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Over the last 20 years, we have gotten very good at using computation to control linear state-space models.
My research question is: Where do we go from here?

Intractable Problems Most control problems in the engineering world are complicated; they have multiple
features such as delay, nonlinearity, uncertainty and switches. There might be simple states, such as position
and velocity, or there might be distributed states, such as temperature in a rod. In my research I work with
many types of models. For example (funded by the French government) I work on control of plasma in a
fusion reactor - a problem which is defined by the spatial distribution of temperature and magnetic field. This
system is nonlinear, uncertain and modeled using partial-differential equations. I have worked on the problem
of modeling internet congestion control. This model has nonlinearity, delay and logical switching. Additionally,
I work on understanding how the immune system controls diseases such as cancer. These models are nonlinear
and uncertain and are based on highly suspect conjectures of how the immune system operates. In each of
these cases, the underlying control problem is, by the standard definition of NP-hard, intractable. Yet despite
this fact, the problems remain important and are too complex to solve by hand. So my question is: How do
we use computation to solve these control problems?

While I don’t have an easy fix that will make intractable problems tractable, I do advocate a standardized
computational approach to solving these problems (funded by NSF CAREER).

A Changing Model for Computation The speed of a single-core CPU has not increased significantly
since 2005. Instead of building faster chips, manufacturers are focusing on multi-core platforms, combining
hundreds or thousands of computing cores with relatively low latency. Currently, 8-core chips are commercially
available for desktop computers, with 16 core chips expected by the end of the year and 48 core chips in testing.
As computing architectures become exponentially multi-core, sequential algorithms are becoming increasingly
obsolete. This is bad news for control, as vector and matrix optimization - the foundation for many control
algorithms - is known to be an inherently sequential problem. This means that unless P = NC (NC is the
class of problems with parallel solutions), there will never be an efficient parallelization of linear or semidefinite
programming. This leaves us with two choices: we can abandon optimization as a foundation of control (move
the field backward 30 years); or we can constrain our work to have a structure which can be exploited in a
massively-parallel-computing environment.

In my work, (supported by the NSF), I have built massively-parallel algorithms to create robust controllers
for systems with uncertainty and nonlinearity.

Polynomial Computing and Sum-of-Squares Intractable problems by definition admit no polynomial-
time solution. Control technology has advanced quickly over the past 20 years due primarily to the use of
polynomial-time convex-optimization-based algorithms such as LMI solvers and semidefinite programming. To
solve “intractable” control problems, I still use convex optimization, but I relax the polynomial-time constraint.
In particular, I look for a sequence of approximation algorithms, each of which is polynomial time and has
bounded error ǫi with limi→∞ ǫi = 0. See Figure 1 for an example of using an asymptotically exact algorithm for
stability analysis of a nonlinear PDE [1]. The figure shows ǫi vs. i. To create these approximation algorithms,
I use polynomial computing and Sum-of-Squares (SOS).
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Figure 1: Log-Log plot of accuracy
vs. polynomial degree for analysis of
a PDE.

Polynomial computing is the optimization of polynomial variables
subject to convex constraints. A simple example is

max cTx :

xT f(y) ≥ 0 for all y ∈ R
n

where f is a vector of polynomials. Polynomial computing is convex,
yet NP-hard. To solve these problems, we use asymptotic methods
such as Sum-of-Squares. Sum-of-Squares (SOS) is a parametrization
of positive polynomials of fixed degree using positive matrices. By
optimization of the positive matrices, we can solve polynomial com-
puting problems for a fixed polynomial degree. As we increase the
degree of the polynomial, the accuracy of the solution increases.

Areas of Applied Research

In my work, I consider two kinds of problems: 1) How to solve polynomial optimization problems; 2) How
to use polynomial optimization to solve applied engineering problems. In this document, I first describe two
important applied engineering problems on which I work. Following these applications, I describe some of the
more fundamental aspects of my research.

Tolerance and Control in the Immune System In October, 2011, the Nobel prize in Medicine was
given jointly to Bruce Beutler, Jules Hoffman and Ralph Steinman for contributions to understanding activation
of the immune system via dendritic cells. Unfortunately, one of these three, Dr. Steinman, died from pancreatic
cancer three days before the prize was announced. It seems that Dr. Steinman had spent the previous three
years, in collaboration with scientists from around the world, trying to design a customized treatment strategy
based on the activation of dendritic cells. Sadly, it was the failure of this activation to trigger a full immune
response that led to the failure of the treatment and ultimately, his death.

Understanding how the immune system can be used to fight disease has been a singular focus of medical
research since vaccines were first developed by Jenner in the 1770s (prior to vaccination, innoculation has been
used since the 1500s), with continued research leading to recent Nobel prizes in 1972, 1977, 1980, 1984, 1987,
1996, 1997, 2008 and 2011. As we understand it, the immune system is a network of cells which identifies
and eliminates harmful infections or toxins while maintaining tolerance to proteins which it identifies as self.
Failure of the immune system to recognize and tolerate self is what leads to auto-immune disease such as Type
I diabetes, organ rejection and allergies. On the other hand, failure to recognize cancer cells as harmful is what
results in malignant tumours. The mechanism by which the immune system makes a self-nonself determination
and communicates this information is unknown.

In my research, in collaboration with Dr. Lee at Stanford, Doron Levy at U. Maryland and Peter Kim at U.
Sydney, we view the immune system as a decentralized decision and control system which has been optimized
by evolution to minimize the dual threats of pathological infection and autoimmune disease. Using dendritic
cells, macropahages and antigen-presenting-cells (APCs) as sensors, we model the decision process through the
interaction of countervailing effector and regulatory T cell populations and we model the communication process
through a combination of mutual recognition and cytokine signalling. Some results include the following.

• At INRIA, I initiated a 1-year study of Myelogenous Leukemia funded by the Research Council of the
National Center for Research in Computer Science and Control and conducted in collaboration with
hematologists and other members of the ARC ModLMC group. We view the chronic state of Leukemia
as a stable equilibrium between cell growth and immune response. By contrast, the blast phase of
Leukemia, resulting in Acute Myelogenous Leukemia, is due to a change in patient parameters which
yield a transition to unstable equilibria [2, 3].
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• In [4], we presented a model for self-tolerance in the immune system. In this model, we proposed that the
immune system reacts primarily to the growth rate of antigen, as opposed to simply the concentration.
Using delay in regulatory response we proposed a biological model with a delay-induced differential
controller acting on a cytokine switch. Additionally, adaptive regulatory cells induce integral contraction
of the response. We used polynomial optimization techniques to map the parameter region for which the
contractive response was stable.

Control of Fusion Energy In 2008, a panel convened by the National Academy of Engineering at the
request of the National Science Foundation identified “Provide Energy from Fusion” as one of the 14 engineering
Grand Challenges for the 21st Century. Fusion energy refers to the difference in potential energy between
particles in free state and particles bound together by the strong nuclear force. The energy released from fusion
reactions per unit mass is substantially greater than that from fission reactions. For example, the 2H + 3H to
4He + 1n fusion reaction results in a release of 3.5 MeV/nucleon energy, while the decay of 235U results in an
approximately .85 MeV/nucleon release of energy. Unfortunately, while it is relatively easy to initiate fission
in 235U, creating and controlling plasma at the temperatures needed for fusion is a monumental engineering
challenge.

In this project, supported by the French government through the Chateaubriand program, the primary goal
is stabilization of high-temperature plasma instabilities known as magnetohydrodynamic (MHD) modes. We
have a collaboration between Emmanuel Witrant (U. Grenoble), Eugenio Schuster (Lehigh), and Didier Moreau
(Tore Supra). Prof. Witrant, in particular, has spent more than a month at IIT working on plasma control
problems. Our close collaboration allows us access to real-time data, advanced models and the opportunity
to implement controllers in functioning Tokamak reactors. The following are contributions to elimination of
MHD modes.

• As discussed in more detail below, we have created a new and effective framework for computational
design of controllers for PDE systems.

• We have designed a method for synthesizing observers-based controllers for PDE models [5].

• We have designed observer-based controllers for stabilization of the safety factor profile in Tokamaks,
resulting in a >30% improvement in performance in simulation [6].

My goal for this research is to design and implement controllers capable of increasing the efficiency of fusion
reactors.

Contributions to Basic Research in Control

In the following, I discuss contributions to control outside the context of specific applications.

Solving Large-Scale Problems using Parallel Structure Even if our effort to quantify the complex-
ity of NP-hard problems is successful, for most practical problems, the computational burden will still be too
high for current desktop computers. The problem is that single-core processing power is no longer increasing.
Instead, chip manufacturers have focused on the distributed computing paradigm best articulated by Mark
Weiser in 1991, wherein he described a world where computation wasn’t limited to large powerful machines. In
this world, computation was everywhere distributed and networked among countless small, specialized devices.
In the intervening 20 years, reality has caught up with this vision. Now we have small, specialized computa-
tional devices which have become ubiquitous and are connected via LAN, WWAN, WiFi and Bluetooth - Indeed
the venerable PC desktop itself has started to break down from a single CPU powerhouse into a collection of
core-processors distributed from the CPU to the motherboard to the graphics card to the hard drive.

3 of 8



Statement of Research Matthew M. Peet

Figure 2: Maximum Uncertain pa-
rameters for an n-Dimensional System
with Accuracy Level d using an 80-
node Cosmea Linux cluster with either
216GB or 24GB of RAM

In this new scenario, we must create algorithms which decentral-
ize efficiently. Unfortunately, interior-point algorithms (the workhorse
of optimization and control), do not have a decentralized structure.
The goal of our lab , supported by the NSF, is to create massively
parallel algorithms to solve polynomial computing problems. These
algorithms must have both distributed computation and distributed
memory structures.

• We have developed an efficient parallel framework for solving
polynomial computing problems on the simplex by using Polya’s
theorem instead of the Sum-of-Squares methodology [7, 8].

• In collaboration with Argonne National Labs, we have created an
efficient MPI-based parallel implementation of Polya’s theorem
to set up and solve polynomial computing problems [9].

• These algorithms have been adapted to and tested on multi-
core computers, cluster computers, and the IBM Blue Gene su-
percomputer for large-scale (100+ states) robust control problems. The algorithm demonstrates linear
speedup using up to 200 nodes. The potential of the algorithm is shown in Figure 2 which shows the
maximum number of uncertain parameters vs. the number of states and desired accuracy for an 80-node
Linux cluster with either 24GB or 216GB of RAM.
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Figure 3: Degree bound vs. Exponential Conver-
gence Rate

Converse Lyapunov Theory Lyapunov functions
are a well-known tool for stability analysis of nonlinear and
infinite-dimensional systems.

To quantify the tradeoff between accuracy and com-
plexity when using polynomial Lyapunov functions, I have
developed some results on converse Lyapunov theory. For
a nonlinear system

ẋ(t) = f(x(t)),

I have shown that if f is thrice differentiable, then expo-
nential stability implies the existence of a polynomial Lya-
punov function [10–12]. In [13], I gave a quantitative bound

on the Lipschitz continuity factor of converse Lyapunov functions. In [14, 15], I have shown that if f is poly-
nomial, there exists a sum-of-squares Lyapunov function and I have given a bound on the degree. This bound
is shown in Figure 3. Note that this bound decays to two which means that a sufficiently stable system will
always have a quadratic Lyapunov function. We have also shown that exponentially stable systems with delay
also have Lyapunov functions defined by polynomials [16–18]. This is discussed in more detail below.

My continuing goal for this research is to develop bounds on accuracy of the polynomial computing test as
a function of compexity.

Control of Systems with Delay Delays are a common feature in control systems which involve com-
munication, discretization, or transport. However, analysis of systems with delays is NP-hard. We have used
polynomial computing to greatly enhance understanding of these systems. The following are our contributions.

• We have shown how to recast stability of linear time-delay systems as polynomial computing [19–24] with
no conservatism [16–18].

• We have extended our result to analysis of nonlinear delayed systems [25, 26], systems with time-varying
delays [27] and singular systems with delay [28–31].
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• We have proposed a theory of duality for linear time-delay systems [32].

• We have reduced the complexity of the computation by several orders of magnitude [28–30, 33].

• We have done some analysis of delayed problems in networking and biology [3].

• Polynomial computing for frequency-domain methods in delay can be found in [31, 34–36].

• We considered control of sampled-data systems in [37].

Control of Partial-Differential Equations Partial-differential models are used to describe elasticity,
fluid motion and cellular interaction, among other things. Although PDE models are ubiquitous in engineering,
our ability to compute controllers for these systems relies almost exclusively on discretization. Funded by the
NSF CAREER program, our lab has made it possible to design controllers for PDEs in a systematic way by
converting the problem to polynomial computing. The following are some contributions.

• We have used SOS to design observers for PDE models of heat transfer and for plasma in Tokamaks [5].

• We have used SOS to design observer-based controllers for linear PDE models of plasma in Tokamaks [6].

• We have proposed a method for using polynomial computing for analysis of nonlinear PDEs and demon-
strated asymptotic accuracy [1].

My goal for this research area is to reproduce or exceed our success with delayed systems by reducing optimal
control of partial-differential systems to a polynomial computing problem.

Control of Decentralized Networks The need for efficient exchange of information has led to the
creation of large communication networks. Examples of such networks include the Internet, telephone, postal
and power distribution services. In each case, the goal is to transmit information using decentralized control
mechanisms. For many systems, ad hoc transmission controls have been adopted which often work well in
the short term, but usually fail as the systems expand. Decentralized control systems can be seen as solving
large-scale optimization problems using distributed resources.

max
k∑

i=1

fi(xi), subject to: Bx ≥ c.

In large systems, centralized computation becomes infeasible. Furthermore, the presence of information con-
straints makes centralized implementation difficult. The goal, then, is to develop decentralized controls which,
when combined, cause the system to converge to the global optimum.

For Internet congestion control, I considered decentralized controllers based on the application of the
gradient-projection algorithm to the dual of the optimization problem. My contributions include the following.

• We proved global convergence of the Internet to optimality given a certain bound on the feedback gain
at the source and using a hybrid, nonlinear, time-delayed model of the Internet [19, 38]. This bound was
shown to be both necessary and sufficient.

• We considered an approach to Internet congestion control based on optimization algorithms applied to the
primal problem with dynamics at the source and not the link [39]. This is the first proof of convergence
of this model of Internet congestion control for an arbitrary topology.

• In [37], we showed how to use Sum-of-Squares to control continuous systems by feedback over an unreliable
network (e.g. with packet dropping).

My long-term goal in this area is to improve understanding of the limits of decentralized control protocols and
to apply the lessons from Internet congestion control to other types of decentralized networks.
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