

true VF (see Cor. 5.1), and hence provide provable guarantees on the boundary of

the reachable set (a useful property for safety analysis).

Substantial work on SOS relaxations of the HJB PDE for reachable set estima-

tion and safety set analysis includes the carefully constructed optimization problems

in Summers et al. (2013); Yin et al. (2018); Xue et al. (2019); Zhang et al. (2019)

and includes, of course, our work in Jones and Peet (2019b,c). Such SOS relaxations

of the HJB PDE can yield approximate VFs. However, there seems to be no prior

work on using approximation theory to prove bounds on the sub-optimality of either

controllers (see Q2) or corresponding reachable sets constructed from such approxi-

mated VFs. We note, however, that Xue et al. (2019) did establish the existence of a

polynomial sub-solution to the HJB arbitrarily close to the true solution of the HJB in
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the framework of reachable sets. Treatments of the moment-based alternatives to the

SOS approach includes Kamoutsi et al. (2017); Pakniyat and Vasudevan (2019); Ko-

rda et al. (2016); Zhao et al. (2017). Another duality-based approach, found in Chen

and Ames (2019), considers a density-based dual to the VF and uses finite elements

method to iteratively approximate the density and VF.

In this chapter we answer Q1 by considering “sub-solutions” to the HJB PDE (5.2).

Specifically, a “sub-solution”, Ṽ , to the HJB PDE (5.2) satisfies the relaxed inequality

constraint

∇tṼ (x, t) + c(x, u, t) +∇xṼ (x, t)Tf(x, u) ≥ 0 (5.4)

for all u ∈ U and (x, t) ∈ Rn×[0, T ], which implies that if V is a VF, Ṽ (x, t) ≤ V (x, t)

- i.e. Ṽ is a sub-VF. Then given an OCP (5.1) and based on this relaxed version of

the HJB PDE (5.4), we propose a sequence of SOS programming problems, indexed

by the degree d ∈ N of the polynomial variables, and given in Eq. (5.59). The

solution to each instance of the proposed sequence of optimization problems yields

a polynomial Pd that is a sub-solution to the HJB PDE (5.2) (or sub-VF). We then

show in Prop. 5.4 that for any VF V associated with the given OCP we have,

lim
d→∞
‖Pd − V ‖L1 = 0.

Furthermore, in Prop. 5.5 we show that this implies that the sublevel sets of {Pd}d∈N

converge to the sublevel sets of any VF, V , of the OCP (respect to the volume metric).

Our proposed method of approximately solving the HJB PDE by solving an SOS

programming problem is implemented via Semi-Definite Programming (SDP). SDP

problems can be solved to arbitrary accuracy in polynomial time using interior point

methods, see Vandenberghe and Boyd (1996). However, the number of variables in

the SDP problem associated with an n-dimensional and d-degree SOS problem is of

the order nd, see Ahmadi and Majumdar (2019), and therefore exponentially increases
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as d → ∞. Fortunately there exist several methods that improve the scalability of

SOS found in Ahmadi and Majumdar (2019); Zheng et al. (2019) but we do not discus

such methods in this chapter.

5.2 Optimal Control Problems

The nested family of finite-time Optimal Control Problems (OCPs), each initial-

ized by (x0, t0) ∈ Rn × [0, T ], are defined as:

(u∗, x∗) ∈ arg inf
u,x

{∫ T

t0

c(x(t),u(t), t)dt+ g(x(T ))

}
subject to,

ẋ(t) = f(x(t),u(t)) for all t ∈ [t0, T ], (5.5)

(x(t),u(t)) ∈ Ω× U for all t ∈ [t0, T ], x(t0) = x0,

where c : Rn × Rm × R → R is referred to as the running cost; g : Rn → R is the

terminal cost; f : Rn × Rm → Rn is the vector field; Ω ⊂ Rn is the state constraint

set; U ⊂ Rm is the input constraint set; and T is the final time. For a given family

of OCPs of Form (5.5) we associate the tuple {c, g, f,Ω, U, T}.

In this chapter we consider a special class of OCPs of Form (5.5), where U is

compact and c, g, f are locally Lipschitz continuous. We next recall the definition of

local Lipschitz continuity.

Definition 5.1. Consider sets Θ1 ⊂ Rn and Θ2 ⊂ Rm. We say the function F : Θ1 →

Θ2 is locally Lipschitz continuous on Θ1 and Θ2, denoted F ∈ LocLip(Θ1,Θ2),

if for every compact set X ⊆ Θ1 there exists KX > 0 such that for all x, y ∈ X

||F (x)− F (y)||2 ≤ KX ||x− y||2. (5.6)

If there exists K > 0 such that Eq. (5.6) holds for all x, y ∈ Θ1 we say F is uniformly

Lipschitz continuous, denoted F ∈ Lip(Θ1,Θ2).
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Definition 5.2. We say the six tuple {c, g, f,Ω, U, T} is a Family of Lipschitz OCPs

of Form (5.5) or {c, g, f,Ω, U, T} ∈ MContinuous
Lip if:

1. c ∈ LocLip(Ω× U × [0, T ],R).

2. g ∈ LocLip(Ω,R).

3. f ∈ LocLip(Ω× U,R).

4. U ⊂ Rm is compact.

For {c, g, f,Ω, U, T} ∈ MContinuous
Lip , if Ω = Rn we say the family of associated

OCPs is state unconstrained, and if Ω 6= Rn we say the associated family of OCPs is

state constrained.

5.3 Value Functions can Solve OCPs

In the following subsections, we establish that for every family of Lipschitz OCPs,

as defined in Section 5.2, there exists a function, called the Value Function (VF),

which:

(A) Is determined by the solution map - Eq. (5.10).

(B) Solves the Hamilton-Jacobi-Bellman (HJB) Partial Differential Equation (PDE)

- Eq. (5.12).

(C) Can be used to construct a solution to the OCP.

5.3.1 Value Functions are Determined by the Solution Map

Consider a nonlinear Ordinary Differential Equation (ODE) of the form

ẋ(t) = f(x(t),u(t)), x(0) = x0, (5.7)

where f : Rn × Rm → Rn, u : R→ Rm, and x0 ∈ Rn.
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Definition 5.3. We say the function φf is a solution map of the ODE given in

Eq. (5.7) on [0, T ] ⊂ R if for all t ∈ [0, T ]

∂φf (x0, t,u)

∂t
= f(φf (x0, t,u),u(t)), and φf (x0, 0,u) = x0.

Definition of Admissible Inputs: Given {c, g, f,Ω, U, T} ∈ MContinuous
Lip and

associated family of OCPs of Form (5.5), we now use the solution map to define the

set of admissible input signals for the OCP initialized at (x0, t0) ∈ Ω × [0, T ]. For

this we use the shift operator, denoted τs : L2([0, T ],Rm)→ L2([0, T − s],Rm), where

s ∈ [0, T ], and defined by

(τsu)(t) := u(s+ t) for all t ∈ [0, T − s]. (5.8)

Definition 5.4. For any (x0, t0) ∈ Rn × [0, T ], we say u is admissible, denoted

u ∈ UΩ,U,f,T (x0, t0), if u : [t0, T ] → U and there exists a unique solution map, φf ,

such that

∂φf (x0, t− t0, τt0u)

∂t
= f(φf (x0, t− t0, τt0u),u(t)) for t ∈ [t0, T ],

φf (x0, t− t0, τt0u) ∈ Ω for t ∈ [t0, T ], and φf (x0, 0, τt0u) = x0. (5.9)

For a given family of OCPs of Form (5.5), we now define the associated VF

using the solution map, φf . Lemma 5.1 then shows that VFs are locally Lipschitz

continuous.

Definition 5.5. For given {c, g, f,Ω, U, T} ∈ MContinuous
Lip we say V ∗ : Rn × R → R

is a Value Function (VF) of the associated family of OCPs if for (x, t) ∈ Ω × [0, T ],

the following holds

V ∗(x, t) = inf
u∈UΩ,U,f,T (x,t)

{
(5.10)∫ T

t
c(φf (x, s− t, τtu),u(s), s)ds+ g(φf (x, T − t, τtu))

}
,

where φf is as in Eq. (5.9). By convention if UΩ,U,f,T (x, t) = ∅ then V ∗(x, t) =∞.
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Lemma 5.1 (Local Lipschitz continuity of VFs, see Bressan (2011)). Consider some

{c, g, f,Rn, U, T} ∈ MContinuous
Lip . Then if V ∗ satisfies Eq. (5.10), we have that V ∗ ∈

LocLip(Rn × [0, T ],R).

5.3.2 Value Functions are Solutions to the HJB PDE

Consider the family of OCPs associated with {c, g, f,Ω, U, T} ∈ MContinuous
Lip . As

shown in Bertsekas (1995), a sufficient condition for a function V ∗ to be a VF, is for

V ∗ to satisfy the Hamilton Jacobi Bellman (HJB) PDE, given in Eq. (5.12). However,

for a general family of OCPs of form {c, g, f,Ω, U, T} ∈ MContinuous
Lip , solutions to the

HJB PDE may not be differentiable, and hence classical solutions to the HJB PDE

may not exist. For this reason, one typically uses a generalized notion of a solution

to the HJB PDE called a viscosity solution, which is defined in Crandall (1997) as

follows.

Definition 5.6. Consider the first order PDE

F (x, y(x),∇y(x)) = 0 for all x ∈ Ω, (5.11)

where Ω ⊂ Rn and F ∈ C(Ω× R× Rn,R).

We say y ∈ C(Ω) is a viscosity sub-solution of the PDE (5.11) if

F (x, y(x), p) ≤ 0 for all x ∈ Ω and p ∈ D+y(x),

where D+y(x) := {p ∈ R : there exists Φ ∈ C1(Ω,R) such that

∇Φ(x) = p and y − Φ attains a local max at x}.

Similarly, y ∈ C(Ω) is a viscosity super-solution of the PDE (5.11) if

F (x, y(x), p) ≥ 0 for all x ∈ Ω and p ∈ D−y(x)

where D−y(x) := {p ∈ R : there exists Φ ∈ C1(Ω,R) such that

∇Φ(x) = p and y − Φ attains a local min at x}.
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We say y ∈ C(Ω) is a viscosity solution of (5.11) if it is both a viscosity sub

and super-solution.

Theorem 5.1 (Uniqueness of VFs, see Bressan (2011)). Consider the family of OCPs

associated with the tuple {c, g, f,Rn, U, T} ∈ MContinuous
Lip . Any function satisfying

Eq. (5.10) is the unique viscosity solution of the HJB PDE

∇tV (x, t) + inf
u∈U

{
c(x, u, t) +∇xV (x, t)Tf(x, u)

}
= 0 for all (x, t) ∈ Rn × [0, T ]

V (x, T ) = g(x) for all x ∈ Rn. (5.12)

Note that Lemma 5.1 and Theorem 5.1 are only valid in the absence of state

constraints (the case when Ω = Rn). However, as we will show in Lemma 5.3, if

the state constraints are sufficiently “loose”, then the unconstrained and constrained

solutions coincide.

5.3.3 VFs can Construct Optimal Controllers

Given an OCP, we next show if a “classical” differentiable solution to the HJB

PDE (5.12) associated with the OCP is known then a solution to the OCP can be

constructed using Eqs. (5.13) and (5.14). We will refer to any k : Ω× [0, T ]→ U that

satisfies Eqs. (5.13) and (5.14) for some V as a controller and say this is the optimal

controller of the OCP if V is the VF of the OCP.

Theorem 5.2 (Liberzon (2011)). Consider the family of OCPs associated with tu-

ple {c, g, f,Rn, U, T} ∈ MContinuous
Lip . Suppose V ∈ C1(Rn × R,R) solves the HJB

PDE (5.12). Then u∗ : [t0, T ]→ U solves the OCP associated with {c, g, f,Rn, U, T}

initialized at (x0, t0) ∈ Rn × [0, T ] if and only if

u∗(t) = k(φf (x0, t,u
∗), t) for all t ∈ [t0, T ], (5.13)

where k(x, t) ∈ arg inf
u∈U
{c(x, u, t) +∇xV (x, t)Tf(x, u)}. (5.14)
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If the function V in Eq. (5.14) is not a VF the resulting controller may no longer

construct a solution to the OCP. In Chapter 6 we will provide a bound on the per-

formance of a constructed controller from a candidate VF based on how “close” the

candidate VF is to the true VF under the Sobolev norm.

5.4 The Feasibility Problem of Finding VFs

Consider a family of OCPs associated with some {c, g, f,Ω, U, T} ∈ MContinuous
Lip .

Previously it was shown in Theorem 5.2 that if V ∈ C1(Rn×R,R) is a solution to the

HJB PDE (5.12) then V may be used to solve the family of OCPs using Eqs. (5.13)

and (5.14). The question, now, is how to find such a V .

Let us consider the problem of finding a value function as an optimization problem

subject to constraints imposed by the HJB PDE (5.12). This yields the following

feasibility problem:

Find V ∈ C1(Rn × R,R), (5.15)

such that V satisfies (5.12).

Note that our optimization problem of Form (5.15) is non-convex and may not even

have a solution with sufficient regularity. For these reasons, we next propose a convex

relaxation of Problem (5.15). We first define sub-VFs and super-VFs that uniformly

bound VFs either from above or bellow.

Definition 5.7. We say the function J : Rn × R → R is a sub-VF to the family of

OCPs associated with {c, g, f,Ω, U, T} ∈ MContinuous
Lip if

J(x, t) ≤ V ∗(x, t) for all t ∈ [0, T ] and x ∈ Ω,

for any V ∗ satisfying Eq.(5.10). Moreover if

J(x, t) ≥ V ∗(x, t) for all t ∈ [0, T ] and x ∈ Ω,
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for any V ∗ satisfying Eq. (5.10), we say J is a super-VF.

5.4.1 A Sufficient Condition for a Function to be a Sub-VF

We now propose “dissipation” inequalities, given in Eqs. (5.16) and (5.17), and

show that if a differentiable function satisfies such inequalities then it must be a

sub-value function.

Proposition 5.1. For given {c, g, f,Ω, U, T} ∈ MContinuous
Lip suppose J ∈ C1(Rn ×

R,R) satisfies for all (x, u, t) ∈ Ω× U × (0, T )

∇tJ(x, t) + c(x, u, t) +∇xJ(x, t)Tf(x, u) ≥ 0, (5.16)

J(x, T ) ≤ g(x). (5.17)

Then J is a sub-value function of the family of OCPs associated with {c, g, f,Ω, U, T}.

Proof. Suppose J ∈ C1(Rn × R,R) satisfies Eqs. (5.16) and (5.17). Consider an

arbitrary (x0, t0) ∈ Ω × [0, T ]. If UΩ,U,f,T (x0, t0) = ∅ then V ∗(x0, t0) = ∞. Clearly

in this case J(x0, t0) < V ∗(x0, t0) as J is continuous and therefore is finite over

the compact region Ω × [0, T ]. Alternatively if UΩ,U,f,T (x0, t0) 6= ∅, then for any

ũ ∈ UΩ,U,f,T (x0, t0), we have the following by Defn. 5.4:

φf (x0, t− t0, τt0ũ) ∈ Ω for all t ∈ [t0, T ] and ũ(t) ∈ U for all t ∈ [t0, T ].

Therefore (using the shorthand x̃(t) := φf (x0, t − t0, τt0ũ)), by Eq. (5.16) we have

for all t ∈ [t0, T ]

∇tJ(x̃(t), t) + c(x̃(t), ũ(t), t) +∇xJ(x̃(t), t)Tf(x̃(t), ũ(t)) ≥ 0.

Now, using the chain rule we deduce

d

dt
J(x̃(t), t) + c(x̃(t), ũ(t), t) ≥ 0 for all t ∈ [t0, T ].
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Then, integrating over t ∈ [t0, T ], and since J(x̃(T ), T ) ≤ g(x̃(T )) by Eq. (5.17), we

have

J(x0, t0) ≤
∫ T

t0

c(x̃(t), ũ(t), t)dt+ g(x̃(T )). (5.18)

Since Eq. (5.18) holds for all ũ ∈ UΩ,U,f,T (x0, t0), we may take the infimum over

UΩ,U,f,T (x0, t0) to show that J(x0, t0) ≤ V ∗(x0, t0). As this argument can be used for

any (x0, t0) ∈ Ω× [0, T ] it follows J is a sub-value function.

Definition 5.8. For given {c, g, f,Ω, U, T} ∈ MContinuous
Lip we say a function J ∈

C1(Rn × R,R) is dissipative if it satisfies Inequalities (5.16) and (5.17).

Dissipative functions are viscosity sub-solutions (as per Defn. 5.6) to the HJB

PDE (5.12). Moreover, by Prop. 5.1 a dissipative function is a sub-VF. However, a

sub-VF need not be dissipative or a viscosity sub-solution to the HJB PDE.

5.4.2 A Convex Relaxation of the Problem of Finding VFs

The set of functions satisfying Eqs. (5.16) and (5.17) is convex as Eqs. (5.16)

and (5.17) are linear in terms of the unknown variable/function J . Furthermore,

for given {c, g, f,Ω, U, T} ∈ MContinuous
Lip , any function which satisfies the HJB PDE

(5.12) also satisfies Eqs. (5.16) and (5.17). This allows us to propose the following

convex relaxation of the problem of finding a VF (Problem (5.15)):

Find J ∈ C1(Rn × R,R), (5.19)

such that J satisfies (5.16) and (5.17).

5.4.3 A Polynomial Tightening of the Problem of Finding VFs

Problem (5.19) is convex. However, a function J , feasible for Problem (5.19)

(and hence dissipative), may be arbitrarily far from the VF. For instance, in the case
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c(x, u, t) ≥ 0 and 0 ≤ g(x) < M , the constant function J(x, t) ≡ −C is dissipative

for any C > M . Thus, by selecting sufficiently large enough C > M , we can make

||J − V || arbitrary large, regardless of the chosen norm, || · ||.

To address this issue, we propose a modification of Problem (5.19), wherein we

include an objective of Form
∫

Λ×[0,T ]
w(x, t)J(x, t)dxdt, parameterized by a compact

domain of interest Λ ⊂ Rn and weight w ∈ L1(Λ × [0, T ],R+) (we use the weight,

w, in Prop. 5.5). Specifically, for given {c, g, f,Ω, U, T} ∈ MContinuous
Lip and d ∈ N,

consider the optimization problem:

Jd ∈ arg max
J∈Pd(Rn×R,R)

∫
Λ×[0,T ]

w(x, t)J(x, t)dxdt (5.20)

subject to:∇tJ(x, t) + c(x, u, t) +∇xJ(x, t)Tf(x, u) > 0 for x ∈ Ω, t ∈ (0, T ), u ∈ U,

J(x, T ) < g(x) for all x ∈ Ω.

Maximizing
∫

Λ×[0,T ]
w(x, t)J(x, t)dxdt minimizes the weighted L1 norm∫

Λ×[0,T ]
w(x, t)|V (x, t) − J(x, t)|dxdt. The restriction to polynomial solutions J ∈

Pd(Rn × R,R) makes the problem finite-dimensional.

5.5 A Sequence of Dissipative Polynomials that Converge to the VF in Sobolev

Space

For a given {c, g, f,Ω, U, T} ∈ MContinuous
Lip , in Eq. (5.20), we proposed a sequence

of optimization problems, indexed by d ∈ N, each instance of which yields a dissipative

function Jd ∈ Pd(Rn×R,R). In this section, we prove that limd→∞‖Jd − V ‖L1(Λ×(0,T ),R) →

0 where V is the VF associated with the OCP {c, g, f,Ω, U, T} ∈ MContinuous
Lip . To

accomplish this proof, we divide the section into three subsections, wherein we find

the following.

(A) In Prop. 5.2 we show that for any V ∈ Lip(Ω × [0, T ],R) that satisfies the
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dissipation-type inequality in Eq. (5.21) and any ε > 0 there exists a dissipative

function Jε ∈ C∞(Ω× [0, T ],R) such that ||Jε − V ||W 1,p(Ω×[0,T ],R) < ε.

(B) In Theorem 5.3 we show that for every ε > 0, there exists d ∈ N and dissipative

Pε ∈ Pd(Rn×R,R) such that ||Pε−V ||W 1,p(Ω×[0,T ],R) < ε, for any value function,

V , associated with {c, g, f,Ω, U, T} ∈ MContinuous
Lip .

(C) For any positive weight w, Prop. 5.3 shows that if Jd solves (5.20) for d ∈

N, then limd→∞ ||w(Jd − V )||L1(Λ×(0,T ),R) = 0 for any VF, V , associated with

{c, g, f,Ω, U, T} ∈ MContinuous
Lip .

5.5.1 Existence of Smooth Dissipative Functions that Approximate the VF

Arbitrarily well under the W 1,p Norm

In this section we create a sequence of smooth (elements of C∞(Rn×R,R)) func-

tions that converges, with respect to the W 1,p norm, to any Lipschitz function, V ,

satisfying the dissipation-type inequality in Eq. (5.21). This subsection uses some

aspects of mollification theory found in Appendix B.

Approximation of Lipschitz functions satisfying a dissipation-type inequal-

ity We now show that for any Lipschitz function, V , satisfying the dissipation-type

inequality in Eq. (5.21), V can be approximated arbitrarily well by a smooth function,

Jε, that also satisfies the dissipation-type inequality in Eq. (5.21). We use a similar

proof strategy first appearing in Kurzwel (1963) and also later appearing in Wilson

(1969); Lin et al. (1996); Teel and Praly (2000).

Lemma 5.2. Let E ⊂ Rn+1 be an open bounded set, Ω ⊂ Rn be such that Ω×(0, T ) ⊆

E, where T > 0, U ⊂ Rm be a compact set, f ∈ Lip(Ω × U,Rn), c ∈ Lip(Ω × U ×

[0, T ],R), and V ∈ Lip(E,R) such that
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ess inf
(x,t)∈Ω×(0,T )

{∇tV (x, t)+∇xV (x, t)Tf(x, u) + c(x, u, t)}≥ 0, (5.21)

where the derivatives, ∇tV and ∇xV , are weak derivatives.

Then for any compact set K ⊂ E, 1 ≤ p < ∞ and for all ε > 0 there exits

Jε ∈ C∞(K,R) such that

||V − Jε||W 1,p(K,R) < ε and sup
(x,t)∈K

|V (x, t)− Jε(x, t)| < ε, (5.22)

and for all (x, t) ∈ K ∩ (Ω× (0, T )) and u ∈ U

∇tJε(x, t) +∇xJε(x, t)
Tf(x, u) + c(x, u, t) ≥ −ε. (5.23)

Proof. Suppose V satisfies Eq. (5.21), K ⊂ E is a compact set, 1 ≤ p <∞, and ε > 0.

By Rademacher’s Theorem (Theorem C.4) V is weakly differentiable with essentially

bounded derivative. Therefore V ∈ W 1,∞(E,R) and hence V ∈ W 1,p(E,R). Now

Prop. B.1 (Statements 3 and 4) can be used to show there exists σ1 > 0 such that for

any 0 ≤ σ < σ1 we have

||V − [V ]σ1||W 1,p(K,R) < ε and sup
(x,t)∈K

|V (x, t)− [V ]σ1(x, t)| < ε. (5.24)

Select σ2 > 0 small enough so K ⊂< E >σ2 (which can be done as E is open). Select

0 < σ3 <
ε

LV Lf+2Lc
, where LV , Lf , Lc > 0 are the Lipschitz constant of the functions

V , f , and c respectively. We now have the following for all σ4 < min{σ3, σ2}, u ∈ U
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and (x, t) ∈ K ∩ (Ω× (0, T )),

∇t[V ]σ4(x, t) +∇x[V ]σ4(x, t)Tf(x, u) + c(x, u, t) (5.25)

= [∇tV ]σ4(x, t) + [∇xV ]σ4(x, t)Tf(x, u) + c(x, u, t)

=

∫
Bσ4 (0)

ησ4(z1, z2)

(
∇tV (x− z1, t− z2)

+∇xV (x− z1, t− z2)Tf(x− z1, u) + c(x− z1, u, t− z2)

)
dz1dz2

−
∫
Bσ4 (0)

ησ4(z1, z2)∇xV (x− z1, t− z2)T
(
f(x− z1, u)− f(x, u)

)
dz1dz2

−
∫
Bσ4 (0)

ησ4(z1, z2)

(
c(x− z1, u, t− z2)− c(x, u, t)

)
dz1dz2

≥ ess inf
(z1,z2)∈Bσ4 (0)

{
∇tV (x− z1, t− z2)

+∇xV (x− z1, t− z2)Tf(x− z1, u) + c(x− z1, u, t− z2)

}
− ess sup
(z1,z2)∈Bσ4 (0)

{
||∇xV (x− z1, t− z2)||2

}
ess sup

(z1,z2)∈Bσ4 (0)

{
||f(x− z1, u)− f(x, u)||2

}
− ess sup
(z1,z2)∈Bσ4 (0)

{
|c(x− z1, u, t− z2)− c(x, u, t)|

}
≥ −LV ess sup

(z1,z2)∈Bσ4 (0)

{
||f(x− z1, u)− f(x, u)||2

}
− ess sup
(z1,z2)∈Bσ4 (0)

{
|c(x− z1, u, t− z2)− c(x, u, t)|

}
≥ −LVLf ess sup

(z1,z2)∈Bσ4 (0)

{
||z1||2

}
− Lc ess sup

(z1,z2)∈Bσ4 (0)

{
||z1||2 + |z2|

}
= −(LVLf + 2Lc)σ4 ≥ −ε.

The first equality of Eq. (5.25) follows since ∇t[V ]σ4(x, t) = [∇tV ]σ4(x, t) and

∇x[V ]σ4(x, t) = [∇xV ]σ4(x, t) for all (x, t) ∈ K ⊂< E >σ4 by Prop. B.1 (State-

ment 2). The first inequality follows by the monotonicity property of integration and

the Cauchy Swartz inequality. Since V is Lipschitz ess sup(x,t)∈E ||∇xV (x, t)||2 < LV

by Rademacher’s Theorem (Theorem C.4). The second inequality follows by using
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(5.21) together with ess sup(x,t)∈E ||∇xV (x, t)||2 < LV . The third inequality follows

by the Lipschitz continuity of f and c. Finally the fourth inequality follows by the

fact σ4 < σ3 <
ε

LV Lf+Lc
.

Now define Jε(x, t) := [V ]σ(x.t) where 0 < σ < min{σ1, σ4}. It follows that

Jε ∈ C∞(K,R) by Prop. B.1 (Statement 1). Moreover Jε satisfies Eqs. (5.22) and

(5.23) by Eqs. (5.24) and (5.25).

In Lemma 5.2 we showed that for any given function, V ∈ Lip(E,R), any compact

subsets K ⊂ E, any ε > 0, and any 1 ≤ p < ∞, there exists a smooth function, Jε,

satisfying Eq. (5.23), such that ||V − Jε||W 1,p(K,R) < ε. We next show this “local”

result over compact subsets, K, can be extended to a “global” results over the entire

domain, E. To do this we use Theorem C.6, stated in Chapter C. Given an open

cover of E, Theorem C.6 states that there exists a family of functions, called a par-

tition of unity. In the next proposition we use partitions of unity together with the

“local” approximates of the Lipschitz function, V , to construct a smooth “global”

approximation of V over the entire domain E.

Proposition 5.2. Let E ⊂ Rn+1 be an open bounded set, Ω ⊂ Rn be such that

Ω × (0, T ) ⊆ E, where T > 0, U ⊂ Rm be a compact set, f ∈ Lip(Ω × U,Rn),

c ∈ Lip(Ω × U × [0, T ],R), and V ∈ Lip(E,R) satisfies Eq. (5.21). Then for all

1 ≤ p <∞ and ε > 0 there exits J ∈ C∞(E,R) such that

||V − J ||W 1,p(E,R) < ε and sup
(x,t)∈E

|V (x, t)− J(x, t)| < ε, (5.26)

and for all (x, u, t) ∈ Ω× U × (0, T )

∇tJ(x, t) +∇xJ(x, t)Tf(x, u) + c(x, u, t) ≥ −ε. (5.27)

Proof. Let us consider the family of sets Ei = {x ∈ E : supy∈∂E ||x− y||2 < 1
i
} for i ∈

N. It follows {Ei}∞i=1 is an open cover (Defn. C.1) for E and thus by Theorem C.6 there
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exists a smooth partition of unity, {ψi}∞i=1 ⊂ C∞(E,R), that satisfies Statements 1

to 4 of Theorem C.6.

For ε > 0 Lemma 5.2 shows that for each i ∈ N there exists a function Ji ∈

C∞(Ei,R) such that

sup
(x,t)∈Ei

|V (x, t)− Ji(x, t)| <
ε

2i+1(1 + τi + θi)
, (5.28)

||V − Ji||W 1,p(Ei,R) <
ε

2i+1(1 + τi + θi)
, (5.29)

∇tJi(x, t) +∇xJi(x, t)
Tf(x, u) + c(x, u, t) ≥ − ε

2i+1(1 + τi + θi)

for all (x, t) ∈ Ei ∩ (Ω× (0, T )), u ∈ U, (5.30)

where we denote τi := sup(x,u,t)∈Ω×U×(0,T ){|∇tψi(x, t) +∇xψi(x, t)
Tf(x, u)|} ≥ 0 and

θi :=
(
max|α|≤1 sup(x,t)∈E |Dαψi(x, t)|p

)p ≥ 0; which is well defined and finite as Ω ×

U × (0, T ) is bounded and ψi is smooth.

Now, let us define J(x, t) :=
∑∞

i=1 ψi(x, t)Ji(x, t), we will show J ∈ C∞(E,R) and

that J satisfies Eqs. (5.26) and (5.27).

It follows J ∈ C∞(E,R) by Theorem C.6. To see this we note for each i ∈ N

we have ψi ∈ C∞(E,R) and ψi(x, t) = 0 outside Ei implying ψiJi ∈ C∞(E,R).

Moreover, for each (x, t) ∈ E there exists an open set, S ⊆ E, where only a finite

number of ψi are nonzero. Therefore it follows that the function J is a finite sum of

infinitely differentiable functions and thus J is also infinitely differentiable.
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We now show J satisfies Eq. (5.26). We first show ‖V − J‖W 1,p(E,R) < ε:

‖V − J‖W 1,p(E,R) = ‖V −
∞∑
i=1

ψiJi‖W 1,p(E,R) (5.31)

= ‖
∞∑
i=1

ψi(V − Ji)‖W 1,p(E,R) ≤
∞∑
i=1

‖ψi(V − Ji)‖W 1,p(E,R)

=
∞∑
i=1

‖ψi(V − Ji)‖W 1,p(Ēi,R) ≤
∞∑
i=1

θi‖V − Ji‖W 1,p(Ēi,R)

<

∞∑
i=1

(
ε+ θi

2i+1(1 + τi + θi)

)
< ε.

The second equality of Eq. (5.31) follows since partitions of unity satisfy
∑∞

i=1 ψi(x, t) ≡

1 by Theorem C.6. The first inequality follows by the triangle inequality. The third

equality follows since partitions of unity satisfy ψi(x, t) = 0 outside of Ei for all i ∈ N

by Theorem C.6. The third inequality follows by Eq. (5.29). The fourth inequality

follows as
∑∞

i=1
1
2i

= 1. Now, by a similar augment to Eq. (5.31), using Eq. (5.28)

rather than Eq. (5.29), it also follows sup(x,t)∈E |V (x, t) − J(x, t)| < ε and thus J

satisfies Eq. (5.26).

Next we will show J satisfies Eq. (5.27). Before doing this we first prove a pre-

liminary identity. Specifically,

∞∑
i=1

(
∇tψi(x, t) +∇xψi(x, t)

Tf(x, u)

)
= 0, (5.32)

for all (x, t) ∈ Ω × (0, T ) ⊆ E and u ∈ U . This follows because only finitely many

ψi’s are non-zero for each (x, t) ∈ E and thus it follows
∑∞

i=1 ψi(x, t) is a finite

sum of infitely differentiable functions. Therefore, we can interchange derivatives

and summations, thus since
∑∞

i=1 ψi(x, t) ≡ 1 it follows that ∇t

(∑∞
i=1 ψi(x, t)

)
=∑∞

i=1∇tψi(x, t) = 0. Similarly for each j ∈ {1, ..., n} we have
∑∞

i=1
∂ψi(x,t)
∂xj

= 0 which

implies
∑∞

i=1∇xψi(x, t) = 0 ∈ Rn.
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Now, it follows J satisfies Eq. (5.27) since

∇tJ(x, t) +∇xJ(x, t)Tf(x, u) + c(x, u, t) (5.33)

=
∞∑
i=1

(
ψi(x, t)(∇tJi(x, t) +∇xJi(x, t)

Tf(x, u) + c(x, u, t))

)
+
∞∑
i=1

(
Ji(x, t)(∇tψi(x, t) +∇xψi(x, t)

Tf(x, u))

)
≥ −ε

2
+
∞∑
i=1

(Ji(x, t)− V (x, t))(∇tψi(x, t) +∇xψi(x, t)
Tf(x, u)) ≥ −ε,

for all (x, t) ∈ Ω× (0, T ) ⊆ E and u ∈ U . The first equality of Eq. (5.33) follows by

the chain rule and the fact
∑∞

i=1 ψi(x, t)≡1. The first inequality follows by Eqs. (5.30)

and (5.32). The second inequality follows by Eq. (5.28) and
∑∞

i=1
1
2i

=1.

5.5.2 Existence of Dissipative Polynomials that can Approximate the VF

Arbitrarily well under the W 1,p Norm

Previously, in Prop. 5.2, we showed for any V ∈ Lip(Ω × [0, T ],R) satisfying

Eq. (5.21) there exists a smooth function J that also satisfies Eq. (5.21) and approxi-

mates V with arbitrary accuracy under the Sobolev norm. We now use this result to

show for any VF, associated with some family OCPs {c, g, f,Ω, U, T} ∈ MContinuous
Lip ,

there exists a dissipative polynomial, Vl, that approximates the VF arbitrarily well

with respect to the Sobolev norm. Our proof uses Theorem C.2, found in Chapter C,

that shows differentiable functions, such as J , can be approximated up to their first

order derivatives over compact sets arbitrarily well by polynomials. Prop. 5.2 only

gives the existence of a smooth approximation, J , when the VF is Lipschitz continu-

ous. Lemma 5.1 shows the VF, associated with a family of OCPs, is locally Lipschitz

when Ω = Rn (which is not a compact set). Unfortunately, Theorem C.2 can only

be used for polynomial approximation over compact sets. Thus, before proceeding

we first give a sufficient condition for a VF, associated with a family of OCPs with
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compact state constraints, to be Lipschitz continuous over some set Λ ⊂ Ω.

Lipschitz continuity of VFs associated with a family of state constrained

OCPs Consider the family of OCPs {c, g, f,Ω, U, T} ∈ MContinuous
Lip . If the state

is constrained (Ω 6= Rn), the associated VF can be discontinuous and is no longer

uniquely defined as the viscosity solution of the HJB PDE. Next, in Lemma 5.3, we

give a sufficient condition that when satisfied implies VFs, associated with a family

of state constrained OCPs, are equal to the unique locally Lipschitz continuous VF

of the state unconstrained OCP over some subset Λ ⊆ Ω, and hence are Lipschitz

continuous over Λ. To state Lemma 5.3 we first define the forward reachable set.

Definition 5.9. For X0 ⊂ Rn, Ω ⊆ Rn, U ⊂ Rm, f : Rn × Rm → Rn and S ⊂ R+,

define

FRf (X0,Ω, U, S) :=

{
y ∈ Rn : there exists x ∈ X0, T ∈ S, and

u ∈ UΩ,U,f,T (x, 0) such that φf (x, T,u) = y

}
.

Lemma 5.3. Consider {c, g, f,Ω, U, T} ∈ MContinuous
Lip and any function V1 : Ω ×

[0, T ] → R that satisfies Eq. (5.10). Let V2 : Rn × [0, T ] → R be the VF for the

unconstrained problem {c, g, f,Rn, U, T}. If Λ ⊆ Ω is such that

FRf (Λ,Rn, U, [0, T ]) ⊆ Ω, (5.34)

then V1(x, t) = V2(x, t) for all (x, t) ∈ Λ× [0, T ].

Proof. To show V1(x, t) = V2(x, t) for all (x, t) ∈ Λ×[0, T ] we must prove UΩ,U,f,T (x, t) =

URn,U,f,T (x, t) for all (x, t) ∈ Λ× [0, T ].

For any (x, t) ∈ Λ × [0, T ] if u ∈ UΩ,U,f,T (x, t) then clearly u ∈ URn,U,f,T (x, t),

thus UΩ,U,f,T (x, t) ⊆ URn,U,f,T (x, t). On the other hand if u ∈ URn,U,f,T (x, t) then by
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Defn. 5.4 it follows u(s) ∈ U for all s ∈ [t, T ] and that there exists a unique map,

denoted by φf (x, s,u), that satisfies the following for all s ∈ [t, T ]

∂φf (x, s− t, τtu)

∂s
= f(φf (x, s− t, τtu),u(s)), φf (x, 0, τtu) = x.

To show u ∈ UΩ,U,f,T (x, t) we need φf (x, s − t, τtu) ∈ Ω for all s ∈ [t, T ], which is

equivalent to

φf (x, s, ũ) ∈ Ω for all s ∈ [0, T − t], (5.35)

where ũ = τtu ∈ UΩ,U,f,T−t(x, 0). Eq. (5.35) then follows trivially by Eq. (5.34).

Alternative sufficient conditions that imply a VF, associated with some family of

state constrained OCPs, is Lipschitz continuous and the unique viscosity solution of

the HJB PDE include: the Inward Pointing Constraint Qualification (IPCQ) found

in Soner (1986) and Frankowska and Mazzola (2013), the Outward Pointing Con-

straint Qualification (OPCQ) found in Frankowska and Vinter (2000), and epigraph

characterization of VFs found in Altarovici et al. (2013).

Approximation of VFs by dissipative polynomials Considering a family of

OCPs {c, g, f,Ω, U, T} ∈ MContinuous
Lip , and assuming there exists a set Λ ⊆ Ω that

satisfies Eq. (5.34), we now prove the existence of dissipative polynomial functions

that can approximate the any VF of {c, g, f,Ω, U, T} ∈ MContinuous
Lip arbitrarily well

under the Sobolev norm.

Theorem 5.3. For given {c, g, f,Ω, U, T} ∈ MContinuous
Lip suppose Λ ⊆ Ω is a bounded

set that satisfies Eq. (5.34), then for any function V satisfying Eq. (5.10), 1 ≤ p <∞,
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and ε > 0 there exists Vl ∈ P(Rn × R,R) such that

‖V − Vl‖W 1,p(Λ×[0,T ],R) < ε, (5.36)

sup
(x,t)∈Λ×[0,T ]

|V (x, t)− Vl(x, t)| < ε, (5.37)

Vl(x, t) ≤ V (x, t) for all t ∈ [0, T ] and x ∈ Ω, (5.38)

∇tVl(x, t) + c(x, u, t) +∇xVl(x, t)
Tf(x, u) > 0 (5.39)

for all x ∈ Ω, t ∈ (0, T ), u ∈ U,

Vl(x, T ) < g(x) for all x ∈ Ω. (5.40)

Proof. Let ε > 0. Suppose V satisfies Eq. (5.10). Rather than approximating V ,

defined for a family of OCPs on the compact set Ω, we instead approximate the

unique VF, denoted by V ∗, associated with the family of OCPs where Ω = Rn. It is

easier to approximate V ∗ compared to V as V ∗ has the following useful properties: By

Lemma 5.1, V ∗ is locally Lipschitz continuous; and by Theorem 5.1, V ∗ is the unique

viscosity solution of the HJB PDE (5.12). Furthermore, as Λ satisfies Eq. (5.34),

Lemma 5.3 implies

V ∗(x, t) = V (x, t) for all (x, t) ∈ Λ× [0, T ]. (5.41)

This proof is structured as follows. We first use Prop. 5.2 to approximate V ∗

by an infinitely differentiable function denoted as Jδ. Then using Theorem C.2,

found in Chapter C, we approximate Jδ by a polynomial Pδ. Finally, to ensure

Inequalities (5.39) and (5.40) are satisfied, a correction term ρ is subtracted from

Pδ, creating the function Vl(x, t) := Pδ(x, t)− ρ(t) that we show satisfies Eqs. (5.36)

to (5.40).

Since Ω is compact, there exists some open bounded set E ⊂ Rn+1 of finite

measure which contains Ω× (0, T ). Since V ∗ ∈ LocLip(Rn × R,R) (by Lemma 5.1)

and E ⊂ Rn is bounded it follows V ∗ ∈ Lip(E × [0, T ],R). Then by Rademacher’s
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theorem (See Theorem C.4 in Chapter C), V ∗ is differentiable almost everywhere in

E. Moreover, as V ∗ is the unique viscosity solution to the HJB PDE, the following

holds for all u ∈ U and almost everywhere in (x, t) ∈ Ω× (0, T ) ⊂ E.

∇tV
∗(x, t) + c(x, u, t) +∇xV

∗(x, t)Tf(x, u)

≥ ∇tV
∗(x, t) + inf

u∈U
{c(x, u, t) +∇xV

∗(x, t)Tf(x, u)} = 0

This implies that the following holds for all u ∈ U

ess inf
(x,t)∈Ω×(0,T )

{
∇tV

∗(x, t)+∇xV
∗(x, t)Tf(x, u) + c(x, u, t)

}
≥ 0.

Therefore, we conclude that V ∗ satisfies Eq. (5.21). Thus, by Prop. 5.2, for any

δ > 0 there exists Jδ ∈ C∞(E,R) such that

‖V ∗ − Jδ‖W 1,p(E,R) < δ, (5.42)

∇tJδ(x, t) +∇xJδ(x, t)
Tf(x, u) + c(x, u, t) ≥ −δ for all (x, t) ∈ Ω× (0, T ). (5.43)

In particular, let us choose δ > 0 such that

δ <
ε

2 + (2 + 4T + 2MT )(Tµ(Λ))
1
p

, (5.44)

where M := sup(x,u)∈Ω×U ||f(x, u)||2 <∞ and µ(Λ) <∞ is the Lebesgue measure of

Λ.

We now approximate Jδ ∈ C∞(E,R) by a polynomial function. Theorem C.2,

found in Chapter C, shows there exists Pδ ∈ P(Rn×R,R) such that for all (x, t) ∈ E

|Jδ(x, t)− Pδ(x, t)| < δ. (5.45)

|∇tJδ(x, t)−∇tPδ(x, t)| < δ. (5.46)

||∇xJδ(x, t)−∇xPδ(x, t)||2 < δ. (5.47)

‖Jδ − Pδ‖W 1,p(E,R) < δ. (5.48)
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Now,

‖V ∗ − Pδ‖W 1,p(E,R) = ‖V ∗ − Jδ + Jδ − Pδ‖W 1,p(E,R)

≤ ‖V ∗ − Jδ‖W 1,p(E,R) + ‖Jδ − Pδ‖W 1,p(E,R) < 2δ, (5.49)

where the first inequality follows by the triangle inequality, and the second inequality

follows from Eq. (5.42) and Eq. (5.48).

By a similar argument to Inequality (5.49) we deduce,

sup
(x,t)∈E

|V ∗(x, t)− Pδ(x, t)| < 2δ. (5.50)

Furthermore,

∇tPδ(x, t) +∇xPδ(x, t)
Tf(x, u) + c(x, u, t)

≥
(
∇tPδ(x, t) +∇xPδ(x, t)

Tf(x, u) + c(x, u, t)

)
− δ −

(
∇tJδ(x, t) +∇xJδ(x, t)

Tf(x, u) + c(x, u, t)

)
= −δ +

(
∇tPδ(x, t)−∇tJδ(x, t)

)
−
(
∇xJδ(x, t)−∇xPδ(x, t)

)T
f(x, u)

> −δ − δ − ||∇xJδ(x, t)−∇xPδ(x, t)||2||f(x, u)||2

> −(2 +M)δ for all (x, t) ∈ Ω× (0, T ), (5.51)

The first inequality of Eq. (5.51) follows by Inequality Eq. (5.43). The second inequal-

ity follows by Eq. (5.46) and the Cauchy Schwarz inequality. The third inequality

follows by Eq. (5.47).

Moreover, we have that

Pδ(x, T ) = Pδ(x, T )− V ∗(x, T ) + V ∗(x, T )

< g(x) + 2δ for all x ∈ Ω. (5.52)

This inequality follows from the fact that V ∗(x, T ) = g(x) since V ∗ satisfies the

boundary condition in the HJB PDE (5.12), and Eq. (5.50).
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We now construct Vl from Pδ. Let us denote the correction function ρ(t) :=

(2 +M)(T − t)δ + 2δ, where M = sup(x,u)∈Ω×U ||f(x, u)||2. We define Vl as

Vl(x, t) := Pδ(x, t)− ρ(t). (5.53)

We now find that Vl satisfies Inequality (5.39) since we have

∇tVl(x, t) + c(x, u, t) +∇xVl(x, t)
Tf(x, u)

=

(
∇tPδ(x, t) +∇xPδ(x, t)

Tf(x, u) + c(x, u, t)

)
+ (2 +M)δ

> 0, for all (x, t) ∈ Ω× (0, T ),

where the above inequality follows from Eq. (5.51).

We next show Vl satisfies Inequality (5.40):

Vl(x, T ) = Pδ(x, T )− 2δ < g(x) for all x ∈ Ω,

where the above inequality follows by Eq. (5.52).

Now, since Vl satisfies Eqs. (5.39) and (5.40) it follows Vl satisfies Eq. (5.38) by

Prop. 5.1.

To show that Vl satisfies Inequality (5.36), we first we derive a bound on the norm

of the correction function ρ.

‖ρ‖W 1,p(Λ×[0,T ],R) =

(∫
Λ×[0,T ]

|(2 +M)(T − t)δ + 2δ|pdxdt
) 1

p

+

(∫
Λ×[0,T ]

|(2 +M)δ|pdxdt
) 1

p

≤ (2 + 4T + 2MT )(Tµ(Λ))
1
p δ.

131



Now, by Eqs. (5.41), (5.44) and (5.49),

‖V − Vl‖W 1,p(Λ×[0,T ],R) = ‖V ∗ − Vl‖W 1,p(Λ×[0,T ],R) (5.54)

= ‖V ∗ − Pδ − η‖W 1,p(Λ×[0,T ],R)

≤ ‖V ∗ − Pδ‖W 1,p(E,R) + ‖η‖W 1,p(Λ×[0,T ],R)

≤ 2δ + (2 + 4T + 2MT )(Tµ(Λ))
1
p δ < ε.

By a similar argument to Eq. (5.54) we deduce Vl satisfies Eq. (5.37)

We conclude that Vl, defined in Eq. (5.53), satisfies Eqs. (5.37), (5.38), (5.39), and

(5.40) thus completing the proof.

5.5.3 Our Family Of Optimization Problems Yield A Sequence Of Polynomials

That Converge To A VF Under The L1 Norm

Consider some {c, g, f,Ω, U, T} ∈ MContinuous
Lip and suppose the sequence {Jd}d∈N

solves each instance of the optimization problem given in Eq. (5.20) for d ∈ N.

We next use Theorem 5.3 to show that the sequence, {Jd}d∈N converges to any VF

associated with the family of OCP’s {c, g, f,Ω, U, T} ∈ MContinuous
Lip with respect to

the weighted L1 norm as d→∞.

Proposition 5.3. For given {c, g, f,Ω, U, T} ∈ MContinuous
Lip and positive integrable

function w ∈ L1(Ω× [0, T ],R+) suppose Λ ⊆ Ω satisfies Eq. (5.34) then

lim
d→∞

∫
Λ×[0,T ]

w(x, t)|V (x, t)− Jd(x, t)|dxdt = 0, (5.55)

where V is any function satisfying Eq. (5.10), and Jd ∈ Pd(Rn×R,R) is any solution

to Optimization Problem (5.20) for d ∈ N.

Proof. Suppose V satisfies the theorem statement. To show Eq. (5.55) we must show

that for any ε > 0 there exists N ∈ N such that∫
Λ×[0,T ]

w(x, t)|V (x, t)− Jd(x, t)|dxdt < ε for all d ≥ N.
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Since by assumption Λ satisfies Eq. (5.34), we can use Theorem 5.3 (from Section

5.5.2) to show that for any δ > 0 there exists dissipative Vl ∈ P(Rn × R,R) feasible

to Optimization Problem (5.20) and is such that

ess sup
(x,t)∈Λ×[0,T ]

|V (x, t)− Vl(x, t)| < δ.

For our given ε > 0, by selecting δ < ε/
∫

Λ×[0,T ]
w(x, t)dxdt (Note if∫

Λ×[0,T ]
w(x, t)dxdt = 0, Eq. (5.55) already holds and the proof is complete) we have

a Vl such that ∫
Λ×[0,T ]

w(x, t)|V (x, t)− Vl(x, t)|dxdt (5.56)

≤
∫

Λ×[0,T ]

w(x, t)dxdt ess sup
(x,t)∈Λ×[0,T ]

|V (x, t)− Vl(x, t)|

< δ

∫
Λ×[0,T ]

w(x, t)dxdt < ε.

Now define N := deg(Vl) and denote the solution to Problem (5.20) for d ≥ N as

Jd ∈ PN(Rn × R,R). As Vl is feasible to Problem (5.20) for all d ≥ N , it follows the

objective function evaluated at Jd is greater than or equal to the objective function

evaluated at Vl; that is∫
Λ×[0,T ]

w(x, t)Jd(x, t)dxdt ≥
∫

Λ×[0,T ]

w(x, t)Vl(x, t)dxdt for d ≥ N. (5.57)

Now,

∫
Λ×[0,T ]

w(x, t)|V (x, t)− Jd(x, t)|dxdt (5.58)

=

∫
Λ×[0,T ]

w(x, t)V (x, t)− w(x, t)Jd(x, t)dxdt

≤
∫

Λ×[0,T ]

w(x, t)|V (x, t)− Vl(x, t)|dxdt < ε for all d ≥ N.

The equality in Eq. (5.58) follows since Jd(x, t) ≤ V (x, t) for all (x, t) ∈ Ω × [0, T ]

(Prop. 5.1). The first inequality follows by a combination of Eq. (5.57) and the

inequality Vl(x, t) ≤ V (x, t) for all (x, t) ∈ Ω × [0, T ]. Finally, the second inequality

follows by Eq. (5.56).
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5.6 A Family of SOS Problems that Yield Polynomials that Converge to the VF

Consider some {c, g, f,Ω, U, T} ∈ MContinuous
Lip and denote {Jd}d∈N as the sequence

of solutions to the optimization problem found in Eq. (5.20). We have shown in

Prop. 5.3that the sequence of functions, {Jd}d∈N, converge to any VF associated with

the family of OCPs {c, g, f,Ω, U, T} ∈ MContinuous
Lip with respect to the L1 norm. The

indexed polynomial optimization problems in Eq. (5.20) may now be readily tightened

to more tractable SOS optimization problems.

Specifically, for each d ∈ N, we tighten the polynomial optimization problem in

Eq. (5.20) to the SOS optimization problem given in Eq. (5.59). We later show in

Prop. 5.4 that the sequence of solutions to the SOS problem given in Eq. (5.59) yield

polynomials, {Pd}d∈N, indexed by degree d ∈ N, that converge to the VF (with respect

to the L1 norm) as d→∞.

For our SOS implementation we consider a special class of OCPs, given next in

Defn. 5.10. This class has the property that functions c, g, f are polynomial, and sets

Ω and U are semi-algebraic.

Definition 5.10. We say the six tuple {c, g, f,Ω, U, T} is a polynomial optimal control

problem or {c, g, f,Ω, U, T} ∈ MContinuous
Poly if the following holds

1. c ∈ P(Rn × Rm × R,R) and g ∈ P(Rn,R).

2. f ∈ P(Rn × Rm,Rn).

3. There exists hΩ ∈ P(Rn,R) such that Ω = {x ∈ Rn : hΩ(x) ≥ 0}.

4. There exists hU ∈ P(Rm,R) such that U = {u ∈ Rm : hU(u) ≥ 0}.

Note polynomials are locally Lipschitz continuous, that is P(Rn × R,R) ⊂

LocLip(Rn × R,R). Therefore MContinuous
Poly ⊂MContinuous

Lip .
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For given {c, g, f,Ω, U, T} ∈ MContinuous
Poly , d ∈ N, Λ ⊂ Rn and w ∈ L1(Λ ×

[0, T ],R+), we thus propose an SOS tightening of Optimization Problem (5.20) as

follows:

Pd ∈ arg max
P∈Pd(Rn×R,R)

cTα (5.59)

subject to: k0, k1 ∈
d∑

SOS

, si ∈
d∑

SOS

for i = 0, 1, 2, 3,

P (x, t) = cTZd(x, t),

k0(x) = g(x)− P (x, T )− s0(x)hΩ(x),

k1(x, u, t) = ∇tP (x, t) + c(x, u, t) +∇xP (x, t)Tf(x, u)

− s1(x, u, t)hΩ(x)− s2(x, u, t)hU(u)− s3(x, u, t) · (Tt− t2),

where αi =
∫

Λ×[0,T ]
w(x, t)Zd,i(x, t)dxdt, and recalling Zd : Rn×R→ RNd is the vector

of monomials of degree d ∈ N. Note that solutions to Opt. (5.59) may not be feasible

to Opt. (5.20) due to the strict inequalities of the latter problem.

5.6.1 We Can Numerically Construct A Sequence Of Polynomials That Converge

The VF

For a given family of OCPs, we now show that the sequence of solutions to the

SOS Opts. (5.59) converges locally to the VF of the associated OCPs with respect to

the L1 norm.

Proposition 5.4. For given {c, g, f,Ω, U, T} ∈ MContinuous
Poly and positive integrable

function w ∈ L1(Ω× [0, T ],R+) suppose Λ ⊆ Ω satisfies Eq. (5.34) then

lim
d→∞

∫
Λ×[0,T ]

w(x, t)|V (x, t)− Pd(x, t)|dxdt = 0, (5.60)

where V is any function satisfying Eq. (5.10) and Pd ∈ Pd(Rn×R,R) is any solution

to Problem (5.59) for d ∈ N.
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Proof. To show Eq. (5.60) we show that for any ε > 0 there exists N ∈ N such that

for all d ≥ N ∫
Λ×[0,T ]

w(x, t)|V (x, t)− Pd(x, t)|dxdt < ε.

As it is assumed Λ satisfies Eq. (5.34) we are able to use Prop. 5.3 that shows for any

ε > 0 there exists N1 ∈ N such that for all d ≥ N1∫
Λ×[0,T ]

w(x, t)|V (x, t)− Jd(x, t)|dxdt < ε, (5.61)

where Jd is a solution to Optimization Problem (5.20) for d ∈ N.

In particular let us fix some d1 ≥ N1. Since Jd1 solves Problem (5.20) it must

satisfy the constraints of Problem (5.20). Thus we have

k0(x) := g(x)− Jd1(x, T ) > 0 for all x ∈ Ω,

k1(x, u, t) := ∇tJd1(x, t) + c(x, u, t) +∇xJd1(x, t)Tf(x, u) > 0

for all (x, u, t) ∈ Ω× U × [0, T ].

Since k0 and k1 are strictly positive functions over the compact semialgebriac set

Ω × U × [0, T ] = {(x, u, t) ∈ Rn+m+1 : hΩ(x) ≥ 0, hU(u) ≥ 0, t(T − t) ≥ 0}, Puti-

nar’s Positivstellensatz (stated in Theorem C.5, Chapter C) shows that there exist

s0, s1, s2, s3, s4, s5 ∈
∑

SOS such that

k0 − hΩs0 = s1, (5.62)

k1 − hΩs2 − hUs3 − hT s4 = s5,

where hT (t) := (t)(T − t).

Let us denote N2 := maxi∈{0,1,2,3,4,5} deg(si). By Eq. (5.62) it follows that if Jd1 is

feasible to Problem (5.59) for d ≥ max{d1, N2}. Therefore, for d ≥ max{d1, N2}, the

objective function evaluated at the solution to Problem (5.59) must be greater than
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or equal to objective function evaluated at Jd1 . That is by writing the solution to

Problem (5.59) as Pd(x, t) = cTdZd(x, t) and writing Jd1 as Jd1 = bTd1
Zd1(x, t) we get

that for d ≥ max{d1, N2}

cTd α ≥ bTd1
α. (5.63)

Now using Eqs. (5.63) and (5.61) it follows for all d ≥ max{d1, N2}∫
Λ×[0,T ]

w(x, t)|V (x, t)− Pd(x, t)|dxdt

=

∫
Λ×[0,T ]

w(x, t)V (x, t)dxdt−
∫

Λ×[0,T ]

w(x, t)Pd(x, t)dxdt

=

∫
Λ×[0,T ]

w(x, t)V (x, t)dxdt− cTd α

≤
∫

Λ×[0,T ]

w(x, t)V (x, t)dxdt− bTd1
α

=

∫
Λ×[0,T ]

w(x, t)|V (x, t)− Jd1(x, t)|dxdt < ε,

where the above inequality follows using Prop. 5.1, which shows Pd(x, t) ≤ V (x, t) and

Jd(x, t) ≤ V (x, t) for all (x, t) ∈ Ω× [0, T ], as Pd and Jd satisfy Inequalities (5.16) and

(5.17) (since they both satisfy the constraints of Optimization Problem (5.20)).

5.6.2 We can Numerically Construct a Sequence of Sublevel Sets that Converge to

the VFs Sublevel Set

For a given family of OCPs, Prop. 5.4 shows the SOS optimization problem, given

in Eq. (5.59), yields a sequence of polynomials, {Pd}d∈N, a sequence that converges to

the VF (denoted by V ), where convergence is with respect to the L1 norm, and where

the VF is associated with the given family of OCPs. We next extend this convergence

result by showing that, for any γ ∈ R, the sequence {Pd}d∈N yields a sequence of γ-

sublevel sets, where the sequence of γ-sublevel sets converges to the γ-sublevel set of

the value function, V , where convergence is with respect to the volume metric.
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For sets A,B ⊂ Rn, let us recall the volume metric (defined in Appendix A) as

DV (A,B), where

DV (A,B) := µ((A/B) ∪ (B/A)),

where we recall µ(A) :=
∫
Rn 1A(x)dx is the Lebesgue measure. Note that Lemma A.1

shows that DV is a metric.

Proposition 5.5. Consider {c, g, f,Ω, U, T} ∈ MContinuous
Poly and w(x, t) = δ(t − s)

where s ∈ [0, T ] and δ is the Dirac delta function. Suppose Λ ⊆ Ω satisfies Eq. (5.34).

Then we have the following for all γ ∈ R:

lim
d→∞

DV

(
{x ∈ Λ : V (x, s) ≤ γ}, {x ∈ Λ : Pd(x, s) ≤ γ}

)
= 0, (5.64)

where V is any function satisfying Eq. (5.10), and Pd is any solution to Problem (5.59)

for d ∈ N.

Proof. To show Eq. (5.64) we use Prop. A.1. Let us consider the family of functions,

{Pd ∈ Pd(Rn × R,R) : d ∈ N}, where Pd solves the optimization problem given in

Eq. (5.59) for d ∈ N and w(x, t) = δ(t− s).

From the definition of Problem (5.59), we have that Pd satisfies the Inequalities

in (5.16) and (5.17). Therefore, by Prop. 5.1, we have that Pd(x, t) ≤ V (x, t) for all

(x, t) ∈ Ω× [0, T ], where V is any function satisfying Eq. (5.10). Since Λ ⊆ Ω satisfies

Eq. (5.34), and although the Dirac Delta function is not a member of L1(Ω×[0, T ],R),

a similar argument to Prop. 5.4 implies that

lim
d→∞

∫
Λ

|V (x, s)− Pd(x, s)|dxdt = lim
d→∞

∫
Λ×[0,T ]

δ(t− s)|V (x, t)− Pd(x, t)|dxdt = 0.

We now apply Prop. A.1 to deduce Eq. (5.64).
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5.7 Numerical Examples: Using our SOS Algorithm to Approximate VFs

In this section we use the SOS programming problem as defined in Eq. (5.59)

to numerically approximate the VFs associated with several different OCPs. We

first approximate a known VF. Then, in Subsection 5.7.1, we approximate another

unknown VF for reachable set estimation.

Example 5.1. Let us consider the tuple {c, g, f,Ω, U, T} ∈ MContinuous
Poly , where

c(x, u, t) ≡ 0, g(x) = x, f(x, u) = xu, Ω = (−R,R) = {x ∈ R : x2 < R2},

U = (−1, 1) = {u ∈ R : u2 < 1}, and T = 1. It was shown in Liberzon (2011) that

the VF associated with {c, g, f,Rn, U, T} can be analytically found as

V ∗(x, t) =


exp(t− 1)x if x > 0,

exp(1− t)x if x < 0,

0 if x = 0.

(5.65)

We note that V ∗ is not differentiable at x = 0. However, V ∗ satisfies the HJB PDE

away from x = 0. This problem shows that the VF can be non-smooth even for simple

OCPs with polynomial vector field and cost functions.

In Fig. 5.1 we have plotted the point wise error, e(x, t) := V ∗(x, t) − Pd(x, t),

where Pd is the solution to the SOS Optimization Problem (5.59) for d = 16, T = 1,

Λ = [−0.5, 0.5], w(x, t) ≡ 1, hΩ(x) = 2.42− x2 and hU(u) = 1− u2. The figure shows

e(x, t) ≥ 0 for all (x, t) ∈ [−0.5, 0.5] × [0, 1] verifying that, as expected by Prop. 5.1,

Pd is a sub-VF. Moreover, 0 < e(x, t) < 0.1125 for all (x, t) ∈ [−0.5, 0.5] × [0, 1]

implying ||V ∗−Pd||∞ < 0.1125, showing that we get a tight VF approximation in the

L∞ norm (even though we optimize for the L1 norm).

In Fig. 5.2 we have plotted the function F (d) := ||V ∗ − Vd||L1(Λ,R) where V ∗ is

given in Eq. (5.65) and Vd is the solution to the SOS Optimization Problem (5.59)
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Figure 5.1: Plot associated with Example 5.1 showing point wise error, e(x, t) :=
V ∗(x, t)−Pd(x, t) where V ∗ is given in Eq. (5.65) and Pd solves the SOS Problem (5.59)
for d = 16.

for d = 4 to 20, where Λ = [−0.5, 0.5], w(x, t) ≡ 1, hΩ(x) = 2.42 − x2 and hU(u) =

1 − u2. All solutions, Vd, of Problem (5.59) were sub-value functions as expected.

Moreover, the figure shows by increasing the degree d ∈ N the resulting sub-VF, Vd,

better approximates V ∗, however convergence does slow after d = 5.

5.7.1 Application: Reachable Set Estimation

We next present several reachable set results required in our numerical approx-

imation of the Lorenz attractor (Example 5.2). Similarly to forward reachable sets

(Defn. 5.9) we now define backward reachable sets.

Definition 5.11. For X0 ⊂ Rn, Ω ⊆ Rn, U ⊂ Rm, f : Rn × Rm → Rn and S ⊂ R+,

let

BRf (X0,Ω, U, S) :=

{
y ∈ Rn : there exists x ∈ X0, T ∈ S,

and u ∈ UΩ,U,f,T (y, 0) such that φf (y, T,u) = x

}
.

Theorem 5.4 (VFs characterize backward reachable sets, see Jones and Peet (2019b)).
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Figure 5.2: Scatter plot associated with Example 5.1 showing the L1 norm error:
||V ∗ − Pd||L1(Λ×[0,T ],R), where V ∗ is given in Eq. (5.65) and Pd solves the SOS Prob-
lem (5.59) for d = 4 to 24. The smallest L1 norm error occurred at d = 24 with a
value of 0.020316.

Given {0, g, f,Ω, U, T} ∈ MLip define X0 := {x ∈ Rn : g(x) < 0}. Then

BRf (X0,Ω, U, {T}) = {x ∈ Ω : V ∗(x, 0) < 0}, (5.66)

where V ∗ : Rn × R→ R is any function that satisfies Eq. (5.10).

Corollary 5.1 (Sub-VFs contain reachable sets). Given {0, g, f,Ω, U, T} ∈ MLip

and suppose Vl : Rn × R→ R is a sub-VF (Defn. 5.7), then

BRf (X0,Ω, U, {T}) ⊆ {x ∈ Ω : Vl(x, 0) < 0}, (5.67)

where X0 := {x ∈ Rn : g(x) < 0}.

Lemma 5.4 (Equivalence of computation of backward and forward reachable sets,

see Jones and Peet (2019b)). Suppose X0 ⊂ Rn, Ω ⊂ Rn, U ⊂ Rm, f : Rn×Rm → Rn,

and T ∈ R+. Then

FR−f (X0,Ω, U, {T}) = BRf (X0,Ω, U, {T}).

We now numerically solve the SOS programming problem in Eq. (5.59) obtaining

an approximate VF that can be used to estimate the reachable set of the Lorenz
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system. The problem of estimating the Lorenz attractor has previously been studied

in Jones and Peet (2019c); Li et al. (2005); Wang et al. (2012a); Goluskin (2020).

Example 5.2. Let us consider the Lorenz system defined by the three dimensional

second order nonlinear ODE:

ẋ1(t) = σ(x2(t)− x1(t)), (5.68)

ẋ2(t) = x1(t)(ρ− x3(t))− x2(t),

ẋ3(t) = x1(t)x2(t)− βx3(t),

where σ = 10, β = 8/3, ρ = 28. We make a coordinate change so the Lorenz attractor

is located in a unit box by defining

x̄1 := 50x1, x̄2 := 50x2, x̄3 := 50x3 + 25. (5.69)

The ODE (5.68) can then be written in the form ẋ(t) = f̃(x(t),u(t)) using f̃(x) =

[50σ(x2 − x1), 50x1(ρ − 50x3 − 50(25)) − 50x2, 502x1x2 − 50βx3 − 25β]T . Note, as

f̃ is independent of any input u ∈ U without loss of generality we will set U = ∅.

The problem of estimating the Lorenz attractor is then equivalent to the problem of

estimating FRf̃ (Rn,Rn, U, {∞}). In this section we estimate FRf̃ (Rn,Rn, U, {∞}) by

estimating FRf̃ (X0,Λ, U, {T}) for some T <∞, Λ ⊂ R3, X0 := {x ∈ R3 : g(x) < 0},

and g ∈ P(Rn,R).

Figure 5.3 shows the set {x ∈ R3 : P (x, 0) < 0} where P is the solution to

the SOS Optimization Problem (5.59) for d = 4, T = 0.5, f(x) = −f̃(x) for all

x ∈ Ω := {x ∈ Rn : hΩ(x) ≥ 0} and f(x) = 0 for all x ∈ ∂Ω (freezing the dynamics on

∂Ω helps to ensure Eq. (5.34) is satisfied, improving numerical performance), hU ≡ 0,

hΩ(x) = 1− x2
1− x2

2− x2
3, c ≡ 0, g(x) = (x1 + 0.6)2 + (x2− 0.6)2 + (x3− 0.2)2− 0.12,

Λ = [−0.4, 0.4]× [−0.5, 0.5]× [−0.4, 0.6], and w(x, t) = δ(t) where δ is the Dirac delta

function. Prop. 5.1 shows P is a sub-VF. Then Cor. 5.1 shows BRf (X0,Λ, U, {T}) ⊆

142



{x ∈ R3 : P (x, 0) < 0} and hence FRf̃ (X0,Λ, U, {T}) = BRf (X0,Λ, U, {T}) ⊆ {x ∈

R3 : P (x, 0) < 0} by Lem. 5.4. Thus the 0-sublevel set of P contains the forward

reachable set. Moreover, Figure 5.3 provides numerical evidence that the 0-sublevel

set of P approximates the Lorenz attractor accurately.

Note, given an OCP with VF denoted by V ∗, Prop. 5.4 shows that the sequence

of polynomial solutions to the SOS Problem (5.59), indexed by d ∈ N, converges to

V ∗ with respect to the L1 norm as d → ∞. Moreover, Prop. 5.5 shows that this

sequence of polynomial solutions yields a sequence of sublevel sets that converges to

{x ∈ Rn : V ∗(x, 0) ≤ 0} with respect to the volume metric as d → ∞. However,

Theorem. 5.4 shows reachable sets are characterized by the “strict” sublevel sets

of VFs, {x ∈ Rn : V ∗(x, 0) < 0}. Counterexample A.1 (Chapter A) shows that

a sequence of functions that converges to some function V with respect to the L1

norm may not yield a sequence of “strict” sublevel sets that converges to the “strict”

sublevel set of V . Therefore we conclude that the sequence of “strict” sublevel sets

obtained by solving the SOS Problem (5.59) may in general not converge to the

desired reachable set. However, in practice there is often little difference between

the sets {x ∈ Rn : V ∗(x, 0) ≤ 0} and {x ∈ Rn : V ∗(x, 0) < 0}. Example 5.2

shows how accurate estimates of reachable sets can be obtained by solving the SOS

Problem (5.59). Moreover, these reachable set estimations are guaranteed to contain

the true reachable set by Cor. 5.1, a property useful in safety analysis, see Yin et al.

(2018).
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Figure 5.3: Forward reachable set estimation from Example 5.2. The transparent
cyan set represents the 0-sublevel set of the solution to the SOS Problem (5.59), the
203 green points represent initial conditions, the 203 red points represent where the
initial conditions transition to after t = 0.5 under scaled dynamics from the ODE
(5.68) (found using Matlab’s ODE45 function), and the three blue curves represents
three sample trajectories terminated at t = 0.5 and initialized at three randomly
selected green initial conditions.
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Chapter 6

PERFORMANCE BOUNDS OF CONTROLLERS CONSTRUCTED FROM

APPROXIMATE VALUE FUNCTIONS

Although this may seem a paradox, all exact

science is dominated by the idea of

approximation.

Bertrand Russell

6.1 Background and Motivation

Previously in Chapter 5 we considered the problem of solving a nested family of

OCPs of Form (5.1). For a given OCP Theorem 5.2 shows that the value function

(Defn. 5.5) of the OCP can be used to construct an optimal controller. The goal of

Chapter 5 was to solve the following question:

Q1: Can we pose a sequence of convex optimization problems, each yielding a poly-

nomial sub-VF that can be made arbitrarily “close” to the VF of the OCP?

In Chapter 5 we answered Q1 by proposing a sequence of d-degree SOS program-

ming problem given in Eq. (5.59). Now that we have a technique for approximating

the VF of some OCP we may want to use this approximate VF to construct an

optimal controller. This leads us to the following question:

Q2: Can we bound the sub-optimality in performance of a controller constructed

from some function V by the “distance” between V and the VF of the OCP?

The use of approximate VFs to construct controllers has been well-treated in the

literature, although such controllers often: apply only to OCPs with specific struc-
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ture (typically dynamics are affine in the input variable, see Ribeiro et al. (2020) for

linearization techniques that approximate non-input affine dynamics by input affine

dynamics); do not have associated performance bounds; and/or assume differentiabil-

ity of the VF. For example, in Jiang and Jiang (2015); Abu-Khalaf and Lewis (2005);

Baldi et al. (2012, 2015); Zhu et al. (2017) policy iteration methods are proposed that

alternate between finding approximations of the VF based on a controller and using

the approximate VF to synthesizing controller. Also in Abu-Khalaf and Lewis (2005)

it was shown that the proposed policy iteration method converges under the rather

restrictive assumption that the true VF is differentiable. Alternatively, grid based

approaches that synthesize controllers can be found in Kang and Wilcox (2017); Ku-

nisch et al. (2004). However, the method in Kang and Wilcox (2017) is only shown

to yield a function that converges to the VF but no performance bound is given

for the controller. In Kunisch et al. (2004), convergence to the optimal controller

is demonstrated numerically in certain cases, but no provable performance bound is

given.

There are also results within the SOS framework for optimization of polynomials

that use approximate VFs to construct controllers. For example, in Leong et al.

(2014) it was shown that the objective value of a specific class of OCP’s using a

controller constructed from a given approximate VF was bounded from above by the

approximated VF. However, this bound was conservative and no method was given

for refinement of the bound. In Jennawasin et al. (2011) a method for approximating

VFs by sub and super-VFs that are also SOS polynomials is given, however, no VF

approximation error bounds or resulting controller synthesis performance bound is

given. Alternatively, in Cunis et al. (2020) a bilinear SOS optimization framework is

proposed, which iterates between finding a Lyapunov function and finding a controller

to maximize the region of attraction. However, this work does not consider OCPs or
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VFs per se.

Despite this extensive literature, to the best of our knowledge, there exists no

way of constructing approximate VFs for which the performance of the associated

controller can be proven to be arbitrarily close to optimal (although such bounds

exist for discrete time systems over infinite time horizons, see Bertsekas and Tsitsiklis

(1995)). For such a result to exist in continuous-time over finite time horizons, then,

we need some way of bounding sub-optimality of the performance of the controller

based on distance of the approximated VF to the true VF.

To address this need, in this chapter we answer Q2 by showing that for any V ,

we can construct a candidate solution to the OCP (5.1), u(t) = k(x(t), t), given by

the controller defined in Eq. (5.3). We then show in Thm. 6.1 that the corresponding

objective value of the OCP (5.1) evaluated at u is within C‖V ∗ − V ‖W 1,∞ of the

optimal objective, where V ∗ is the true VF of the OCP and C > 0 is given in

Eq. (6.3). This result implies approximation of value functions in the W 1,∞ norm

results in feedback controllers with performance that can be made arbitrarily close

to optimality. Note, this result may be of broad interest since it does not require V

to be a solution to our proposed SOS Problem (5.59) and hence provides a bound on

the sub-optimality of controllers constructed from any approximate VF.

6.2 Performance Bounds

Given an OCP, if an associated differentiable VF is known then a solution to the

OCP can be constructed using Theorem 5.2. However, in general, it is challenging to

find a VF analytically. Rather than computing a true VF, we consider a candidate VF

which is “close” to a true VF under some norm. This motivates us to ask the question:

how well will a controller constructed from a candidate VF perform? To answer this

question we next define the loss/performance of an input. For {c, g, f,Ω, U, T} ∈
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MContinuous
Lip (Defn. 5.2) we denote the loss/performance function as,

L(x0,u) :=

∫ T

0

c(φf (x0, s,u),u(s), s)ds+ g(φf (x0, T,u)) (6.1)

− inf
u∈UΩ,U,f,T (x0,0)

{∫ T

0

c(φf (x0, s,u),u(s), s)ds+ g(φf (x0, T,u))

}
.

Clearly, L(x0,u) ≥ 0 for all (x0,u) ∈ Ω× UΩ,U,f,T (x0, 0).

Theorem 6.1. Consider {c, g, f,Rn, U, T} ∈ MContinuous
Lip . Suppose J ∈ C2(Rn ×

R,R) and Ω ⊂ Rn is an open set such that for x0 ∈ Rn we have FRf (x0,Rn, U, [0, T ]) ⊆

Ω. In this case we have

L(x0,uJ) ≤C||J − V ∗||W 1,∞(Ω×[0,T ],R), (6.2)

where C := 2 max

{
1, T, T max

1≤i≤n
sup

(x,t)∈Ω×U
|fi(x, u)|

}
, (6.3)

V ∗ is the unique viscosity solution to the HJB PDE (5.12),

uJ(t) = kJ(φf (x0, t,uJ), t), (6.4)

and kJ is any function such that

kJ(x, t) ∈ arg inf
u∈U
{c(x, u, t) +∇xJ(x, t)Tf(x, u)}. (6.5)

Proof. Now, for any J ∈ C2(Rn × R,R) ⊂ LocLip(Rn × R,R), we wish to show that

Eq. (6.2) holds. To do this, we will show that J is the true VF for some modified

OCP. Before constructing this modified OCP, for any F ∈ LocLip(Rn ×R,R), let us

define

HF (x, t, u) := ∇tF (x, t) + c(x, u, t) +∇xF (x, t)Tf(x, u),

H̃F (x, t) := inf
u∈U

HF (x, t, u),

where ∇tF and ∇xF are weak derivatives, known to exist by Rademacher’s Theorem

(Thm. C.4).
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Then, by construction, J satisfies the following PDE

∇tJ(x, t) + inf
u∈U

{
c(x, u, t)− H̃J(x, t) +∇xJ(x, t)Tf(x, u)

}
= 0

for all (x, t) ∈ Rn × [0, T ]. (6.6)

Eq. (6.6) implies that J satisfies the HJB PDE associated with {c̃, g̃, f,Rn, U, T},

where c̃(x, u, t) := c(x, u, t) − H̃J(x, t) and g̃(x) := J(x, T ). Note that since c ∈

LocLip(Ω × U × [0, T ],R), f ∈ LocLip(Ω × U,R), and ∂
∂xi
J ∈ LocLip(Ω × [0, T ],R)

for all i ∈ {1, ...n + 1} (since J ∈ C2(Rn × R,R)) it follows that HJ ∈ LocLip(Ω ×

U × [0, T ],R). By Lemma C.4 we then deduce H̃J ∈ LocLip(Ω × [0, T ],R) and thus

{c̃, g̃, f,Rn, U, T} ∈ MContinuous
Lip .

Since HJ is independent of u ∈ U , we have that

arg inf
u∈U
{c̃(x, u, t) +∇xJ(x, t)Tf(x, u)} = arg inf

u∈U
{c(x, u, t) +∇xJ(x, t)Tf(x, u)},

and therefore we are able to deduce by Theorem 5.2 that uJ (given in Eq. (6.4)) solves

the modified OCP associated with {c̃, g̃, f,Rn, U, T} with initial condition x0 ∈ Rn.

Thus for all u ∈ UΩ,U,f,T (x0, 0) we have that∫ T

0

c̃(φf (x0, s,uJ),uJ(s), s)ds+ g̃(φf (x0, T,uJ)) (6.7)

≤
∫ T

0

c̃(φf (x0, s,u),u(s), s)ds+ g̃(φf (x0, T,u)).

By substituting c̃(x, u, t) = c(x, u, t) − H̃J(x, t) and g̃(x) = J(x, T ) into Inequal-

ity (6.7) and noting that V ∗(x, T ) = g(x), we have the following
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for all u ∈ UΩ,U,f,T (x0, 0):∫ T

0

c(φf (x0, s,uJ),uJ(s), s)ds+ g(φf (x0, T,uJ)) (6.8)

−
∫ T

0

c(φf (x0, s,u),u(s), s)ds− g(φf (x0, T,u))

≤
∫ T

0

H̃J(φf (x0, s,uJ), s)− H̃J(φf (x0, s,u), s)ds

+ V ∗(φf (x0, T,uJ), T )− J(φf (x0, T,uJ), T )

+ J(φf (x0, T,u), T )− V ∗(φf (x0, T,u), T )

< T ess sup
s∈[0,T ]

{H̃J(φf (x0, s,uJ), s)− H̃J(φf (x0, s,u), s)}

+ 2 sup
y∈Ω
{|V ∗(y, T )− J(y, T )|}

≤ T

(
ess sup

(y,s)∈Ω×[0,T ]

{H̃J(y, s)} − ess inf
(y,s)∈Ω×[0,T ]

{H̃J(y, s)}
)

+ 2 ess sup
(y,s)∈Ω×[0,T ]

{|V ∗(y, s)− J(y, s)|}.

The second and third inequalities of Eq. (6.8) follow because φf (x0, t,u) ∈ Ω for

all (t,u) ∈ [0, T ]× ∈ UΩ,U,f,T (x0, 0) (since it is assumed FRf (x0,Rn, U, [0, T ]) ⊆ Ω),

and because supy∈Ω{|V ∗(y, T )−J(y, T )|} = ess supy∈Ω{|V ∗(y, T )−J(y, T )|} holds by

Lemma C.6 (since V ∗ and J are both continuous, and Ω is open).

We now split the remainder of the proof into three parts. In Part 1 of the proof,

we derive an upper bound for ess sup(y,s)∈Ω×[0,T ]{H̃J(y, s)}. In Part 2 of the proof, we

find a lower bound for ess inf(y,s)∈Ω×[0,T ]{H̃J(y, s)}. In Part 3 of the proof, we use the

two bounds derived in Part 1 and 2 of the proof, combined with Inequality (6.8) to

verify Eq. (6.2) and complete the proof.

Before proceeding with Parts 1 to 3 of the proof we introduce some notation for

the set of points where the VF is differentiable,

SV ∗ := {(x, t) ∈ Ω× [0, T ] : V ∗ is differentiable at (x, t)}.
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Lemma 5.1 shows that V ∗ ∈ Lip(Ω×[0, T ],R) ⊂ LocLip(Rn×R,R) and Rademacher’s

Theorem (Thm. C.4) states that Lipschitz functions are differentiable almost every-

where. It follows, therefore, that µ((Ω × [0, T ])/SV ∗) = 0, where µ is the Lebesgue

measure.

Part 1 of Proof: For each (y, s) ∈ SV ∗ let us consider some family of points

k∗y,s ∈ U such that

k∗y,s ∈ arg inf
u∈U

{
c(y, u, s) +∇xV

∗(y, s)Tf(y, u)

}
.

Note, k∗y,s exists for each fixed (y, s) ∈ SV ∗ by the extreme value theorem since U ⊂ Rm

is compact, c, f are continuous, and ∇xV
∗ is independent of u ∈ U and bounded by

Rademacher’s Theorem (Thm. C.4).

Now for all (y, s) ∈ SV ∗ it follows that

H̃J(y, s) = inf
u∈U

HJ(y, s, u) ≤ HJ(y, s, k∗y,s). (6.9)

Moreover, since V ∗ is the viscosity solution to the HJB PDE by Theorem 5.1, we

have that

HV ∗(y, k
∗
y,s, s) = 0 for all (y, s) ∈ SV ∗ . (6.10)

Combing Eqs. (6.9) and (6.10) it follows that

H̃J(y, s) ≤ HJ(y, s, k∗y,s)−HV ∗(y, k
∗
y,s, s)

= ∇tJ(y, s)−∇tV
∗(y, s) + (∇xJ(y, s)−∇xV

∗(y, s))Tf(y, k∗y,s)

≤ |∇tJ(y, s)−∇tV
∗(y, s)|+ max

1≤i≤n
|fi(y, k∗y,s)|

n∑
i=1

∣∣∣∣ ∂∂xi (J(y, s)− V ∗(y, s))
∣∣∣∣ (6.11)

for all (y, s) ∈ SV ∗ . As Eq. (6.11) is satisfied for all (y, s) ∈ SV ∗ and µ((Ω ×
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[0, T ])/SV ∗) = 0 it follows Eq. (6.11) holds almost everywhere. Therefore

ess sup
(y,s)∈Ω×[0,T ]

H̃J(y, s) (6.12)

≤ max

{
1, max

1≤i≤n
sup

(x,t)∈Ω×U
|fi(x, u)|

}
||V ∗ − J ||W 1,∞(Ω×[0,T ]).

Part 2 of Proof: If kJ satisfies Eq. (6.5), then

H̃J(y, s) = inf
u∈U

HJ(y, s, u) = HJ(y, s, kJ(y, s)) for all (y, s) ∈ SV ∗ . (6.13)

Moreover, since V ∗ is a viscosity solution to the HJB PDE (5.12), we have by Theo-

rem 5.1 that

HV ∗(y, s, kJ(y, s)) ≥ inf
u∈U

HV ∗(y, s, u) = 0 for all (y, s) ∈ SV ∗ . (6.14)

Combining Eqs. (6.13) and (6.14) it follows that

H̃J(y, s) ≥ HJ(y, s, kJ(y, s))−HV ∗(y, s, kJ(y, s))

= ∇tJ(y, s)−∇tV
∗(y, s) + (∇xJ(y, s)−∇xV

∗(y, s))Tf(y, kJ(y, s))

≥ −|∇tJ(y, s)−∇tV
∗(y, s)|

− max
1≤i≤n

|fi(y, kJ(y, s))|
n∑
i=1

∣∣∣∣ ∂∂xi (J(y, s)− V ∗(y, s))
∣∣∣∣ (6.15)

for all (y, s) ∈ SV ∗ . Therefore, since µ((Ω × [0, T ])/SV ∗) = 0, we have that Inequal-

ity (6.15) holds almost everywhere. Thus

ess inf
(y,s)∈Ω×[0,T ]

H̃J(y, s) ≥ −max

{
1, max

1≤i≤n
sup

(x,t)∈Ω×U
|fi(x, u)|

}
||V ∗ − J ||W 1,∞(Ω×[0,T ]).

(6.16)

Part 3 of Proof:
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Combining Inequalities (6.8), (6.12) and (6.16) it follows that∫ T

0

c(φf (x0, s,uJ),uJ(s), s)ds+ g(φf (x0, T,uJ)) (6.17)

−
∫ T

0

c(φf (x0, s,u),u(s), s)ds− g(φf (x0, T,u))

< C||J − V ∗||W 1,∞ for all u ∈ UΩ,U,f,T (x0, 0),

where C := 2 max

{
1, T, T max1≤i≤n sup(x,t)∈Ω×U |fi(x, u)|

}
. Now as Inequality (6.17)

holds for all u ∈ UΩ,U,f,T (x0, 0) we can take the infimum and deduce Inequality (6.2).

6.3 Application: Using SOS to Approximate VFs for Controller Construction

Given an OCP, in Theorem 6.1 we showed that the performance of a controller

constructed from a candidate VF is bounded by the W 1,∞ norm between the true VF

of the OCP and the candidate VF. We next demonstrate through numerical examples

that the performance of a controller constructed from a typical solutions to the SOS

Problem (5.59) is significantly higher than that predicted by this bound.

Consider tuple {c, g, f,Rn, U, T} ∈ MContinuous
Poly , where the cost function is of the

form c(x, u, t) = c0(x, t) +
∑m

i=1 ci(x, t)ui, the dynamics are of the form f(x, u) =

f0(x) +
∑m

i=1 fi(x)ui, and the input constraints are of the form U = [a1, b1] × ... ×

[am, bm]. Since any rectangular set can be represented as U = [−1, 1]m using the

substitution ũi = 2ui−2bi
bi−ai for i ∈ {1, ...,m}, without loss of generality we assume

U = [−1, 1]m. Now, given an OCP associated with {c, g, f,Rn, U, T} ∈ MContinuous
Poly

suppose V ∈ C1(Rn × R,R) solves the HJB PDE (5.12), then by Theorem 5.2 a
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solution to the OCP initialized at x0 ∈ Rn can be found as

u∗(t) := k(φf (x0, t,u
∗), t), where (6.18)

k(x, t) ∈ arg inf
u∈[−1,1]m

{ m∑
i=1

ci(x, t)ui +∇xV (x, t)Tfi(x)ui

}
. (6.19)

Since the objective function in Eq. (6.19) is linear in the decision variables u ∈ Rm,

and since the constraints have the form ui ∈ [−1,−1], it follows that Eqs. (6.18) and

(6.19) can be reformulated as

u∗(t) := k(φf (x0, t,u
∗), t), where (6.20)

ki(x, t) = − sign(ci(x, t) +∇xV (x, t)Tfi(x)). (6.21)

In the following numerical examples we approximately solve OCPs of this form (with

cost functions and dynamics affine in the input variable) by constructing a controller

from the solution, Pd, to the SOS Problem (5.59) for some d ∈ N. We construct

such controllers by replacing V with Pd in Eqs. (6.20) and (6.21). We will consider

OCPs with no state constraints and initial conditions inside some set Λ ⊆ Rn. We

select Ω = BR(0) with R > 0 sufficiently large enough so Eq. (5.34) is satisfied.

That is, no matter what control we use, the solution map starting from any x0 ∈ Λ

will not be able to leave the state constraint set Ω. In this case the solution to the

state constrained problem, {c, g, f,Ω, U, T}, is equivalent to the solution of the state

unconstrained problem, {c, g, f,Rn, U, T}.

To evaluate the performance of our constructed controller, u, we approximate the

objective/cost function of the OCP evaluated at u (ie the cost associated with u)
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using the Riemann sum:∫ T

0

c(φf (x0, t,u), t)dt+ g(φf (x0, T,u)) (6.22)

≈
N−1∑
i=1

c(φf (x0, ti,u), ti)∆ti + g(φf (x0, tN ,u)),

where 0 = t0 < ... < tN = T , ∆ti = ti+1 − ti for all i ∈ {1, ..., N − 1}, and

{φf (x0, ti,u)}Ni=0 can be found using Matlab’s ode45 function.

Example 6.1. Let us consider the following OCP from Jacobson et al. (1970):

min
u

∫ 5

0

x1(t)dt (6.23)

subject to:

ẋ1(t)

ẋ2(t)

 =

x2(t)

u(t)

 , u(t) ∈ [−1, 1] for all t ∈ [0, 5].

We associate this problem with the tuple {c, g, f,Ω, U, T} ∈ MContinuous
Poly where c(x, t) =

x1, g(x) ≡ 0, f(x, u) = [x2, u]T , U = [−1, 1], and T = 5. By solving the SOS

Optimization Problem (5.59) for d = 3, Λ = [−0.6, 0.6] × [−1, 1], w(x, t) ≡ 1,

hΩ(x) = 102 − x2
1 − x2

2 and hU(u) = 1 − u2, it is possible to obtain a polynomial

sub-value function P . By replacing V with P in Eqs. (6.20) and (6.21) it is then

possible to construct a controller, kP , that yields a candidate solution to the OCP as

ũ(t) = kP (x(t), t).

For initial condition x0 = [0, 1]T we use Matlab’s ode45 to find the set {φf̃ (x0, t, ũ) ∈

R2 : t ∈ [0, T ]} (recalling φf denotes the solution map (Defn. 5.4)), which is shown

in the phase plot in Figure 6.1. For N = 108 Eq. (6.22) was used to find the cost

associated with a fixed input, u(t) ≡ 1, as 354.17, whereas the cost of using u(t) ≡ −1

was found to be 41.67. The cost of using our derived input ũ was found to be 0.2721,

an improvement when compared to the cost 0.2771 found in Jacobson et al. (1970).

Note, it may be possible that the results of the algorithm proposed in Jacobson et al.
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Figure 6.1: The phase plot of Example 6.1 found by constructing the controller
given in Eq. (6.18) using the solution to the SOS Problem (5.59).

(1970) may be improved by selecting different tunning parameters of the algorithm.

We have assumed that the authors of Jacobson et al. (1970) have selected the tunning

parameters for which their algorithm performs best.

Example 6.2. Consider an OCP found in Jacobson et al. (1970) and Dadebo et al.

(1998) which has the same dynamics as Eq. (6.23) but a different cost function. The

associated tuple is {c, g, f,Ω, U, T} ∈ MContinuous
Poly where c(x, t) = x2

1 + x2
2, g(x) ≡

0, f(x, u) = [x2, u]T , U = [−1, 1], and T = 5. By solving the SOS Optimization

Problem (5.59) for d = 4, Λ = [−0.5, 1.1]×[−1.1, .5], w(x, t) ≡ 1, hΩ(x) = 102−x2
1−x2

2

and hU(u) = 1 − u2, we obtain the polynomial sub-VF P . Similarly to Example 6.1

we construct a controller from the polynomial sub-VF P using Eqs. (6.20) and (6.21).

Using Eq. (6.22), the fixed input u(t) ≡ +1 was found to have cost 446.03. The fixed

input u(t) ≡ −1 cost was found to be 67.48. The controller derived from P was found

to have cost 0.7255, an improvement compared to a cost of 0.75041 found in Dadebo

et al. (1998) and 0.8285 found in Jacobson et al. (1970).Also note, it may be possible

that the results of the algorithms proposed in Jacobson et al. (1970); Dadebo et al.

(1998) may be improved by selecting different tunning parameters of the algorithms.
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We have assumed that the authors of Jacobson et al. (1970); Dadebo et al. (1998)

have selected the tunning parameters for which their algorithm performs best.

Example 6.3. As in Moyalan et al. (2021) let us consider the (scaled) Van der Pol

oscillator:

ẋ1(t) = 2x2(t), (6.24)

ẋ2(t) = 10x2(t)(0.21− 1.22x1(t))− 0.8x1(t) + u(t),

where u(t) ∈ [−1, 1]. Let us consider OCPs of Form (5.5) governed by the dynamics

given in Eq. (6.24) with Ω = Rn, U = [−1, 1] and cost functions of the form c(x, u, t) =

||x− q||22 and g(x) = ||x− q||22, where q = [−0.4, 0] or q = [0; 0]. Clearly any solution

to the OCP is an input u that forces the systems trajectories towards the point q ∈ R2.

By solving the SOS Optimization Problem (5.59) twice for q = [−0.4, 0] and q =

[0; 0] with d = 14, T = 10, f, c, g as defined previously, Λ = [−1, 1]2, w(x, t) ≡ 1,

hΩ(x) = 2.1−x2
1−x2

2, and hU(u) = 1−u2 we obtain polynomial sub-value functions P1

and P2 respectively. By replacing V with Pi, for i ∈ {1, 2}, in Eqs. (6.20) and (6.21)

we then construct controllers, kPi, that yield candidate solution to the OCPs, ũi(t) =

kPi(x(t), t) i ∈ {1, 2}.

For initial condition x0 = [0.75, 0.75]T and terminal time T = 10 we use Matlab’s

ode45 to find the curves {φf̃ (x0, t, ũi) ∈ R2 : t ∈ [0, T ]} for i = 1, 2 (recalling φf

denotes the solution map (Defn. 5.4)), which is shown as the blue and red curves

respectively in the phase plot in Figure 6.2. Moreover, for comparison we have also

plotted the solution trajectory under the fixed input u(t) ≡ 0 as the green curve, which

demonstrates the shape of the Van-der-Pol limit cycle. As expected the input u1 drives

the system to the point q = [−0.4; 0] with terminal state, shown as the black dot in

Figure 6.2, as [−0.430; 0.112]. Moreover, the input u2 drives the system to the point

q = [0; 0] with terminal state [−0.012; 0.007].
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Figure 6.2: Graph showing the phase plot of Example 6.3 found by constructing
controllers given by Eq. (6.20) using the solution to the SOS Problem (5.59). The
blue curve shows the T = 10 solution trajectory initialized at (0.75, 0.75) of the
ODE (6.24) driven by the controller found by considering costs c(x, u, t) = ||x− q||22
and g(x) = ||x− q||22, where q = (−0.4, 0). The red curve shows the T = 10 solution
trajectory initialized at (0.75, 0.75) of the ODE (6.24) driven by the controller found
by considering the same costs but with q = (0, 0). The green curve is the T = 10
solution trajectory initialized at (0.75, 0.75) of the ODE (6.24) under the input u(t) ≡
0. Terminal states for each trajectory are given by the black dots. Costs associated
with each trajectory can be found in Table 6.1.

Table 6.1 shows the T = 10 cost of using various inputs when q = [−0.4, 0] or

q = [0; 0]. All costs were calculated using Eq. (6.22) for initial condition [0.75; 0.75].

The costs of using u1 and u2 are shown in the uSOS row under columns q = [−0.4, 0]

or q = [0; 0] respectively. As expected the inputs derived using SOS out perform (have

lower cost) compared to constant inputs.
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Table 6.1: This table shows the corresponding costs of various inputs for the OCPs
of Form (5.5) given in Example 6.3.

Input u Cost for q = [−0.4; 0] Cost for q = [0; 0]

uSOS 0.21473 0.078919

u(t) ≡ 0 0.84466 1.0037

u(t) ≡ +1 1.1824 2.444

u(t) ≡ −1 4.5615 2.4681
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Chapter 7

CONVERSE LYAPUNOV FUNCTIONS AND CONVERGING INNER

APPROXIMATIONS TO MAXIMAL REGIONS OF ATTRACTION OF

NONLINEAR SYSTEMS

In order to solve this differential equation you

look at it until a solution occurs to you.

George Polya

7.1 Background and Motivation

For a given equilibrium point, a Region of Attraction (ROA) of a nonlinear Or-

dinary Differential Equation (ODE) is defined as a set of initial conditions for which

the solution map of the ODE tends to that equilibrium point. The maximal ROA

of an equilibrium point, meanwhile, is defined as the ROA which contains all other

ROAs of that equilibrium point. Specifically, for an ODE ẋ(t) = f(x(t)), we denote

the solution map (known to exist when f is Lipschitz continuous) of the ODE by

φf : Rn × R→ Rn which satisfies

d

dt
φf (x, t) = f(φf (x, t)) for all x ∈ Rn and t ≥ 0,

φf (x, 0) = x for all x ∈ Rn,

where f : Rn → Rn is such that f(0) = 0. The maximal ROA is then defined as

ROAf := {x ∈ Rn : lim
t→∞
||φf (x, t)||2 = 0}.

The problem of computing sets which accurately approximate the maximal ROA

with respect to some set metric plays a central role in the stability analysis of many
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engineering applications. For instance, knowledge of the ROA provides a metric for

the susceptibility of the F/A-18 Hornet aircraft experiencing an unsafe out of control

flight departure phenomena, called falling leaf mode, see Chakraborty et al. (2011a,b).

If the matrix A ∈ Rn×n is Hurwitz (the real part of the eigenvalues of A are

all negative) then the associated linear system, with vector field f(x) = Ax, has

a maximal ROA that can be found exactly as ROAf = Rn. In the more general

case of nonlinear systems there is no known general analytical formula for ROAf .

However, for particular nonlinear systems, such as those arising from gradient flow

dynamics, the maximal ROA can be expressed analytically, see Mohammadi et al.

(2018). In the absence of an analytical formula for ROAf in recent years there has

been considerable interest in discovering numerical methods for approximating ROAf

rather than finding ROAf exactly.

Lyapunov‘s second method is arguably the most widely used technique for finding

ROAs associated with an ODE, see Kellett (2015). Rather than solving the ODE

directly to find a closed form expression of the solution map, ROAs can be com-

puted indirectly by searching for a “generalized energy function”, called a Lyapunov

function. A Lyapunov function of an ODE is any function that is positive every-

where, apart from the origin where it is zero, and is strictly decreasing along the

solution map of the ODE. Specifically, if we can find a function V such that V (0) = 0

and V (x) > 0 for all x 6= 0, then if ∇V (x)Tf(x) is negative over the sublevel set

{x ∈ Rn : V (x) ≤ a} we have that {x ∈ Rn : V (x) ≤ a} ⊆ ROAf is a ROA, see Hahn

(1967). For linear systems, f(x) = Ax where A ∈ Rn×n, a necessary and sufficient

condition for ROAf = Rn is that there exists a quadratic Lyapunov function of form

V (x) = xTPx where P > 0. Thus, in this case, the problem of finding the maximal

ROA of a linear system is reduced to solving the Linear Matrix Inequality (LMI)

ATP + PA < 0 for P > 0.
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In the case of nonlinear systems a common approach for finding Lyapunov func-

tions has been to generalize the search from quadratic functions, V (x) = xTPx, to

Sum-of-Square (SOS) polynomials functions, V (x) = Zd(x)TPZd(x) where Zd is the

degree d ∈ N monomial vector. Then, to find a Lyapunov function we must solve an

SOS optimization problem, rather than solving an LMI (as was the case for linear

systems). Over the years, many SOS optimization problems have been proposed for

ROA estimation, see Tan and Packard (2008); Zheng et al. (2018); Anderson and

Papachristodoulou (2015); Colbert and Peet (2018). Recently in Cunis et al. (2020),

SOS was used to estimate the region of attraction of an uncrewed aircraft; in Val-

morbida and Anderson (2017) an SOS based algorithm was proposed to construct a

rational Lyapunov function that yields an estimate of the ROA; in Awrejcewicz et al.

(2021) a recursive procedure for constructing the polynomial Lyapunov functions was

proposed.

Despite the recent success of modern attempts to find accurate approximations of

the maximal ROA, to the best of our knowledge, a numerical algorithm that can be

proven to provide an approximation of the maximal ROA arbitrarily well with respect

to any set metric has yet to be proposed. Many of the current numerical methods for

finding ROAs use SOS programming to find polynomial Lyapunov functions. How-

ever, barring any assumptions on the existence of a sufficiently smooth Lyapunov

function, it is currently unknown how well polynomial functions can approximate the

maximal ROA of a given nonlinear ODE. Concerningly, several counter examples,

found in Ahmadi et al. (2011); Ahmadi and El Khadir (2018), show that there exist

globally asymptotically stable systems (ROAf = Rn) with polynomial vector fields,

but for which there does not exist any associated polynomial Lyapunov function that

can certify global asymptotic stability (not even locally in the case of Ahmadi and

El Khadir (2018)). On the other hand, for systems that are locally exponentially sta-
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ble it has been shown in Peet (2009) that there always exists a polynomial Lyapunov

function that can certify local exponential stability. This result has been extended

in Leth et al. (2017) to show that there always exist polynomial Lyapunov functions

that can certify a system is locally rationally stable (a weaker form of stability than

exponential stability) under the assumption that there exists a smooth Lyapunov

function (that need not be polynomial). Furthermore, for systems with homogeneous

vector fields it has been shown in Ahmadi and El Khadir (2019) that there always

exists a rational Lyapunov function that is the solution to some SOS problem.

For work that is concerned with using SOS to approximate the maximal ROA of

locally exponentially stable systems we mention Jones et al. (2017). It was shown

in Jones et al. (2017) that under the assumption that there exists a sufficiently smooth

Lyapunov function, there exists a polynomial Lyapunov function that yields a sublevel

set that approximates ROAf arbitrarily well with respect to the Hausdorff metric.

We note that the conservatism of the assumption that there exists a sufficiently

smooth Lyapunov function is currently unknown. Moreover, the proposed algorithm

for approximating the maximal ROA found in Jones et al. (2017) is only conjectured

to yield an arbitrarily close approximation of the maximal ROA but has yet to be

proven.

In this chapter our goal is to design an algorithm that approximates the maximal

ROA of a given locally exponentially stable ODE arbitrarily well. In order to achieve

this goal we propose a new converse Lyapunov function (given in Eq. (7.11)) whose

1-sublevel set is equal to ROAf . Our proposed converse Lyapunov function is shown

to be sufficiently smooth - meaning it can be approximated by a polynomial. After

proposing such a converse Lyapunov function, we are then able to design a sequence

of SOS Optimization Problems (7.69) and prove that this sequence yields a sequence

of polynomials that converges to our proposed converse Lyapunov function uniformly
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from above in the L1 norm. Finally, we show that since this sequence of polynomials

converges to our proposed converse Lyapunov function in the L1 norm from above,

their associated sequence of 1-sublevel sets must also converge in the volume metric to

the 1-sublevel set of our proposed converse Lyapunov function (which is equal to the

maximal region of attraction of the ODE). Therefore, for a given locally exponentially

stable ODE, the goal of this chapter is: 1) To establish the existence of a globally

Lipschitz continuous converse Lyapunov function whose 1-sublevel set is equal to

ROAf . 2) To propose the first numerical algorithm that can approximate the maximal

ROA arbitrarily well with respect to some set metric. Furthermore, our numerical

algorithm yields an inner approximation of ROAf (that is solution maps initialized

inside our approximation of ROAf asymptotically coverage to the origin); a useful

property for the safety analysis of dynamical systems.

The rest of this chapter is organized as follows. In Section 7.2 we define the max-

imal region of attraction of an ODE in terms of the solution map of the ODE. In

Section 7.3 we formulate the problem of approximating the region of attraction as an

optimization problem. In Section 7.4 we propose a globally Lipschitz continuous Lya-

punov function that characterizes the maximal region of attraction. In Section 7.5 we

propose a convex optimization problem for the approximation of our proposed con-

verse Lyapunov function in the L1-norm. In Section 7.7 we tighten this optimization

problem to an SOS programming problem. Finally, several numerical examples are

given in Section 7.8 and our conclusion is given in Section 7.9.

7.2 Regions of Attraction are Defined Using Solution Maps of Nonlinear ODEs

Consider a nonlinear Ordinary Differential Equation (ODE) of the form

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn, t ∈ [0,∞), (7.1)
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where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition. Note that,

throughout this chapter we will assume f(0) = 0 so the origin is an equilibrium point

(Note that in Chapter 8 this may not be the case).

Given D ⊂ Rn, I ⊂ [0,∞), and an ODE (7.1) we say any function φf : D×I → Rn

satisfying

∂φf (x, t)

∂t
= f(φf (x, t)) for (x, t) ∈ D × I, (7.2)

φf (x, 0) = x for x ∈ D,

φf (φf (x, t), s) = φf (x, t+ s) for x ∈ D t, s ∈ I with t+ s ∈ I,

is a solution map of the ODE (7.1) over D × I. For simplicity throughout this

chapter we will assume there exists a unique solution map to the ODE (7.1) over all

(x, t) ∈ Rn × [0,∞) (uniqueness and existence of a solution map sufficient for the

purposes of this chapter, such as for initial conditions inside some invariant set, like

the Region of Attraction (7.4), and for all t ≥ 0, can be shown to hold under minor

smoothness assumption on f , see Khalil (1996)).

We now use the solution map of the ODE (7.1) to define notions of stability.

Definition 7.1. We say the set U ⊂ Rn is an asymptotically stable set of the

ODE (7.1) if:

1. U contains a neighborhood of the origin.

2. For any x ∈ U we have that φf (x, t) ∈ U for all t ∈ [0,∞) and limt→∞ φf (x, t) =

0.

Furthermore, if there also exists δ, µ > 0 such that for any x ∈ U we have that

||φf (x, t)||2 ≤ µe−δt||x||2 for all t ≥ 0, (7.3)

then we say U ⊂ Rn is an exponentially stable set of the ODE (7.1).
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Definition 7.2. The (Maximal) Region of Attraction (ROA) of the ODE (7.1) is

defined as the following set:

ROAf := {x ∈ Rn : lim
t→∞
||φf (x, t)||2 = 0}. (7.4)

The ROA of the ODE (7.1) can be thought of as the “maximal” asymptotically

stable set. That is if U ⊂ Rn is an asymptotically stable set of the ODE (7.1) then

U ⊆ ROAf . Moreover, as we will show next, the ROA is an open set.

Lemma 7.1 (Lemma 8.1 in Khalil (1996) ). Consider an ODE of Form (7.1). The

set ROAf (Defined in Eq. (7.4)) is open.

Before proceeding we introduce some useful notation for the η-ball set entry times

of solution maps. For a given function φf : Rn × R→ Rn, x ∈ ROAf , and η > 0 we

denote

Fη(x) := inf{t ≥ 0 : φf (x, t) ∈ Bη(0)}. (7.5)

We now state two important properties of solution maps used in many of the proofs

presented in this chapter.

Lemma 7.2 (Exponential divergence of solution maps. Page 392 in Hirsch et al.

(2004)). Suppose f ∈ C2(Rn,R) and there exists θ, R > 0 such that ||Dαf(x)||2 < θ

for all x ∈ BR(0) and any ||α||1 ≤ 2, where α ∈ Nn. Then the solution map satisfies

the following inequality

||φf (x, t)− φf (y, t)||2 ≤ eθt||x− y||2 for t ≥ 0 and x, y ∈ ROAf . (7.6)

Lemma 7.3 (Smoothness of the solution map. Page 149 in Hirsch et al. (2004)). If

f ∈ C1(Rn,Rn) then the solution map is such that φf ∈ C1(Rn × R,R).
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7.3 The Problem of Approximating The ROA

Consider f ∈ C2(Rn,Rn). The goal of this chapter is to compute an optimal (with

respect to some set metric) inner approximation of ROAf (given in Defn. 7.2). That

is, we would like to solve the following optimization problem:

min
X∈C
{D(ROAf , X)} (7.7)

such that X ⊆ ROAf ,

where C ⊂ P (Rn) is some constraint set (recalling from Chapter 2 that P (Rn) is the

power set of Rn) and D : {Y : Y ⊂ Rn} × {Y : Y ⊂ Rn} → R is some set metric.

Note, if the constraint set contains all subsets of Rn, that is C = P (Rn), then trivially

the optimization problem is solved by the region of attraction, X = ROAf .

The optimization problem given in Eq. (7.7) is fundamentally “geometric in na-

ture” since it is solved by finding a subset of Euclidean space, X ⊂ Rn. In this

chapter we reformulate the optimization problem given in Eq. (7.7) as an optimiza-

tion problem that is “algebraic in nature”, being solved by a function rather than a

set. In order to formulate such an “algebriac” optimization problem we first propose

a converse Lyapunov function (given later in Eq. (7.11)), denoted here as W , whose

1-sublevel set is equal to ROAf ; that is ROAf = {x ∈ Rn : W (x) < 1}. Then rather

than finding the set “closest” to ROAf , we find the “closest” d-degree polynomial to

W with respect to the L1 norm. Thus we consider the following “algebriac” problem:

Pd ∈ arg min
J∈Pd(Rn,R)

∫
Λ

|J(x)−W (x)|dx (7.8)

such that W (x) ≤ J(x) for all x ∈ Ω,

where ROAf ⊆ Λ ⊆ Ω ⊂ Rn. Then, Cor. A.1 (found in Appendix A) can be used to

show that {x ∈ Λ : Pd(x) < 1} converges to {x ∈ Λ : W (x) < 1} = ROAf as d→∞
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with respect to the volume metric (given in Eq. (A.1)).

Solving the optimization problem given in Eq. (7.8) has the following challenges:

1. Does there exist a converse Lyapunov function W : Rn → R such that ROAf =

{x ∈ Rn : W (x) < 1}?

2. Can the constraint, W (x) ≤ J(x) for all x ∈ Ω, be tightened to a convex con-

straint without necessarily having an analytical formula for W?

3. Does the solution, Pd, tend towards W with respect to the L1 norm as d→∞?

In the next section we tackle the first of these challenges. We propose a converse

Lyapunov function, W , whose 1-sublevel set is equal to ROAf . Then, in Sec. 7.5

we tackle the second challenge; we propose a sufficient condition, in the form of

a linear partial differential inequality, that when satisfied by a function J implies

W (x) ≤ J(x) for all x ∈ Ω. Finally, in Section 7.6, we tackle the third challenge of

showing that there exists a sequence of d-degree polynomials, feasible to Opt. (7.8) for

d ∈ N, that converges toW with respect to the L1 norm. For implementation purposes

Opt. (7.8) is then tightened to an SOS optimization problem, given in Eq. (7.69), that

can be efficiently numerically solved. The main result of the chapter is then given

in Theorem 7.2, showing that our proposed family of d-degree SOS Optimization

Problems (7.69) yields a sequence of sets that converge to the region of attraction

of a given locally exponentially stable ODE with respect to the volume metric as

d→∞.

7.4 A Globally Lipschitz Continuous Converse Lyapunov Function That

Characterizes the ROA

In Vannelli and Vidyasagar (1985) a converse Lyapunov function, called the maxi-

mal Lyapunov function, was proposed. It was shown that for any given asymptotically
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stable ODE there exists a maximal Lyapunov function whose ∞-sublevel set is equal

to the region of attraction of the ODE. However, since by definition any maximal

Lyapunov function is unbounded outside of the region of attraction it cannot be ap-

proximated arbitrarily well (with respect to any norm) by a polynomial over any

compact set that contains points outside of the region of attraction (since polyno-

mials are bounded over compact sets). Thus, it is not possible to design an SOS

based algorithm that can approximate maximal Lyapunov functions arbitrarily well.

To overcome this challenge we propose a new converse Lyapunov function (found in

Eq. (7.11)) whose 1-sublevel set is equal to ROAf , is globally bounded, and is globally

Lipschitz continuous. Before introducing our new converse Lyapunov function let us

recall the definition of Lipschitz continuity.

Definition 7.3. Consider sets Θ1 ⊂ Rn and Θ2 ⊂ Rm. We say the function F : Θ1 →

Θ2 is locally Lipschitz continuous on Θ1 and Θ2, denoted F ∈ LocLip(Θ1,Θ2),

if for every compact set X ⊆ Θ1 there exists K > 0 (that may depend on X) such

that for all x, y ∈ X

||F (x)− F (y)||2 ≤ K||x− y||2. (7.9)

If there exists a single K > 0 such that Eq. (7.9) holds for all x, y ∈ Θ1 we say F is

globally Lipschitz continuous, denoted F ∈ Lip(Θ1,Θ2).

We consider two different types of converse Lyapunov functions. The first converse

Lyapunov function (given in Eq. (7.10)) is a special case of those first found in Massera

(1949) that have the form V1(x) :=
∫∞

0
G(||φf (x, t)||2)dt for some class K function,

G : [0,∞) → [0,∞) (class K is the class of functions which monotonically approach

zero at zero). In Vannelli and Vidyasagar (1985) it was shown that for a locally stable

ODE, the ∞-sublevel set of V1 is equal to the region of attraction of the ODE; this

Lyapunov function was named the maximal Lyapunov function. In this chapter we
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only consider locally exponentially stable systems and hence may restrict ourselves

to the special case when G(y) = y2β for some β ∈ N.

The second converse Lyapunov function we consider (found in Eq. (7.11)) can be

thought of as a nonlinear transformation of the first converse Lyapunov function. A

function of a similar structure was previously considered in Zubov (1964) and took

the form V2(x) := exp
(
−
∫∞

0
G(||φf (x, t)||2)dt

)
− 1. Although Zubov (1964) used V2

to certify the stability of a system, V2 is not a Lyapunov function in the classical sense

since it is not positive everywhere (unlike our proposed converse Lyapunov function

in Eq. (7.11)). We note that Zubov (1964) did establish the globally continuity of V2

but did not show the stronger result that V2 is Lipschitz continuous.

Now, consider f ∈ LocLip(Rn,Rn), λ > 0 and β ∈ N. Let us denote the functions

Vβ : ROAf → R and Wλ,β : Rn → R where

Vβ(x) :=

∫ ∞
0

||φf (x, t)||2β2 dt, (7.10)

Wλ,β(x) :=


1− exp(−λ

∫∞
0
||φf (x, t)||2β2 dt) when x ∈ ROAf

1 otherwise.

(7.11)

7.4.1 Converse Lyapunov Functions that Characterize the ROA

The function, Vβ, given in Eq. (7.10) is a special case of a class of Lyapunov func-

tions called maximal Lyapunov functions found in Vannelli and Vidyasagar (1985).

In the following lemma we will show that Vβ tends to infinity for sequences of points

approaching the boundary of the region of attraction and is finite inside the region of

attraction.

Lemma 7.4. Consider f ∈ LocLip(Rn,R), β ∈ N and Vβ given in Eq. (7.10). Sup-

pose there exists R, η > 0 such that ROAf ⊂ BR(0) and Bη(0) is an exponentially

stable set (Defn. 7.1) of the ODE (7.1). Then the following holds.
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1. For any sequence {xk}k∈N ⊂ ROAf such that limk→∞ xk ∈ ∂ROAf we have that

lim
k→∞

Vβ(xk) =∞. (7.12)

2. We have that

x ∈ ROAf if and only if Vβ(x) <∞. (7.13)

Proof. We first show Statement 1) in Lem. 7.4 by showing Eq. (7.12) holds. Suppose

{xk}k∈N ⊂ ROAf is such that x∗ := limk→∞ xk ∈ ∂ROAf . Let 0 < η1 < η and

consider Tk := Fη1(xk) (where Fη(x) is given in Eq. (7.5)). Since xk ∈ ROAf it

follows Tk < ∞ for all k ∈ N. Moreover, it is clear that ||φf (xk, t)||2 ≥ η1 for all

t ∈ [0, Tk).

Now,

Vβ(xk) =

∫ Tk

0

||φf (xk, t)||2β2 dt+

∫ ∞
Tk

||φf (xk, t)||2β2 dt ≥
∫ Tk

0

||φf (xk, t)||2β2 dt ≥ η2β
1 Tk.

(7.14)

We will now show Tk → ∞ as k → ∞ and thus Eq. (7.14) shows Eq. (7.12).

For contradiction suppose limk→∞ Tk 6= 0, then there exists a bounded subsequence

{Tkn}n∈N ⊂ {Tk}k∈N. Now by Theorem C.1 there exists a subsequence of the sub-

sequence {Tkn}n∈N, we denote by {Ti}i∈N, that converges to a finite limit T ∗ :=

limi→∞ Ti <∞. Let us denote the corresponding subsequence of {xk}k∈N by {xi}i∈N.

Since limk→∞ xk → x∗ and every subsequence of a convergent sequence must converge

to the same limit we have limi→∞ xi = x∗.

Since φf ∈ C(Rn × [0,∞),Rn) (by Lemma 7.3) we have that

||φf (x∗, T ∗)||2 = lim
i→∞
||φf (xi, Ti)||2 ≤ η1 < η,

and since Bη(0) is an exponentially stable set we have that

||φf (x∗, T ∗ + t)||22 = ||φf (φf (x∗, T ∗), t)||22 ≤ µ2e−2δt||φf (x∗, T ∗)||22 ≤ µ2η2e−2δt.

(7.15)
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Therefore, Eq. (7.15) implies that

lim
t→∞
||φf (x∗, t)||2 = lim

t→∞
||φf (x∗, T ∗ + t)||2 = lim

t→∞
µηe−δt = 0,

thus showing x∗ ∈ ROAf . Now ROAf is an open set (by Lemma 7.1). Therefore if

x∗ ∈ ROAf then x∗ /∈ ∂ROAf , providing a contradiction that x∗ ∈ ∂ROAf . Hence,

Eq. (7.12) holds.

We now Statement 2) in Lem. 7.4 by showing Eq. (7.13) holds. First sup-

pose x ∈ ROAf . We will now show Vβ(x) < ∞. Since x ∈ ROAf we have

that limt→∞ ||φf (x, t)||2 = 0 and thus it follows there exists T < ∞ such that

||φf (x, t)||2 < η for all t ≥ T implying Fη(x) ≤ T < ∞. Moreover, by proper-

ties of the set entry time we have that ||φf (x, Fη(x))||2 ≤ η and since Bη(0) is an

exponentially stable set we have that,

||φf (x, t)||2 = ||φf (φf (x, Fη(x)),t− Fη(x))||2 ≤ µηe−δ(t−Fη(x)) for all t > Fη(x).

(7.16)

Therefore, using the fact that ROAf ⊂ BR(0) together with Eq. (7.16) we get that,

Vβ(x) =

∫ Fη(x)

0

||φf (x, t)||2β2 dt+

∫ ∞
Fη(x)

||φf (x, t)||2β2 dt

≤ Fη(x)R2β + µ2βη2β

∫ ∞
Fη(x)

e−2δβ(t−Fη(x))dt

= Fη(x)R2β +
µ2βη2β

2δβ
<∞.

Now, on the other hand let us now suppose x ∈ Rn is such that Vβ(x) <∞. We will

show x ∈ ROAf . For contradiction suppose x /∈ ROAf . Then limt→∞ ||φf (x, t)||2 6=

0. Therefore, there exists ε > 0 such that ||φf (x, t)||2 > ε for all t ≥ 0. Thus

Vβ(x) =

∫ ∞
0

||φf (x, t)||2β2 dt ≥
∫ ∞

0

ε2βdt =∞,

providing a contradiction that Vβ(x) <∞. Hence, Eq. (7.13) holds.
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As we will show next, the function, Wλ,β, given in Eq. (7.11), can also characterize

ROAf as its 1-sublevel set.

Corollary 7.1. Consider f ∈ LocLip(Rn,R), β ∈ N, λ > 0 and Wλ,β given in

Eq. (7.11). Suppose there exists R, η > 0 such that ROAf ⊂ BR(0) and Bη(0) is an

exponentially stable set (Defn. 7.1) to the ODE (7.1). Then the following holds.

1. For any sequence {xk}k∈N ⊂ ROAf such that limk→∞ xk ∈ ∂ROAf we have that

lim
k→∞

Wλ,β(xk) = 1. (7.17)

2. We have that

ROAf = {x ∈ Rn : Wλ,β(x) < 1}. (7.18)

Proof. We first show Statement 1) in Cor. 7.1 by showing Eq. (7.17) holds. For

x ∈ ROAf we have that Wλ,β(x) = 1 − e−λVβ(x). Moreover, ex is a continuous

function of x ∈ R. Therefore, by Lemma 7.4, for {xk}k∈N ⊂ ROAf we have that

lim
k→∞

Wλ,β(xk) = 1− exp
(
−λ lim

k→∞
Vβ(xk)

)
= 1.

We next show Statement 2) in Cor. 7.1 by showing Eq. (7.18) holds. If x ∈

ROAf then by Lemma 7.4 we have that Vβ(x) < ∞ and thus e−λVβ(x) > 0 implying

Wλ,β(x) = 1 − e−λVβ(x) < 1. Therefore, ROAf ⊆ {x ∈ Rn : Wλ,β(x) < 1}. On

the other hand if y ∈ {x ∈ Rn : Wλ,β(x) < 1} then a := 1 −Wλ,β(y) > 0. Thus,

Vβ(y) = − 1
λ

ln(a) < ∞. Lemma 7.4 shows if Vβ(y) < ∞ then y ∈ ROAf . Hence,

{x ∈ Rn : Wλ,β(x) < 1} ⊆ ROAf .

7.4.2 A Globally Lipschitz Continuous Lyapunov Function

The function Vβ is only defined over the set ROAf and is unbounded. Such

properties make approximating Vβ by polynomials challenging. On the other hand
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Wλ,β is defined over the whole of Rn and is bounded by 1. What is more, we next

show in Prop. 7.1 that Wλ,β is globally Lipschitz continuous. One may intuit this

continuity property by considering the similarity in structure between Wλ,β and the

standard mollifier given in Eq. (B.1); a function known to be infinitely differentiable.

Proposition 7.1. Consider f ∈ C2(Rn,R) and Wλ,β as in Eq. (7.11) where λ > 0 and

β ∈ N. Suppose there exists θ, η, R > 0 such that ||Dαf(x)||2 < θ for all x ∈ BR(0)

and ||α||1 ≤ 2, Bη(0) is an exponentially stable set (Defn. 7.1) to the ODE (7.1), and

ROAf ⊂ BR(0). Then if λ > θη−2β and β > θ
2δ

+ 1
2

we have that Wλ,β ∈ Lip(Rn,R).

Moreover, the Lipschitz constant of Wλ,β is less than or equal to K > 0, where

K := 2λmax

{
2βR2β−1

θ
,

2β(µη)2β−1

δ(2β − 1)− θ

}
. (7.19)

Proof. To prove Wλ,β ∈ Lip(Rn,R) we will now show

|Wλ,β(x)−Wλ,β(y)| < K||x− y||2 for all x, y ∈ Rn, (7.20)

where K > 0 is given in Eq. (7.19).

Case 1: x, y ∈ ROAf . Since Bη(0) is an exponentially stable set of the ODE (7.1)

and by applying a similar argument in the derivation of Eq. (7.16), it follows that

there exists δ, µ > 0 such that

||φf (x, t)||2 ≤ µηe−δ(t−Fη(x)) for all t > Fη(x), (7.21)

||φf (y, t)||2 ≤ µηe−δ(t−Fη(x)) for all t > Fη(y).

Without loss of generality we will assume Fη(x) ≥ Fη(y) (otherwise we can relabel x

and y).
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Now,

|Wλ,β(x)−Wλ,β(y)| (7.22)

=

∣∣∣∣ exp

(
−λ
∫ ∞

0

||φf (x, t)||2β2 dt
)
− exp

(
−λ
∫ ∞

0

||φf (y, t)||2β2 dt
) ∣∣∣∣

= exp

(
−λ
∫ ∞

0

||φf (x, t)||2β2 dt
) ∣∣∣∣1− exp

(
−λ
∫ ∞

0

(||φf (y, t)||2β2 − ||φf (x, t)||
2β
2 )dt

) ∣∣∣∣
≤ exp

(
−λ
∫ ∞

0

||φf (x, t)||2β2 dt
) ∣∣∣∣λ∫ ∞

0

(||φf (y, t)||2β2 − ||φf (x, t)||
2β
2 )dt

∣∣∣∣
= λ exp (−λVβ(x)) |Vβ(x)− Vβ(y)| ,

where the inequality in Eq. (7.22) follows by the exponential inequality given in

Eq. (C.3) in Lemma C.1 and the function Vβ is as in Eq. (7.10).

We first derive a bound for |Vβ(x)− Vβ(y)|.

|Vβ(x)− Vβ(y)| =
∣∣∣∣∫ ∞

0

||φf (x, t)||2β2 − ||φf (y, t)||
2β
2 dt

∣∣∣∣ (7.23)

≤
∫ ∞

0

∣∣∣∣||φf (x, t)||2 − ||φf (y, t)||2∣∣∣∣
(

2β−1∑
i=0

||φf (x, t)||i2||φf (y, t)||
2β−1−i
2

)
dt

≤
∫ Fη(x)

0

∣∣∣∣||φf (x, t)− φf (y, t)||2∣∣∣∣
(

2β−1∑
i=0

||φf (x, t)||i2||φf (y, t)||
2β−1−i
2

)
dt

+

∫ ∞
Fη(x)

∣∣∣∣||φf (x, t)− φf (y, t)||2∣∣∣∣
(

2β−1∑
i=0

||φf (x, t)||i2||φf (y, t)||
2β−1−i
2

)
dt.

We now derive a bound for the two terms that appear in the right hand side of

Eq. (7.23). Using the fact ||φf (x, t)||2 < R and ||φf (y, t)||2 < R since ROAf ⊂ BR(0),

and using Lemma 7.2, we get,∫ Fη(x)

0

||φf (x, t)− φf (y, t)||2

(
2β−1∑
i=0

||φf (x, t)||i2||φf (y, t)||
2β−1−i
2

)
dt (7.24)

≤ 2βR2β−1

∫ Fη(x)

0

||φf (x, t)− φf (y, t)||2dt

≤ 2βR2β−1||x− y||2
∫ Fη(x)

0

eθtdt

=
2βR2β−1

θ

(
eθFη(x) − 1

)
||x− y||2.
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Moreover, since β > θ
2δ

+ 1
2

it also follows using Eq. (7.21), and Lemma 7.2, that∫ ∞
Fη(x)

||φf (x, t)− φf (y, t)||2s

(
2β−1∑
i=0

||φf (x, t)||i2||φf (y, t)||
2β−1−i
2

)
dt (7.25)

≤ 2β(µη)2β−1eδ(2β−1)Fη(x)||x− y||2
∫ ∞
Fη(x)

eθt−δ(2β−1)tdt

=
2β(µη)2β−1

δ(2β − 1)− θ
eθFη(x)||x− y||2.

Now, combining Eqs. (7.23), (7.24) and (7.25) we get,

|Vβ(x)− Vβ(y)|max

{
2βR2β−1

θ
,

2β(µη)2β−1

δ(2β − 1)− θ

}
eθFη(x)||x− y||2. (7.26)

We next derive a bound for the exp (−λVβ(x)) term in Eq. (7.22).

exp (−λVβ(x)) = exp

(
−λ
∫ ∞

0

||φf (x, t)||2β2 dt
)

(7.27)

≤ exp

(
−λ
∫ Fη(x)

0

||φf (x, t)||2β2 dt

)
≤ e−λFη(x)η2β

.

Finally combining Eqs. (7.22), (7.26), and (7.27), and using the fact λ > θη−2β, we

get

|Wλ,β(x)−Wλ,β(y)|

≤ λmax

{
2βR2β−1

θ
,

2β(µη)2β−1

δ(2β − 1)− θ

}
e−(λη2β−θ)Fη(x)||x− y||2

≤ K

2
||x− y||2,

showing Eq. (7.20) holds when x, y ∈ ROAf .

Case 2: x ∈ ROAf and y /∈ ROAf . Let us consider the set {zβ}β∈[0,1] ⊂ Rn

where for β ∈ [0, 1] we have that zβ := (1 − β)x + βy. Now, since x ∈ ROAf

and ROAf is open (by Lemma 7.1) it follows there exists ε > 0 such that Bε(x) ⊂

ROAf . Therefore, since ||zβ − x|| = |β|||x − y||2, it follows zβ ∈ ROAf for all

β ∈ [0, ε/||x − y||2). Thus σ := sup{β : zβ ∈ ROAf} ≥ ε/||x − y||2 > 0. Moreover,

σ ≤ 1 as z1 = y /∈ ROAf .
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Consider an := σ(1−1/n) and denote the sequence of points wn := zan . It follows

{wn}n∈N ⊂ ROAf and w∗ := limn→∞wn ∈ ∂ROAf . By Lemma 7.4 we have that

limn→∞ Vβ(wn) =∞. Therefore there exists N ∈ N such that

exp(−λVβ(wn)) <
K

2
||x− y||2 for all n > N. (7.28)

Moreover, since y /∈ ROAf we have that Wλ,β(y) = 1. Thus by Eq. (7.28) we have

that

|Wλ,β(wn)−Wλ,β(y)| = |1− exp(−λVβ(wn))− 1| (7.29)

= exp(−λVβ(wn)) ≤ K

2
||x− y||2 for all n > N.

Furthermore, for any n > N we have that wn ∈ ROAf and x ∈ ROAf and thus

Case 1 shows that

|Wλ,β(x)−Wλ,β(wn)| < K

2
||x− wn||2. (7.30)

Thus, by Eqs. (7.29) and (7.30) and selecting any n > N , it now follows that

|Wλ,β(x)−Wλ,β(y)|

= |Wλ,β(x)−Wλ,β(wn)|+ |Wλ,β(wn)−Wλ,β(y)|

≤ K

2
||x− wn||2 + exp(−λV (wn))

≤ K

2
σ

(
1− 1

n

)
||x− y||2 +

K

2
||x− y||2

≤ K||x− y||2,

where the third inequality follows since σ(1 − 1
n
) < 1 for all n ∈ N. Therefore,

Eq. (7.20) holds when x ∈ ROAf and y /∈ ROAf .

Case 3: y ∈ ROAf and x /∈ ROAf . It follows by a similar argument to Case 2

that

|Wλ,β(x)−Wλ,β(y)| ≤ K||x− y||2,
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and thus Eq. (7.20) holds when y ∈ ROAf and x /∈ ROAf .

Case 4: x, y /∈ ROAf . We have that Wλ,β(x) = Wλ,β(y) = 1 for all x, y /∈ ROAf

and thus,

|Wλ,β(x)−Wλ,β(y)| = 0 ≤ K||x− y||2,

and thus Eq. (7.20) holds when x, y /∈ ROAf .

7.4.3 The Converse Lyapunov Function Satisfies a PDE

Proposition 7.1 shows Wλ,β is a Lipschitz continuous function when λ > 0 and

β ∈ N are sufficiently large. Rademacher’s Theorem (Theorem C.4 found in Ap-

pendix C) shows that Lipschitz continuous functions are differentiable almost every-

where. Therefore, Wλ,β must satisfy some Partial Differential Equation (PDE) almost

everywhere. We next derive this PDE by showing Wλ,β satisfies Eq. (7.31).

Proposition 7.2. Consider f ∈ C2(Rn,R) and W as in Eq. (7.11). Suppose there

exists θ, η, R > 0 such that ||Dαf(x)||2 < θ for all x ∈ BR(x) and ||α||1 ≤ 2, Bη(0)

is an exponentially stable set (Defn. 7.1) of the ODE (7.1), and ROAf ⊂ BR(0). If

λ > θη−2β and β > θ
2δ

+ 1
2

then

∇Wλ,β(x)Tf(x) = −λ||x||2β2 (1−Wλ,β(x)) for almost every x ∈ Rn. (7.31)

Proof. By Prop. 7.1 we have that Wλ,β ∈ Lip(Rn,R). Therefore by Rademacher’s

Theorem (stated in Theorem C.4 and found in Appendix C) Wλ,β is differentiable

almost everywhere. Moreover, φf is differentiable by Lemma 7.3. Since the com-

position of differentiable functions is itself differentiable it follows by the chain rule

that,

d

dt
Wλ,β(φf (x, t))

∣∣∣∣
t=0

= ∇Wλ,β(x)T
∂

∂t
φf (x, t)

∣∣∣∣
t=0

(7.32)

= ∇Wλ,β(x)Tf(x) for almost every x ∈ Rn.
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On the other hand, if x ∈ ROAf it follows φf (x, t) ∈ ROAf for all t ≥ 0 and thus,

Wλ,β(φf (x, t)) = 1− exp

(
−λ
∫ ∞
t

||φf (x, s)||2β2 ds
)
. (7.33)

By the fundamental theorem of calculus and the fact φf (x, 0) = x for all x ∈ Rn we

have that,

d

dt
Wλ,β(φf (x, t))

∣∣∣∣
t=0

= −λ||φf (x, t)||2β2 exp

(
−λ
∫ ∞
t

||φf (x, s)||2β2 ds
) ∣∣∣∣

t=0

= −λ||x||2β2 (1−Wλ,β(x)) for x ∈ ROAf . (7.34)

If x /∈ ROAf then clearly φf (x, t) /∈ ROAf for all t ≥ 0. Thus W (φf (x, t)) = 1 for all

x /∈ ROAf and t ≥ 0. Therefore,

d

dt
Wλ,β(φf (x, t))

∣∣∣∣
t=0

=
d

dt
1

∣∣∣∣
t=0

= 0 = −λ||x||2β2 (1− 1) (7.35)

= −λ||x||2β2 (1−Wλ,β(x)) for x /∈ ROAf .

Hence, Eqs. (7.32), (7.34) and (7.35) prove that the PDE given in Eq. (7.31) holds.

7.5 A Convex Optimization Problem for Approximating the Converse Lyapunov

Function

We have reduced the problem of approximating the region of attraction to solving

the optimization problem given in Eq. (7.8), where W = Wλ,β is given in Eq. (7.11).

Unfortunately, no analytical formula for Wλ,β is known. Therefore, the optimization

problem given in Eq. (7.8) cannot be solved in its current form.

Fortunately, the unknown function Wλ,β can be removed from the objective func-

tion of Opt. (7.8). To see this note that if J(x) ≥ Wλ,β(x) for all x ∈ Λ ⊆ Ω,

then minimizing
∫

Λ
|J(x)−Wλ,β(x)|dx is equivalent to minimizing

∫
Λ
J(x)dx. Thus,

Opt. (7.8) is equivalent to the following optimization problem,
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Pd ∈ arg min
J∈Pd(Rn,R)

∫
Λ

J(x)dx (7.36)

such that J(x) ≥ Wλ,β(x) for all x ∈ Ω.

Unfortunately, the constraint of Opt. (7.36) still involves the unknown function

Wλ,β. In the absence of an analytical formula for Wλ,β we propose in Prop. 7.3

conditions, in the form of the linear partial differential inequalities given in Eqs. (7.37),

(7.38) and (7.39), that when satisfied by some function J ∈ C1(Rn,R) implies that

Wλ,β(x) ≤ J(x). Thus, any J satisfying Eqs. (7.37), (7.38) and (7.39) is feasible to

Opt. (7.36).

7.5.1 Bounding The Converse Lyapunov Function From Above

Proposition 7.3. Consider f ∈ C1(Rn,R), β ∈ N and λ > 0. Suppose there exists

J ∈ C1(Ω,R) that satisfies

∇J(x)Tf(x) ≤ −λ||x||2β2 (1− J(x)) for all x ∈ Ω, (7.37)

J(x) ≥ 1 for all x ∈ ∂Ω, (7.38)

J(0) ≥ 0, (7.39)

where Ω ⊂ Rn is a compact set. Then Wλ,β(x) ≤ J(x) for all x ∈ Ω, where Wλ,β is

as in Eq. (7.11).

Proof. Consider x ∈ Ω. Let us consider the time the solution map exits the set

Ω ⊂ Rn, denoted by Tx := sup{t ≥ 0 : φf (x, t) ∈ Ω}. Furthermore, let us denote

u(t) := J(φf (x, t))− 1 and α(t) := λ||φf (x, t)||2β2 . It follows from Eq. (7.37) that

d

dt
u(t) ≤ α(t)u(t) for all t ∈ [0, Tx].

Therefore by Lemma C.2 it follows that

u(t) ≤ u(0) exp

(∫ t

0

α(s)ds

)
for all t ∈ [0, Tx],
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and thus selecting t = Tx we have that

J(φf (x, Tx))− 1 ≤ (J(x)− 1) exp

(
λ

∫ Tx

0

||φf (x, s)||2β2 ds
)
. (7.40)

By rearranging Eq. (7.40) we get that,

J(x) ≥ 1− (1− J(φf (x, Tx))) exp

(
−λ
∫ Tx

0

||φf (x, s)||2β2 ds
)
. (7.41)

Case 1: Tx < ∞. In this case the solution map exits the set Ω in some finite

time. Since φf ∈ C(Rn × [0,∞),Rn) (by Lemma 7.3) it is clear that φf (x, Tx) ∈ ∂Ω.

Therefore by Eq. (7.38) we have that J(φf (x, Tx)) ≥ 1.

Hence, (1 − J(φf (x, Tx))) exp
(
−λ
∫ Tx

0
||φf (x, s)||2β2 ds

)
≤ 0. Thus, by Eq. (7.41) we

have that,

J(x) ≥ 1− (1− J(φf (x, Tx))) exp

(
−λ
∫ Tx

0

||φf (x, s)||2β2 ds
)

≥ 1 ≥ Wλ,β(x),

since Wλ,β(x) ≤ 1.

Case 2a: Tx = ∞ and x ∈ ROAf . In this case we have limt→∞ ||φf (x, t)||2 =

||φf (x, Tx)||2 = 0 since x ∈ ROAf . Moreover, since J(φf (x, Tx)) = J(0) ≥ 0 (by

Eq. (7.39)) and exp(x) ≥ 0 for all x ∈ R it follows from Eq. (7.41) that

J(x) ≥ 1− (1− J(0)) exp

(
−λ
∫ ∞

0

||φf (x, s)||2β2 ds
)

≥ 1− exp

(
−λ
∫ ∞

0

||φf (x, s)||2β2 ds
)

= Wλ,β(x).

Case 2b: Tx = ∞ and x ∈ Ω/ROAf . If x ∈ Ω/ROAf we have that W (x) = 1.

Moreover, if Tx =∞ then the solution map never exits the set Ω, that is φf (x, t) ∈ Ω

for all t ≥ 0. Since J is differentiable and Ω is compact we have that J is bounded,

that is, there exists M > 0 such that |J(φf (x, t))| < M for all t ≥ 0. Since x /∈ ROAf

we have that φf (x, t) /∈ ROAf for all t ≥ 0. This there exists ε > 0 such that
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||φf (x, t)||2β2 ≥ ε2β for all t ≥ 0. Thus, since |J(φf (x, t))| < M for all t ≥ 0, we have

that ∣∣∣∣(1− J(φf (x, Tx))) exp

(
−λ
∫ Tx

0

||φf (x, s)||2β2 ds
)∣∣∣∣

= lim
T→∞

∣∣∣∣(1− J(φf (x, T ))

)
exp

(
−λ
∫ T

0

||φf (x, s)||2β2 ds
)∣∣∣∣

= lim
T→∞

|1− J(φf (x, T ))| exp

(
−λ
∫ T

0

||φf (x, s)||2β2 ds
)

≤ lim
T→∞

{
(M + 1) exp

(
−Tλε2β

)}
= 0,

implying (1−J(φf (x, Tx))) exp
(
−λ
∫ Tx

0
||φf (x, s)||2β2 ds

)
= 0.

It is now clear by Eq. (7.41) that

J(x) ≥ 1− (1− J(φf (x, Tx))) exp

(
−λ
∫ Tx

0

||φf (x, s)||2β2 ds
)

≥ 1 = Wλ,β(x).

Corollary 7.2. Consider f ∈ C1(Rn,R), β ∈ N and λ > 0. Suppose there exists

J ∈ C1(Ω,R) that satisfies Eqs. (7.37), (7.38) and (7.39) for some compact set Ω.

Then J(x) ≥ 0 for all x ∈ Ω.

Proof. By Prop. 7.3 we have that J(x) ≥ Wλ,β(x) ≥ 0, where Wλ,β is as in Eq. (7.11).

7.5.2 Tightening The Problem of Approximating Our Proposed Converse

Lyapunov Function

Using Prop. 7.3 we now tighten the optimization problem given in Eq. (7.36). For

given f ∈ C1(Rn,Rn), λ > 0, β ∈ N, R > 0 and Λ ⊆ Ω ⊂ Rn consider the following

optimization problem,
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Pd ∈ arg min
J∈Pd(Rn,R)

∫
Λ

J(x)dx (7.42)

such that J satisfies (7.37), (7.38), and (7.39).

Clearly the Opt. (7.42) is a tightening of the Opt. (7.8) since if J is feasible to

Opt. (7.42) then by Prop. 7.3 we have that J is also feasible to Opt. (7.8). Moreover,

Opt. (7.42) is a convex optimization problem since it is linear in its decision variable,

J , in both the constraints and objective function. In the next section we further

tighten Opt. (7.42) to an SOS Optimization Problem (7.69) that can be tractably

solved. For implementation purposes we select Ω = BR(0), where R > 0, and Λ ⊆ Ω

as some rectangular set (of form [a1, b1]× ...× [a1, b2] ⊂ Rn).

7.6 Our Proposed Converse Lyapunov Function can be Approximated Arbitrarily

well by a Polynomial Function

In the previous section we have proposed an optimization problem, given in

Eq. (7.42), for approximating our proposed converse Lyapunov function (given in

Eq. (7.11)). In this section we show, later in Theorem 7.1, that there exists a poly-

nomial function arbitrarily “close” to the converse Lyapunov function Wλ,β and also

a feasible solution to some d ∈ N instantiation of the family of optimization prob-

lems given in Eq. (7.42). Later in Section 7.7 we will tighten the family of d-degree

optimization problems given in Eq. (7.42) to a family of d-degree SOS optimization

problem. We will prove that the sequence of solutions to the d-degree SOS optimiza-

tion problem converges locally in the L1-norm to our proposed converse Lyapunov

function. Theorem 7.1, stated and proved in this chapter, is a key component to

the convergence proof of our d-degree SOS optimization problem. In order to prove

Theorem 7.1 we take the following steps:

(A) In Lemma 7.5 we take the mollification of Wλ,β to show there exists an infinitely
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differentiable function that satisfies Eqs. (7.43), (7.44) and (7.45).

(B) In Prop. 7.4 we use Lemma 7.5 together with partitions of unity (Theorem C.6)

to show there exists an infinitely differentiable function that satisfies Eqs. (7.48),

(7.49) and (7.50).

(C) In Theorem 7.1 we use Prop. 7.4 together with the polynomial approximation

results in Theorem C.3 to show there exists a polynomial function that satisfies

Eqs. (7.60), (7.61) and (7.62).

Lemma 7.5. Consider f ∈ C2(Rn,R) and W as in Eq. (7.11). Suppose there exists

θ, η, R > 0 such that ||Dαf(x)||2 < θ for all x ∈ BR(x) and ||α||1 ≤ 2, Bη(0) is an

exponentially stable set (Defn. 7.1) of the ODE (7.1), and ROAf ⊂ BR(0). If λ >

θη−2β and β > θ
2δ

+ 1
2

then for any ε > 0 and R1 > R there exists J ∈ C∞(BR1(0),R)

such that

sup
x∈BR1

(0)

|J(x)−Wλ,β(x)| < ε, (7.43)

∇J(x)Tf(x) < −λ(1− J(x))||x||2β2 + ε for all x ∈ BR1(0), (7.44)

J(x) = 1 for all x ∈ ∂BR(0) and J(0) ≥ 0. (7.45)

Proof. Let ε > 0 and R2 > R1 > R. Since Wλ,β ∈ Lip(Rn,R) (by Prop. 7.1) we know

that by Theorem C.4 that Wλ,β ∈ W 1,∞(Rn,R).

For σ > 0 let us denote the σ-mollification of Wλ,β by Jσ(x) := [Wλ,β]σ(x). We

note that the domain of Wλ,β is Rn. However, for mollification purposes we consider

Wλ,β over the restricted domain BR2(0) ⊂ Rn.

Let σ1 := R2−R1

2
. It is clear that BR1(0) ⊂< BR2(0) >σ for all 0 < σ < σ1. There-

fore, by Prop. B.1 we have that

Jσ ∈ C∞(< BR2(0) >σ,R) ⊂ C∞(BR1(0),R) for all 0 < σ < σ1.
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We will now show there exists σ > 0 such that Eqs. (7.43), (7.44) and (7.45) hold.

First we show Eq. (7.43) holds. By Prop. B.1 we know that there exists σ2 > 0

such that for all 0 < σ < σ2 we have that

sup
x∈BR1

(0)

|Jσ(x)−Wλ,β(x)| < ε.

We now show Eq. (7.44) holds. Let us denote r(x) := ||x||2β2 . It is clear using the

triangle inequality and the fact that ||x− z|| < 2R1 for all x, z ∈ BR1(0) that

r(x)− r(x− z) = (||x||2 − ||x− z||2)

2β−1∑
k=0

||x||2β−1−k
2 ||x− z||k2

≤

(
R1

2β−1

2β−1∑
k=0

2k

)
||z||2 for all x, z ∈ BR1(0). (7.46)

Let σ3 := ε

KLf+λ(R1
2β−1

∑2β−1
k=0 2k)

where K (given in Eq. (7.19)) is the Lipschitz con-

stants of Wλ,β and Lf is the Lipschitz constants of f . For 0 < σ < σ3, using Prop. B.1

185



and the fact Wλ,β satisfies Eq. (7.31), we have that

∇Jσ(x)Tf(x) + λ(1− Jσ(x))||x||2β2 (7.47)

= ∇[Wλ,β]σ(x)Tf(x) + λ(1− [Wλ,β]σ(x))r(x)

= [∇Wλ,β]σ(x)Tf(x) + λ(1− [Wλ,β]σ(x))r(x)

= ([∇W T
λ,βf ]σ(x) + λ[r]σ(x)− λ[Wλ,βr]σ(x)) + [∇Wλ,β]σ(x)Tf(x)− [∇W T

λ,βf ]σ(x)

+ λr(x)− λ[r]σ(x) + λ[Wλ,βr]σ(x)− λ[Wλ,β]σ(x)r(x)

= [∇W T
λ,βf + λ(1−Wλ,β)r]σ(x) + [∇Wλ,β]σ(x)Tf(x)− [∇W T

λ,βf ]σ(x)

+ λ(1− [Wλ,β]σ)r(x)− λ[(1−Wλ,β)r]σ(x)

=

∫
Bσ(0)

ησ(z)∇Wλ,β(x− z)T (f(x)− f(x− z))dz

+ λ

∫
Bσ(0)

ησ(z)(1−Wλ,β(x− z))(r(x)− r(x− z))dz

≤ ess sup
x∈Rn

{||∇Wλ,β(x)||2}
∫
Bσ(0)

ησ(z)||f(x)− f(x− z)||2dz

+ λ

∫
Bσ(0)

ησ(z)|r(x)− r(x− z)|dz

≤

(
KLf + λR1

2β−1

2β−1∑
k=0

2k

)∫
Bσ(0)

ησ(z)||z||2dz

≤

(
KLf + λR1

2β−1

2β−1∑
k=0

2k

)
σ < ε for all x ∈ BR1(0).

Where the first inequality in Eq. (7.47) follows by the Cauchy Swartz inequality

and the second inequality follows by the fact ess supx∈Rn{||∇Wλ,β(x)||2} ≤ K (By

Rademacher’s theorem stated in Theorem C.4) and Eq. (7.46).

We now show Eq. (7.45) holds. Since ROAf ⊂ BR(0) and ROAf is an open set

(by Lemma 7.1) it follows that for all x ∈ ∂BR(0) we have x /∈ ROAf and thus

Wλ,β(x) = 1 for all x ∈ ∂BR(0). Now, there exists a sufficiently small σ4 > 0 such
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that Bσ4(x) ∩ROAf = ∅ for all x ∈ ∂BR(0). Thus for 0 < σ < σ4

Jσ(x) =

∫
Bσ(0)

ησ(z)W (x− z)dz =

∫
Bσ(0)

ησ(z)dz = 1,

for all x ∈ ∂BR(0).

Moreover, ησ(x) ≥ 0 and Wλ,β(x) ≥ 0 for all σ > 0 and x ∈ Rn so therefore

Jσ(x) ≥ 0 for all σ > 0 and x ∈ Rn. Thus Jσ(0) ≥ 0 for all σ > 0.

In conclusion for σ < min{σ1, σ2, σ3, σ4} we have that Jσ satisfies Eqs. (7.43),

(7.44) and (7.45).

Proposition 7.4. Consider f ∈ C2(Rn,R) and W as in Eq. (7.11). Suppose there

exists θ, η, R > 0 such that ||Dαf(x)||2 < θ for all x ∈ BR(x) and ||α||1 ≤ 2, Bη(0) is

an exponentially stable set (Defn. 7.1) of the ODE (7.1), and ROAf ⊂ BR(0). If λ >

θη−2β and β > θ
2δ

+ 1
2

then for any ε > 0 and R1 > R there exists J ∈ C∞(BR1(0),R)

such that

sup
x∈BR1

(0)

|J(x)−Wλ,β(x)| < ε, (7.48)

∇J(x)Tf(x) ≤ −λ(1− J(x))||x||2β2 + ε||x||2β2 for x ∈ BR1(0), (7.49)

J(x) = 1 for all x ∈ ∂BR(0) and J(0) = 0. (7.50)

Proof. Consider the sets Um = BR1(0)/(B1/m(0))cl for m ∈ N. It is clear {Um}m∈N

form an open cover (Defn. C.1) of BR1(0)/{0}, that is ∪m∈NUm = BR1(0)/{0}. By

Theorem C.6 (found in Appendix C) there exists a partition of unity, we denote by

{ψm}m∈N ⊂ C∞(Rn,R), subordinate to the open cover {Um}m∈N.

Let ε > 0. For each m ∈ N it was shown in Lemma 7.5 that there exists Jm ∈
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C∞(BR1(0),R) such that

sup
x∈BR1

(0)

|Jm(x)−Wλ,β(x)| (7.51)

<
ε

2m+1(supx∈Um{|∇ψm(x)Tf(x)|}+ 1)m2β
,

∇Jm(x)Tf(x) < −λ(1− Jm(x))||x||2β2 +
ε

2m2β

for all x ∈ BR1(0), (7.52)

Jm(x) = 1 for all x ∈ ∂BR(0) and Jm(0) ≥ 0. (7.53)

Note, supx∈Um{|∇ψm(x)Tf(x)|} < ∞ for each m ∈ N since Um is bounded and the

function ψm(x)Tf(x) is continuous in x.

We now consider the function J(x) :=
∑∞

m=1 ψm(x)Jm(x). We first note that

J ∈ C∞(BR1(0),R). This is due to the fact that Jm ∈ C∞(BR1(0),R) and ψm ∈

C∞(Rn,R) for all m ∈ N. Moreover, for any x ∈ Rn Theorem C.6 (found in Section C)

shows that there is an open set S ⊂ Rn containing x ∈ Rn such that only finitely

many ψm’s are non-zero over S. Thus J is a finite sum of C∞(BR1(0),R) functions

over S and thus differentiable at x. Since x ∈ Rn was arbitrarily chosen it follows

J ∈ C∞(BR1(0),R).

We now show J satisfies Eq. (7.48). Using the fact
∑∞

m=1 ψm(x) = 1 for all

x ∈ BR1(0)/{0} and
∑∞

m=1 ψm(0) = 0 together with Eq. (7.51) we have that

|J(x)−Wλ,β(x)| =

∣∣∣∣∣
∞∑
m=1

ψm(x)Jm(x)−Wλ,β(x)

∣∣∣∣∣
≤
∞∑
m=1

ψm(x)|Jm(x)−Wλ,β(x)|≤
∞∑
m=1

ψm(x)ε

2
< ε for x ∈ BR1(0).

We now show J satisfies Eq. (7.49). Before doing so we note that
∑∞

m=1 ψm(x) = 1

for all x ∈ BR1(0)/{0}. Since only finitely many ψm’s are non-zero for each x ∈

BR1(0)/{0} it follows
∑∞

m=1 ψm(x) is a finite sum of infinitely differentiable functions.

Therefore, we can interchange the derivative and the summation to show 0 = ∂
∂xi

1 =
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∂
∂xi

∑∞
m=1 ψm(x) =

∑∞
m=1

∂
∂xi
ψm(x) for all x ∈ BR1(0)/{0} and i ∈ {1, ..., n}. Thus it

follows
∑∞

m=1∇ψm(x) = [0, ..., 0]T ∈ Rn for all x ∈ BR1(0)/{0}. Hence,

Wλβ(x)
∞∑
m=1

∇ψm(x)Tf(x) = 0 for all x ∈ BR1(0)/{0}. (7.54)

For x ∈ BR1(0)/{0} let us denote Ix := {m ∈ N : x ∈ Um}. Note, {Um}m∈N forms

an open cover for BR1(0)/{0} so Ix 6= ∅ for all x ∈ BR1(0)/{0}.

It is clear that for x ∈ BR1(0)/{0} and m ∈ Ix that x ∈ Um = BR1(0)/B 1
m

(0) and

so ||x||2 ≥ 1
m

implying 1
m2β ≤ ||x||2β2 . Therefore,

sup
m∈Ix

{
1

m2β

}
≤ ||x||2β2 for all x ∈ BR1(0)/{0}. (7.55)

Moreover, for x ∈ BR1(0)/{0} and m /∈ Ix we have that x /∈ Um. Thus, since

{x ∈ Rn : ψm(x) 6= 0} ⊂ Um (by Theorem C.6 found in Appendix C) we have that

ψm(x) = 0 for all x ∈ BR1(0)/{0} and m /∈ Ix. (7.56)

Now, using Eqs. (7.51), (7.52), (7.54), (7.55) and (7.56), and the fact
∑∞

m=1
1

2m
= 1
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we have that,

∇J(x)Tf(x) + λ(1− J(x))||x||2β2 (7.57)

=
∞∑
m=1

ψm(x)
(
∇Jm(x)Tf(x) + λ(1− Jm(x))||x||2β2

)
+
∞∑
m=1

Jm(x)∇ψm(x)Tf(x)−Wλβ(x)
∞∑
m=1

∇ψm(x)Tf(x)

=
∑
m∈Ix

ψm(x)
(
∇Jm(x)Tf(x) + λ(1− Jm(x))||x||2β2

)
+
∑
m∈Ix

(Jm(x)−Wλβ(x))∇ψm(x)Tf(x)

≤
∑
m∈Ix

ψm(x)
ε

2m2β
+
∑
m∈Ix

ε

2m+1m2β

≤ ε sup
m∈Ix

{
1

m2β

}(
1

2

∑
m∈Ix

ψm(x) +
1

2

∑
m∈Ix

1

2m

)

≤ ε sup
m∈Ix

{
1

m2β

}
≤ ε||x||2β2 for all x ∈ BR1(0)/{0}.

Eq. (7.57) shows J satisfies Eq. (7.49) for x ∈ BR1(0)/{0}. We still need to show

J satisfies Eq. (7.49) for x = 0. Let us denote the function F (x) := ∇J(x)Tf(x) +

λ(1 − J(x))||x||2β2 . To show J satisfies Eq. (7.49) at x = 0 we must show F (0) ≤ 0.

We first note that F ∈ C2(BR1(0),R) since J ∈ C∞(BR1(0),R), f ∈ C2(Rn,R) and

||x||2β2 ∈ C2(Rn,R). Thus F ∈ LocLip(Rn,R). Therefore,

|F (0)− F (x)| ≤ LF ||x||2 for all x ∈ BR1(0), (7.58)

where LF is the Lipschitz constant of F . Then, Eq. (7.57) together with Eq. (7.58)

implies that

F (0) ≤ LF ||x||2 + F (x) ≤ LF ||x||2 + ε||x||2β2 for all x ∈ BR1(0)/{0}. (7.59)

Now, for contradiction suppose the negation of F (0) ≤ 0, that is there exists a >

0 such that F (0) ≥ a. Considering x = min{ a
3(LF+1)

√
n
, 1√

n
( a

3ε
)1/β, R1√

n
}[1, ..., 1]T ∈
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BR1(0)/{0} ⊂ Rn and using Eq. (7.59) we have that

a ≤ F (0) ≤ 2

3
a,

providing a contradiction. Therefore, F (0) ≤ 0 and so J satisfies Eq. (7.49) for all

x ∈ BR1(0).

We now show J satisfies Eq. (7.50). Let x ∈ ∂BR(0). By Eq. (7.53) we have

that Jm(x) = 1 for all m ∈ N. Therefore, using the fact
∑∞

m=1 ψm(x) = 1 for all

x ∈ BR1(0)/{0} and ∂BR(0) ⊂ BR1(0)/{0} since R1 > R, we have that

J(x) =
∞∑
m=1

ψm(x)Jm(x) =
∞∑
m=1

ψm(x) = 1.

Moreover, 0 /∈ BR1(0)/{0} so ψm(0) = 0 for all m ∈ N. Hence,

J(0) =
∑∞

m=1 ψm(x)Jm(x) = 0.

Theorem 7.1. Consider f ∈ C2(Rn,R) and W as in Eq. (7.11). Suppose there

exists θ, η, R > 0 such that ||Dαf(x)||2 < θ for all x ∈ BR(x) and ||α||1 ≤ 2, Bη(0)

is an exponentially stable set (Defn. 7.1) of the ODE (7.1), and ROAf ⊂ BR(0). If

λ > θη−2β and β > θ
2δ

+ 1
2

then for any ε > 0 there exists P ∈ P(Rn,R) such that

sup
x∈BR(0)

|P (x)−Wλ,β(x)| < ε, (7.60)

∇P (x)Tf(x) < −λ(1− P (x))||x||2β2 for all x ∈ BR(0), (7.61)

P (x) > 1 for all x ∈ ∂BR(0) and P (0) > 0. (7.62)

Proof. Let ε > 0 and R1 > R. By Prop. 7.4 there exists J ∈ C∞(BR1(0),R) that

satisfies

sup
x∈BR1

(0)

|J(x)−Wλ,β(x)| < ε

a
, (7.63)

∇J(x)Tf(x) ≤ −λ(1− J(x))||x||2β2 +
ε

a
||x||2β2 for x ∈ BR1(0), (7.64)

J(x) = 1 for all x ∈ ∂BR(0) and J(0) = 0, (7.65)
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where

a := max

{
3,

supx∈BR(0) ||f(x)||2
λR

+R−2β +
1

λ
+ 2

}
. (7.66)

Now, Theorem C.3, found in Appendix C, shows there exists P̃ ∈ P(Rn,R) such

that

|J(x)− P̃ (x)| < ε

aR2β
||x||2β2 for all x ∈ (BR(0))cl, (7.67)

||∇J(x)−∇P̃ (x)||2 <
ε

aR2β
||x||2β2 for all x ∈ (BR(0))cl. (7.68)

Let P (x) := P̃ (x) + a−2
a
ε ∈ P(Rn,R). We will now show P satisfies Eqs. (7.60),

(7.61) and (7.62).

We first show Eq. (7.60) holds. Using the triangle inequality along with Eqs. (7.63)

and (7.67) we have that

|P (x)−Wλ,β(x)| ≤ |P̃ (x)−Wλ,β(x)|+ a− 2

a
ε

≤ |P̃ (x)− J(x)|+ |J(x)−Wλ,β(x)|+ a− 2

a
ε

≤ ε

a
+
ε

a
+
a− 2

a
ε = ε.

We now show Eq. (7.61) holds. Using Eqs. (7.64), (7.66), (7.67), and (7.68) we
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have that

∇P (x)Tf(x) + λ(1− P (x))||x||2β2

≤ ∇P̃ (x)Tf(x) + λ(1− P̃ (x))||x||2β2 − λ
ε(a− 2)

a
||x||2β2

−∇J(x)Tf(x)− λ(1− J(x))||x||2β2 +
ε

a
||x||2β2

= (∇P̃ (x)−∇J(x))Tf(x) + λ(J(x)− P̃ (x))||x||2β2 +
ε

a

(
1− λ(a− 2)

)
||x||2β2

≤ ||∇P̃ (x)−∇J(x)||2||f(x)||2 + λR−2β ε

a
||x||2β2

+
ε

a
(1− λ(a− 2))||x||2β2

≤
(

supx∈BR(0) ||f(x)||2
R

+ λR−2β + 1− λ(a− 2)

)
ε

a
||x||2β2

≤ 0.

We now show Eq. (7.62) holds. From Eq. (7.67) we have that P̃ (x) > J(x) −
ε

aR2β ||x||2β2 for all x ∈ (BR(0))cl. Moreover, Eq. (7.65) we have that J(x) = 1 for all

x ∈ ∂BR(0). Therefore P (x) = P̃ (x) + a−2
a
ε > 1 + a−2

a
ε− ε

aR2β ||x||2β2 > 1 + a−3
a
ε > 1.

Also from Eq. (7.67) we have that P̃ (0) = J(0). From Eq. (7.65) we have that

J(0) = 0. Therefore P (0) = P̃ (0) + a−2
a
ε > 0.

7.7 An SOS Optimization Problem For ROA Approximation

For a given ODE (7.1) we next propose a sequence of convex Sum-of-Squares

(SOS) optimization problems, indexed by d ∈ N. We show that the sequence of

solutions, {Pd}d∈N, yields a sequence of sublevel sets which are contained inside the

region of attraction of the ODE and which converge to the region of attraction of the

ODE with respect to the volume metric as d→∞.

For given f ∈ P(Rn,Rn), λ > 0, β ∈ N, R > 0 and integration region Λ ⊂ Rn
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consider the following sequence of SOS optimization problems indexed by d ∈ N:

Pd ∈ arg min
J∈Pd(Rn,R)

cTα (7.69)

J(x) = cTZd(x),

k1, k2, s ∈
d∑

SOS

and p ∈ Pd(Rn,R)

J(0) ≥ 0,

k1(x) = −∇JT (x)f(x)− λ(1− J(x))||x||2β2 − s(x)(R2 − ||x||22),

k2(x) = (J(x)− 1)− p(x)(R2 − ||x||22),

where αi =
∫

Λ
Zd,i(x)dx, recalling Zd : Rn → RNd is the vector of monomials of degree

d ∈ N and Nd =
(
d+n
d

)
.

We will show next, in Cor. 7.3, that the family of SOS optimization problems

given in Eq. (7.69) yields an inner approximation of ROAf for each d ∈ N (an

approximation certifiably contained inside of ROAf ).

Corollary 7.3. Consider f ∈ P(Rn,R) , λ > 0, β ∈ N, R > 0 and Λ ⊂ Rn. Suppose

ROAf ⊆ BR(0) and there exists η > 0 such that Bη(0) is an exponentially stable set.

Then we have that

{x ∈ BR(0) : Pd(x) < 1} ⊆ ROAf for all d ∈ N, (7.70)

where Pd is any solution to the SOS Problem (7.69) for d ∈ N.

Proof. Suppose Pd is any solution to the SOS Problem (7.69) for d ∈ N. Then Pd

satisfies the constraints of the SOS Problem (7.69) and thus satisfies Eqs. (7.37),

(7.38), and (7.39) for Ω = BR(0). Therefore, Wλ,β(x) ≤ Pd(x) for all x ∈ BR(0) by

Prop. 7.3. Hence, it is clear that

{x ∈ BR(0) : Pd(x) < 1} ⊆ {x ∈ BR(0) : Wλ,β(x) < 1}. (7.71)
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Moreover, Cor. 7.1 shows {x ∈ BR(0) : Wλ,β(x) < 1} = ROAf and thus Eq. (7.70)

holds.

Cor. 7.3 implies that solution maps initialized inside our ROAf approximation

asymptotically coverage to the origin. That is for any d ∈ N and for all y ∈ {x ∈

BR(0) : Pd(x) < 1} we have that limt→∞ ||φf (y, t)||2 = 0, where Pd is any solution to

the SOS Problem (7.69) for d ∈ N (note this does not rule out the possibility that

{x ∈ BR(0) : Pd(x) < 1} = ∅).

Further to Cor. 7.3, we will next show, in Theorem 7.2, that for sufficiently large

λ > 0 and β ∈ N the sequence of SOS optimization problems given in Eq. (7.69) yields

a sequence of sets that tend to ROAf with respect to the volume metric as d→∞.

We first recall the volume metric (defined in Appendix A). For sets A,B ⊂ Rn, we

denote the volume metric as DV (A,B), where

DV (A,B) := µ((A/B) ∪ (B/A)).

We note that DV is a metric (Defn. A.1), as shown in Lem. A.1 (found in Appendix A).

Theorem 7.2. Consider f ∈ P(Rn,R) and integration region Λ ⊂ Rn. Suppose there

exists θ, η, R > 0 such that ||Dαf(x)||2 < θ for all x ∈ BR(0) and ||α||1 ≤ 2, Bη(0) is

an exponentially stable set (Defn. 7.1) of the ODE (7.1), and ROAf ⊂ BR(0). Then

if ROAf ⊆ Λ ⊂ BR(0), λ > θη−2β and β > θ
2δ

+ 1
2

we have that

lim
d→∞

DV

(
ROAf , {x ∈ Λ : Pd(x) < 1}

)
= 0, (7.72)

where Pd is any solution to Problem (7.69) for d ∈ N.

Proof. By Cor. 7.1 we have that ROAf = {x ∈ Rn : Wλ,β(x) < 1}. Moreover,

since Pd satisfies the constraints of the SOS Problem (7.69) it follows that Pd satisfies

Eqs. (7.37), (7.38), and (7.39) for Ω = BR(0). Therefore, Wλ,β(x) ≤ Pd(x) for
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all x ∈ BR(0) by Prop. 7.3. Thus, by Cor. A.1 (found in Appendix A) it follows

that Eq. (7.72) holds if limd→∞ ||Pd − Wλ,β||L1(Λ,R) = 0. To show limd→∞ ||Pd −

Wλ,β||L1(Λ,R) = 0 we must show for all ε > 0 there exists D ∈ N such that∫
Λ

|Pd(x)−Wλ,β(x)|dx < ε for all d > D. (7.73)

Now, let ε > 0. Then Theorem 7.1 shows there exists J ∈ P(Rn,R) such that

sup
x∈BR(0)

|J(x)−Wλ,β(x)| < ε

µ(Λ) + 1
, (7.74)

∇J(x)Tf(x) < −λ(1− J(x))||x||2β2 for all x ∈ BR(0),

J(x) > 1 for all x ∈ ∂BR(0) and J(0) > 0.

Since BR(0) = {x ∈ Rn : R2 − ||x||22 ≥ 0} and ∂BR(0) = {x ∈ Rn : R2 − ||x||22 ≥

0, ||x||22 −R2 ≥ 0} we have that by Putinar’s Positivstellesatz (Theorem C.5 given in

Appendix C) there exists si ∈
∑

SOS for i ∈ {1, ..., 5} such that

−∇J(x)Tf(x)− λ(1− J(x))||x||2β2 − s1(x)(R2− ||x||22) = s2(x), for all x ∈ Rn.

(7.75)

J(x)− 1− (s3(x)− s4(x))(R2 − ||x||22) = s5(x), for all x ∈ Rn. (7.76)

Let D := max{maxi=1,..,5{deg(si)}, deg(J)}. Then from Eqs. (7.75) and (7.76)

and since J(0) > 0 it follows that J is feasible to the SOS Problem (7.69) for any

d > D. Since, Pd is the optimal solution to the SOS Problem (7.69) it follows that

the objective function of the SOS Problem (7.69) evaluated at Pd is less than or

equal to the objective function evaluated at the feasible solution J for d > D. That

is by writing Pd and J with respect to the monomial vector, Pd(x) = cTdZd(x) and

J(x) = bTZdeg(J)(x), we have that∫
Λ

Pd(x)dx = cTd α ≤ bTγ =

∫
Λ

J(x)dx for all d > D, (7.77)
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where αi =
∫

Λ
Zd,i(x)dx, and γi =

∫
Λ
Zdeg(J),i(x)dx.

We now show Eq. (7.73). Using the fact Wλ,β(x) ≤ Pd(x) for all x ∈ Λ together

with Eqs. (7.74) and (7.77) we get that,∫
Λ

|Pd(x)−Wλ,β(x)|dx =

∫
Λ

Pd(x)dx−
∫

Λ

Wλ,β(x)dx

≤
∫

Λ

J(x)dx−
∫

Λ

Wλ,β(x)dx

≤ µ(Λ) sup
x∈Λ
{|J(x)−Wλ,β(x)|} < ε for all d > D.

Hence by Cor. A.1 (found in Appendix A) it follows that Eq. (7.72) holds.

7.8 Numerical Examples

We now present several numerical examples that demonstrate that by solving the

SOS problem, given in Eq. (7.69), we are able to approximate the region of attraction

of a nonlinear system. Note that for numerical implementation it is best to choose

λ > 0 as small as possible. This is because the Lipschitz constant (given in Eq. (7.19))

of Wλ,β (given in Eq. (7.10)) grows as λ > 0 increases. For these numerical examples,

we solve Opt. (7.69) using SOSTOOLS, see Prajna et al. (2002a), to reformulate

the problem as a Semi-Definite Programming (SDP) problem that is then solved by

Sedumi, see Sturm (1999).

Example 7.1. Consider the Van der Pol oscillator defined by the ODE:

ẋ1(t) = −x2(t) (7.78)

ẋ2(t) = x1(t)− x2(t)(1− x2
1(t)).

In Fig. 7.1 we have plotted our estimation of the region of attraction of the ODE (7.78).

Our estimation is given by the 1-sublevel set of the solution to the SOS optimization

problem given in Eq. (7.69) for d = 12, λ = 0.05, β = 2, R =
√

22 + 2.72 u 3.36,

Λ = [−2, 2]× [−2.7, 2.7], and f = [−x2, x1 + x2(x2
1)]T .
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Figure 7.1: Graph showing an estimation of the region of attraction of the Van
der Pol oscillator (Example 7.1) found by solving the SOS Problem (7.69). The
black line is the 1-sublevel set of a solution to the SOS Problem (7.69). The red
line is the boundary of the region of attraction found by simulating a reverse time
trajectory using Matlab’s ODE45 function. The dotted blue line is the integration
region, Λ = (−2, 2) × (−2.7, 2.7). The dotted green line is the computation region,
BR(0) where R = 3.36.

Figure 7.2: Graph showing an estimation of the region of attraction of servomecha-
nism with multiplicative feedback control (Example 7.2). The estimation of the region
of attraction is given by the transparent black sublevel set that is the 1-sublevel set of
a solution to the SOS Problem (7.69). The scattered points are randomly generated
initial conditions with associated trajectories (found using Matlab’s ODE45 function)
that tend towards the origin (blue and green points) or away from the origin (red
points).
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Example 7.2. Consider the third order servomechanism with multiplicative feedback

control found in Ku and Chen (1958) given by the following ODE:

T
d2y

dt2
+
dy

dt
+K2(1−K3y

2)
dy

dt
+K1y = 0, (7.79)

where T ∈ R is a time constant and K1, K2, K2 ∈ R are gain constants. We consider

the case T = K2 = 1 and K1 = K3 = 1. The ODE (7.79) can be represented in the

form ẋ(t) = f(x(t)) with

f(x) = [x2, x3, (1/T )(−x3 −K2(1−K3x
2
1)x2 −K1x1)]T . (7.80)

Through numerical experiments using Matlab’s ODE45 function it was found that the

ODE with vector field given in Eq. (7.80) appeared to have unbounded region of at-

traction. Therefore, for this system, Theorem 7.2 does not show that the sequence of

sublevel sets to the solution to the SOS problems given in Eq. (7.69) converges to the

region of attraction as d→∞. Nevertheless, in Fig. 7.2 we have plotted the 1-sublevel

set of the solution to the SOS optimization problem given in Eq. (7.69) for d = 10,

λ = 0.5, β = 2, R =
√

3, Λ = [−1, 1]3 and f given in Eq. (7.80). Fig. 7.2 indicates

that even for systems with unbounded regions of attraction, our proposed SOS algo-

rithm can provide arbitrarily good inner estimations of ROAf ∩ Λ, where Λ ⊂ Rn is

some compact set. Through Monte Carlo simulation the volume of ROAf ∩ Λ was

estimated to be 0.3372 whereas the volume of our ROA approximation was found to

be 0.2806, an error of 0.0566.

7.9 Conclusion

For a given locally exponentially stable dynamical system, described by an ODE,

we have proposed a family SOS optimization problems that yields a sequence of

sublevel sets that converge to the region of attraction of the ODE with respect to
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the volume metric. In order to facilitate this result we proposed a new converse

Lyapunov function that was shown to be globally Lipschitz continuous. We have

provided several numerical examples of practical interest showing how our proposed

family of SOS problems can provide arbitrarily good approximations of regions of

attraction. In future work we aim extend this work to systems with weaker forms of

stability and investigate systems with unbounded regions of attraction.
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Chapter 8

A CONVERSE SUM OF SQUARES LYAPUNOV FUNCTION FOR OUTER

APPROXIMATION OF MINIMAL ATTRACTOR SETS OF NONLINEAR

SYSTEMS

For those systems with bounded solutions, it is

found that nonperiodic solutions are ordinarily

unstable with respect to small modifications, so

that slightly differing initial states can evolve

into considerably different states.

Edward Lorenz

8.1 Background and Motivation

Many dynamical systems described by nonlinear ODEs are unstable. Their asso-

ciated solutions do not converge towards an equilibrium point, but rather converge

towards some invariant subset of the state space called an attractor set. For a given

ODE, in general, the existence, shape and structure of the attractor sets of the ODE

are unknown. In this chapter we propose a new method for computing attractor sets.

Similarly to Chapter 7, in this chapter we consider nonlinear Ordinary Differential

Equations (ODEs) of the form

ẋ(t) = f(x(t)), x(0) = x0. (8.1)

where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition. We

denote the solution map (which exists and is continuous on x ∈ X ⊂ Rn when f is

Lipschitz continuous and X is compact and invariant under f) of the ODE (8.1) by

φf : X × [0,∞)→ Rn where
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d

dt
φf (x, t) = f(φf (x, t)) for all x ∈ X and t ≥ 0,

φf (x, 0) = x for all x ∈ X.

An ODE is asymptotically stable about some equilibrium point, x0, if there exists

some neighborhood of the equilibrium, N (x0), such that limt→∞ φf (x, t) = x0 for

any x ∈ N (x0). Attractor sets generalize the notion of asymptotic stability to where

solutions tend towards a compact invariant subset of Rn (rather than being restricted

to tend towards a single equilibrium point). Specifically, a compact set A ⊂ Rn is

said to be an attractor set of the ODE (8.1) if for all x ∈ A there exists ε > 0 such

that limt→∞ infy∈A ||y−φf (z, t)||2 = 0 for all z ∈ {y ∈ Rn : ||x− y||2 < ε}, and x ∈ A

implies φf (x, t) ∈ A for all t ≥ 0. An attractor set is said to be minimal if there does

not exists any other attractor sets contained within it.

Attractor sets provide information about the long term behavior of dynamical

systems. The computation of attractor is used for design of secure private commu-

nications, see Cuomo et al. (1993); Zhao et al. (2018), the computation of Unstable

Periodic Orbits (UPOs), see Lakshmi et al. (2020), and risk quantification of financial

systems, see Gao et al. (2018). Furthermore, identification of minimal attractor sets

can be used to bound the domain of strange attractors and “non-determinism” in

chaos theory, see Lee (2016).

It is well known that the sublevel sets of Lyapunov functions yield attractor

sets, see Lin et al. (1996). A Lyapunov function of an ODE is any function that

is positive and decreases along the solution map of the ODE. In Li et al. (2005);

Yu and Liao (2005) quadratic Lyapunov functions were used to estimate bounds

for Lorenz attractor. In Goluskin (2020) attractor sets are indirectly approximated

by searching for Sum-of-Squares (SOS) Lyapunov functions that provide bounds for

sup(x,t)∈Ω×[0,∞) Φ(φf (x, t)), where Ω ⊂ Rn, Φ : Rn → R, and φf is the solution map
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to some ODE (8.1). In Jones and Peet (2019c) attractor sets approximated by using

SOS to search for Lyapunov functions outside some handpicked set D ⊂ Rn that

is known to contain the attractor set. In Schlosser and Korda (2020); Wang et al.

(2012b) an alternative SOS based method was proposed for attractor set approxima-

tion. Impressively, the method proposed in Schlosser and Korda (2020) was shown

to provide an arbitrarily close approximation of an attractor set with respect to the

Lebesgue measure. However, the methods in Schlosser and Korda (2020); Wang et al.

(2012b) do not yield Lyapunov functions and hence any approximation found cannot

be shown to also be an attractor set.

The problem of computing attractor sets is related to the problem of certifying the

asymptotic stability of equilibrium points of an ODE (8.1); since certifying A∗ = {0}

is an attractor set of an ODE (8.1) is equivalent to showing the asymptotic stability

of the ODE (8.1) about 0 ∈ Rn. The use of SOS Lyapunov functions to certify the

asymptotic stability of equilibrium points of an ODE (8.1) has been well treated in

the literature, see Zheng et al. (2018); Anderson and Papachristodoulou (2015); Cunis

et al. (2020); Valmorbida and Anderson (2017); Awrejcewicz et al. (2021); Jones and

Peet (2021a); Ahbe (2020).

SOS programming provides a computationally tractable method for searching for

SOS Lyapunov functions and hence computing attractor sets of ODEs. However, it

is currently unknown how conservative it is to restrict the search Lyapunov functions

to SOS polynomials. The goal of this chapter is then to: 1) Propose a Lyapunov

characterization of attractor sets that is well suited to the problem of approximating

the minimal attractor. 2) Show that for a given ODE with, sufficiently smooth vector

field, there exists a sequence of SOS Lyapunov functions that yield optimal outer

set approximations of attractor sets of the ODE. Note that, an optimal outer set

approximation of a set A∗ ⊂ Rn is any set A ⊂ Rn such that A∗ ⊆ A and D(A∗, A)

203



is minimal, where D is some set metric.

Specifically, given an ODE (8.1), we propose a new Lyapunov characterization of

attractor sets. We show that if V satisfies,

∇V (x)Tf(x) ≤ −(V (x)− 1) for all x ∈ Ω, (8.2)

{x ∈ Ω : V (x) ≤ 1} ⊆ Ω◦, (8.3)

{x ∈ Ω : V (x) ≤ 1} 6= ∅, (8.4)

where Ω ⊂ Rn is some compact set and Ω◦ is the interior of Ω, then the 1-sublevel set

of V is an attractor set of the ODE (8.1). To approximate the minimal attractor set

of an ODE we then propose a sequence of d-degree optimization problem, each solved

by a d-degree Sum-of-Square (SOS) polynomial function that satisfies Eqs. (8.2), (8.3)

and (8.4), and has minimal 1-sublevel set. We show in Corollary 8.3 that the sequence

of d-degree solutions to the optimization problem yield a sequence of 1-sublevel sets

that each contain the minimal attractor of the ODE (8.1), are themselves attractor

sets, and converge to the minimal attractor of the ODE (8.1) with respect to the

volume metric.

Our proposed optimization problem for optimal outer set approximations of min-

imal attractors is solved by finding the SOS polynomial Lyapunov function with

minimal 1-sublevel set volume. Unfortunately, there is no known closed expression

for the volume of a sublevel set of a polynomial, see Lasserre (2019); making our

optimization problem hard to solve. For SOS polynomials, V = Zd(x)TPZd(x) where

P > 0, rather than minimizing the sublevel set volume of V directly there exist sev-

eral heuristics based on maximizing the eigenvalues of P . For instance in Dabbene

et al. (2017) an optimization problem was proposed with Trace(P ) objective func-

tion. Alternatively, log det(P ) functions have also been used as a metric for volume

of {x ∈ Rn : Zd(x)TPZd(x) ≤ 1}, first being proposed in Magnani et al. (2005) and
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subsequently being used in the works of Ahmadi et al. (2017); Jones and Peet (2019c).

In this chapter we also take a similar determinant maximizing approach and maximize

(det(P ))
1
n which is equivalent to maximizing log det(P ) but can be implemented on

a larger array of SDP solvers, see Lofberg (2004).

In order to establish the convergence of our proposed method for optimal outer

approximations of minimal attractor sets we propose a new converse Lyapunov theo-

rem. Specifically, given an attractor set we show that there exists a sequence of SOS

Lyapunov functions each satisfying Eqs. (8.2), (8.3), and (8.4), and whose 1-sublevel

sets converge to the attractor set with respect to the volume metric.

Other important converse Lyapunov results concerning smooth Lyapunov func-

tions include Lin et al. (1996); Teel and Praly (2000); where it is shown that asymp-

totically stable nonlinear systems with sufficiently smooth vector fields admit smooth

(but not necessarily SOS) Lyapunov functions that can certify the stability of the

systems. In terms of SOS converse Lyapunov theory we mention Peet and Pa-

pachristodoulou (2010) that showed that if the system’s solutions converge locally to

an equilibrium point at an exponential rate then there always exists a SOS Lyapunov

function that can certify this local exponential stability. However, for asymptotically

stable systems whose solutions converge to an equilibrium point at a sub-exponential

rate there may not exist SOS Lyapunov functions that can certify this stability, as

shown by the counterexample presented in Ahmadi and El Khadir (2018).

Before proceeding, we note that there is no contradiction with the counterexample

found in Ahmadi and El Khadir (2018) and our proposed converse Lyapunov theo-

rem (stated in Theorem 8.2). Although SOS Lyapunov functions cannot be used to

certify the stability of equilibrium points in general (as proven by the counterexam-

ple from Ahmadi and El Khadir (2018)), Theorem 8.2 shows that SOS Lyapunov

functions can be used to certify that arbitrarily small neighborhoods of equilibrium
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points are attractor sets. Hence SOS Lyapunov functions can certify the “stability”

of arbitrarily small neighborhoods of equilibrium points.

The rest of the chapter is organized as follows. Attractor sets are defined in terms

of solution maps of ODEs in Section 8.2. A Lyapunov type theorem is proposed in

Section 8.3 that provides sufficient conditions for a set to be an attractor set. In

Section 8.4, given an ODE, it is shown that there exists a sequence of SOS Lyapunov

functions that yield a sequence of sublevel sets that converge to the minimal attractor

set of the ODE. An SOS based algorithm for minimal attractor set approximation

is then proposed in Section 8.5 and numerical examples are shown in Section 8.6.

Finally our conclusion is given in Section 8.7.

8.2 Attractor Sets are Defined Using Solution Maps of Nonlinear ODEs

Consider a nonlinear Ordinary Differential Equation (ODE) of the form

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn, t ∈ [0,∞), (8.5)

where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition.

We now recall from Chapter 7 the definition of a solution map of an ODE. Given

X ⊂ Rn, I ⊂ [0,∞), and an ODE (8.5) we say any function φf : X × I → Rn

satisfying

∂φf (x, t)

∂t
= f(φf (x, t)) for (x, t) ∈ X × I, (8.6)

φf (x, 0) = x for x ∈ X,

φf (φf (x, t), s) = φf (x, t+ s) for x ∈ X t, s ∈ I with t+ s ∈ I,

is a solution map of the ODE (8.5) over X × I. For simplicity throughout this

chapter we will assume there exists a unique solution map to the ODE (8.5) over

all (x, t) ∈ Rn × [0,∞). Note that the uniqueness and existence of a solution map
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sufficient for the purposes of this chapter, such as for initial conditions inside some

invariant set (like the Basin of Attraction of an attractor set given in Eq. (8.9)) and for

all t ≥ 0, can be shown to hold under minor smoothness assumption on f , see Khalil

(1996).

An important property of solution maps, we next recall in Lem. 8.1, is that they

inherit the smoothness of their associated vector field. This smoothness property of

solution maps is used in the proof of Prop. 8.1.

Lemma 8.1 (Smoothness of the solution map. Page 149 in Hirsch et al. (2004)).

Consider f ∈ C1(Rn,Rn). Then if φf is a solution map (satisfying Eq. (8.6)) then

φf ∈ C1(Rn × R,R).

8.2.1 Attractor Sets of Nonlinear ODEs

A compact attractor set of the ODE (8.5) is defined as follows.

Definition 8.1. We say that A ⊂ Rn is a compact attractor set of the ODE (8.5),

defined by f : Rn → Rn, if

1. A is compact and nonempty (A 6= ∅).

2. A is a forward invariant set. That is if φf is a solution map of the ODE (8.5)

we have that,

φf (x, t) ∈ A for all x ∈ A and t ≥ 0. (8.7)

3. For each element of A there is a neighborhood of initial conditions for which

the solution map asymptotically tends towards A. That is, for all x ∈ A there

exists δ > 0 such that for any ε > 0 there exists T ≥ 0 for which

D(φf (y, t), A) < ε for all y ∈ Bδ(x) and t ≥ T. (8.8)
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Furthermore, we say A is a minimal attractor set if there does not exist any other

attractor set, B, such that B ⊂ A, that is there exists x ∈ A such that x /∈ B (B is

strictly contained in A).

For simplicity we will often refer to compact attractor sets as attractor sets (leaving

out the word compact).

Note, in the case where A ⊂ Rn is a single point, that is A = {x0}, the condition

given in Eq. (8.8) reduces to the classical condition of asymptotic stability of the

equilibrium point x0 ∈ Rn. That is, the condition given in Eq. (8.8) reduces to

requiring the existence of δ > 0 such that limt→∞ ||φf (x, t) − x0||2 = 0 for all x ∈

Bδ(x0).

Each attractor set of the ODE (8.5) has an associated set of initial conditions

for which solution maps initialized at these initial conditions converge towards the

attractor set as t → ∞. We call this set the basin of attraction of the attractor set

and define it next.

Definition 8.2. Given an attractor set A ⊂ Rn of the ODE (8.5) (defined by f :

Rn → Rn) we define the basin of attraction of A as

BOAf (A) := {x ∈ Rn : lim
t→∞

D(A, φf (x, t)) = 0}. (8.9)

In the special case when the minimal attractor set is a single point the attractor set

is commonly referred to as an equilibrium point and its associated basin of attraction

is referred to as the region of attraction. However, although this special case is

important for stability analysis, in general attractor sets can take more complicated

structures such as limit cycles and in dimensions three and above (chaotic) ”strange

attractors”.
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8.3 A Lyapunov Approach to Finding and Certifying Minimal Attractor Sets

In this section, we propose a new Lyapunov characterization of attractor sets.

To explain the motivation for this new characterization, consider a typical Lyapunov

characterization of attractor sets, as given in Lin et al. (1996).

Theorem 8.1 (Lin et al. (1996)). Consider f ∈ LocLip(Rn,Rn). Let A ⊂ Rn

be a nonempty, compact and forward invariant set. Then A is an attractor set of

the ODE (8.5) defined by f with BOAf (A) = Rn if and only if there exists V ∈

C∞(Rn, [0,∞)) such that

κ1(D(A, x)) ≤ V (x) ≤ κ2(D(A, x)) for all x ∈ Rn, (8.10)

∇V (x)Tf(x) ≤ −κ3(D(A, x)) for all x ∈ Rn/A, (8.11)

where κ1 and κ2 are class K∞ functions (recalling the definition of class K∞ from

Section 2) and κ3 is a continuous positive definite function.

Theorem 8.1 defines a method for certifying that a set A ⊂ Rn is an attractor

set by searching for a Lyapunov function valid for A – an optimization problem with

decision variable V . However, this formulation is not well-suited to the problem of

finding minimal attractor sets - a bilinear problem wherein both the attractor set A

and Lyapunov function V are (unknown) decision variables. To resolve this problem,

we propose Prop. 8.1, wherein the proposed attractor set is defined as the 1-sublevel

set of V and hence there is only a single decision variable. In Section 8.5, we will

show that this formulation allows us to combine the problems of certification and

volume minimization of the attractor set using SOS programming and determinant

maximization.

Proposition 8.1. Consider f ∈ C1(Rn,Rn). Suppose there exists V ∈ C1(Rn, [0,∞))
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such that

∇V (x)Tf(x) ≤ −(V (x)− 1) for all x ∈ Ω, (8.12)

{x ∈ Ω : V (x) ≤ 1} ⊆ Ω◦, (8.13)

{x ∈ Ω : V (x) ≤ 1} 6= ∅, (8.14)

where Ω ⊂ Rn is a compact set. Then {x ∈ Ω : V (x) ≤ 1} is an attractor set

(Defn. 8.1) to the ODE (8.5) defined by f .

Note that the Lyapunov function V in Prop. 8.1 is not required to be positive

semidefinite. However, later in Section 8.5 we will include a positivity constraint on

V – allowing us to minimize the volume of the 1-sublevel set.

Proof of Proposition 8.1. Throughout this proof we will use the following notation:

Sa := {x ∈ Ω : V (x) ≤ 1 + a} where a ≥ 0.

In order to prove S0 is an attractor set we will split the remainder of the proof

into the following parts showing:

1. S0 is a compact set.

2. If Sa ⊆ Ω◦, where a ≥ 0, then Sa is an invariant set.

3. There exists a > 0 such that Sa ⊆ Ω◦.

4. For any x ∈ S0 and for all ε > 0 there exists δ > 0 and T ≥ 0 such that

D(φf (y, T ), S0) < ε for all t ≥ T and y ∈ Bδ(x).

5. S0 is an attractor set.

Proof S0 is a compact set: Since V is continuous it follows that S0 = {x ∈ Ω :

V (x) ≤ 1} is closed by Lemma C.3. Moreover, S0 is bounded since S0 ⊆ Ω◦ and Ω is

bounded. Since S0 ⊂ Rn is closed and bounded it follows that S0 is a compact set.
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Proof Sa ⊂ Ω◦ is an invariant set: We now prove that if Sa ⊆ Ω◦, where a ≥ 0,

then Sa is an invariant set. To see this, suppose for contradiction that there exists

y ∈ Sa and T ≥ 0 such that φf (y, T ) /∈ Sa. That is V (φf (y, 0)) ≤ 1 + a and

V (φf (y, T )) > 1 + a. Now, since V (φf (y, ·)) is continuous (since V is continuous, φf

is continuous by Lem. 8.1, and the composition of continuous functions is continuous)

it follows by the intermediate value theorem that there exists 0 ≤ s1 < s2 ≤ T

such that V (φf (y, s1)) = 1 + a and V (φf (y, t)) > 1 + a for all t ∈ (s1, s2]. Thus

φf (y, s1) ∈ Sa ⊆ Ω◦ but φf (y, t) /∈ Sa for all t ∈ (s1, s2]. Since Ω◦ is open and

φf (y, s1) ∈ Sa ⊆ Ω◦ there exists ε > 0 such that Bε(φf (y, s1)) ⊂ Ω◦. Again, using the

continuity of V (φf (y, ·)) there exists δ > 0 such that φf (y, s1+s) ∈ Bε(φf (y, s1)) ⊆ Ω◦

for all s ∈ [0, δ]. Therefore, V (φf (y, t)) > 1 + a and φf (y, t) ∈ Ω◦ for all t ∈ (s1, s3],

where s3 := min{s2, s1+δ}. Applying the mean value theorem there exists s1 < c < s3

such that

d

dt
V (φf (y, c)) =

V (φf (y, s3))− V (φf (y, s1))

s3 − s1

>
1 + a− 1− a

s3 − s1

= 0. (8.15)

On the other hand since φf (y, t) ∈ Ω◦ for all t ∈ (s1, s3] it follows that φf (y, c) ∈ Ω◦

and therefore Eq. (8.12) can be applied to give

d

dt
V (φf (y, c)) ≤ 1− V (φf (y, c)) < 1− 1− a = −a, (8.16)

using the fact that c ∈ (s1, s3) and V (φf (y, t)) > 1 + a for all t ∈ (s1, s3].

Now Eqs. (8.15) and (8.16) contradict each other proving Sa is invariant.

Proof there exists a > 0 such that Sa ⊆ Ω◦: Let α := infz∈∂Ω{V (z)− 1}. We

first claim that α > 0. Since Ω is compact it follows that ∂Ω is compact. Then, by

the extreme value theorem (using the fact V is continuous) there exists z∗ ∈ ∂Ω such

that α = V (z∗)− 1. Since S0 ⊆ Ω◦ it follows z∗ /∈ S0 implying V (z∗) > 1. Therefore,

α = V (z∗)− 1 > 1− 1 = 0.
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Let a ∈ (0, α). We next claim Sa ⊆ Ω◦. To see this suppose for contradiction that

Sa * Ω◦. Then there exists y ∈ Sa and y ∈ ∂Ω. Hence V (y) ≤ a + 1 < α + 1 (since

y ∈ Sa), but α + 1 ≤ V (z) for all z ∈ ∂Ω (since y ∈ ∂Ω and α := infz∈∂Ω{V (z)})

implying V (y) ≥ α + 1 providing a contradiction.

Proof S0 has an attracting neighborhood: We now prove that for any x ∈ S0

and for all ε > 0 there exists δ > 0 and T ≥ 0 such that D(φf (y, T ), S0) < ε for all

t ≥ T and y ∈ Bδ(x); that is S0 satisfies Eq. (8.8).

First note that, by Part 2 of the proof we know that there exists a > 0 such that

Sa ⊆ Ω◦ and by Part 1 of the proof we know that Sa is an invariant set.

Now, let x ∈ S0 and ε > 0. Since V is continuous there exists δ > 0 such that for

all y ∈ Bδ(x) we have |V (y)− V (x)| < a
2
, implying V (y) < a

2
+ V (x) ≤ a

2
+ 1 < a+ 1

for all y ∈ Bδ(x). Therefore, for all y ∈ Bδ(x) we have y ∈ Sa ⊆ Ω◦. Since, Sa ⊂ Ω◦ is

invariant it follows that for any y ∈ Bδ(x) we have φf (y, t) ∈ Ω◦ for all t ≥ 0. Thus,

by Eq. (8.12) we have that

d

dt
V (φf (y, t)) ≤ −(V (φf (y, t))− 1) for all (y, t) ∈ Bδ(x)× [0,∞).

Now using Gronwall’s inequality (Lem. C.2) and the fact y ∈ Sa we have that

V (φf (y, t))− 1 ≤ e−t(V (y)− 1) ≤ ae−t for all (y, t) ∈ Bδ(x)× [0,∞).

Therefore, it now follows for any η > 0 that

φf (y, t) ∈ Sη for all y ∈ Bδ(x) and t ≥ ln

(
a

η

)
. (8.17)

We now construct η > 0 such that Sη ⊆ Bε(S0) (recalling the notation Bε(S0) is

defined in Sec 2) implying that if φf (y, t) ∈ Sη for all t ≥ T then D(S0, φf (y, t)) < ε

for all t ≥ T ; therefore proving S0 has an attracting neighborhood ie S0 satisfies

Eq. (8.8).
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First note that if Ω/Bε(S0) = ∅ then Ω ⊆ Bε(S0) and we can trivially take

η = a. Then by Eq. (8.17) we have that φf (y, t) ∈ Sa ⊆ Ω◦ ⊆ Bε(S0) for all

y ∈ Bδ(x) and t ≥ 0. Thus, D(φf (y, t), S0) < ε for all y ∈ Bδ(x) and t ≥ 0. Hence,

Eq. (8.8) is satisfied.

Let us now consider the case Ω/Bε(S0) 6= ∅. Let η ∈ (0, b) where

b = min{infz∈Ω/Bε(S0) V (z) − 1, a
2
}, where infz∈Ω/Bε(S0) V (z) exists since Ω/Bε(S0) is

compact and V is continuous. Note that b > 0 since a > 0 and infz∈Ω/Bε(S0) V (z) −

1 > 0 (because Ω/Bε(S0) is compact so by the extreme value theorem there exists

z∗ ∈ Ω/Bε(S0) such that V (z∗) = infz∈Ω/Bε(S0) V (z) and since z∗ /∈ S0 it follows that

V (z∗) > 1).

We now claim that Sη ⊆ Bε(S0). First we note that Sη ⊆ Ω◦ since Sη ⊂ Sa

and Sa ⊂ Ω◦. Now suppose for contradiction that Sη * Bε(S0). Then there exists

w ∈ Sη ⊆ Ω such that w /∈ Bε(S0) implying w ∈ Ω/Bε(S0). Now, V (w) ≤ η + 1 <

infz∈Ω/Bε(S0){V (z)} ≤ V (w) implying 0 < 0, providing a contradiction.

Proof S0 is an attractor set: Now since we have shown S0 is a compact set,

is non-empty (Eq. (8.14)), and satisfies Eqs. (8.7) and (8.8) it follows that S0 is an

attractor set.

If V and Ω satisfy Eqs. (8.12), (8.13), and (8.14) (as in Prop. 8.1) and {x ∈ Ω :

V (x) ≤ 1 + a} ⊆ Ω◦ for some a ≥ 0, then we next show that {x ∈ Ω : V (x) ≤ 1 + a}

is a subset of the basin of attraction of the attractor set {x ∈ Ω : V (x) ≤ 1}.

Corollary 8.1. Consider f ∈ LocLip(Rn,Rn). Suppose there exists V ∈ C1(Rn, [0,∞))

and a compact set Ω ⊂ Rn satisfying Eqs. (8.12), (8.13), and (8.14) (as in Prop. 8.1).

Then, for any a > 0 such that {x ∈ Ω : V (x) ≤ 1 + a} ⊆ Ω◦ it follows that

{x ∈ Ω : V (x) ≤ 1 + a} ⊆ BOAf ({x ∈ Ω : V (x) ≤ 1}).

Proof. Follows by a similar argument to the proof of Prop. 8.1

213



In Prop. 8.1 we have shown that if a function V satisfies Eqs. (8.12), (8.13)

and (8.14) then the 1-sublevel set of V is an attractor set of the ODE defined by

f . In the next section we now prove that these Lyapunov characterizations of attrac-

tor sets are not conservative, even when V is restricted to be an SOS polynomial.

8.4 Converse Lyapunov Functions for Attractor Set Characterization

In the previous section, we have shown that if there exists a function V which

satisfies Eqs. (8.12), (8.13) and (8.14), then the set {x ∈ Ω : V (x) ≤ 1} is an

attractor set of the ODE defined by f ∈ LocLip(Rn,Rn). In this section, we show

that for any attractor set A ⊂ Rn and any ε > 0, there exists an SOS function V

which satisfies Eq. (8.12) and for which A ⊂ {x ∈ Ω : V (x) ≤ 1} and DV (A, {x ∈ Ω :

V (x) ≤ 1}) ≤ ε. This implies that the Lyapunov characterization of attractor sets in

Section 8.3 is not conservative and furthermore, these conditions remain tight even

when the Lyapunov functions are constrained to be SOS. In Section 8.5, we will use

this result to propose a sequence of SOS programming problems whose limit yields

an attractor set which is arbitrarily close to the minimal attractor set.

To begin, we quote a result on existence of smooth converse Lyapunov function

from Teel and Praly (2000), which was based on a Yoshizawa type Lyapunov function,

found in Yoshizawa (1966), of form

W (x) := sup
t≥0
{etκ(D(A, φf (x, t)))},

where κ ∈ K∞.

Corollary 8.2 (Cor. 2 in Teel and Praly (2000)). Consider f ∈ LocLip(Rn,Rn).

The set A ⊂ Rn is an attractor set to the ODE (8.5) if and only if there exists

V ∈ C∞(BOAf (A),R) such that

1. V (x) ≥ 0 for all x ∈ BOAf (A) and V (x) = 0 if and only if x ∈ A.
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2. ∇V (x)Tf(x) ≤ −V (x) for all x ∈ BOAf (A).

In Thm. 8.2 we consider polynomial approximations of
√
V (x) + γ, for some γ > 0

and with V as defined in Cor. 8.2, to show that for any given attractor set A ⊂ Rn

there exists a sequence of Sum-of-Squares polynomials, each satisfying Eq. (8.12),

each of whose 1-sublevel sets contain A, and whose 1-sublevel sets converge to A

(with respect to the volume metric).

Theorem 8.2. For f ∈ LocLip(Rn,Rn), suppose A ⊂ Rn is an attractor set of the

ODE (8.5) defined by f and let Ω be any compact set such that A ⊆ Ω◦ and Ω ⊂

BOAf (A). Then there exists α > 0, N ∈ N, and a sequence, {Pd}d∈N ⊂
∑

SOS(Rn,R)

with Pd ∈
∑d

SOS(Rn,R) for all d ∈ N, such that

1. ∇Pd(x)Tf(x) < −(Pd(x)− 1) for all x ∈ Ω and d ≥ N .

2. Pd(x) > 1 + α for all x ∈ ∂Ω and d ≥ N .

3. A ⊆ {x ∈ Ω : Pd(x) ≤ 1} for all d ≥ N .

4. limd→∞DV (A, {x ∈ Ω : Pd(x) ≤ 1}) = 0 (recalling DV denotes the volume

metric defined in Appendix A).

Proof. Let us suppose A ⊂ Rn is an attractor set to the ODE (8.5). By Cor. 8.2 there

exists W ∈ C∞(BOAf (A),R) such that

1. W (x) ≥ 0 for all x ∈ BOAf (A) and W (x) = 0 if and only if x ∈ A.

2. ∇W (x)Tf(x) ≤ −W (x) for all x ∈ BOAf (A).

For γ > 0 let J(x) := W (x) + γ. It trivially follows that since A ⊆ Ω ⊂ BOAf (A)

we have

∇J(x)Tf(x) ≤ −(J(x)− γ) for all x ∈ BOAf (A). (8.18)

A = {x ∈ Ω : J(x) ≤ γ}. (8.19)
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Now, to prove Theorem 8.2 we first show that there exists γ > 0, α > 0, N ∈ N, and

{Gd}d∈N ⊂
∑

SOS such that

∇Gd(x)Tf(x) < −(Gd(x)− γ) for all x ∈ Ω and d > N. (8.20)

Gd(x) ≤ J(x) for all x ∈ Ω and d ≥ N. (8.21)

Gd(x) ≥ γ(1 + α) for all x ∈ ∂Ω and d ≥ N (8.22)

lim
d→∞
||Gd − J ||L1(Ω,R) = 0. (8.23)

To show that there exists {Gd}d∈N ⊂
∑

SOS that satisfies Eqs. (8.20), (8.21), (8.22)

and (8.23) we take the square route of J and approximate this by a polynomial. We

next argue that the square route of J is sufficiently smooth for polynomial approxi-

mation.

Since W (x) ≥ 0 it follows that J(x) ≥ γ > 0. Therefore H(x) := +
√
J(x) is

differentiable, that is H ∈ C1(Rn,R), since the function g(x) :=
√
x is differentiable

over (0,∞) and J maps onto (γ,∞) ⊂ (0,∞). Using the fact H is differentiable and

applying the chain rule we find that

||∇H(x)||2 = ||∇
√
W (x) + γ||2 =

1

2
√
W (x) + γ

||∇W (x)||2

≤ 1

2
√
γ
||∇W (x)||2 ≤

C

2
√
γ

for all x ∈ Ω, (8.24)

where C := supx∈Ω ||∇W (x)||2. Note that the first inequality in Eq. (8.24) follows

since W (x) ≥ 0 for all x ∈ Ω implies 1√
W (x)+γ

≤ 1√
γ

for all x ∈ Ω.

Moreover, applying the chain rule, the inequality in Eq. (8.18), and the fact that

1

2
√
J(x)
≥ 0 for all x ∈ Ω we find that,

∇H(x)Tf(x) = ∇
√
J(x)

T
f(x) =

1

2
√
J(x)

∇J(x)Tf(x)

≤ −1

2
√
J(x)

(J(x)− γ) for all x ∈ Ω.
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Then it follows that H satisfies

2H(x)∇H(x)Tf(x) ≤ −(H2(x)− γ) for all x ∈ Ω. (8.25)

To show that there exists {Gd}d∈N ⊂
∑

SOS that satisfies Eq. (8.23) we must show

that that there exists {Gd}d∈N ⊂
∑

SOS such that for any ε > 0 there exists N ∈ N

such that

||Gd − J ||L1(Ω,R) < ε for all d ≥ N. (8.26)

In order to do this we first approximate H by a polynomial. Let,

γ >
M1C

2
> 0, (8.27)

where M1 := supx∈Ω ||f(x)||2 and recalling C := supx∈Ω ||∇W (x)||2. Note that γ from

Eq. (8.27) is a constant that only depends on the problems data (f and Ω).

Also let,

ε > 0, (8.28)

0 < α <
1

γ
min
x∈∂Ω

W (x) (8.29)

0 < θ < min

{
ε, (µ(Ω) + 1)(min

x∈∂Ω
W (x)− γα)

}
(8.30)

0 < δ < min

{ √
γ −M1M3

M1M2 +M1M3 +M2

,

√
γ

M2

}
, (8.31)

0 < σ < min

{
2(
√
γ − (M1M2 +M1M3 +M2)δ −M1M3)

(2M1 + 1)δ2 + 2(1 +M1)δ + 1
, (8.32)

2(
√
γ−M2δ)

(δ + 1)2
,

√
θ√

2(µ(Ω)+1)(δ+1)
,

θ

4M2(δ+1)(µ(Ω)+1)

}
,

recalling M1 := supx∈Ω ||f(x)||2 ≥ 0 and where M2 := supx∈Ω |H(x)| ≥ 0, and M3 :=

supx∈Ω ||∇H(x)||2 ≥ 0. Note that α > 0 since γ > 0 and minδ∈∂ΩW (x) > 0 (since

A ⊆ Ω◦ implies A∩∂Ω = ∅ and W (x) = 0 iff x ∈ A). Also note that θ > 0 since ε > 0

and minx∈∂ΩW (x)−γα by Eq. (8.29). Moreover, δ > 0 since γ > M1C
2

(by Eq. (8.27))

and M3 ≤ C
2
√
γ

(by Eq. (8.24)) implying that
√
γ −M1M3 > 0. Furthermore, σ > 0
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since δ <
√
γ−M1M3

M1M2+M1M3+M2
implying 2(

√
γ− (M1M2 +M1M3 +M2)δ−M1M3) > 0 and

δ <
√
γ

M2
implying 2(

√
γ −M2δ) > 0.

Now, by Theorem C.2 there exists polynomials {Rd}d∈N ⊂ P(Rn,R) and N ∈ N

such that

|H(x)−Rd(x)| < δσ for all d ≥ N. (8.33)

||∇H(x)−∇Rd(x)||2 < δσ for all d ≥ N. (8.34)

Since Rd ∈ P(Rn,R) for all d ∈ N it follows that Gd(x) := (Rd(x) − σ)2 is a

SOS polynomial, that is Gd ∈
∑

SOS for all d ∈ N. We first show that Gd satisfies

Eq. (8.20). Recalling γ > M1C
2

(by Eq. (8.27)), M1 := supx∈Ω ||f(x)||2 and C :=

supx∈Ω ||∇W (x)||2, it follows that
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∇Gd(x)Tf(x) + (Gd(x)− γ)

= (∇(Rd(x)− σ)2)Tf(x) + ((Rd(x)− σ)2 − γ)

= 2(Rd(x)− σ)∇Rd(x)Tf(x) + (R2
d(x)− γ)− 2σRd(x) + σ2

≤ 2Rd(x)∇Rd(x)Tf(x)− 2H(x)∇H(x)Tf(x) + (R2
d(x)−H2(x))

− 2σRd(x) + σ2 − 2σ∇Rd(x)Tf(x)

= 2(Rd(x)−H(x))∇Rd(x)Tf(x) + 2H(x)∇(Rd −H)(x)Tf(x)

+ (Rd(x)−H(x))(Rd(x) +H(x)) + 2σ(H(x)−Rd(x))

− 2σ∇(Rd −H)(x)Tf(x)− 2σ∇H(x)Tf(x)

− 2σH(x) + σ2

≤ 2|Rd(x)−H(x)|||∇Rd(x)||2||f(x)||2

+ 2H(x)||∇Rd(x)−∇H(x)||2||f(x)||2

+ |Rd(x)−H(x)|(|Rd(x)|+H(x)) + 2σ|H(x)−Rd(x)|

+ 2σ||∇(Rd −H)(x)||2||f(x)||2 + 2σ||∇H(x)||2||f(x)||2

− 2σ
√
γ + σ2

≤ 2δσM1(||∇(Rd −H)(x)||2 + ||∇H(x)||2) + 2M1M2δσ

+ δσ(|Rd(x)−H(x)|+H(x) +M2) + 2δσ2 + 2M1δσ
2

+ 2M1M3σ − 2σ
√
γ + σ2

≤ 2M1δ
2σ2 + 2M1M3δσ + 2M1M2δσ + δ2σ2 + 2M2δσ

+ 2δσ2 + 2M1δσ
2 + 2M1M3σ − 2

√
γσ + σ2

= σ

(
((2M1 + 1)δ2 + 2(1 +M1)δ + 1)σ

+ 2((M1M2 +M1M3 +M2)δ +M1M3 −
√
γ)

)
< 0 for all x ∈ Ω and d ≥ N. (8.35)
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Where all the equalities in Eq. (8.35) follow from rearranging terms or adding and

subtracting terms. The first inequality in Eq. (8.35) follows by applying the inequality

in Eq. (8.25). The second inequality in Eq. (8.35) follows by the triangle inequality

and the Cauchy Swarz in inequality. The third and fourth inequalities in Eq. (8.35)

follows by Eqs. (8.33) and (8.34). Finally, the last inequality (the fifth inequality) in

Eq. (8.35) follows by Eq. (8.32).

We now show Gd satisfies Eq. (8.21).

Gd(x)− J(x) = (Rd(x)− σ)2 −H(x)2

= Rd(x)2 − 2σRd(x) + σ2 −H(x)2

= (Rd(x)−H(x))(Rd(x) +H(x)) + 2σ(H(x)−Rd(x))− 2σH(x) + σ2

≤ δσ(δσ + 2M2) + 2δσ2 − 2σ
√
γ + σ2

= σ

(
(δ2 + 2δ + 1)σ + 2M2δ − 2

√
γ

)
(8.36)

< 0 for all x ∈ Ω and d ≥ N.

Where the first inequality in Eq. (8.36) follows using Eq. (8.33) and the fact H(x) ≥
√
γ for all x ∈ Ω. The second inequality in Eq. (8.36) follows by Eq. (8.32) (σ <

2
√
γ−2M2δ

(δ+1)2 ).
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We now show Gd satisfies Eq. (8.22).

J(x)−Gd(x) = J(x)− (Rd(x)− σ)2

= H(x)2 −Rd(x)2 + 2σRd(x)− σ2

= (H(x)−Rd(x))(H(x) +Rd(x)) + 2σ(Rd(x)−H(x)) + 2σH(x)− σ2

≤ δσ(2M2 + δσ) + 2δσ2 + 2σM2 − σ2

= (δ2 + 2δ − 1)σ2 + 2M2(δ + 1)σ

≤ (δ2 + 2δ + 1)σ2 + 2M2(δ + 1)σ

<
θ

µ(Ω) + 1
for all x ∈ Ω and d ≥ N. (8.37)

Where the first inequality in Eq. (8.37) follows using Eq. (8.33). The second inequality

in Eq. (8.37) follows by σ > 0 and −1 < 1. The third inequality in Eq. (8.37) follows

by Eq. (8.32) (σ <
√
θ√

2(µ(Ω)+1)(δ+1)
and σ < θ

4M2(δ+1)(µ(Ω)+1)
). Now by rearranging

Eq. (8.37) and using the fact that J(x) := W (x) + γ we have that,

Gd(x) > J(x)− θ

µ(Ω) + 1
(8.38)

= W (x) + γ − θ

µ(Ω) + 1

= γ +
(µ(Ω) + 1)(minx∈∂Ω W (x))− θ

µ(Ω) + 1

> γ(1 + α) for all x ∈ ∂Ω and d ≥ N.

Where the first inequality in Eq. (8.38) follows by Eq. (8.37) and the second inequality

follows by Eq. (8.30). Hence Eq. (8.38) shows Eq. (8.22) holds.

We now show Gd satisfies Eq. (8.23) by showing Gd satisfies Eq. (8.26). By

Eqs. (8.36) and (8.37) and the fact that θ < ε (Eq. (8.30)), it follows that

|Gd(x)− J(x)| < ε

µ(Ω) + 1
for all x ∈ Ω and d ≥ N, (8.39)
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and thus

||Gd − J ||L1(Ω,R) ≤ sup
x∈Ω
|Gd(x)− J(x)|µ(Ω) < ε and d ≥ N.

Therefore Eq. (8.23) holds.

Now, set Pd(x) := Gd(x)
γ

. Recall that γ > 0 from Eq. (8.27) is a constant that only

depends on the problems data (f and Ω) and not d ∈ N. Therefore, limd→∞ Pd =

1
γ

limd→∞Gd. Moreover, it follows that {Pd}d∈N ⊂
∑

SOS since {Gd}d∈N ⊂
∑

SOS

and γ > 0 (by Eq. (8.27)). Furthermore, it follows by Eqs. (8.20), (8.21), (8.22),

and (8.23) that

∇Pd(x)Tf(x) < −(Pd(x)− 1) for all x ∈ Ω and d ≥ N, (8.40)

Pd(x) ≤ J̃(x) for all x ∈ Ω and d ≥ N, (8.41)

Pd(x) > 1 + α for all x ∈ ∂Ω and d ≥ N (8.42)

lim
d→∞
||Pd − J̃ ||L1(Ω,R) = 0, (8.43)

where J̃(x) = J(x)
γ

.

We now argue that Theorem 8.2 is proven. Eq. (8.19) implies that A = {x ∈ Ω :

J̃(x) ≤ 1}. Then Eq. (8.41) implies that A ⊆ {x ∈ Ω : Pd(x) ≤ 1} for all d ≥ N .

Moreover, Eqs. (8.41) and (8.43) together with Theorem A.1 (found in Appendix A)

imply that limd→∞DV ({x ∈ Ω : J̃(x) ≤ 1}, {x ∈ Ω : Pd(x) ≤ 1}) = 0, implying

limd→∞DV (A, {x ∈ Ω : Pd(x) ≤ 1}) = 0 (since A = {x ∈ Ω : J̃(x) ≤ 1}).

Remark 8.1. Theorem 8.2 shows that for any attractor set, A, there exists an SOS

polynomial, P , that satisfies the Lyapunov conditions (Eqs. (8.12), (8.13) and (8.14))

of Prop. 8.1 that has a 1-sublevel set arbitrarily close to the attractor set with respect

to the volume metric. Note that P satisfies Eq. (8.12) directly from the statement of

Theorem 8.2. Also note that P satisfies Eq. (8.13) since by Theorem 8.2 we have that
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P (x) > 1 for all δΩ. Also note that Eq. (8.14) since by Theorem 8.2 we have that

A ⊆ {x ∈ Ω : P (x) ≤ 1} and since A 6= ∅ it follows that {x ∈ Ω : P (x) ≤ 1} 6= ∅.

Theorem 8.2 shows that the Lyapunov characterization of attractor sets proposed

in Section 8.3 is not conservative and that this non conservatism is retained even if

the Lyapunov functions are constrained to be SOS. However, in order to apply the

results of Sections 8.3 and 8.4 to compute outer approximations of minimal attractors,

we require an algorithm which can enforce the Lyapunov inequality conditions of

Prop. 8.1 while minimizing the volume of the 1-sublevel set of the Lyapunov function.

In the following section propose such an algorithm based on convex optimization and

SOS programming.

8.5 A Family of SOS Problems for Minimal Attractor Set Approximation

In Section 8.3, we proposed a Lyapunov characterization of attractor sets for a

given ODE defined by a vector field f . In Section 8.4, we showed that this character-

ization is not conservative even if the Lyapunov functions are constrained to be SOS.

Given these two results, we may now formulate a polynomial optimization character-

ization of the minimal attractor set A∗ ⊂ Ω of a given ODE defined by a vector field,

f . The following optimization problem enforces the Lyapunov conditions of Prop.8.1

while minimizing the distance between the minimal attractor A∗ and the 1-sublevel

set of the Lyapunov function:

inf
J∈F

DV (A∗, {x ∈ Ω : J(x) ≤ 1}) (8.44)

such that ∇J(x)Tf(x) ≤ −(J(x)− 1) for all x ∈ Ω,

{x ∈ Ω : J(x) ≤ 1} ⊆ Ω◦,

{x ∈ Ω : J(x) ≤ 1} 6= ∅,

where F is some set of functions which we may take to be the set of SOS polynomials.
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In Subsection 8.5.2, we will propose a SOS programming approach to solving

Optimization Problem (8.44). Specifically, in Subsection 8.5.2, we propose a sequence

of quasi-SOS programming problems, each involving volume minimization, and whose

limit yields the minimal attractor set of the ODE defined by f . However, the SOS

constraints in Subsection 8.5.2 do not enforce {x ∈ Ω : J(x) ≤ 1} 6= ∅ - thus reducing

the computational complexity of the algorithm. We show that it is not necesary to

enforce this constraint because as we will show next in Subsection 8.5.1, by selecting Ω

sufficiently large and enforcing∇J(x)Tf(x) ≤ −(J(x)−1) for all x ∈ Ω it follows that

J automatically satisfies {x ∈ Ω : J(x) ≤ 1} 6= ∅. Moreover, unlike Opt. (8.44), the

objective function of our proposed quasi-SOS programming problem will not involve

the unknown set A∗. This is because, as we will next show in Subsection 8.5.1, for

sufficiently large Ω and J such that∇J(x)Tf(x) ≤ −(J(x)−1) for all x ∈ Ω it follows

A∗ ⊆ {x ∈ Ω : J(x) ≤ 1} (the 1-sublevel set of J contains the minimal attractor set).

We later use result in Subsection 8.5.2 to eliminate A∗ from the objective function.

Note in addition, we will show in Subsection 8.5.4 that if sublevel set volume is

minimized and Ω is sufficiently large, then we may likewise eliminate the constraint

{x ∈ Ω : J(x) ≤ 1} ⊆ Ω◦– thus further reducing computational complexity of the

SOS programming problem.

8.5.1 A Reduced Form of Optimization Problem (8.44)

In Prop. 8.1 we have proposed a Lyapunov characterization of attractor sets. We

have shown that if V satisfies Eqs. (8.12), (8.13) and (8.14) then the 1-sublevel set

of V is an attractor set of the ODE defined by the vector field f . In Eq. (8.44) we

have proposed an optimization problem that searches over functions J that satisfy

Eqs. (8.12), (8.13) and (8.14) while minimizing the distance between the 1-sublevel

set of J and the minimal attractor set of the ODE defined by f .
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Later, in Subsection 8.5.2 we will propose an SOS programming problem for solv-

ing Opt. (8.44) that searches for a J that satisfies Eqs. (8.12) and (8.13) while mini-

mizing the volume of the 1-sublevel set of J , but does not directly enforce Eq. (8.14)

- instead choosing Ω to be sufficiently large. Fortunately, as we will show next in

Lemma 8.2 that if Ω is chosen sufficiently large such that A ⊆ Ω, for some attractor

set A of the ODE, then any continuous V satisfying Eq. (8.12) automatically satisfies

Eq. (8.14). Lemma 8.2 then shows that if Ω contains the minimal attractor and V

satisfies Eqs. (8.12) and (8.13), then the 1-sublevel set of V is an attractor set.

Lemma 8.2. Consider f ∈ C1(Rn,Rn). Suppose there exists an attractor set (Defn. 8.1)

A ⊂ Rn of the ODE (8.5) defined by f , V ∈ C1(Rn, [0,∞)), and a compact set Ω ⊂ Rn

such that

∇V (x)Tf(x) ≤ −(V (x)− 1) for all x ∈ Ω, (8.45)

A ⊆ Ω, (8.46)

then {x ∈ Ω : V (x) ≤ 1} 6= ∅.

Proof. In order to prove {x ∈ Ω : V (x) ≤ 1} 6= ∅ we show that A ∩ {x ∈ Ω : V (x) ≤

1} 6= ∅.

Suppose for contradiction that A ∩ {x ∈ Ω : V (x) ≤ 1} = ∅. Then V (y) > 1

for all y ∈ A. Since A ⊆ Ω (by Eq. (8.46)) is an attractor set it is an invariant set.

Therefore, φf (y, t) ∈ A ⊆ Ω for all t ≥ 0 and thus by Eq. (8.45) it follows that

d

dt
V (φf (y, t)) ≤ −(V (φf (y, t))− 1) for all (y, t) ∈ A× [0,∞).

Then, using Gronwall’s inequality (Lem. C.2) we have that

V (φf (y, t))− 1 ≤ e−t(V (y)− 1) for all (y, t) ∈ A× [0,∞). (8.47)
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Let c := inft≥0{V (φf (y, t))−1}. We will now argue that c > 0. Using the fact that

φf (y, t) ∈ A for all t ≥ 0 it follows that c = inft≥0{V (φf (y, t))−1} ≥ infz∈A{V (z)−1}.

Then, since V is continuous and A is compact it follows by the extreme value theorem

that there exists z∗ ∈ A such that V (z∗)− 1 = infz∈A{V (z)− 1} ≥ c. Since we have

assumed A ∩ {x ∈ Ω : V (x) ≤ 1} = ∅ it follows that if z∗ ∈ A then z∗ /∈ {x ∈ Ω :

V (x) ≤ 1} and hence c ≥ V (z∗)− 1 > 0.

Now, by Eq. (8.47) and since c > 0 it follows that 0 < cet ≤ V (y)− 1 for all t ≥ 0

and y ∈ A implying that V is unbounded over A, contradicting the continuity of V .

Therefore it follows that A ∩ {x ∈ Ω : V (x) ≤ 1} 6= ∅ and hence {x ∈ Ω : V (x) ≤

1} 6= ∅.

Later in Subsection 8.5.2 we will propose an optimization problem that has an

objective function independent of the unknown set A∗ (unlike Opt. 8.44). In order to

formulate this optimization problem we require A∗ ⊆ {x ∈ Ω : V (x) ≤ 1}. Next, we

show that if Ω contains a neighborhood of the minimal attractor, A∗, and V satisfies

Eqs. (8.12), then the 1-sublevel set of V contains the minimal attractor set.

Lemma 8.3. Consider f ∈ C1(Rn,Rn). Suppose A∗ ⊂ Rn is the minimal attractor

set (Defn. 8.1) of the ODE (8.5) defined by f , V ∈ C1(Rn, [0,∞)), σ > 0, and a

compact set Ω ⊂ Rn such that

∇V (x)Tf(x) ≤ −(V (x)− 1) for all x ∈ Ω, (8.48)

Bσ(A∗) ⊆ Ω, (8.49)

then A∗ ⊆ {x ∈ Ω : V (x) ≤ 1}.

Proof. To show A∗ ⊆ {x ∈ Ω : V (x) ≤ 1} we will show A∗ ∩ {x ∈ Ω : V (x) ≤ 1}

is an attractor set. Then if A∗ * {x ∈ Ω : V (x) ≤ 1} it follows that A∗ ∩ {x ∈ Ω :
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V (x) ≤ 1} ⊂ A∗, that is there exists an attractor set that is a strict subset of A∗,

contradicting the fact that A∗ is the minimal attractor set.

To show A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is an attractor set we will split the remainder

of the proof into three parts, showing A∗ ∩ {x ∈ Ω : V (x) ≤ 1} satisfies the three

properties of attractor sets in Defn. 8.1.

Proof A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is nonempty and compact: By the proof of

Lemma 8.2 it follows that A∗ ∩ {x ∈ Ω : V (x) ≤ 1} 6= ∅. Moreover, since A∗ is

compact and Ω is compact, implying {x ∈ Ω : V (x) ≤ 1} ⊆ Ω is compact, it follows

{x ∈ Ω : V (x) ≤ 1} is compact.

Proof A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is invariant: Let y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1}

then y ∈ A∗ and y ∈ {x ∈ Ω : V (x) ≤ 1}. Since A∗ is an attractor set it is invariant

and therefore φf (y, t) ∈ A∗ for all t ≥ 0. In order to prove A∗ ∩ {x ∈ Ω : V (x) ≤ 1}

is invariant we must also show φf (y, t) ∈ {x ∈ Ω : V (x) ≤ 1} for all t ≥ 0. For

contradiction suppose there exists T > 0 such that φf (y, t) /∈ {x ∈ Ω : V (x) ≤ 1}.

That is, V (φf (y, T )) > 1.

Using the fact A∗ is invariant and applying the Granwall Bellman Lemma to

Eq. (8.48) we get,

V (φf (y, t))− 1 ≤ e−t(V (y)− 1) for all (y, t) ∈ A∗ × [0,∞).

Hence, if V (φf (y, T )) > 1 we get that that 0 < V (φf (y, T )) − 1 ≤ eT (V (y) − 1)

implying V (y) > 1 contradicting the fact that y ∈ {x ∈ Ω : V (x) ≤ 1}. Thus we

have shown that if y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} then φf (x, t) ∈ A∗ for all t ≥ 0 and

φf (x, t) ∈ {x ∈ Ω : V (x) ≤ 1} implying φf (x, t) ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} for all

t ≥ 0, proving A∗ ∩ {x ∈ Ω : V (x) ≤ 1} is an invariant set.

Proof A∗ ∩ {x ∈ Ω : V (x) ≤ 1} has an attracting neighborhood: We now show

that for all y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} there exists δ > 0 such that for any ε > 0
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there exists T ≥ 0 for which

D(φf (z, t), A
∗∩{x ∈ Ω : V (x) ≤ 1}) < ε (8.50)

for all z ∈ Bδ(y) and t ≥ T.

Let y ∈ A∗ ∩ {x ∈ Ω : V (x) ≤ 1} then y ∈ A∗. Since A∗ is an attractor set there

exists δ > 0 such that for any 0 < ε < σ there exists T1 ≥ 0 for which

D(φf (z, t), A
∗) < ε for all z ∈ Bδ(y) and t ≥ T1. (8.51)

Since 0 < ε < σ and D(φf (z, t), A
∗) < ε for all (z, t) ∈ Bδ(y)× [T1,∞), it follows by

Eq. (8.49) that

φf (z, t) ∈ Ω for all (z, t) ∈ Bδ(y)× [T1,∞). (8.52)

Next, we will consider the cases Ω/Bε({x ∈ Ω : V (x) ≤ 1}) = ∅ and Ω/Bε({x ∈

Ω : V (x) ≤ 1}) 6= ∅ separately showing Eq. (8.50) holds for each case.

In the case Ω/Bε({x ∈ Ω : V (x) ≤ 1}) = ∅ we get that Ω ⊆ Bε({x ∈ Ω : V (x) ≤

1}), and hence using this fact together with Eq. (8.52) it follows that,

D(φf (z, t), {x ∈ Ω :V (x) ≤ 1}) < ε for all (z, t) ∈ Bδ(y)× [T1,∞). (8.53)

Now, Eqs. (8.51) and (8.53) imply

D(φf (z, t), A
∗ ∩ {x ∈ Ω : V (x) ≤ 1}) (8.54)

≤ max{D(φf (z, t), A
∗), D(φf (z, t), {x ∈ Ω : V (x) ≤ 1})} < ε

for all (z, t) ∈ Bδ(y)× [T1,∞).

Thus Eq. (8.54) shows Eq. (8.50) in the case Ω/Bε({x ∈ Ω : V (x) ≤ 1}) = ∅.

Next let us consider the case Ω/Bε({x ∈ Ω : V (x) ≤ 1}) 6= ∅. By Eqs. (8.48)

and (8.52), Gronwall’s inequality (Lem. C.2), and the semi-group property of solution
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maps (Eq. (8.6)) we have that

V (φf (z, T1 + t))− 1 ≤ e−t(V (φf (z, T1))− 1) ≤ ae−t for all (z, t) ∈ Bδ(y)× [0,∞),

(8.55)

where a := supz∈Bδ(y) |V (φf (z, T1))− 1| ≥ 0. Hence, it now follows for any η > 0 that

φf (z, t+ T1) ∈ {x ∈ Ω : V (x) ≤ 1 + η} (8.56)

for all z ∈ Bδ(y) and t ≥ max

{
0, ln

(
a

η

)}
.

Let T2 := T1 + max
{

0, ln
(
a
η

)}
. We now construct η > 0 such that {x ∈ Ω :

V (x) ≤ 1 + η} ⊆ Bε({x ∈ Ω : V (x) ≤ 1}). Then since φf (y, t) ∈ {x ∈ Ω : V (x) ≤

1+η} for all t ≥ T2 (by Eq. (8.56)), it follows that D({x ∈ Ω : V (x) ≤ 1}, φf (y, t)) < ε

for all t ≥ T2.

Let η ∈ (0, b) where

b := infz∈Ω/Bε({x∈Ω:V (x)≤1})(V (z) − 1), where infz∈Ω/Bε({x∈Ω:V (x)≤1}) V (z) exists since

Ω/Bε({x ∈ Ω : V (x) ≤ 1}) is compact and V is continuous. Note that b > 0 since

infz∈Ω/Bε({x∈Ω:V (x)≤1}) V (z) − 1 > 0 (because Ω/Bε({x ∈ Ω : V (x) ≤ 1}) is compact

so by the extreme value theorem there exists z∗ ∈ Ω/Bε({x ∈ Ω : V (x) ≤ 1}) such

that V (z∗) = infz∈Ω/Bε({x∈Ω:V (x)≤1}) V (z) and since z∗ /∈ {x ∈ Ω : V (x) ≤ 1} it follows

that V (z∗) > 1).

We now claim that {x ∈ Ω : V (x) ≤ 1 + η} ⊆ Bε({x ∈ Ω : V (x) ≤ 1}).

Suppose for contradiction that {x ∈ Ω : V (x) ≤ 1 + η} * Bε({x ∈ Ω : V (x) ≤ 1}).

Then there exists w ∈ {x ∈ Ω : V (x) ≤ 1 + η} ⊆ Ω such that w /∈ Bε({x ∈ Ω :

V (x) ≤ 1}) implying w ∈ Ω/Bε({x ∈ Ω : V (x) ≤ 1}). Now, V (w) ≤ η + 1 <

infz∈Ω/Bε({x∈Ω:V (x)≤1}){V (z)} ≤ V (w) implying 0 < 0, providing a contradiction.

Therefore, taking t ≥ T2 it follows from Eq. (8.56) that φf (z, t) ∈ {x ∈ Ω : V (x) ≤
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1 + η} ⊆ Bε({x ∈ Ω : V (x) ≤ 1}) for all (z, t) ∈ Bδ(y)× [T2,∞) implying,

D(φf (z, t), {x ∈ Ω :V (x) ≤ 1}) < ε for all (z, t) ∈ Bδ(y)× [T2,∞). (8.57)

Now, Eqs. (8.51) and (8.57) it follows that

D(φf (z, t), A
∗ ∩ {x ∈ Ω : V (x) ≤ 1}) (8.58)

≤ max{D(φf (z, t), A
∗), D(φf (z, t), {x ∈ Ω : V (x) ≤ 1})} < ε

for all (z, t) ∈ Bδ(y)× [T2,∞).

Therefore Eqs. (8.54) and (8.58) prove Eq. (8.50).

We now propose an SOS optimization problem for enforcing the constraints of

Optimization Problem (8.44).

8.5.2 An SOS Representation of the Lyapunov Inequality Constraint

Suppose A∗ ⊂ Rn is the minimal attractor of some ODE (8.5) (defined by the

vector field f : Rn → Rn) and Ω ⊂ BOAf (A
∗) is some compact set such that

Bσ(A∗) ⊆ Ω◦, for some σ > 0. Let us consider the problem of approximating the

minimal attractor A∗ by some set A that can be certified as an attractor set (but

not necessarily the minimal attractor set). One way to approach this problem is

by solving Opt. (8.44), since any feasible solution, J , to Opt. (8.44) satisfies the

Lyapunov conditions of Prop. 8.1, and hence, A := {x ∈ Ω : J(x) ≤ 1} is an attractor

set to the ODE defined by a vector field, f .

We now consider how to enforce the conditions of Opt. (8.44) using SOS optimiza-

tion. Fortunately it is not necessary to enforce the constraint {x ∈ Ω : J(x) ≤ 1} 6= ∅

since Lem. 8.2 shows that J automatically satisfies this constraint when A∗ ⊆ Ω. We
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next propose a SOS tightening of the remaining constraints of Opt. (8.44), taking Ω

to have the form Ω = {x ∈ Rn : gΩ(x) ≥ 0} so that ∂Ω = {x ∈ Rn : gΩ(x) = 0}.

For some α > 0 we now consider the following optimization problem,

inf
J∈

∑d
SOS

DV (A∗, {x ∈ Ω : J(x) ≤ 1}) (8.59)

such that J, s0, k0, k1 ∈
d∑

SOS

, p0 ∈ Pd(Rn,R),

where k0(x) = −∇J(x)Tf(x)− (J(x)− 1)− s0(x)gΩ(x),

k1(x) = (J(x)− 1− α)− p0(x)gΩ(x).

The problem with solving Opt. (8.59) in its current form is that evaluating the

objective function requires knowledge of the minimal attractor set, A∗ (which is un-

known). Fortunately, however, we can formulate an optimization problem which is

equivalent to Opt. (8.59), but with an objective function that does not depend on the

unknown minimal attractor set, A∗.

If Bσ(A∗) ⊆ Ω◦, for some σ > 0 and J is feasible to Opt. (8.59), then Corollary 8.3

shows that minimizing DV (A∗, {x ∈ Ω : J(x) ≤ 1}) is equivalent to minimizing

µ({x ∈ Ω : J(x) ≤ 1}). Roughly speaking, if J is feasible to Opt. (8.59) then J

satisfies the constraints of Opt. (8.59). Hence∇J(x)Tf(x) ≤ −(∇J(x)−1) for all x ∈

Ω. Thus if Bσ(A∗) ⊆ Ω◦, where σ > 0 and A∗ is the minimal attractor of the ODE

defined by f , it follows by Lemma 8.3 that A∗ ⊆ {x ∈ Ω : J(x) ≤ 1}. Hence, by

Lem. A.2 we have that DV (A∗, {x ∈ Ω : J(x) ≤ 1}) = µ({x ∈ Ω : J(x) ≤ 1})−µ(A∗).

Now, µ(A∗) is a constant (since A∗ is not a decision variable). Therefore minimizing

DV (A∗, {x ∈ Ω : J(x) ≤ 1}) is equivalent to minimizing µ({x ∈ Ω : J(x) ≤ 1}).

231



For some α > 0, we now consider the following family of d-degree SOS problems,

Jd,α ∈ arg inf
J
µ({x ∈ Ω : J(x) ≤ 1}) (8.60)

J, s0, k0, k1 ∈
d∑

SOS

, p0 ∈ Pd(Rn,R)

where k0(x) = −∇J(x)Tf(x)− (J(x)− 1)− s0(x)gΩ(x)

k1(x) = (J(x)− 1− α)− p0(x)gΩ(x).

We now show that for sufficiently small α > 0 and “large” Ω our quasi-SOS op-

timization problem proposed in Opt. (8.60) is not conservative since for sufficiently

large enough degree its solution yields an arbitrarily close approximation of the min-

imal attractor set (in the volume metric). Moreover, each solution to Opt. (8.60)

yields an attractor set.

Corollary 8.3. Consider f ∈ P(Rn,R). Suppose A∗ ⊂ Rn is a minimal attractor

set to the ODE (8.5) defined by f , σ > 0, and Ω ⊂ Rn is some compact set such

that Bσ(A∗) ⊆ Ω and Ω ⊂ BOAf (A
∗), Ω = {x ∈ Rn : gΩ(x) ≥ 0}, and ∂Ω = {x ∈

Rn : gΩ(x) = 0}, where gΩ ∈ P(Rn,R). Suppose {Jd,α}d∈N is such that Jd,α solves the

d-degree optimization problems given in Eq. (8.60) for α > 0, then:

1. {x ∈ Ω : Jd,α(x) ≤ 1} is an attractor set for each d ∈ N and α > 0.

2. A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1} for each d ∈ N and α > 0.

3. There exists β > 0 such that for any α ∈ (0, β) we have that limd→∞DV (A∗, {x ∈

Ω : Jd,α(x) ≤ 1}) = 0.

Proof. In order to prove Cor. 8.3 we will now split the remainder of the proof into

three parts showing each of the three statements of Cor. 8.3.

Proof {x ∈ Ω : Jd,α(x) ≤ 1} is an attractor set: By Prop. 8.1 it follows that

{x ∈ Ω : Jd,α(x) ≤ 1} is an attractor set if Jd,α satisfies Eqs. (8.12), (8.13) and (8.14).
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Since Jd,α is assumed to feasible to Opt. (8.60) it follows that Jd,α satisfies the con-

straints of Opt. (8.60) and hence Jd,α trivially satisfies Eq. (8.12). Moreover by the

constraints of Opt. (8.60) it follows that Jd,α(x) ≥ 1 +α > 1 for all x ∈ ∂Ω and hence

{x ∈ Ω : Jd,α(x) ≤ 1} ⊆ Ω◦, implying Jd,α satisfies Eq. (8.13). Finally since A∗ ⊆ Ω

and Jd,α satisfies Eq. (8.12) it follows by Lem. 8.2 that Jd,α satisfies Eq. (8.14).

Proof A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1}: Since Jd,α satisfies the constraints of Opt. (8.60)

it follows that

∇Jd,α(x)Tf(x) ≤ −(∇Jd,α(x)− 1) for all x ∈ Ω.

Since Bσ(A∗) ⊂ Ω and A∗ is the minimal attractor set of the ODE defined by f it

follows from Lemma 8.3 that A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1}.

Proof limd→∞DV (A∗, {x ∈ Ω : Jd,α(x) ≤ 1}) = 0: We show that there exists β >

0 such that for any α ∈ (0, β) and ε > 0 there exists N ∈ N such that DV (A∗, {x ∈

Ω : Jd,α(x) ≤ 1}) < ε for all d ≥ N .

By Theorem 8.2 it follows that there exists β > 0 such that for ε > 0 there exists

N1 ∈ N, and Pm ∈
∑m

SOS(Rn,R) such that

∇Pm(x)Tf(x) < −(Pm(x)− 1) for all x ∈ Ω and m > N1, (8.61)

Pm(x) > 1 + β > 1 + α for all x ∈ ∂Ω, α ∈ (0, β), and m > N1, (8.62)

A∗ ⊆ {x ∈ Ω : Pm(x) ≤ 1} for all m > N1, (8.63)

DV (A∗, {x ∈ Ω : Pm(x) ≤ 1}) < ε for all m ≥ N1. (8.64)

For any α ∈ (0, β), by Eqs. (8.61) and (8.62) and Theorem C.5 there exists

s0, s1, s2, s3, s4, s5 ∈
∑

SOS for each m > N1 such that −∇Pm(x)Tf(x) − (Pm(x) −

1) − s0(x)gΩ(x) = s1(x), and (Pm(x) − 1 − α) − s2(x)gΩ(x) = s3(x), and (Pm(x) −

1 − α) + s4(x)gΩ(x) = s5(x). Fix m > N1 and let N2 := max{m,max0≤i≤5 deg(si)}.

Then it follows that Pm is feasible to Opt. (8.60) for degree d ≥ N2 (with p0(x) :=
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0.5(s4(x)−s2(x))). Since, Jd,α solves the Opt. (8.60) and Pm is feasible to Opt. (8.60)

it follows that,

µ({x ∈ Ω : Jd,α(x) ≤ 1}) ≤µ({x ∈ Ω : Pm(x) ≤ 1}) for all d ≥ N2. (8.65)

Hence, using Lemma A.2 along with the fact that A∗ ⊆ {x ∈ Ω : Jd,α(x) ≤ 1} (by

Lem. 8.3) and Eqs. (8.63), (8.64), and (8.65), it follows that,

DV (A∗, {x ∈ Ω : Jd,α(x) ≤ 1}) = µ({x ∈ Ω : Jd,α(x) ≤ 1})− µ(A∗)

≤ µ({x ∈ Ω : Pm(x) ≤ 1})− µ(A∗)

= DV (A∗, {x ∈ Ω : Pm(x) ≤ 1})

< ε for all d ≥ N2.

8.5.3 Heuristic Volume Minimization of Sublevel Sets of SOS Polynomials

Unfortunately, it is still not possible for us to solve the family of d-degree opti-

mization problems given in Eq. (8.60) since there is no known convex closed form

analytical expression for the objective function (the volume of a sublevel set of an

SOS polynomial). To make the problem tractable we replace the objective function

in Eq. (8.60) with a convex objective function based on the determinant. We next

show present two convex candidate objective functions based on the determinant.

Lemma 8.4. The functions f1 : Sn++ → R and f2 : Sn++ → R defined as,

f1(X) = − log det(P ),

f2(X) = −(det(P ))
1
n ,

are convex.
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Heuristically, maximizing det(P ) increases the value of V (x) = Zd(x)TPZd(x)

for all x ∈ Rn. Therefore, for larger det(P ) there will be less y ∈ Rn such that

y ∈ {x ∈ Rn : V (x) ≤ 1}. Hence we would expect µ({x ∈ Rn : V (x) ≤ 1}) to

decrease as det(P ) increases. In the 2-degree (quadratic) case this argument is not

heuristic. We next show that maximizing the determinant is equivalent to minimizing

the volume of the sublevel set of a quadratic polynomial.

Lemma 8.5 (Jones and Peet (2019c)). Consider P ∈ Sn++. The following holds,

µ({x ∈ Rn : xTPx ≤ 1}) =
π
n
2

Γ(n
2

+ 1)
√

det(P )
,

where Γ is the gamma function.

Lemma 8.5 shows that maximizing det(P ) minimizes µ({x ∈ Rn : xTPx ≤ 1}).

Thus equivalently, maximizing the convex functions log det(P ) or (det(P ))
1
Nd min-

imizes µ({x ∈ Rn : xTPx ≤ 1}) (since both the functions f1(x) = log(x) and

f2(x) = x
1
n are monotonic functions for x > 0). We next extend this approach

of maximizing the determinant to minimize the volume of a sublevel set of a SOS

polynomial to higher degrees.

Rather than solving Opt. (8.60) we solve the following family d-degree SOS prob-

lems for some α > 0,

Pd ∈ arg sup
J

(detP )
1
Nd (8.66)

J, s0, k0, k1 ∈
d∑

SOS

, p0 ∈ Pd(Rn,R)

where, J = Zd(x)TPZd(x), and,

P > 0,

k0(x) = −∇J(x)Tf(x)− (J(x)− 1)− s0(x)gΩ(x)

k1(x) = (J(x)− 1− α)− p0(x)gΩ(x).
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Note that it is equivalent to solve Opt. (8.66) with an objective function of form

(detP )
1
Nd or log detP . For implementation purposes we have chosen to use an objec-

tive function of form (detP )
1
Nd since Yalmip allows this formulation of the problem

to be solved by various SDP solves, see Lofberg (2004). For an objective function of

form log detP we use SOSTOOLS, see Prajna et al. (2002b), and SDPT3, see Tutuncu

et al. (2002).

8.5.4 A Further Simplification of Optimization Problem (8.66)

Typically, through numerical experimentation, we find that if sublevel set volume

of {x ∈ Ω : J(x) ≤ 1} is sufficiently minimized and Ω is sufficiently large, then

{x ∈ Ω : J(x) ≤ 1} ⊆ Ω◦ is automatically satisfied. Therefore, it is often unnecessary

to enforce the constraint (J(x)− 1− α)− p0(x)gΩ(x) ∈
∑d

SOS in Opt. (8.66) – thus

further reducing computational complexity of the SOS programming problem.

8.6 Numerical Examples

In this section we will present the results of solving the Opt. (8.66) for several

dynamical systems. For these examples Opt. (8.66) was solved using Yalmip, see Lof-

berg (2004). In Example 8.1 we approximate a “strange” attractor, in Example 8.2 we

approximate a limit cycle, and finally in Example 8.3 we approximate an equilibrium

point.

Example 8.1 (Numerical Approximation of the Lorenz Attractor). Consider the

following three dimensional second order nonlinear dynamical system (known as the
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Figure 8.1: Graph showing an estimation of the Lorenz attractor (Example 8.1)
given by the red transparent surface. This surface is the 1-sublevel set of a solution
to the SOS Problem (8.66). The grayed shaded surfaces represent the projection
of our Lorenz attractor estimation on the xy, xz, and yz axes. The black line is an
approximation of the attractor found by simulating a Lorenz trajectory using Matlab’s
ODE45 function.

Lorenz system):

ẋ1(t) = σ(x2(t)− x1(t)), (8.67)

ẋ2(t) = ρx1(t)− x2(t)− x1(t)x3(t),

ẋ3(t) = x1(t)x2(t)− βx3(t),

where (σ, ρ, β) = (10, 28, 8
3
). It is well known that for such (σ, ρ, β) the ODE (8.67)

exhibits a global “chaotic” attractor.

Fig. 8.1 shows our Lorenz attractor approximation given by the 1-sublevel of the

solution to the SOS Problem (8.66) for d = 8, α = 0.0001, gΩ(x) = R2−x2
1−x2

2−x2
3,

R = 3, and scaled dynamics given by the ODE (8.67). For d ≥ 10 the volume of

our Lorenz attractor approximation becomes so small that we are unable store enough

grid-points to sufficiently plot the contour of the 1-sublevel set of our SOS Lyapunov

function.
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Example 8.2 (Numerical approximation of the Van der Poll oscillator). Consider

the following two dimensional third order nonlinear dynamical system:

ẋ1(t) = x2(t), (8.68)

ẋ2(t) = (1− x2
1(t))x2(t)− x1(t).

It is well known that the ODE (8.5) possess a limit cycle called the Van der Poll

oscillator. Let us denote this limit cycle by A∗ ⊂ Rn. The ODE also possess an

unstable equilibrium point at the origin (which is not an attractor set since the solution

map initialized inside neighborhoods of the origin moves away from the origin towards

the limit cycle). However, φf (0, t) = 0 ∈ R2 for all t ≥ 0, where φf is the solution

map of the ODE (8.5). Therefore, 0 /∈ BOAf (A∗). In order to apply Theorem 8.2

we require Ω ⊂ BOAf (A
∗). Hence, we must be careful to construct Ω = {x ∈ Rn :

gΩ(x) ≥ 0} such that 0 /∈ Ω.

Fig. 8.2 shows our Van der Poll oscillator approximation given by the 1-sublevel of

the solution to the SOS Problem (8.66) for d = 12, α = 0.0001, g1(x) = −(R2
1 − x2

1−

x2
2)(R2

2−x2
2−x2

2), R1 = 0.45, R2 = 1, and scaled dynamics given by the ODE (8.68).

Example 8.3. Consider the following two dimensional seventh order nonlinear dy-

namical system:

ẋ1(t) = −2x2(t)(−x4
1(t) + 2x2

1(t)x2
2(t) + x4

2(t)) (8.69)

− 2x1(t)(x2
1(t) + x2

2(t))(x4
1(t) + 2x2

1(t)x2
2(t)− x4

2(t)),

ẋ2(t) = 2x1(t)(x4
1(t) + 2x2

1(t)x2
2(t)− x4

2(t))

− 2x2(t)(x2
1(t) + x2

2(t))(−x4
1(t) + 2x2

1(t)x2
2(t) + x4

2(t)).

It was shown in Ahmadi and El Khadir (2018) that A∗ = {0} is a global attractor

set of the ODE (8.69). In other words, the ODE (8.69) is globally asymptotically

238



-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.2 -0.19
0.5

0.51

0.52

0.53

Figure 8.2: Graph showing an estimation of the attractor (given by the red area)
of the ODE (8.68) in Example 8.2. This red area is the 1-sublevel set of a solution
to the SOS Problem (8.66). The two black lines are simulated solution maps of the
ODE (8.69) using Matlab’s ODE45 function initialized outside of the limit cycle.

stable about the origin. This stability was shown using the following non-polynomial

Lyapunov function:

W (x) =


x4

1+x4
2

x2
1+x2

2
if x 6= 0

0 otherwise

.

Clearly, W is not a SOS polynomial (or even polynomial). It was further shown

in Ahmadi and El Khadir (2018) that there exists no polynomial Lyapunov function

that can certify the asymptotic stability of the origin of the ODE (8.69). However,

Theorem 8.2 implies there does exist a SOS Lyapunov functions that can certify the

stability of an arbitrarily small neighborhood of A∗ = {0} with respect the volume

metric. Furthermore, we can heuristically attempt to find these Lyapunov functions

by solving the SOS Opt. (8.66).

Fig. 8.3 shows our approximation of the ODE (8.69) given by the 1-sublevel of the

solution to the SOS Problem (8.66) for d = 10, α = 0.0001, gΩ(x) = R2 − x2
1 − x2

2,

R = 1, and f as in the ODE (8.69) (scaled by a factor of 1000 to improve SDP solver
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Figure 8.3: Graph showing an estimation of the attractor (given by the red area)
of the ODE (8.69) in Example 8.3. This red area is the 1-sublevel set of a solution to
the SOS Problem (8.66). The four black lines are simulated solution maps initialized
at (±1,±1) of the ODE (8.69) using Matlab’s ODE45 function.

performance). Unfortunately, increasing d ∈ N to a greater value than 10 makes

the SDP solver (Mosek) return a numerical error. We believe improvements in SDP

solvers for large scale problems will allow us to solve the SOS Opt. (8.66) for larger

degrees and improve our estimations of attractor sets.

8.7 Conclusion

We have proposed a new Lyapunov characterization of attractor sets that is well

suited to the problem of finding the minimal attractor set. We have shown that our

proposed Lyapunov characterization of attractor sets is non-conservative even when

restricted to SOS Lyapunov functions. Specifically, given an attractor set associated

with some ODE we have shown that there exists a sequence of SOS Lyapunov func-

tions that yield a sequence of sublevel sets, each containing the attractor set, each

being an attractor set themselves, and converging to the attractor set in the volume

metric. We have used this theoretical result to design an SOS based algorithm for

minimal attractor set approximation based on determinant maximization as a proxy
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for sublevel set volume minimization. Several numerical examples demonstrate how

our proposed SOS based algorithm can provide tight approximations of several well

known attractor sets such as the Lorenz attractor and Van-der-Poll oscillator.
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APPENDIX A

SUBLEVEL SET APPROXIMATION
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For sets A,B ⊂ Rn we denote the volume metric as DV (A,B), where

DV (A,B) := µ((A/B) ∪ (B/A)). (A.1)

In this appendix we show that the volume metric (DV in Eq. (A.1)) is indeed a
metric. Given a sequence of functions, {Jd}d∈N, such that Jd → V as d → ∞
with respect to some norm, we also present conditions under which the sequence of
sublevel sets, {x ∈ Ω : Jd(x) ≤ γ} (or {x ∈ Ω : Jd(x) < γ}) where γ ∈ R, converges to
{x ∈ Ω : V (x) ≤ γ} (or {x ∈ Ω : V (x) < γ}) with respect to the volume metric. The
sublevel approximation results presented in this appendix are required in the proof
of Prop. 5.5, Theorem 7.2 and Cor. 8.3.

Definition A.1. D : X × X → R is a metric if the following is satisfied for all
x, y ∈ X,

• D(x, y) ≥ 0,

• D(x, y) = 0 if and only if x = y,

• D(x, y) = D(y, x),

• D(x, z) ≤ D(x, y) +D(y, z).

Lemma A.1 (Jones and Peet (2019c)). Consider the quotient space,

X := B (mod {X ⊂ Rn : X 6= ∅, µ(X) = 0}),

recalling B := {B ⊂ Rn : µ(B) < ∞} is the set of all bounded sets. Then DV :
X ×X → R, defined in Eq. (A.1), is a metric.

Lemma A.2 (Jones and Peet (2019c)). If A,B ∈ B and B ⊆ A then

DV (A,B) = µ(A/B) = µ(A)− µ(B).

Inspired by an argument used in Lasserre (2015) we now show if two functions are
close in the L1 norm then it follows their sublevel sets are close with respect to the
volume metric.

Proposition A.1. Consider a set Λ ∈ B, a function V ∈ L1(Λ,R), and a family of
functions {Jd ∈ L1(Λ,R) : d ∈ N} that satisfies the following properties:

1. For any d ∈ N we have Jd(x) ≤ V (x) for all x ∈ Λ.

2. limd→∞ ||V − Jd||L1(Λ,R) = 0.

Then for all γ ∈ R

lim
d→∞

DV

(
{x ∈ Λ : V (x) ≤ γ}, {x ∈ Λ : Jd(x) ≤ γ}

)
= 0. (A.2)
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Proof. To prove Eq. (A.2) we show for all ε > 0 there exists N ∈ N such that for all
d ≥ N

DV

(
{x ∈ Λ : V (x) ≤ γ}, {x ∈ Λ : Jd(x) ≤ γ}

)
< ε. (A.3)

In order to do this we first denote the following family of sets for each n ∈ N
An :=

{
x ∈ Λ : V (x) ≤ γ +

1

n

}
.

Since Jd(x) ≤ V (x) for all x ∈ Λ and d ∈ N we have

{x ∈ Λ : V (x) ≤ γ} ⊆ {x ∈ Λ : Jd(x) ≤ γ} for all d ∈ N. (A.4)

Moreover, since {x ∈ Λ : V (x) ≤ γ} ⊆ Λ, {x ∈ Λ : Jd(x) ≤ γ} ⊆ Λ and Λ ∈ B it
follows {x ∈ Λ : V (x) ≤ γ} ∈ B and {x ∈ Λ : Jd(x) ≤ γ} ∈ B.

Now for d ∈ N

DV

(
{x ∈ Λ : V (x) ≤ γ}, {x ∈ Λ : Jd(x) ≤ γ}

)
(A.5)

= µ({x ∈ Λ : Jd(x) ≤ γ})− µ({x ∈ Λ : V (x) ≤ γ})
= µ({x ∈ Λ : Jd(x) ≤ γ})− µ(An ∩ {x ∈ Λ : Jd(x) ≤ γ})

+ µ(An ∩ {x ∈ Λ : Jd(x) ≤ γ})− µ({x ∈ Λ : V (x) ≤ γ})
≤ µ({x ∈ Λ : Jd(x) ≤ γ})− µ(An ∩ {x ∈ Λ : Jd(x) ≤ γ})

+ µ(An)− µ({x ∈ Λ : V (x) ≤ γ})
= µ({x ∈ Λ : Jd(x) ≤ γ}/An) + µ(An/{x ∈ Λ : V (x) ≤ γ}).

The first equality of Eq. (A.5) follows by Lemma A.2 (since the sublevel sets of V
and Jd are bounded and satisfy Eq. (A.4)). The first inequality follows as An ∩ {x ∈
Λ : Jd(x) ≤ γ} ⊆ An which implies µ(An ∩ {x ∈ Λ : Jd(x) ≤ γ}) ≤ µ(An). The third
equality follows using Lemma A.2 and since An ∩ {x ∈ Λ : Jd(x) ≤ γ} ⊆ {x ∈ Λ :
Jd(x) ≤ γ} and {x ∈ Λ : V (x) ≤ γ} ⊆ An.

To show that Eq. (A.3) holds for any ε > 0 we will split the remainder of the proof
into two parts. In Part 1 we show that there exists N1 ∈ N such that µ(An/{x ∈ Λ :
V (x) ≤ γ}) < ε

2
for all n ≥ N1. In Part 2 we show that for any n ∈ N there exists

N2 ∈ N such that µ({x ∈ Λ : Jd(x) ≤ γ}/An) < ε
2

for all d ≥ N2.
Part 1 of proof: In this part of the proof we show that there exists N1 ∈ N such

that µ(An/{x ∈ Λ : V (x) ≤ γ}) < ε
2

for all n > N1.
Since ∩∞n=1An = {x ∈ Λ : V (x) ≤ γ} and An+1 ⊆ An for all n ∈ N we have that

µ({x ∈ Λ : V (x) ≤ γ}) = µ(∩∞n=1An) = limn→∞ µ(An) (using the “continuity from
above” property of measures). Thus there exists N1 ∈ N such that

|µ(An)− µ({x ∈ Λ : V (x) ≤ γ})| < ε

2
for all n > N1.

Therefore it follows

µ(An/{x ∈ Λ : V (x) ≤ γ})

= µ(An)− µ({x ∈ Λ : V (x) ≤ γ}) < ε

2
for all n > N1.
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Part 2 of proof: For fixed n > N1 we now show there exists N2 ∈ N such that
µ({x ∈ Λ : Jd(x) ≤ γ}/An) < ε

2
for all d ≥ N2.

Now

{x ∈ Λ : Jd(x) ≤ γ}/An ⊆ {x ∈ Λ : n|Jd(x)− V (x)| ≥ 1} (A.6)

for all d ∈ N.

The set containment in Eq. (A.6) follows since if y ∈ {x ∈ Λ : Jd(x) ≤ γ}/An then
y ∈ Λ, Jd(y) ≤ γ and y /∈ An. Since y /∈ An we have V (y) > γ + 1

n
. Thus

n|Jd(y)− V (y)| ≥ n(V (y)− Jd(y)) ≥ n

(
γ +

1

n
− γ
)

= 1,

which implies y ∈ {x ∈ Λ : n|Jd(x)− V (x)| ≥ 1}.
Since limd→∞

∫
Λ
|V (x)− Jd(x)|dx = 0 there exists N2 ∈ N such that∫

Λ

|V (x)− Jd(x)|dx < ε

2n
for all d ≥ N2. (A.7)

Therefore,

µ({x ∈ Λ :Jδ(x) ≤ γ}/An) ≤ µ({x ∈ Λ : n|Jδ(x)− V (x)| ≥ 1})

≤
∫

Λ
n|Jδ(x)− V (x)|dx < ε

2
for d ≥ N2. (A.8)

The first inequality in Eq. (A.8) follows by Eq. (A.6). The second inequality follows by
Chebyshev’s inequality (Lemma C.5). The third inequality follows by Eq. (A.7).

Prop. A.1 shows if a sequence of functions {Jd}d∈N converges from bellow to some
function V with respect to the L1 norm then the sequence sublevel sets {x ∈ Λ :
Jd(x) ≤ γ} converge to {x ∈ Λ : V (x) ≤ γ} with respect to the volume metric.
However, this does not imply the sequence of “strict” sublevel sets {x ∈ Λ : Jd(x) <
γ} converge to {x ∈ Λ : V (x) < γ} (even if {Jd}d∈N converges from bellow to
V with respect to the L∞ norm). To see this we next consider a counterexample
where {Jd}d∈N is a family of functions that can uniformly approximate some given
V ∈ Lip((0, 1),R) but {x ∈ Λ : Jd(x) < γ} does not converge to {x ∈ Λ : V (x) < γ}.
Counterexample A.1. We show there exists γ ∈ R, Λ ⊂ R, V ∈ Lip(Λ,R) and
{Jd}d∈N ⊂ Lip(Λ,R) such that Jd(x) ≤ V (x) for all x ∈ Λ and limd→∞

∫
Λ
|V (x) −

Jd(x)|dx = 0 but

lim
d→∞

DV

(
{x ∈ Λ : V (x) < γ}, {x ∈ Λ : Jd(x) < γ}

)
6= 0

Let

Λ = (0, 1), V (x) =


0 if x ∈ (0, 0.25]

2(x− 0.25) if x ∈ (0.25, 0.75),

1 if x ∈ [0.75, 1)

Jd(x) =


0 if x ∈ (0, 0.25]

2(x− 0.25) if x ∈ (0.25, 0.75),

1− 1
d

if x ∈ [0.75, 1)

γ = 1.
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Now for all d ∈ N it is clear that we have Jd(x) ≤ V (x) and V (x)− Jd(x) < 1
d

for all
x ∈ Λ. This implies

lim
d→∞

∫
Λ

V (x)− Jd(x)dx ≤ lim
d→∞

sup
x∈Λ

(V (x)− Jd(x)) ≤ lim
d→∞

1

d
= 0.

However {x ∈ Λ : V (x) < γ} = (0, 0.75) and for all d ∈ N {x ∈ Λ : Jd(x) < γ} =
(0, 1). Therefore

DV ({x ∈ Λ : V (x) < γ}, {x ∈ Λ : Jd(x) < γ})
= DV ((0, 0.75), (0, 1)) = 0.25 for all d ∈ N.

Hence,

lim
d→∞

DV ({x ∈ Λ : V (x) < γ}, {x ∈ Λ : Jd(x) < γ}) = 0.25 6= 0.

Corollary A.1. Consider a set Λ ∈ B, a function V ∈ L1(Λ,R), and a family of
functions {Jd ∈ L1(Λ,R) : d ∈ N} that satisfies the following properties:

1. For any d ∈ N we have Jd(x) ≥ V (x) for all x ∈ Λ.

2. limd→∞ ||V − Jd||L1(Λ,R) = 0.

Then for all γ ∈ R

lim
d→∞

DV

(
{x ∈ Λ : V (x) < γ}, {x ∈ Λ : Jd(x) < γ}

)
= 0. (A.9)

Proof. Let us denote Ṽ (x) = −V (x) and J̃d(x) = −Jd(x). It follows that J̃d(x) ≤
Ṽ (x) for all x ∈ Λ and limd→∞ ||Ṽ − J̃d||L1(Λ,R) = 0. Therefore, by Prop. A.1 we have
that

lim
d→∞

DV

(
{x ∈ Λ : Ṽ (x) ≤ γ}, {x ∈ Λ : J̃d(x) ≤ γ}

)
= 0. (A.10)

Now, Λ = {x ∈ Λ : V (x) < γ} ∪ {x ∈ Λ : V (x) ≥ γ} = {x ∈ Λ : V (x) < γ} ∪ {x ∈
Λ : Ṽ (x) ≤ γ}. Therefore

{x ∈ Λ : V (x) < γ} = Λ/{x ∈ Λ : Ṽ (x) ≤ γ},
and by a similar argument

{x ∈ Λ : Jd(x) < γ} = Λ/{x ∈ Λ : J̃d(x) ≤ γ}.

Thus, by Lem. A.2 and since {x ∈ Λ : J̃d(x) ≤ γ} ⊆ Λ, we have that

DV

(
{x ∈ Λ : V (x) < γ}, {x ∈ Λ : Jd(x) < γ}

)
(A.11)

= DV

(
Λ/{x ∈ Λ : Ṽ (x) < γ},Λ/{x ∈ Λ : J̃d(x) < γ}

)
= DV

(
{x ∈ Λ : Ṽ (x) ≤ γ}, {x ∈ Λ : J̃d(x) ≤ γ}

)
.

Now by Eqs. (A.10) and (A.11) it follows that Eq. (A.9) holds.
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This Appendix gives a brief overview on the topic of mollification theory, for a
more in depth overview we refer to Evans (2010).

Mollifiers The standard mollifier, η ∈ C∞(Rn,R) is defined as

η(x) :=

{
C exp

(
1

||x||22−1

)
when ||x||2 < 1,

0 when ||x||2 ≥ 1,
(B.1)

where C > 0 is chosen such that
∫
Rn η(x)dx = 1.

For σ > 0 we denote the scaled standard mollifier by ησ ∈ C∞(Rn,R) such that

ησ(x) :=
1

σn
η
(x
σ

)
.

Note, clearly ησ(x) = 0 for all x /∈ Bσ(0).

Mollification of a Function (Smooth Approximation) Recall from Chapter 2
that for open sets Ω ⊂ Rn and σ > 0 we denote < Ω >σ:= {x ∈ Ω : Bσ(x) ⊂ Ω}.
Now, for each σ > 0 and function V ∈ L1(Ω,R) we denote the σ-mollification of V
by [V ]σ :< Ω >σ→ R, where

[V ]σ(x) :=

∫
Rn
ησ(x− z)V (z)dz =

∫
Bσ(0)

ησ(z)V (x− z)dz. (B.2)

To calculate the derivative of a mollification we next introduce the concept of weak
derivatives.

Definition B.1. For Ω ⊂ Rn and F ∈ L1(Ω,R) we say any H ∈ L1(Ω,R) is the
weak i ∈ {1, .., n}-partial derivative of F if∫

Ω

F (x)
∂

∂xi
α(x)dx = −

∫
Ω

H(x)α(x)dx, for α ∈ C∞(Rn,R).

Weak derivatives are “essentially unique”. That is if H1 and H2 are both weak
derivatives of a function F then the set of points where H1(x) 6= H2(x) has measure
zero. If a function is differentiable then its weak derivative is equal to its derivative
in the “classical” sense. We will use the same notation for the derivative in the
“classical” sense and in the weak sense.

In the next proposition we state some useful properties about Sobolev spaces and
mollifications taken from Evans (2010).

Proposition B.1 (Evans (2010)). For 1 ≤ p < ∞ and k ∈ N we consider V ∈
W k,p(E,R), where E ⊂ Rn is an open bounded set, and its σ-mollification [V ]σ.
Recalling from Chapter 2 that for an open set Ω ⊂ Rn and σ > 0 we denote <
Ω >σ:= {x ∈ Ω : Bσ(x) ⊂ Ω}, the following holds:

1. For all σ > 0 we have [V ]σ ∈ C∞(< E >σ,R).
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2. For all σ > 0 we have ∇x[V ]σ(x) = [∇xV ]σ(x) for x ∈ < E >σ, where ∇xV is
a weak derivatives.

3. If V ∈ C(E,R) then for any compact set K ⊂ E we have limσ→0 sup(x,t)∈K |V (x, t)−
[V ]σ(x, t)| = 0.

4. (Meyers-Serrin Local Approximation) For any compact set K ⊂ E we have
limσ→0‖[V ]σ − V ‖Wk,p(K,R) = 0.

Note, in the case E ⊂ Rn+1 and V ∈ W k,p(E,R) (the same as in Chapter 5)
Statement 2 in Prop. B.1 can be stated as: “For all σ > 0 we have ∇t[V ]σ(x, t) =
[∇tV ]σ(x, t) and ∇x[V ]σ(x, t) = [∇xV ]σ(x, t) for (x, t) ∈ < E >σ, where ∇tV and
∇xV are weak derivatives”, using our ∇x and ∇t notation for functions with argu-
ments in (x, t) ∈ Rn+1.
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In this appendix we present several miscellaneous results required in various places
throughout the manuscript and not previously found in any of the other appendices.

Lemma C.1 (Exponential inequalities). The following inequalities hold

exp(−x) ≤ 1 for all x ≥ 0 (C.1)

x exp(−x) ≤ 1 for all x ∈ R. (C.2)

exp(x) ≥ 1 + x for all x ∈ R. (C.3)

Lemma C.2 (Gronwall’s Inequality, Hirsch et al. (2004)). Consider scalars a, b ∈ R
and functions u, β ∈ C1(I,R). Suppose

d

dt
u(t) ≤ β(t)u(t) for all t ∈ (a, b).

Then it follows that

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
for all t ∈ [a, b].

Theorem C.1 (The Bolzano Weierstrass Theorem). Consider a sequence {xn}n∈N ⊂
Rn. Then the {xn}n∈N is a bounded sequence, that is there exists M > 0 such that
xn < M for all n ∈ N, if and only if there exists a convergent subsequence {yn}n∈N ⊂
{xn}n∈N.

Lemma C.3 (Sublevel sets of continuous functions are closed). Suppose f ∈ C(Rn,R)
and Ω is compact set, then the set {x ∈ Ω : f(x) ≤ c}, where c ∈ R, is closed.

Theorem C.2 (Polynomial Approximation, Peet (2009)). Let E ⊂ Rn be an open set
and f ∈ C1(E,R). For any compact set K ⊆ E and ε > 0 there exists g ∈ P(Rn,R)
such that

sup
x∈K
|Dαf(x)−Dαg(x)| < ε for all |α| ≤ 1.

We next state a result that can be thought of as a generalization of the Weierstrass
approximation theorem. It proves there exists a polynomial that can approximate a
sufficiently smooth function arbitrarily well with respect to the W 1,∞ norm weighted
by a function of form w(x) = 1/||x||2β2 . This result was first presented in the case of
β = 1 in Peet (2009) and then later extended the to general case of β ∈ N in Leth
et al. (2017).

Theorem C.3 (Weighted Polynomial Approximation, Leth et al. (2017)). Let E ⊂
Rn be an open set, β ∈ N and V ∈ C2β+2(Rn,R). For any compact set K ⊆ E and
ε > 0 there exists g ∈ P(Rn,R) such that

|V (x)− g(x)| < ε||x||2β2 for all x ∈ K,
||∇V (x)−∇g(x)||2 < ε||x||2β2 for all x ∈ K.
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Theorem C.4 (Rademacher’s Theorem, Malỳ and Ziemer (1997) and Evans (2010)).
If Ω ⊂ Rn is an open subset and V ∈ Lip(Ω,R), then V is differentiable almost
everywhere in Ω with point-wise derivative corresponding to the weak derivative almost
everywhere; that is the set of points in Ω where V is not differentiable has Lebesgue
measure zero. Moreover,

ess sup
x∈Ω

∣∣∣∣ ∂∂xiV (x)

∣∣∣∣ ≤ LV for all 1 ≤ i ≤ n,

where LV > 0 is the Lipschitz constant of V and ∂
∂xi
V (x) is the weak derivative of V .

Lemma C.4 (Infimum of family of Lipshitz functions is Lipschitz, Lasz (2014)). Sup-
pose {hα}α∈I ⊂ LocLip(Rn,R) is a family of locally Lipschitz continuous functions.
Then h : Rn → R defined as h(x) := infα∈I hα(x) is such that h ∈ LocLip(Rn,R)
provided there exists x ∈ Rn such that h(x) <∞.

Theorem C.5 (Putinar’s Positivstellesatz, Putinar (1993)). Consider the semialge-
briac set X = {x ∈ Rn : gi(x) ≥ 0 for i = 1, ..., k}. Further suppose {x ∈ Rn :
gi(x) ≥ 0} is compact for some i ∈ {1, .., k}. If the polynomial f : Rn → R satisfies
f(x) > 0 for all x ∈ X, then there exists SOS polynomials {si}i∈{1,..,m} ⊂

∑
SOS such

that,
f −

m∑
i=1

sigi ∈
∑
SOS

.

Definition C.1. Let Ω ⊂ Rn. We say {Ui}∞i=1 is an open cover for Ω if Ui ⊂ Rn is
an open set for each i ∈ N and Ω ⊆ {Ui}∞i=1.

Theorem C.6 (Existence of Partitions of Unity, Spivak (1965)). Let E ⊆ Rn and let
{Ei}∞i=1 be an open cover of E. Then there exists a collection of C∞(E,R) functions,
denoted by {ψ}∞i=1, with the following properties:

1. For all x ∈ E and i ∈ N we have 0 ≤ ψi(x) ≤ 1.

2. For all x ∈ E there exists an open set S ⊆ E containing x such that all but
finitely many ψi are 0 on S.

3. For each x ∈ E we have
∑∞

i=1 ψi(x) = 1.

4. For each i ∈ N we have {x ∈ E : ψi(x) 6= 0} ⊆ Ei.

Lemma C.5 (Chebyshev’s Inequality). Let (X,Σ, µ) be a measurable space and f ∈
L1(X,R). For any ε > 0 and 0 < p <∞,

µ({x ∈ X : |f(x)| > ε}) ≤ 1

εp

∫
X

|f(x)|pdx.

Lemma C.6 (Equivalence of essential supremum and supremum, Fischer (2015)).
Let E ⊂ Rn be an open set and f ∈ C(E,R). Then ess supx∈E |f(x)| = supx∈E |f(x)|.

266


