
PIETOOLS 2021b: Getting Started with PDEs

Sachin Shivakumar, Amritam Das, Declan Jagt, and Matthew Peet

December 29, 2021

Abstract

The fact that you are reading this file means that you are interested in working
with PI operators and using PIETOOLS 2021b. Congratulations! You are very cool
and tech-savvy. This file gives you a step by step guide on how to make your first
program in PIETOOLS and execute it.

1 Before you Start

Before you start, please make sure of the following:

• You have MATLAB version 2014a or newer installed.

• You have an SDP solver installed. The solver SeDuMi is included in the installation
script, and can also be obtained from this link.

• You have downloaded PIETOOLS 2021b.zip (from control.asu.edu/pietools/), and
unzipped the file.

• You have run the file pietools install.m in MATLAB. If you didn’t bother with
steps 2 and 3, then this install file will take care of them.

1

http://sedumi.ie.lehigh.edu/?page_id=58
control.asu.edu/pietools/


2 Let’s get started

Welcome to PIETOOLS! This file will give you a brief demonstration of how you can use
this toolbox, and get you started on your PIE journey.

Wait, what’s a PIE?

A Partial Integral Equation, or PIE, is an alternative representation for a large class of
differential systems, such as Partial Differential Equations (PDEs). In a PIE, partial differ-
ential operators are replaced by Partial Integral (PI) operators, which allow for much easier
analysis of your system. For example, take a run-of-the-mill transport equation:

u̇(t, s) = ∂su(t, s) s ∈ [0, 1], t ≥ 0

u(t, 0) = 0

Though it may not be immediately obvious, this PDE, like any PDE, imposes 3 types of
constraints on the state u:

1. An evolution equation: u̇(t, s) = ∂su(t, s)

2. Boundary conditions: u(t, 0) = 0

3. Continuity constraints: ∂su ∈ L2[0, 1] (i.e. u must be at least once differentiable)

The presence of these latter two types of constraints tends to make analysis of PDEs quite
difficult, with many methods relying on ad hoc steps to be taken to take them into account.
However, if we consider an alternative state û = ∂su, then this state is not restricted by any
continuity or boundary constraints. Moreover, we can retrieve our PDE state u from this
alternative state using the fundamental theorem of calculus, and exploiting the boundary
conditions:

u(t, s) = u(t, 0) +

∫ s

0

∂θu(t, θ)dθ =

∫ s

0

û(t, θ)dθ

We can therefore represent our PDE in an equivalent manner as∫ s

0

˙̂u(t, θ)dθ = û(t, s) s ∈ [0, 1], t ≥ 0,

which is a PIE! Note that the state in this system is only constrained by the actual evolution
equation, allowing us to study this system (and hence our transport equation) without having
to account for additional constraints.

2



Well, what if I have a different PDE?

Any (well-defined) linear PDE can be converted to an equivalent PIE. And the best part is:
you can use PIETOOLS to do it! For example, consider a simple heat equation:

u̇(t, s) = ∂2su(t, s) s ∈ [0, 1], t ≥ 0

u(t, 0) = ∂su(t, 0) = 0

This system can be easily specified in PIETOOLS using the app PIETOOLS PDE GUI, so
feel free to do so. However, we have also implemented this system for you, saved as a file
Heat Eq.mat in the folder /Examples PDE GUI/Demos. You can open this file in one of two
ways:

1. By loading it directly into the GUI. This can be achieved by running the GUI (PIETOOLS PDE GUI),
and using the “Load” button at the bottom right of the window. Locate the file
Examples GUI PDE/Demos/Heat Eq.mat, press “open”, and you’re done!

2. Using the command line. To this end, define root as the location where you installed
PIETOOLS (the parent folder containing all the PIETOOLS files and folders), and
run:

>> app = PIETOOLS 2021b;

>> load(fullfile(root,‘PIETOOLS examples/Examples PDE GUI/Demos/Heat Eq.mat’));

If everything went well, you should see a window like this:

3



You can see that the PDE described in the GUI corresponds to our heat equation. Then,
to describe this system in a format PIETOOLS can work with, we can press the button “Get
PDE Object” at the bottom left of the window. This will add a MATLAB strucutre PDE GUI

to your workspace, describing the heat equation. More interesting though, is the conversion
to a corresponding PIE. This can be performed pressing the “Convert to PIE” button at
the bottom left of the window, and will add a structure PIE GUI to your workspace. This
structure will describe the PIE representation of our heat equation, which should be of the
form

T ˙̂u = Aû,

where û = ∂2su is our PIE state. To see what the PIE looks like, we can extract the values
of operators T and A from the PIE structure, by running

>> Top = PIE GUI.T

>> Aop = PIE GUI.A

which will produce an output

Here, Top and Aop are “opvar” objects, describing PI operators in PIETOOLS. From the
values of Top.R and Aop.R we can determine that our PIE looks like

T ˙̂u(t)︷ ︸︸ ︷∫ s

0

[s− θ]︸ ︷︷ ︸
Top.R.R1

˙̂u(t, θ)dθ =

Aû(t)︷ ︸︸ ︷
1︸︷︷︸

Aop.R.R0

û(t, s) .

It is easy to verify that
(
T û
)
(t, s) = u(t, s), and

(
Aû
)
(t, s) = ∂2su(t, s), retrieving our heat

equation. So, we can use the GUI to specify any (well-posed) PDE, and immediately convert
it to a corresponding PIE!

4



So now what?

Now that we have a PIE, we can use it to analyze our PDE. For analysis of PDEs, you
can use the PIETOOLS PDE script in the root directory. For example, if we want to test
whether our PDE is stable, open the script, and uncomment the line saying stability=1.
This tells the script that you want to test stability of the submitted system, which can
also be done by specifying stability=1 in the command line. Now, to make sure the
script can actually find your problem, rename your PIE structure to the standard name:
PIE=PIE GUI;. Also, make sure the line PDE = examples PDE library PIETOOLS(); is
commented, to avoid overwriting your PDE with a predefined example. Finally, uncom-
ment the line settings PIETOOLS light, and comment all the other settings PIETOOLS

lines. This will limit the effort PIETOOLS will use to test stability, decreasing computation
time, but reducing the accuracy. Now, if you run the script you will likely get an output
like:

This message tells us that PIETOOLS is unable to verify stability. In particular, the
value pinf: 1 suggests that, using the “light” settings, PIETOOLS considers the stability
problem to be infeasible. You can try playing around with adjusting the settings, for example
uncommenting settings PIETOOLS heavy instead of settings PIETOOLS light, but you
will find that PIETOOLS cannot tell you with certainty that this system is stable. Therefore,
let’s consider a slightly different system, concerning a heat equation with Dirichlet conditions
on both of the boundaries:

u̇(t, s) = ∂2su(t, s) s ∈ [0, 1], t ≥ 0

u(t, 0) = u(t, 1) = 0

To specify this system, we can simply adjust our old heat equation in the GUI, replacing
the boundary condition ∂su(t, 0) = 0 with u(t, 1) = 0. To this end, use the drop-down menu
under step 3 (in the bottom-left of the window) to specify boundary condition 3, and press
“Remove BC”. This will remove the undesired boundary condition. Then, press “Add new
BC”, which will add a new boundary condition “0=0” to the system. Note that we cannot
adjust the left-hand side of this boundary condition, which will always have to be 0. This
means that we will have to set the right-hand side of this condition equal to “X1(1)”, so
that “0=X1(1). To do this, move to step 2 in the top-right, and select “BC”. Then, use
the drop-down menu to the right of this option to specify the boundary condition we wish
to add a term to: number 3. Next, in step 2a, use the drop-down menu to specify that we
wish to add a “Standard” (non-integral) term. Use the new drop down menu to specify the

5



state we wish to add to our boundary conditions (our only state “X1”), and select “1” to the
right of this state to indicate we want to evaluate the state at the upper boundary. Since we
don’t want to take a derivative of the state (at the boundary), nor do we want to multiply
it with any coefficient, simply press “Add” to add the specified term to boundary condition
3. Then, you should have a system that looks like:

Now, to test stability for this example, use “Get PDE Object” to add a PDE structure
PDE GUI to your workspace. Rename this structure PDE=PDE GUI to make sure PIETOOLS PDE

can find your PDE, and run the script with the same options as before. This will produce
an output that looks like:

PIETOOLS has no problem verifying stability of this system, which you can also check
using heavier settings. Feel free to play around adjusting your PDE and see how this may
affect stability. For example, try implementing the PDE u̇(t, s) = ∂2su(t, s) + λu for some
value λ, with the same boundary conditions. It can be shown that this system is stable for
λ < π2 ≈ 9.8696; a bound you can verify up to high accuracy using PIETOOLS.

6



Is that it?

Of course that’s not it! There are tons of things you can do with PIETOOLS. You can couple
your PDE to an ODE, and introduce inputs and outputs. You can compute H∞-optimal
controllers and observers, and construct the corresponding closed-loop system. You can work
with NDSs, DDFs, DDEs, PDEs, or focus purely on PIs. Just check the manual to see all
the cool things you can do with PIETOOLS. Also, if you’re looking for inspiration, check
out the example libraries, or look at the other demo files. There’s plenty to do, so have fun!

7


	Before you Start
	Let's get started

