
Multipoly: A Toolbox for Multivariable Polynomials

Version 2.01

Pete Seiler
pseiler@umich.edu

Sachin Shivakumar
sshivak8@asu.edu

September 13, 2021

Abstract

Multipoly is a Matlab toolbox for the creation and manipulation of polynomials with one or more variables.
This document briefly describes the use and functionality of this toolbox. Section 1 describes the installation
of the toolbox. Section 2 gives a brief introduction on the basic functionality of the toolbox. More advanced
functionality is descrbied in Section 3 shows more advanced functionality. Full documentation for all toolbox
functions is provided in Section 5.

1 Installation

The toolbox was tested with MATLAB versions R2009a and R2009b. The multipoly objects have been constructed
using Matlab’s new object oriented programming syntax. As a result, the toolbox will not function correctly in
R2007b and earlier versions of Matlab. To install the toolbox:

� Download the zip file and extract the contents to the directory where you want to install the toolbox.

� Add the mulitpoly directory to the Matlab path, e.g. using Matlab’s addpath command. Note that the toolbox
will not work if you are currently in the @polynomial directory. This is due to MATLAB’s handling of object
methods.

� As described below, the subs command can be used to evaluate polynomials at specific values of the variables.
The toolbox contains one lower level mex function, peval.c, which can be compiled to greatly speed up
evaluation of polynomials. To compile this mex file, change to the multipoly\@polynomial\private folder.
Type mex peval.c in this folder to compile the mex function. There is a m-file version of this function which
will be called if the mex version is not compiled but polynomial evaluations will be significantly slower than
the compiled mex function.

2 Basic Functionality

Polynomial objects are most easily constructed by performing basic operations on polynomial variables. Use the
pvar command to create polynomial variables, e.g.

>> pvar x1 x2 x3

A multivariable polynomial object can be created from these variables using addition, multiplication, and exponen-
tiation:

>> p = x3^4+5*x2+x1^2

p =

x3^4 + x1^2 + 5*x2

1

Matrices of polynomials can be created from polynomials using horizontal/vertical concatenation and block diagonal
augmentation:

>> p = x3^4+5*x2+x1^2

p =

x3^4 + x1^2 + 5*x2

>> M1=[p 2*x2]

M1 =

[x3^4 + x1^2 + 5*x2 , 2*x2]

>> M2=[p; 2*x1*x2*x3]

M2 =

[x3^4 + x1^2 + 5*x2]

[2*x1*x2*x3]

>> M3 = blkdiag(p,x1-5)

M3 =

[x3^4 + x1^2 + 5*x2 , 0]

[0 , x1 - 5]

Elements of a polynomial matrix can be referenced and assigned using the standard MATLAB referencing notation:

>> M3

M3 =

[x3^4 + x1^2 + 5*x2 , 0]

[0 , x1 - 5]

>> M3(2,2)

ans =

x1 - 5

>> M3(1,:)

ans =

[x3^4 + x1^2 + 5*x2 , 0]

>> M3(1,2) = (x1+2)^2

M3 =

[x3^4 + x1^2 + 5*x2 , x1^2 + 4*x1 + 4]

[0 , x1 - 5]

3 Advanced Functionality

This section describes some of the additional features of the multipoly toolbox. A complete list of implemented
functions can be found in Section 5.

3.1 Creating Polynomials

The toolbox contains several functions to construct polynomials of specialized form. The mpvar function can be used
to create a polynomial matrix variable:

>> P = mpvar(’p’,[4 2])

P =

[p_1_1, p_1_2]

[p_2_1, p_2_2]

[p_3_1, p_3_2]

2

[p_4_1, p_4_2]

>> P = mpvar(’p’,[4 4],’s’)

P =

[p_1_1, p_1_2, p_1_3, p_1_4]

[p_1_2, p_2_2, p_2_3, p_2_4]

[p_1_3, p_2_3, p_3_3, p_3_4]

[p_1_4, p_2_4, p_3_4, p_4_4]

The first argument of mpvar specifies the prefix for the variable names in the matrix and the the second argument
specifies the matrix size. The ’s’ option in the second example is used to construct square, symmetric polynomial
matrix variables.

The monomials function is used to construct a vector list of monomials:

>> pvar x1 x2

>> Z1 = monomials([x1;x2],0:2)

Z1 =

[1]

[x1]

[x2]

[x1^2]

[x1*x2]

[x2^2]

The first argument of monomials specifies the variables used to construct the monomials vector. The second argument
specifies the degrees of monomials to include in the monomials vector. In the example above, the vector Z1 returned
by monomials contains all monomials in variables x1 and x2 of degrees 0,1, and 2.

The toolbox contains two functions to compute least squares polynomial fits. pdatafit computes a polynomial fit
to given input/output data. pfunctionfit computes a polynomial fit to a specified function. Syntax and examples
for these functions is provided in Section 5.

The toolbox also contains functions to convert between the multipoly and symbolic toolboxes. s2p converts from
a polynomial from a symbolic toolbox object to a multipoly object. p2s converts a polynomial from a multipoly
to a symbolic object. The two toolboxes have different functionality and it can be useful to convert back and forth
depending on the desired functionality.

Finally, it is possible to directly create a multivariable polynomial by calling the polynomial constructor. The
data structure used by the multipoly toolbox to represent polynomials must be understood in order to use this
constructor. The coefficients, monomials degrees, and variables names are stored for each polynomial. A simple
scalar example illustrates the data structure:

>> pvar x1 x2 x3

>> p = 3*x3^4+5*x2*x3+7*x1^2

p =

3*x3^4 + 7*x1^2 + 5*x2*x3

>> full(p.coefficient)

ans =

3

7

5

>> full(p.degmat)

ans =

0 0 4

2 0 0

0 1 1

>> p.varname

ans =

’x1’

3

’x2’

’x3’

Each row of the degree matrix describes one term in the polynomial. The columns of the degree matrix correspond
to the listing of the variables in p.varname. In this example, the rows of the degree matrix correspond to the
monomials x4

3, x2
1, and x2x3, respectively. The rows of the coefficient matrix provide the coefficients for the monomial

specified by the corresponding row of the degree matrix. In this example, the rows of the coefficient and degree
matrices specify the terms 3x4

3, 7x2
1, and 5x2x3.

Next consider an N×M polynomial in V variables consisting of T terms. This polynomial is stored as an T×NM
sparse coefficient matrix, a T ×V degree matrix and a V ×1 cell array of variable names. It might be more natural to
represent the coefficient matrix as an NxMxT array of coefficients. However, MATLAB does not support 3D sparse
arrays. To exploit sparsity, the coefficient matrix is stored as an TxNM array. Below is an example showing the data
structure information for a polynomial matrix.

>> pvar x1 x2

>> M = [x1^2+7*x1*x2 -3*x1*x2; 0 2*x2+5]

M =

[x1^2 + 7*x1*x2, -3*x1*x2]

[0, 2*x2 + 5]

>> full(M.coefficient)

ans =

1 0 0 0

7 0 -3 0

0 0 0 2

0 0 0 5

>> full(M.degmat)

ans =

2 0

1 1

0 1

0 0

>> M.varname

ans =

’x1’

’x2’

>> M.matdim

ans =

2 2

The field matdim gives the dimensions of the matrix polynomial. The rows of the degree matrix represent the
four monomials x2

1, x1x2, x2 and 1. Each row of the coefficient matrix can be reshaped into a 2×2 coefficient matrix.
For example, the second row of the coefficient matrix is reshaped to:

full(reshape(M.coefficient(2,:),M.matdim))

ans =

7 -3

0 0

Thus the second row of the coefficient and degree matrices specifies the term
[
7 −3
0 0

]
x1x2.

The polynomial constructor directly constructs a polynomial given the coefficient, monomial degree matrix,
variable names, and matrix dimensions. The constructor synatx is:

4

P=polynomial(Coefficient,Degmat,Varname,Matdim)

3.2 Polynomial Manipulations

The toolbox contains functions to easily manipulate and evaluate polynomial expressions. The subs function can be
used to replace polynomial variables with either symbolic or numeric expressions. A simple example is shown below:

>> pvar x1 x2 y1

>> x=[x1;x2];

>> p=2*x1^4+2*x1^3*x2-x1^2*x2^2+5*x2^4

p =

2*x1^4 + 2*x1^3*x2 - x1^2*x2^2 + 5*x2^4

>> subs(p,x,[1;2])

ans =

82

>> subs(p,x,[0 1 1; 1 0 2])

ans =

[5, 2, 82]

>> subs(p,x,[y1;0])

ans =

2*y1^4

Numeric substitions, as in the first two examples of subs above, are performed with the private function peval.
These substitutions are performed much more efficiently if the mex version of peval.c is compiled as described in
Section 1. The last example of subs above demonstrates a symbolic substitution.

The are a variety of other functions to group polynomial terms. The cleanpoly remove terms based on value of
coefficient and degree. The poly2basis projects the polynomial coefficients onto a basis of monomials. The collect
function collects coefficients of specified variables monomials. Finally, the monomials function can also be used to
extract all monomials the exist in a polynomial.

>> pvar x1 x2;

>> p = [x1^2-9, 5*x1+3*x1*x2-4*x2^2];

>> cleanpoly(p,[],2)

ans =

[x1^2, 3*x1*x2 - 4*x2^2]

>> m = monomials(p)

m =

[1]

[x1]

[x1^2]

[x1*x2]

[x2^2]

>> R = [x1^2; x2^2];

5

>> [V,R,e] = poly2basis(p,R);

>> [V R]

ans =

[1, 0, x1^2]

[0, -4, x2^2]

>> e

e =

[-9, 3*x1*x2 + 5*x1]

In the example above, the cleanpoly function retains only the quadratic terms in the polynomial p. The
monomials function extracts all monomials that exist in p. The poly2basis function projects the polynomial of p

onto the monomials listed in R. Each row of V provides the coefficients of the monomial in the corresponding row of
R. In this example, the second row of V is [0 −4] representing the coefficient of x2

2 in p. poly2basis also returns the
difference between the input polynomial p and the projection R’*V, i.e. e = p-R’*V.

The toolbox contains functions diff and jacobian to compute derivatives of a polynomial. There are also
functions pcontour and pcontour3 to plot 2d and 3d contours of a polynomial. Finally, there are functions to
linearize (plinearize), trim (ptrim), sample (psample), and simulate (psim) polynomials.

3.3 Simulink Interface

polylib.mdl contains a Simulink block for polynomial objects. A polynomial object and its input variables are
specified in the dialog box of the object. The block output is the polynomial evaluated at the input of this block.
This block can be used to integrate polynomial objects into Simulink models.

4 Acknowledgments

This research was partially supported under the NASA Langley NRA contract NNH077ZEA001N entitled “Analyt-
ical Validation Tools for Safety Critical Systems” and the NASA Langley NNX08AC65A contract entitled ’Fault
Diagnosis, Prognosis and Reliable Flight Envelope Assessment.” The technical contract monitors are Dr. Christine
Belcastro and Dr. Suresh Joshi, respectively.

6

5 List of Functions

The list of functions for polynomials is given below. This function list can be displayed in Matlab by typing help

multipoly. The remainder of this section describes the purpose and syntax of most polynomial functions. This
information can be displayed in Matlab by typing help functioname. Documentation for overloaded function
operations, e.g. plus, is not provided here but can be obtained at the Matlab prompt using help.

Multivariate Polynomial Toolbox

Version 2.00, 23 November 2010.

Creating polynomial objects

pvar - Construct a polynomial variable

mpvar - Construct a matrix or vector polynomial variable

polynomial - Construct a polynomial object

monomials - Construct list of monomials

pdatafit - Compute a polynomial least squares fit to data

pfunctionfit - Compute a polynomial least squares fit to a function

Simulink:

polylib.mdl - Simulink block for polynomial objects

Polynomial plotting:

pcontour - Plot 2d polynomial contours

pcontour3 - Plot 3d polynomial contours

Polynomial functions:

poly2basis - Project polynomial onto a basis of monomials

plinearize - Linearize a vector polynomial function

ptrim - Find trim conditions for a polynomial dynamical system

psolve - Find roots of a system of polynomials

pvolume - Estimate the volume of a polynomial set

psample - Draw random samples from a polynomial set

psim - Simulate a polynomial dynamical system

pplanesim - Plot the phase plane for a polynomial dynamical system

int - Element-by-element integration of a polynomial

diff - Element-by-element differentiation of a polynomial

jacobian - Compute Jacobian matrix of a polynomial vector

collect - Collect coefficients of specified variables

subs - Symbolic substitution

cleanpoly - Remove terms based on value of coefficient and degree

Polynomial characteristics:

isdouble - True for arrays of doubles

ispvar - True for arrays of pvars

ismonom - True for arrays of monomials

isempty - True for empty monomials

isequal - Element by element polynomial comparisons

size - Size of a polynomial matrix

length - Length of a polynomial matrix

fieldnames - Get properties of a polynomial object

Conversions:

p2s - Convert from multipoly to symbolic toolbox

s2p - Convert from symbolic toolbox to multipoly

double - Convert constant polynomial to a double

char - Converts a polynomial to its string representation.

7

Overloaded arithmetic operations:

plus, + - Add polynomials

minus, - - Subtract polynomials

mtimes, * - Multiply polynomials

mpower, ^ - Power of a polynomial

horzcat, [,] - Horizontal concatentation of polynomials

vertcat, [;] - Vertical concatentation of polynomials

diag - Diagonal poly matrices and diagonals of poly matrices

tril - Extract lower triangular part of a polynomial matrix

triu - Extract upper triangular part of a polynomial matrix

blkdiag - Block diagonal concatenation of polynomial matrices

ctranspose, ’ - Non-conjugate transpose of a polynomial

transpose, .’ - Non-conjugate transpose of a polynomial

reshape - Reshape a polynomial matrix

repmat - Replicate and tile an array of polynomials

uplus - Unary plus of a polynomial

uminus - Unary minus of a polynomial

times, .* - Element-by-element multiply of polynomials

power, .^ - Element-by-element power of a polynomial

sum - Sum of the elements of a polynomial array

prod - Product of the elements of a polynomial array

trace - Sum of the diagonal elements

det - Determinant of a polynomial matrix

8

5.1 PVAR

function p = pvar(varargin)

DESCRIPTION

Create variables (i.e. monomials of degree 1).

INPUTS

X1,X2,...: Character strings used to name variables.

OUTPUTS

p: pvar

SYNTAX

pvar(’x1’,’x2’,’x3’)

pvar x1 x2 x3

Both of these function calls create monomials of degree 1 in the

caller workspace with the given names. Any number of pvars can be

created.

p1 = pvar(’x1’)

Creates a pvars named x1 and assigns it to the output variable p1.

[p1,p2,...] = pvar(’x1’,’x2’,...)

Creates many pvars and assigns them to the output variables.

See also mpvar

9

5.2 MPVAR

function P = mpvar(cstr,N,M,opt);

DESCRIPTION

Create a polynomial matrix or vector variable

INPUTS

cstr: Character string to be used in creating the coefficient vector.

N,M: row and column dimensions of polynomial matrix.

opt: If N==M, then set opt = ’s’ to generate a symmetric

matrix variable.

OUTPUTS

P: polynomial matrix

SYNTAX

P = mpvar(’c’,N)

Creates an NxN polynomial matrix with entries c_i_j.

P = mpvar(’c’,N,M)

P = mpvar(’c’,[N,M])

Creates an NxM polynomial matrix with entries c_i_j.

P = mpvar(’c’,N,N,’s’)

Creates an NxN symmetric polynomial matrix with entries c_i_j.

P = mpvar(’c’,[N,1])

P = mpvar(’c’,[1,N])

Creates an Nx1 or 1xN polynomial vector with entries c_i if

N>1. If N=1 then this creates a pvar named c.

mpvar(cstr,N,M)

Equivalent to calling eval([cstr ’=mpvar(cstr,N,M);’]).

EXAMPLE

P = mpvar(’p’,[2,3])

P =

[p_1_1, p_1_2, p_1_3]

[p_2_1, p_2_2, p_2_3]

See also pvar

10

5.3 POLYNOMIAL

function P = polynomial(Coefficient,Degmat,Varname,Matdim);

DESCRIPTION

Creates a polynomial or a matrix of polynomials.

INPUTS

Coefficient: coefficients of each monomial.

Degmat: degrees of each monomial

Varname: names of variables

Matdim: dimensions of the polynomial matrix

OUTPUT

P: polynomial object

SYNTAX

P=polynomial

Creates an empty polynomial object.

P=polynomial(Coefficient)

If Coefficient is a real matrix of dimension NxM, then P is

an NxM constant polynomial.

P=polynomial(Varname)

If Var is an NxM cell array of strings, then P is an NxM polynomial

whose entries are the variables specified in Var.

P=polynomial(Coefficient)

If Coefficient is a polynomial object, then P=Coefficient.

P=polynomial(Coefficient,Degmat,Varname,Matdim)

If P is an NxM polynomial that is the sum of T terms in V

variables, the inputs should be specified as:

Coefficient is a Tx(N*M) sparse matrix.

The coefficients of the (i,j) entry of the polynomial

matrix are a Tx1 vector stored in the i+*N*(j-1) column of

Coefficient.

Degmat is a TxV sparse matrix of natural numbers. Row t

gives the degrees of each variable for the t^th term.

Varname is a Vx1 cell array with entry v giving the name of

variable v. For a constant polynomial, varname is an

empty 1x1 cell.

Matdim is a 1x2 vector of the matrix dimensions, [N M].

11

5.4 MONOMIALS

function Z=monomials(p,deg)

DESCRIPTION

Construct list of monomials

INPUTS

p: A polynomial, vector of pvars or a non-negative integer.

deg: A vector of non-negative integers specifying the degrees

of monomials to be included Z.

OUTPUTS

Z: lz-by-1 list of monomials

Z: If p is a polynomial (deg is not specified) then Z will be a

lz-by-1 vector of all monomials in p. If p is a vector of pvars

then Z will be a lz-by-1 vector of all monomials of the specified

degrees in the given pvars. If vars is a non-negative integer then

Z will be the lz-by-var degree matrix with each row specifying the

degrees of one of the monomials.

SYNTAX

Z=monomials(p)

If p is a polynomial then Z is the vector of monomials in p.

Z=monomials(vars,deg)

If vars is a vector of pvars then Z is a vector of all monomials

in the variables listed in vars and degrees listed in deg.

Z=monomials(nvar,deg)

If nvar is a non-negative integer then Z is the degree matrix

corresponding to all monomials in nvar variables and degrees deg.

EXAMPLE

pvar x1 x2

Z1 = monomials([x1;x2],0:2)

Z1 =

[1]

[x1]

[x2]

[x1^2]

[x1*x2]

[x2^2]

p = x1^2+5*x1*x2-6*x2^3;

Z2 = monomials(p)

Z2 =

[x1^2]

[x1*x2]

[x2^3]

See also poly2basis

12

5.5 PDATAFIT

function [pfit,cfit,info] = pdatafit(p,x,Xdata,Ydata,W)

DESCRIPTION

This function finds the coefficients of a multivariate polynomial that

best fits given data in a least-squares cost. The data is fit

with a linear combination of polynomial basis functions:

p(x,c) = c1*f1(x)+c2*f2(x) + ... + ck*fk(x)

where f1, f2, ..., fk are the polynomial basis functions. pdatafit

computes the coefficients c1, c2, ..., ck that minimize the fitting

error in a weighted squares cost:

min_c sum_i (W(i)*e(i))^2

where e(i) is the fitting error of the i^th data point, i.e.

e(i) := p(Xdata(i,:),c) - Ydata(i).

INPUTS

p: 1-by-1 polynomial.

x: Nx-by-1 vector of pvars that specifies the independent variables

in p. All other variables in p are considered to be coefficients.

Xdata: Nx-by-Npts matrix of input data values. The i^th row of Xdata

gives the data values associated with x(i).

Ydata: 1-by-Npts vector of output data values

W (Optional): 1-by-Npts weighting vector [Default: W=ones(1,Npts)]

OUTPUTS

pfit: Least-squares polynomial fit

cfit: Nc-by-2 cell array of the optimal coefficients. The first

column contains the coefficients (as chars) and the second

column contains the optimal values. The subs command can be

be used to replace the coefficients in any polynomial with

their optimal values, e.g. pfit = subs(p,cfit).

info: Data structure containing the matrices in the least squares

problem. info has the fields A, b, cfit, W, e. This gives

the data of the least squares problem in the form:

min_c || diag(W)*(A*c-b) ||_2.

e = A*cfit-b is the fitting error.

SYNTAX

[pfit,cfit,info] = pdatafit(p,x,Xdata,Ydata)

[pfit,cfit,info] = pdatafit(p,x,Xdata,Ydata,W)

EXAMPLE

Xdata = linspace(100,200);

Ydata = 1./Xdata;

pvar c0 c1 c2 x;

p=c0+c1*x+c2*x^2;

[pfit,cfit,info] = pdatafit(p,x,Xdata,Ydata)

plot(Xdata,Ydata,’bx’,Xdata,double(subs(pfit,x,Xdata)),’r--’)

legend(’1/X’,’pfit’); xlabel(’x’);

pfit =

3.2808e-007*x^2 - 0.00014616*x + 0.0212

cfit =

’c0’ [0.0212]

’c1’ [-1.4616e-004]

13

’c2’ [3.2808e-007]

info =

A: [100x3 double]

b: [100x1 double]

cfit: [3x1 double]

W: [100x1 double]

e: [100x1 double]

See also pfunctionfit

100 120 140 160 180 200
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10
x 10

−3

x

1/X
pfit

Figure 1: Polynomial fit of 1/x using pdatafit

14

5.6 PFUNCTIONFIT

function [pfit,cfit,fiterr] = pfunctionfit(p,x,Xdata,fnc,W)

DESCRIPTION:

This function finds the coefficients of a multivariate polynomial that

best fits a function fnc in a least-squares cost. The function is fit

with a linear combination of polynomial basis functions:

p(x,c) = c1*f1(x)+c2*f2(x) + ... + ck*fk(x)

where f1, f2, ..., fk are the polynomial basis functions. pfunctionfit

samples the function fnc and computes the coefficients c1, c2, ..., ck

that minimize the fitting error on these samples in a weighted squares

squares cost. See pdatafit for more detail.

INPUTS:

p: 1-by-1 polynomial.

x: Nx-by-1 vector of pvars that specifies the independent variables

in p. All other variables in p are considered to be coefficients

Xdata (Optional): Nx-by-Npts matrix of input data values at which to

evaluate fnc for fitting. Alternatively, Xdata can be a

structure with fields specying how to construct the data:

fields to construct the Nvars-by-Npts input data set.

- range:= Nx-by-2 matrix containing the data range [min max] of

the variables defined in vars. Default is [-1 1]

- sample:=defines the sampling technique. Choices are: ’grid’,

’uniform’ ,’lhs’. Default is ’grid’. ’grid’ generates

linearly spaced data along each direction. ’uniform’ draws

random samples from the range using a uniform distribution.

’lhs’ uses the Latin Hypercube sampling technique. ’lhs’

requires the Statistics Toolbox.

- Npts: If sample=’grid’ then Npts is a Nvar-by-1 vector

defining the number of points to be sampled along each

direction. The total # of points is prod(Npts). For ’lhs’

or ’uniform’, Npts is a 1-by-1 defining the total

number of sampled points.

fnc : Function to fit with inputs x and 1-by-1 output. fnc can be

a function handle, string expression, or polynomial.

W (Optional): 1-by-Npts weighting vector . Alternatively W can be

a function handle, string expression, or polynomial.

[Default: W=ones(1,Npts)]

OUTPUTS:

pfit: Least-squares polynomial fit

cfit: Nc-by-2 cell array of the optimal coefficients. The first

column contains the coefficients (as chars) and the second

column contains the optimal values. The subs command can be

be used to replace the coefficients in any polynomial with

their optimal values, e.g. pfit = subs(p,cfit).

info: Data structure containing the matrices in the least squares

problem. info has the fields A, b, cfit, W, e as described

in pdatatfit help. It also contains Xdata and Ydata. Xdata are

the input data samples and Ydata gives the values of fnc

evaluated at Xdata. Sample information is stored in the fields

sample, range, and Npts.

SYNTAX

15

[pfit,cfit,info] = pfunctionfit(p,vars,Xdata,fnc)

[pfit,cfit,info] = pfunctionfit(p,vars,fnc)

[pfit,cfit,info] = pfunctionfit(p,vars,Xdata,fnc,W)

EXAMPLE

fnc = @(x) sin(x);

pvar c0 c1 c2 c3 x;

vars = x;

p = c0 + c1*x + c2*x^2 + c3*x^3;

Xdata.sample =’uniform’;

Xdata.Npts = 20;

[pfit,cfit,info] = pfunctionfit(p,vars,Xdata,fnc);

ezplot(fnc,[info.range(1) info.range(2)]); hold on;

xx = linspace(info.range(1),info.range(2),10);

plot(xx,double(subs(pfit,vars,xx)),’r--’); hold off;

legend(’Original Function’,’Polynomial Fit’); xlabel(’x’);

See also pdatafit, lhsdesign

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

sin(x)

Original Function
Polynomial Fit

Figure 2: Polynomial fit of sin(x) using pfunctionfit

16

5.7 POLYLIB

POLYLIB.MDL - Simulink block for polynomial objects

Figure 3: Polynomial Simulink Block (left) and dialog box (right)

17

5.8 PCONTOUR

function [C,h] = pcontour(p,v,domain,linespec,npts,var)

DESCRIPTION

Plots contours of p(x,y) at the contour values specified by the vector

v. The contours are generated numerically by evaluating p on a grid of

values of x and y and then calling the CONTOUR function.

INPUTS

p: 1-by-1 polynomial of two variables

v: N-by-1 vector of contour values (Default: v=1)

domain: 1-by-4 vector specifying the plotting domain,

[Xmin Xmax Ymin Ymax]

(Default: domain = [-1 1 -1 1])

linespec: Color and linetype. (Default: linespec=’b’)

npts: 1-by-2 vector specifying the number of grid points along

each axis, [Num of X pts, Num of Y pts]

(Default: npts = [100 100])

var: 1-by-2 vector of pvars specifying the x/y axis variables,

[Variable for X axis, Variable for Y axis]

(Default var = p.var)

OUTPUTS

C,h: Contour matrix and contour handle object returned by CONTOUR

SYNTAX

pcontour(p)

pcontour(p,v)

pcontour(p,v,domain)

pcontour(p,v,domain,linespec)

pcontour(p,v,domain,linespec,npts)

pcontour(p,v,domain,linespec,npts,var)

[C,h] = pcontour(p,v,domain,linespec,npts,var)

EXAMPLE

pvar x y

p = (x-2)^2-(x-2)*y+y^2;

domain = [0 4 -2 2];

[C,h]=pcontour(p,[0.5 1 2],domain);

clabel(C,h);

See also contour, clabel, pcontour3

18

0.
5

0.5

0.5

0.5

1

1

1

1

1

2

2

2

2

22

2

x

y

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4: 2-d contours of a quadratic polynomial using pcontour

19

5.9 PCONTOUR3

function [F,V,C] = pcontour3(p,v,domain,npts,var)

DESCRIPTION

Plots contour surfaces of p(x,y,z) at the values specified by the

vector v. The contours are generated numerically by evaluating p on a

grid of values of x,y,z and then calling the ISOSURFACE function.

INPUTS

p: 1-by-1 polynomial of three variables

v: N-by-1 vector of contour values (Default: v=1)

domain: 1-by-6 vector specifying the plotting domain,

[Xmin Xmax Ymin Ymax Zmin Zmax]

(Default: domain = [-1 1 -1 1 -1 1])

npts: 1-by-3 vector specifying the number of grid points along

each axis, [Num of X pts, Num of Y pts, Num of Z pts]

(Default: npts = [50 50 50])

var: 1-by-3 vector of pvars specifying the x/y/z axis variables,

[Variable for X axis, Variable for Y axis, Variable for Z axis]

(Default var = p.var)

OUTPUTS

F,V,C: Faces, vertices, and facevertexcdata generated by ISOSURFACE.

The 1,2, and 3 variable outputs are the same as those generated

by ISOSURFACE.

SYNTAX

pcontour3(p)

pcontour3(p,v)

pcontour3(p,v,domain)

pcontour3(p,v,domain,npts)

pcontour3(p,v,domain,npts,var)

[F,V,C] = pcontour3(p,v,domain,npts,var)

EXAMPLE

pvar x y z

domain = [-3.5 3.5 -1.5 1.5 -1.5 1.5];

p1 = x^2+y^2+z^2;

ph1= patch(pcontour3(p1,2,domain));

set(ph1, ’FaceColor’, ’none’, ’EdgeColor’, ’red’);

p2 = x^2/4+2*y^2+3*z^2;

ph2= patch(pcontour3(p2,2,domain));

set(ph2, ’FaceColor’, ’blue’, ’EdgeColor’, ’none’);

view(3); axis equal

See also pcontour, isosurface

20

Figure 5: 3-d contours of quadratic polynomials using pcontour3

21

5.10 POLY2BASIS

function [V,R,e] = poly2basis(p,R)

DESCRIPTION

Projects a vector of polynomials p onto the span of the monomials

contained in the vector R.

INPUTS

p: 1-by-lp vector of polynomials.

R [Optional]: lr-by-1 basis of monomials. [Default: R=monomials(p)]

OUTPUTS

V: lr-by-lp matrix expressing the projection of the polynomial p

on the monomials in R. The projection of p on to the span of

R is given by R’*V.

R: Vector of monomials

e: Difference between the input polynomial p and the projection

R’*V, i.e. e = p-R’*V. If R contains all monomials in p then e=0.

SYNTAX

[V,R,e] = poly2basis(p,R);

EXAMPLE

pvar x1 x2;

p = [x1^2-9, 5*x1+3*x1*x2-4*x2^2];

[V,R,e] = poly2basis(p,monomials(p));

[V R]

ans =

[-9, 0, 1]

[0, 5, x1]

[1, 0, x1^2]

[0, 3, x1*x2]

[0, -4, x2^2]

p-R’*V

ans =

[0, 0]

See also monomials

22

5.11 PLINEARIZE

function [A,B,f0] = plinearize(f,x,u,x0,u0)

DESCRIPTION

This function linearizes the vector polynomial function f(x,u) about

the trim point x=x0 and u=u0. The linearizaztion is

f(x,u) = f(x0,u0) + A*z + B*w + Higher Order Terms

where z:=x-x0 and w:=u-u0 are the deviations from the trim values.

INPUTS

f: Vector field of polynomial system (Ns-by-1 polynomial)

x: State (Ns-by-1 vector of pvars)

u: Input (Nu-by-1 vector of pvars) [Optional]

x0: Trim state [Optional, Default: x0=0]

u0: Trim input [Optional, Default: u0=0]

OUTPUTS

A: State matrix

B: Input matrix

f0: f evaluated at (x0,u0)

SYNTAX

[A,f0] = plinearize(f,x)

[A,f0] = plinearize(f,x,x0)

[A,B,f0] = plinearize(f,x,u)

[A,B,f0] = plinearize(f,x,u,x0)

[A,B,f0] = plinearize(f,x,u,x0,u0)

EXAMPLE

pvar x1 x2 u;

x = [x1;x2];

f = [-2*x1+x2+x1^2-7; x1-3*x2+u+u^2+3];

x0 = [3;4];

u0 = 2;

[A,B,f0] = plinearize(f,x,u,x0,u0)

A =

4 1

1 -3

B =

0

5

f0 =

0

0

See also jacobian, ptrim

23

5.12 PTRIM

function [xt,ut,ft,ht,flg] = ptrim(f,x,u,x0,u0,h,opts)

DESCRIPTION

This function solves for trim states and inputs for the polynomial

dynamical system

dx/dt = f(x,u)

The trim values (xt,ut) satisfy f(xt,ut)=0. FSOLVE is used to

solve these nonlinear equations. Initial guesses for the trim

state/input can be passed to FSOLVE. Additional equality

constraints on the trim condition can be specified in the form

h(x,u)=0 where h is a polynomial vector.

INPUTS

f: Vector field of polynomial system (Nx-by-1 polynomial)

x: State (Nx-by-1 vector of pvars)

u: Input (Nu-by-1 vector of pvars)

x0: Initial guess for trim state [Optional, Default: x0=0]

u0: Initial guess for trim input [Optional, Default: u0=0]

h: Equality constraints (Nh-by-1 polynomial) [Optional]

opts: Options for fsolve. See fsolve help [Optional]

OUTPUTS

xt: Trim state (Nx-by-1 vector)

ut: Trim input (Nu-by-1 vector)

ft: f evaluated at (xt,ut) (Nx-by-1 vector)

ht: h evaluated at (xt,ut) (Nh-by-1 vector)

If ptrim was successful finding a trim point then ft:=f(xt,ut)

and ht:=h(xt,ut) will both be equal to zero

flg: Exit flag returned by fsolve

SYNTAX

[xt,ut,ft,ht,flg] = ptrim(f,x,u)

[xt,ut,ft,ht,flg] = ptrim(f,x,u,x0,u0)

[xt,ut,ft,ht,flg] = ptrim(f,x,u,x0,u0,h)

[xt,ut,ft,ht,flg] = ptrim(f,x,u,x0,u0,h,opts)

EXAMPLE

pvar x1 x2 u;

x = [x1;x2];

f = [-2*x1+x2+x1^2-7; x1-3*x2+u+u^2+3];

% Find a trim condition

[xt,ut,ft] = ptrim(f,x,u)

xt =

-1.7369

0.5092

ut =

0.2173

ft =

1.0e-013 *

0.0799

0.1865

% Find a trim condition with x2=4

24

h = x2-4;

x0 = []; u0 = [];

[xt,ut,ft,ht] = ptrim(f,x,u,x0,u0,h)

xt =

-1.0000

4.0000

ut =

2.7016

ft =

1.0e-013 *

0.0089

0.5329

ht =

0

See also fsolve, plinearize

25

5.13 PSOLVE

function [xt,ft,flg] = psolve(f,x0,opts)

DESCRIPTION

This function solves for roots of the polynomial equation

f(x)=0

FSOLVE is used to solve these nonlinear equations.

Initial guesses for the trim state/input can be passed to FSOLVE.

INPUTS

f: System of polynomial equations (Nx-by-1 polynomial)

x0: Initial guess for solution [Optional, Default: x0=0]

opts: options structures may be passed to fsolve [Optional]

OUTPUTS

xt: Trim state (Nx-by-1 vector)

ft: f evaluated at (xt) (Nx-by-1 vector)

If psolve was successful finding a trim point then ft:=f(xt,ut)

will be equal to zero

flg: Exit flag returned by fsolve

SYNTAX

[xt,ft,flg] = psolve(f)

[xt,ft,flg] = psolve(f,x0)

[xt,ft,flg] = psolve(f,x0,opts)

EXAMPLE

pvar x1 x2 u;

f = [-2*x1+x2+x1^2-7; x1-3*x2+3];

% Find a root of the polynomial system

[xt,ft] = psolve(f)

% Find a root using opts structure

x0 = []; opts=optimset(’Display’,’On’);

[xt,ft] = psolve(f,x0,opts)

See also fsolve, plinearize

26

5.14 PVOLUME

function [vol,volstd] = pvolume(p,v,domain,npts)

DESCRIPTION

Estimate the volume contained in the set {x : p(x)<=v} using Monte

Carlo sampling. npts are drawn uniformly from a hypercube and the

number of points, nin, contained in the set { x : p(x) <= v} is

counted. The volume is estimated as vol = nin/npts. An estimate

of the standard deviation of this volume is also computed.

INPUTS

p: 1-by-1 polynomial of n variables

v: scalar specifying the sublevel of the polynomial (Default: v=1)

domain: n-by-3 array specifying the sampling hybercube. domain(i,1)

is a pvar in p and domain(i,2:3) specifies the min and max

values of the cube along the specified variable direction,

[X1, X1min, X1max; ...; Xn, Xnmin, Xnmax]

(Default: domain = [-1 1] along all variable directions)

npts: scalar specifying the number of sample points

(Default: npts = 1e4)

OUTPUTS

vol: Volume estimate of { x : p(x)<= v}

stdvol: Standard deviation of the volume estimate.

SYNTAX

pvolume(p)

pvolume(p,v)

pvolume(p,v,domain)

pvolume(p,v,domain,npts)

[vol,stdvol] = pvolume(p,v,domain,npts)

EXAMPLE

pvar x1 x2

p = x1^2 + x2^2;

r = 2;

domain = [x1, -r, r; x2, -r, r];

[vol,stdvol] = pvolume(p,r^2,domain);

truevol = pi*r^2;

[truevol, vol]

ans =

12.5664 12.5232

[abs(truevol-vol) stdvol]

ans =

0.0432 0.0660

27

5.15 PSAMPLE

function [xin,xon]=psample(p,x,x0,N)

DESCRIPTION

This function draws random samples from a set described by a

single polynomial inequality:

S:={ x : p(x)<=0 }

A gas dynamics model is used to generate the random samples. This

method requires an initial feasible point x0 in S. The function also

assumes that S is closed and bounded.

INPUTS

p: 1-by-1 polynomial of x used to describe the set S.

x: Nx-by-1 vector of pvars. These are the variables in p.

x0: Initial point in the set S (Nx-by-1 double). The values in x0

should correspond to the ordering of variables in x.

N: Number of random samples to generate. (default: N=1)

OUTPUTS

xin: Nx-by-N matrix with each column specifying an element in S.

xon: Nx-by-N matrix with each column specifying an element on the

boundary of S, i.e. p(xon(:,i))==0 for each i.

SYNTAX

[xin,xon]=psample(p,x,x0)

[xin,xon]=psample(p,x,x0,N)

EXAMPLE

% Sample unit disk

pvar x1 x2;

x = [x1;x2];

p = x’*x-1;

[xin,xon]=psample(p,x,zeros(2,1),1e3);

plot(xon(1,:),xon(2,:),’rx’); hold on;

plot(xin(1,:),xin(2,:),’bo’);hold off;

legend(’Samples on Boundary’,’Samples in Interior’)

axis equal;

28

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Samples on Boundary
Samples in Interior

Figure 6: Samples on the boundary and in the interior of a unit disk obtained with psample

29

5.16 PSIM

function [xtraj,xconv]=psim(f,x,x0,tfinal,event_params,opts)

DESCRIPTION

Simulates non-autonomous polynomial systems of the form:

dx/dt = f(x), x(t) = x0

INPUTS

f: Vector field (Ns-by-1 polynomial)

x: State (Ns-by-1 vector of pvars)

x0: Initial Conditions (Ns-by-N0 array of doubles)

tfinal: Final simulation time unless the simulation is terminated

by one of the event parameters (scalar)

event_params (Optional): Event parameters for stopping the

simulation. This is a structure with the following fields:

*nbig: Terminate if norm(x) is greater than nbig*norm(x0)

*nsmall: Terminate if norm(x) is less than nsmall*norm(x0)

*xbig: Terminate if any abs(x(i)) is greater than xbig(i)

*xsmall: Terminate if all abs(x(i)) are less than xsmall(i)

*funchandle: Handle to a user specified event function.

*Additional fields can be used to pass parameter data to the

user defined event function

(Default: nbig = 1e6, nsmall = 1e-6, xbig =0, xsmall=0,

funchandle = [])

opts (Optional): Options structure passed to ODE solver. See

odeset and odeget for more details. opts can have the additonal

field ’Solver’ to specify the ode solver. The ’Solver’ field

can be ode45 or ode15s.

OUTPUTS

xtraj: N0-by-2 cell array with the i^th row containing the simulation

results starting from x0(:,i). xtraj{i,1} is an Nt-by-1 vector

of simulation times and xtraj{i,2} is an Nt-by-Ns matrix of

the state trajectories.

xconv: N0-by-1 logical vector with the i^th element = 1 if the

corresponding trajectory converged to the origin and = 0 otherwise.

A trajectory is considered to have converged to the origin if

either the nsmall or xsmall event occured.

SYNTAX

[xtraj,xconv]=psim(f,x,x0,tfinal)

[xtraj,xconv]=psim(f,x,x0,tfinal,event_params)

[xtraj,xconv]=psim(f,x,x0,tfinal,event_params,opts)

See also:

ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

Options handling: odeset, odeget

30

5.17 PPLANESIM

function [Xsimdata] = pplanesim(f,x,figno,x0,psimopts)

DESCRIPTION

Draws the phase plane for a non-autonomous polynomial system:

dx/dt = f(x), x(t) = x0

INPUTS:

f: Vector field (2-by-1 polynomial or function handle)

x: State (2-by-1 vector of pvars

figno: Figure number for plotting

x0: 2-by-Npts array of initial conditions. Alternatively, the initial

conditions options can be specified as a structure with fields:

- range: 2-by-2 matrix with the i^th row specifying the min and

max value of the i^th state. default is [-1 1; -1 1]

- Npts: Number of initial conditions. The actual number of points

depends on the sampling type (see sample below). (default is 100)

- conv: True to plot only convergent trajectories (Default is false)

- div: True to plot only divergent trajectories (Default is false)

- sample: Sampling technique to be specified. Choices are:

- ’grid’: Generates ceil(sqrt(Npts)) points linearly spaced

along each direction.

- ’bndry’: Samples ceil(Npts/4) points along each of the

boundary specified by range.

psimopts: Options structure passed to ODE solver.

OUTPUTS:

if no argument is invoked then only plot will be generated. However,

if one argument is invoked, then it will also return the simulation data.

For more information on the output refer to psim. The two outputs xtraj and

xconv will be bundled in the output argument as a cell array object.

SYNTAX

pplanesim(f,x,figno,x0,psimopts)

Generate phase plane plot

Xsimdata = pplanesim(f,x,figno,x0,psimopts)

Output all simulation data.

31

5.18 INT

function B = int(A,X,L,U)

DESCRIPTION

Element-by-element integration of a polynomial with respect

to a single variable.

INPUTS

A: polynomial

X: Scalar polynomial variable [Optional with default X = A.varname{1}]

L: Lower limit of definite integral

U: Upper limit of definite integral

OUTPUTS

B: polynomial

SYNTAX

B = int(A,X)

Indefinite integral of the polynomial, A, with respect to X.

X should be a polynomial variable or string. Integration is done

element-by-element if A is a matrix.

B = int(A,X,L,U)

Definite integral of A with respect to X from lower limit L to

upper limit U.

B = int(A,X,[L U]);

Equivalent to B = diff(A,X,L,U)

EXAMPLE

pvar x y z;

a = 2*x^3 - 2*x*z^2 + 5*y*z;

b = int(a,x)

b =

0.5*x^4 - x^2*z^2 + 5*x*y*z

diff(b,x)-a

ans =

0

c = int(a,[0 1])

c =

5*y*z - z^2 + 0.5

See also: diff, jacobian

32

5.19 DIFF

function B=diff(A,X)

DESCRIPTION

Element-by-element differentiation of a polynomial with respect

to a single variable.

INPUTS

A: polynomial

X: Differentiate with respect to the (single) variable X.

OUTPUTS

B: polynomial

SYNTAX

B = diff(A,X);

Differentiate the polynomial, A, with to X. A should be a

polynomial and X should be a polynomial variable or a string.

Differentiation is done element-by-element if A is a matrix.

EXAMPLE

pvar x y z;

f = 2*x^3+5*y*z-2*x*z^2;

df = diff(f,x)

df =

6*x^2 - 2*z^2

See also: jacobian

33

5.20 JACOBIAN

function J = jacobian(F,X)

DESCRIPTION

Compute the Jacobian matrix. The (i,j)-th entry of J is dF(i)/dX(j).

INPUTS

F: Polynomial to differentiate (N-by-1 polynomial)

X: Variable for differentiation (V-by-1 vector of pvars

or cell array of strings)

OUTPUTS

J: Jacobian of F with respect to X (N-by-V polynomial)

SYNTAX

J = jacobian(F);

Computes the Jacobian of F with respect to F.varname

J = jacobian(F,X);

Computes the Jacobian of F with respect to X

EXAMPLE

pvar x y z;

f = [x^3+5*y*z; 2*x*z; 3*x+4*y+6*z];

J = jacobian(f,[x;y;z])

J =

[3*x^2, 5*z, 5*y]

[2*z, 0, 2*x]

[3, 4, 6]

See also: diff

34

5.21 COLLECT

function [g0,g,h] = collect(p,x);

DESCRIPTION

Collect p(x,y) into the form g0(x)+g(x)*h(y) where h(y) is a vector

of unique monomials in y.

INPUTS

p: M-by-1 polynomial in variables x and y.

x: variables of p to collect into polynomials with coefficients given

by monomials in y. x can either be a polynomial vector or

a cell array of strings of variable names.

OUTPUTS

g0: M-by-1 polynomial in x.

g: M-by-N vector of polynomials in x.

h: N-by-1 vector of monomials in y.

SYNTAX

[g0,g,h] = collect(p,x);

g0, g, and h satisfy p(x,y) = g0(x)+ g(x)*h(y)

EXAMPLE

pvar x1 x2 y1 y2;

p = 13+x1^2*y1-5*x1^2*y2^3+6*x1*x2*y1+8*x1;

x = [x1;x2];

[g0,g,h] = collect(p,x)

g0 =

8*x1 + 13

g =

[x1^2 + 6*x1*x2, -5*x1^2]

h =

[y1]

[y2^3]

p-(g0+g*h)

ans =

0

35

5.22 SUBS

function B = subs(A,Old,New);

DESCRIPTION

Symbolic Substitution.

INPUTS

A: Nr-by-Nc polynomial array

Old: No-by-1 array of polynomial variables or No-by-1 cell array

of characters. The entries of Old must be unique.

New: No-by-Npts array of polynomials or doubles. If Npts>1 then

A must be a column or row vector.

OUTPUTS

B: polynomial. B is always returned as a polynomial. Use ’double’

to convert B to a double when the final result is a constant.

If Npts=1 then B is Nr-by-Nc. If Npts>1, B is Nr-by-Npts when

Nc=1 and Npts-by-Nc otherwise.

SYNTAX

B = subs(A,Old,New);

Replaces variables in Old with the corresponding entries in New.

B = subs(A);

Replaces all variables in A with values in the BASE workspace.

B = subs(A,New);

If New is an 1-by-1 polynomial array then this is equivalent

B=subs(A,A.varname{1},New). Otherwise, this is equivalent to

B=subs(A,New(:,1),New(:,2:end)).

EXAMPLE

pvar x1 x2 y

x=[x1;x2];

p=2*(x1+x2)^2+5;

subs(p,x,[1;2])

ans =

23

subs(p,x,[0 1 1; 1 0 2])

ans =

[7, 7, 23]

subs(p,x1,y)

ans =

2*x2^2 + 4*x2*y + 2*y^2 + 5

See also double

36

5.23 CLEANPOLY

function B = cleanpoly(A,tol,deg)

DESCRIPTION

Cleans up the input polynomial. The output polynomial includes only

terms whose coefficients have magnitude greater than or equal to TOL

and whose monomial degree is specified by DEG.

INPUTS

A: polynomial

tol: scalar double specifying the coefficient tolerance

deg: vector of non-negative integers specifying the degrees of

mononmials to retain. Alternatively deg can be an N-by-2

cell array with deg{i,1} specifying a variable and

deg{i,2} specifying a vector of non-negative integers.

This will retain only monomials whose degree in variable

deg{i,1} is specified in deg{i,2}.

OUTPUTS

B: polynomial which only contains the terms of A whose coefficients

have magnitude greater than or equal to tol and whose monomial

degree is listed in deg.

SYNTAX

B=cleanpoly(A,tol);

B=cleanpoly(A,[],deg);

B=cleanpoly(A,tol,deg);

EXAMPLE

pvar x1 x2 u;

p = 9*u^3 + u*x1^2 + 1e-6*u^2*x1*x2 + 1e-5*u*x2^2 + 2*x1^3 ...

- x1*x2 + 3*u + x1 + 2*x2;

% Remove terms whose coefficients has magnitude < tol

tol = 1e-4;

p1 = cleanpoly(p,tol)

p1 =

9*u^3 + u*x1^2 + 2*x1^3 - x1*x2 + 3*u + x1 + 2*x2

% Retain linear and quadratic terms

p2 = cleanpoly(p,[],1:2)

p2 =

-x1*x2 + 3*u + x1 + 2*x2

% Retain terms linear in u but of degree 0,1,2,3 in x1 and x2

p3 = cleanpoly(p,[],{x1, 0:3; x2, 0:3; u 1})

p3 =

u*x1^2 + 1e-005*u*x2^2 + 3*u

37

5.24 P2S

function s=p2s(p)

DESCRIPTION

Converts from a multipoly polynomial to a symbolic math toolbox polynomial.

INPUTS

p: Polynomial created using the multipoly toolbox

OUTPUTS

s: Polynomial created using the symbolic math toolbox

SYNTAX

s = p2s(p)

See also s2p

38

5.25 S2P

function p=s2p(s)

DESCRIPTION

Converts from a symbolic math toolbox polynomial to a multipoly polynomial.

INPUTS

s: Polynomial created using the symbolic math toolbox

OUTPUTS

p: Polynomial created using the multipoly toolbox

SYNTAX

p = s2p(s)

See also p2s

39

