Contents

% DEMO7_observer_based_control.m
% See Chapter 11.7 of the manual for a description.
%
% This document illustrates construction of an observer-based state feedback
% controller. We construct the observer and controller separately
% and couple them to find a closed loop system which is then simulated for
% different IC and disturbances.
%
% We consider the wave equation PDE defined by:
% PDE:      \dot{x}(t,s) = (d^2/ds^2) x(t,s) + lam x(t,s) + w(t) + u(t),   s in [0,1];
% Outputs:       z(t)    = [int_{0}^{1} x(t,s) ds + w(t); u(t)];
%                y(t0    = x(t,1);
% BCs:                0  = x(t,0) = d/ds x(t,1);
%
% First we convert the above PDE to a PIE of the form:
% [T \dot{v}](t,s) = [A v](t,s) + [B1 w](t,s) + [B2 u](t,s);
%             z(t) = [C1 v](t)  + [D11 w](t) + [D12 u](t);
%             y(t) = [C2 v](t)  + [D21 w](t) + [D22 u](t)
%
% We find the observer gains L by solving the LPI
%
% min_{gam,P,Z} gam
% s.t.  P>=0
%       [-gam*I,           -D11',  -(P*B1+Z*D21)'*T           ]=: Q <=0
%       [-D11,             -gam*I, C1                         ]
%       [-T'*(P*B1+Z*D21), C1',    (P*A+Z*C2)'*T+T'*(P*A+Z*C2)]
%
% where L = P^{-1}*Z.

% Likewise we find a state feedback control u = Kv by solving
% the LPI
%
% min_{gam,P,Z} gam
% s.t.  P>=0
%       [ -gam*I            D11      (C1*P+D12*Z)*T'            ]
%       [  D11'            -gam*I    B1'                        ] <= 0
%       [  T*(C1*P+D12*Z)   B1       (A*P+B2*Z)*T'+T*(A*P+B2*Z)']
%
% where K = Z*P^{-1}.
%
% We simulate the open loop and closed loop response of the PDE for various
% IC using PIESIM.
%
clc; clear; close all;
echo on
%%%%%%%%%%%%%%%%%% Start Code %%%%%%%%%%%%%%%%%%

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%

% % Declare the PDE, and convert it to a PIE. Declare the PDE using command line parser

pvar s t
lam = 5;
PDE = sys();
x = state('pde');   w = state('in'); y = state('out');
z = state('out', 2);   u = state('in');
eqs = [diff(x,t) == diff(x,s,2) + lam*x + s*w + s*u;
    z == [int(x,s,[0,1]); u]; % change z = int(x,s,[0,1])
    y == subs(x,s,1);
    subs(x,s,0)==0;
    subs(diff(x,s),s,1)==0];
PDE = addequation(PDE,eqs);
PDE = setControl(PDE,u);
PDE = setObserve(PDE,y);
display_PDE(PDE);

% Compute the associated PIE, and extract the operators.
PIE = convert(PDE,'pie');
PIE = PIE.params;
T = PIE.T;
A = PIE.A;      C1 = PIE.C1;    B2 = PIE.B2;
B1 = PIE.B1;    D11 = PIE.D11;  D12 = PIE.D12;
C2 = PIE.C2;    D21 = PIE.D21;  D22 = PIE.D22;
%%%%%%%%%%%%%%%%%% Start Code %%%%%%%%%%%%%%%%%%
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%
% % % Declare the PDE, and convert it to a PIE.
% Declare the PDE using command line parser
pvar s t
lam = 5;
PDE = sys();
Initialized sys() object of type "pde"
x = state('pde');   w = state('in'); y = state('out');
z = state('out', 2);   u = state('in');
eqs = [diff(x,t) == diff(x,s,2) + lam*x + s*w + s*u;
    z == [int(x,s,[0,1]); u]; % change z = int(x,s,[0,1])
    y == subs(x,s,1);
    subs(x,s,0)==0;
    subs(diff(x,s),s,1)==0];
PDE = addequation(PDE,eqs);
6 equations were added to sys() object
PDE = setControl(PDE,u);
1 inputs were designated as controlled inputs
PDE = setObserve(PDE,y);
1 outputs were designated as observed outputs
display_PDE(PDE);

  ∂ₜ x(t,s) = ∂²ₛ x(t,s) + 5 * x(t,s) + C₁₃(s) * w(t) + C₁₄(s) * u(t);

  y(t) = x(t,1);

  z(t) = ₀∫¹[C₃₁ * x(t,s)]ds + C₃₂ * u(t);

  0 = - x(t,0);
  0 = - ∂ₛ x(t,1);

 Call "PDE.C{i,j}" to see the value of coefficients Cᵢⱼ as in the displayed equations.

 

% Compute the associated PIE, and extract the operators.
PIE = convert(PDE,'pie');  

 --- Reordering the state components to allow for representation as PIE ---

 --- Converting ODE-PDE to PIE --- 
Initialized sys() object of type "pde"
Conversion to pie was successful
PIE = PIE.params;
T = PIE.T;
A = PIE.A;      C1 = PIE.C1;    B2 = PIE.B2;
B1 = PIE.B1;    D11 = PIE.D11;  D12 = PIE.D12;
C2 = PIE.C2;    D21 = PIE.D21;  D22 = PIE.D22;

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%

% % Compute an optimal observer gains and optimal controller gains for the PIE.

% % Use the predefined Hinf estimator executive function.
settings = lpisettings('heavy');
[prog_k, Kval, gam_co_val] = PIETOOLS_Hinf_control(PIE, settings);
[prog_l, Lval, gam_ob_val] = PIETOOLS_Hinf_estimator(PIE, settings);

%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%
% % % Compute an optimal observer gains and optimal controller gains for the PIE.

% % Use the predefined Hinf estimator executive function.
settings = lpisettings('heavy');
[prog_k, Kval, gam_co_val] = PIETOOLS_Hinf_control(PIE, settings);

 --- Executing Search for H_infty Optimal Controller --- 
- Declaring Positive Storage Operator variable and indefinite Controller operator variable using specified options...
- Parameterize the derivative inequality...
- Enforcing the Negativity Constraint...
  - Using an Equality constraint...
- Solving the LPI using the specified SDP solver...
Size: 349  120
 
The coefficient matrix is not full row rank, numerical problems may occur.
SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
Detected 1 diagonal SDP block(s) with 1 linear variables
Put 6 free variables in a quadratic cone
eqs m = 120, order n = 34, dim = 351, blocks = 5
nnz(A) = 1927 + 0, nnz(ADA) = 11136, nnz(L) = 5748
 it :     b*y       gap    delta  rate   t/tP*  t/tD*   feas cg cg  prec
  0 :            2.43E+01 0.000
  1 :   7.72E-01 6.40E+00 0.000 0.2633 0.9000 0.9000   1.21  1  1  1.2E+01
  2 :   1.06E+00 1.85E+00 0.000 0.2897 0.9000 0.9000   1.19  1  1  3.5E+00
  3 :   1.11E+00 4.98E-01 0.000 0.2686 0.9000 0.9000   0.96  1  1  9.5E-01
  4 :   1.14E+00 1.81E-01 0.000 0.3643 0.9000 0.9000   0.76  1  1  4.0E-01
  5 :   1.11E+00 6.46E-02 0.000 0.3557 0.9000 0.9000   0.61  1  1  1.8E-01
  6 :   1.10E+00 1.82E-02 0.000 0.2812 0.9000 0.9000   0.56  1  1  6.6E-02
  7 :   1.12E+00 5.97E-03 0.000 0.3288 0.9000 0.9000   0.35  1  1  3.3E-02
  8 :   1.17E+00 2.13E-03 0.000 0.3574 0.9000 0.9000   0.15  1  1  1.9E-02
  9 :   1.22E+00 8.58E-04 0.000 0.4020 0.9000 0.9000   0.12  1  1  1.2E-02
 10 :   1.26E+00 3.16E-04 0.000 0.3690 0.9000 0.9000   0.20  1  1  6.5E-03
 11 :   1.30E+00 1.22E-04 0.000 0.3859 0.9000 0.9000   0.19  1  1  3.9E-03
 12 :   1.34E+00 5.01E-05 0.000 0.4103 0.9000 0.9000   0.28  1  1  2.3E-03
 13 :   1.37E+00 2.00E-05 0.000 0.3995 0.9000 0.9000   0.20  1  1  1.4E-03
 14 :   1.41E+00 6.95E-06 0.000 0.3474 0.9000 0.9000   0.27  1  1  7.1E-04
 15 :   1.44E+00 2.42E-06 0.000 0.3474 0.9000 0.9000   0.25  1  1  3.9E-04
 16 :   1.46E+00 8.37E-07 0.000 0.3465 0.9000 0.9000   0.28  1  1  2.0E-04
 17 :   1.48E+00 2.87E-07 0.000 0.3427 0.9000 0.9000   0.30  1  1  1.0E-04
 18 :   1.50E+00 1.06E-07 0.000 0.3698 0.9000 0.9000   0.35  2  2  5.4E-05
 19 :   1.51E+00 3.46E-08 0.000 0.3265 0.8797 0.9000   0.37  2  2  2.9E-05
 20 :   1.51E+00 1.31E-08 0.000 0.3796 0.9000 0.8798   0.42  2  2  1.5E-05
 21 :   1.52E+00 5.73E-09 0.000 0.4356 0.9000 0.9000   0.41  2  2  9.2E-06
 22 :   1.52E+00 2.33E-09 0.000 0.4073 0.9000 0.9000   0.48  2  2  4.9E-06
 23 :   1.53E+00 1.14E-09 0.000 0.4896 0.9000 0.9000   0.38  3  2  3.3E-06
 24 :   1.53E+00 4.25E-10 0.000 0.3718 0.9000 0.9000   0.43 11  7  1.6E-06
 25 :   1.53E+00 1.86E-10 0.000 0.4390 0.9000 0.9000   0.40  3  3  9.6E-07
 26 :   1.53E+00 6.72E-11 0.000 0.3604 0.9000 0.9000   0.41  3  3  4.8E-07
 27 :   1.53E+00 3.21E-11 0.000 0.4782 0.9000 0.9000   0.39 22 24  2.9E-07
Run into numerical problems.

iter seconds digits       c*x               b*y
 27      0.5   4.3  1.5338030035e+00  1.5338835672e+00
|Ax-b| =   4.3e-07, [Ay-c]_+ =   3.5E-09, |x|=  1.1e+04, |y|=  1.0e+06

Detailed timing (sec)
   Pre          IPM          Post
3.100E-02    2.350E-01    1.500E-02    
Max-norms: ||b||=1, ||c|| = 1,
Cholesky |add|=4, |skip| = 61, ||L.L|| = 1.76161e+08.
 
Residual norm: 4.3444e-07
 
         iter: 27
    feasratio: 0.3918
         pinf: 0
         dinf: 0
       numerr: 1
       timing: [0.0310 0.2350 0.0150]
      wallsec: 0.2810
       cpusec: 0.6562

The closed-loop H-infty norm of the given system is upper bounded by:
    1.5338

[prog_l, Lval, gam_ob_val] = PIETOOLS_Hinf_estimator(PIE, settings);

 --- Executing Search for H_infty Optimal Estimator --- 
- Declaring Positive Storage Operator variable and indefinite Observer operator variable using specified options...
- Constructing the Negativity Constraint...
- Enforcing the Negativity Constraint...
  - Using an Equality constraint...
- Solving the LPI using the specified SDP solver...
Size: 349  114
 
The coefficient matrix is not full row rank, numerical problems may occur.
SeDuMi 1.3 by AdvOL, 2005-2008 and Jos F. Sturm, 1998-2003.
Alg = 2: xz-corrector, Adaptive Step-Differentiation, theta = 0.250, beta = 0.500
Detected 1 diagonal SDP block(s) with 1 linear variables
Put 6 free variables in a quadratic cone
eqs m = 114, order n = 34, dim = 351, blocks = 5
nnz(A) = 1825 + 0, nnz(ADA) = 10364, nnz(L) = 5239
 it :     b*y       gap    delta  rate   t/tP*  t/tD*   feas cg cg  prec
  0 :            2.43E+01 0.000
  1 :   4.99E-01 6.43E+00 0.000 0.2645 0.9000 0.9000   1.31  1  1  1.2E+01
  2 :   4.46E-01 2.16E+00 0.000 0.3364 0.9000 0.9000   1.78  1  1  2.9E+00
  3 :   4.53E-01 7.52E-01 0.000 0.3476 0.9000 0.9000   0.84  1  1  1.2E+00
  4 :   4.52E-01 2.72E-01 0.000 0.3613 0.9000 0.9000   0.45  1  1  6.0E-01
  5 :   4.74E-01 8.40E-02 0.000 0.3091 0.9000 0.9000   0.23  1  1  2.9E-01
  6 :   4.06E-01 2.30E-02 0.000 0.2735 0.9000 0.9000   0.24  1  1  1.2E-01
  7 :   3.24E-01 6.39E-03 0.000 0.2783 0.9000 0.9000   0.28  1  1  5.2E-02
  8 :   2.64E-01 1.98E-03 0.000 0.3104 0.9000 0.9000   0.36  1  1  2.3E-02
  9 :   2.39E-01 7.79E-04 0.000 0.3929 0.9000 0.9000   0.41  1  1  1.2E-02
 10 :   2.27E-01 2.71E-04 0.000 0.3475 0.9000 0.9000   0.40  1  1  5.7E-03
 11 :   2.23E-01 1.15E-04 0.000 0.4261 0.9000 0.9000   0.39  1  1  3.2E-03
 12 :   2.25E-01 4.34E-05 0.000 0.3759 0.9000 0.9000   0.39  1  1  1.6E-03
 13 :   2.28E-01 2.02E-05 0.000 0.4654 0.9000 0.9000   0.39  1  1  9.8E-04
 14 :   2.34E-01 7.47E-06 0.000 0.3700 0.9000 0.9000   0.37  1  1  5.0E-04
 15 :   2.37E-01 3.49E-06 0.000 0.4666 0.9000 0.9000   0.38  2  2  3.0E-04
 16 :   2.42E-01 1.04E-06 0.000 0.2989 0.8692 0.9000   0.36  2  2  1.4E-04
 17 :   2.45E-01 4.50E-07 0.000 0.4316 0.9000 0.9000   0.39  2  2  8.1E-05
 18 :   2.49E-01 1.61E-07 0.000 0.3575 0.9000 0.9000   0.37  2  2  4.1E-05
 19 :   2.51E-01 6.00E-08 0.000 0.3735 0.9000 0.9000   0.42  2  2  2.0E-05
 20 :   2.53E-01 2.24E-08 0.000 0.3729 0.9000 0.9000   0.41  2  2  1.0E-05
 21 :   2.54E-01 8.25E-09 0.000 0.3687 0.9000 0.9000   0.46  3  3  5.1E-06
 22 :   2.55E-01 3.68E-09 0.000 0.4464 0.9000 0.9000   0.44  3  4  3.0E-06
 23 :   2.56E-01 1.55E-09 0.000 0.4203 0.9000 0.9000   0.44  4  4  1.7E-06
 24 :   2.57E-01 6.98E-10 0.000 0.4510 0.9000 0.9000   0.43  4  6  9.8E-07
Run into numerical problems.

iter seconds digits       c*x               b*y
 24      0.3   3.8  2.5645910306e-01  2.5650002154e-01
|Ax-b| =   1.5e-06, [Ay-c]_+ =   1.3E-08, |x|=  1.8e+03, |y|=  3.1e+04

Detailed timing (sec)
   Pre          IPM          Post
1.500E-02    1.250E-01    0.000E+00    
Max-norms: ||b||=1, ||c|| = 1,
Cholesky |add|=2, |skip| = 58, ||L.L|| = 3.59306e+08.
 
Residual norm: 1.4789e-06
 
         iter: 24
    feasratio: 0.4341
         pinf: 0
         dinf: 0
       numerr: 1
       timing: [0.0150 0.1250 0]
      wallsec: 0.1400
       cpusec: 0.3594

The H-infty gain from disturbance to error in estimated state is upper bounded by:
    0.2565

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%

% Construct the operators defining the PIE.
T_CL = [T, 0*T; 0*T, T];
A_CL = [A, B2*Kval; -Lval*C2, A+Lval*C2];   B_CL = [B1; Lval*D21];
C_CL = [C1, D12*Kval; 0*C1, C1];            D_CL = [D11; 0*D11];



% Declare the PIE.
PIE_CL = pie_struct();
PIE_CL.vars = PIE.vars;
PIE_CL.dom = PIE.dom;
PIE_CL.T = T_CL;
PIE_CL.A = A_CL;        PIE_CL.B1 = B_CL;
PIE_CL.C1 = C_CL;       PIE_CL.D11 = D_CL;
PIE_CL = initialize(PIE_CL);
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%

% Construct the operators defining the PIE.
T_CL = [T, 0*T; 0*T, T];
A_CL = [A, B2*Kval; -Lval*C2, A+Lval*C2];   B_CL = [B1; Lval*D21];
C_CL = [C1, D12*Kval; 0*C1, C1];            D_CL = [D11; 0*D11];



% Declare the PIE.
PIE_CL = pie_struct();
PIE_CL.vars = PIE.vars;
PIE_CL.dom = PIE.dom;
PIE_CL.T = T_CL;
PIE_CL.A = A_CL;        PIE_CL.B1 = B_CL;
PIE_CL.C1 = C_CL;       PIE_CL.D11 = D_CL;
PIE_CL = initialize(PIE_CL);

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%

% % Simulate and plot the actual and estimated PDE state using PIESIM

% Declare initial conditions for the state components of the PIE
syms st sx real

% Set options for the discretization and simulation:
opts.plot = 'no';   % Do not plot the final solution
opts.N = 8;         % Expand using 8 Chebyshev polynomials
opts.tf = 10;        % Simulate up to t = 10;
opts.dt = 1e-2;     % Use time step of 10^-2
opts.intScheme=1;   % Time-step using Backward Differentiation Formula (BDF)
ndiff = [0,0,1];    % The PDE state involves 1 second order differentiable state variables

% Simulate the solution to the PIE without controller for different IC.
uinput.ic.PDE = [-10*sx];   % IC PIE
uinput.w = 5*exp(-st); % disturbance
[solution_OL,grid] = PIESIM(PIE,opts,uinput,ndiff);

% Simulate the solution to the PIE with controller for different IC and disturbance.
ndiff = [0,0,2];
uinput.ic.PDE = [-10*sx; 0];    % IC PIE and observed state
uinput.w = 5*exp(-st);   % disturbance
[solution_CL_a,grid] = PIESIM(PIE_CL,opts,uinput,ndiff);
uinput.ic.PDE = [sin(sx*pi/2); 0];    % IC PIE
uinput.w = 5*sin(pi*st)./(st+eps);   % disturbance
[solution_CL_b,grid] = PIESIM(PIE_CL,opts,uinput,ndiff);
%% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - %%
% % % Simulate and plot the actual and estimated PDE state using PIESIM

% Declare initial conditions for the state components of the PIE
syms st sx real

% Set options for the discretization and simulation:
opts.plot = 'no';   % Do not plot the final solution
opts.N = 8;         % Expand using 8 Chebyshev polynomials
opts.tf = 10;        % Simulate up to t = 10;
opts.dt = 1e-2;     % Use time step of 10^-2
opts.intScheme=1;   % Time-step using Backward Differentiation Formula (BDF)
ndiff = [0,0,1];    % The PDE state involves 1 second order differentiable state variables

% Simulate the solution to the PIE without controller for different IC.
uinput.ic.PDE = [-10*sx];   % IC PIE 
uinput.w = 5*exp(-st); % disturbance
[solution_OL,grid] = PIESIM(PIE,opts,uinput,ndiff);
Warning: option  Norder is not defined. Setting to a default value of 2
Solving PIE problem
Warning: control inputs are not defined. Defaulting to zero
Initial conditions on ODE states are not defined. Defaulting to 1
Too many initial conditions are defined. Ignoring extra conditions
Setting up Chebyshev matrices for the PIE system
Setup completed: integrating in time
Time integration scheme is numerically unstable for the given problem.
Try increasing time step to 1.579
or decreasing an order of the scheme (opts.Norder).
Value of a regulated output 1 at a final time 10.000000 is 283114491383.5142
Value of a regulated output 2 at a final time 10.000000 is   0.0000
Value of an observed output 1 at a final time 10.000000 is 444715202083.8552

% Simulate the solution to the PIE with controller for different IC and disturbance.
ndiff = [0,0,2]; 
uinput.ic.PDE = [-10*sx; 0];    % IC PIE and observed state
uinput.w = 5*exp(-st);   % disturbance
[solution_CL_a,grid] = PIESIM(PIE_CL,opts,uinput,ndiff);
Warning: option  Norder is not defined. Setting to a default value of 2
Solving PIE problem
Warning: control inputs are not defined. Defaulting to zero
Initial conditions on ODE states are not defined. Defaulting to 1
Too many initial conditions are defined. Ignoring extra conditions
Setting up Chebyshev matrices for the PIE system
Setup completed: integrating in time
Time integration scheme is numerically stable for the given problem.
Any observed instabilities must be physical.
Value of a regulated output 1 at a final time 10.000000 is   0.0000
Value of a regulated output 2 at a final time 10.000000 is  -0.0003
Value of a regulated output 3 at a final time 10.000000 is   0.0000
Value of a regulated output 4 at a final time 10.000000 is   0.0000
uinput.ic.PDE = [sin(sx*pi/2); 0];    % IC PIE
uinput.w = 5*sin(pi*st)./(st+eps);   % disturbance
[solution_CL_b,grid] = PIESIM(PIE_CL,opts,uinput,ndiff);
Warning: option  Norder is not defined. Setting to a default value of 2
Solving PIE problem
Warning: control inputs are not defined. Defaulting to zero
Initial conditions on ODE states are not defined. Defaulting to 1
Too many initial conditions are defined. Ignoring extra conditions
Setting up Chebyshev matrices for the PIE system
Setup completed: integrating in time
Time integration scheme is numerically stable for the given problem.
Any observed instabilities must be physical.
Value of a regulated output 1 at a final time 10.000000 is   0.0085
Value of a regulated output 2 at a final time 10.000000 is   0.1240
Value of a regulated output 3 at a final time 10.000000 is  -0.0043
Value of a regulated output 4 at a final time 10.000000 is   0.0000

Extract actual solution at each time step.

tval = solution_OL.timedep.dtime;
x_OL = reshape(solution_OL.timedep.pde(:,1,:),opts.N+1,[]);
x_CL_a = reshape(solution_CL_a.timedep.pde(:,1,:),opts.N+1,[]);
hatx_CL_a = reshape(solution_CL_a.timedep.pde(:,2,:),opts.N+1,[]);
x_CL_b = reshape(solution_CL_b.timedep.pde(:,1,:),opts.N+1,[]);
hatx_CL_b = reshape(solution_CL_b.timedep.pde(:,2,:),opts.N+1,[]);

%%
% Extract actual solution at each time step.
tval = solution_OL.timedep.dtime;
x_OL = reshape(solution_OL.timedep.pde(:,1,:),opts.N+1,[]);
x_CL_a = reshape(solution_CL_a.timedep.pde(:,1,:),opts.N+1,[]);
hatx_CL_a = reshape(solution_CL_a.timedep.pde(:,2,:),opts.N+1,[]);
x_CL_b = reshape(solution_CL_b.timedep.pde(:,1,:),opts.N+1,[]);
hatx_CL_b = reshape(solution_CL_b.timedep.pde(:,2,:),opts.N+1,[]);

Set options for the plot

plot_indcs = floor(logspace(0,log(opts.tf/opts.dt)/log(10),5));
%plot_indcs = floor(linspace(1,opts.tf/opts.dt,66));
tplot = tval(plot_indcs);           % Only plot at select times
colors = {'b','g','m','r','k','c','r','y','o'};     % Colors for the plot
grid_idcs = 1:2:9;                % Only plot at a few grid points
%%
% Set options for the plot
plot_indcs = floor(logspace(0,log(opts.tf/opts.dt)/log(10),5));
%plot_indcs = floor(linspace(1,opts.tf/opts.dt,66));
tplot = tval(plot_indcs);           % Only plot at select times
colors = {'b','g','m','r','k','c','r','y','o'};     % Colors for the plot
grid_idcs = 1:2:9;                % Only plot at a few grid points
tsteps = 1:50:length(tval);
fig1 = figure(1);
surf(tval(tsteps),grid.phys,x_OL(:,tsteps,:),'FaceAlpha',0.75,'Linestyle','--','FaceColor','interp','MeshStyle','row');
h=colorbar ;
colormap jet
box on
ylabel(h,'$|\mathbf{x}(t,s)|$','interpreter', 'latex','FontSize',15)
set(gcf, 'Color', 'w');
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$s$','FontSize',15,'Interpreter','latex');
zlabel('$\mathbf{x}(t,s)$','FontSize',15,'Interpreter','latex');
title('Open loop response with $\mathbf{x}(0,s)=\frac{5}{4}(1-s^2)$, $w(t)=5e^{-t}$','Interpreter','latex','FontSize',15);

fig2 = figure(2);
subplot(2,1,1);
surf(tval(tsteps),grid.phys,x_CL_a(:,tsteps,:),'FaceAlpha',0.75,'Linestyle','--','FaceColor','interp','MeshStyle','row');
h=colorbar ;
colormap jet
box on
ylabel(h,'$|\mathbf{x}(t,s)|$','interpreter', 'latex','FontSize',15)
set(gcf, 'Color', 'w');
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$s$','FontSize',15,'Interpreter','latex');
zlabel('$\mathbf{x}(t,s)$','FontSize',15,'Interpreter','latex');
title('Closed loop response with $\mathbf{x}(0,s)=\frac{5}{4}(1-s^2)$, $w(t)=5e^{-t}$','Interpreter','latex','FontSize',15);

subplot(2,1,2);
surf(tval(tsteps),grid.phys,x_CL_b(:,tsteps,:),'FaceAlpha',0.75,'Linestyle','--','FaceColor','interp','MeshStyle','row');
h=colorbar ;
colormap jet
box on
ylabel(h,'$|\mathbf{x}(t,s)|$','interpreter', 'latex','FontSize',15)
set(gcf, 'Color', 'w');
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$s$','FontSize',15,'Interpreter','latex');
zlabel('$\mathbf{x}(t,s)$','FontSize',15,'Interpreter','latex');
title('Closed loop response with $\mathbf{x}(0,s)=-\frac{4}{\pi^2}\sin(\frac{\pi}{2}s)$, $w(t)=5\frac{\sin(\pi t)}{t}$','Interpreter','latex','FontSize',15);
%%
tsteps = 1:50:length(tval);
fig1 = figure(1);
surf(tval(tsteps),grid.phys,x_OL(:,tsteps,:),'FaceAlpha',0.75,'Linestyle','--','FaceColor','interp','MeshStyle','row');
h=colorbar ;
colormap jet
box on
ylabel(h,'$|\mathbf{x}(t,s)|$','interpreter', 'latex','FontSize',15)
set(gcf, 'Color', 'w');
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$s$','FontSize',15,'Interpreter','latex');
zlabel('$\mathbf{x}(t,s)$','FontSize',15,'Interpreter','latex');
title('Open loop response with $\mathbf{x}(0,s)=\frac{5}{4}(1-s^2)$, $w(t)=5e^{-t}$','Interpreter','latex','FontSize',15);

fig2 = figure(2);
subplot(2,1,1);
surf(tval(tsteps),grid.phys,x_CL_a(:,tsteps,:),'FaceAlpha',0.75,'Linestyle','--','FaceColor','interp','MeshStyle','row');
h=colorbar ;
colormap jet
box on
ylabel(h,'$|\mathbf{x}(t,s)|$','interpreter', 'latex','FontSize',15)
set(gcf, 'Color', 'w'); 
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$s$','FontSize',15,'Interpreter','latex');
zlabel('$\mathbf{x}(t,s)$','FontSize',15,'Interpreter','latex');
title('Closed loop response with $\mathbf{x}(0,s)=\frac{5}{4}(1-s^2)$, $w(t)=5e^{-t}$','Interpreter','latex','FontSize',15);

subplot(2,1,2);
surf(tval(tsteps),grid.phys,x_CL_b(:,tsteps,:),'FaceAlpha',0.75,'Linestyle','--','FaceColor','interp','MeshStyle','row');
h=colorbar ;
colormap jet
box on
ylabel(h,'$|\mathbf{x}(t,s)|$','interpreter', 'latex','FontSize',15)
set(gcf, 'Color', 'w');
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$s$','FontSize',15,'Interpreter','latex');
zlabel('$\mathbf{x}(t,s)$','FontSize',15,'Interpreter','latex');
title('Closed loop response with $\mathbf{x}(0,s)=-\frac{4}{\pi^2}\sin(\frac{\pi}{2}s)$, $w(t)=5\frac{\sin(\pi t)}{t}$','Interpreter','latex','FontSize',15);
XX = linspace(0,10,200);
w2_tval = subs(5*sin(pi*st)./(st+eps),tval);
w1_tval = subs(5*exp(-st),tval);
z_quadrature = double(subs(0.5*sx^2-sx,grid.phys));
k_quadrature = double(subs(Kval.Q1,s,grid.phys));
ZZ1 = trapz(z_quadrature,x_CL_a); %int wa
ZZ2 = trapz(z_quadrature,x_CL_b);%int wb
ZZ3 = trapz(k_quadrature,hatx_CL_a); %u wa
ZZ4 = trapz(k_quadrature,hatx_CL_b); %u wb
fig3 = figure(3);
subplot(1,2,1); hold on;
[YY] = spline(tval,ZZ1,XX);
plot(XX,YY,'--o','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = 5e^{-t}$']);
[YY] = spline(tval,ZZ2,XX);
plot(XX,YY,'--x','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = 5\frac{\sin(\pi t)}{t}$']); hold off;
subplot(1,2,2); hold on;
[YY] = spline(tval,ZZ3,XX);
plot(XX,YY,'--o','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = e^{-t}$']);
[YY] = spline(tval,ZZ4,XX);
plot(XX,YY,'--x','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = 5\frac{\sin(\pi t)}{t}$']); hold off;

ax5 = subplot(1,2,1);
set(ax5,'XTick',tval(1:900:end));
lgd1 = legend('Interpreter','latex'); lgd1.FontSize = 10.5;
lgd1.Location = 'northeast';
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$z(t)$','FontSize',15,'Interpreter','latex');
title('Closed loop $z(t) = \int_0^1 \mathbf{x}(t,s) ds$','Interpreter','latex','FontSize',15);
ax6 = subplot(1,2,2);
set(ax6,'XTick',tval(1:900:end));
lgd1 = legend('Interpreter','latex'); lgd1.FontSize = 10.5;
lgd1.Location = 'southeast';
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$u(t)$','FontSize',15,'Interpreter','latex');
title('Control effort $u(t)$','Interpreter','latex','FontSize',15);
%%
XX = linspace(0,10,200);
w2_tval = subs(5*sin(pi*st)./(st+eps),tval);
w1_tval = subs(5*exp(-st),tval);
z_quadrature = double(subs(0.5*sx^2-sx,grid.phys));
k_quadrature = double(subs(Kval.Q1,s,grid.phys));
ZZ1 = trapz(z_quadrature,x_CL_a); %int wa
ZZ2 = trapz(z_quadrature,x_CL_b);%int wb
ZZ3 = trapz(k_quadrature,hatx_CL_a); %u wa
ZZ4 = trapz(k_quadrature,hatx_CL_b); %u wb
fig3 = figure(3); 
subplot(1,2,1); hold on;
[YY] = spline(tval,ZZ1,XX);
plot(XX,YY,'--o','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = 5e^{-t}$']);
[YY] = spline(tval,ZZ2,XX);
plot(XX,YY,'--x','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = 5\frac{\sin(\pi t)}{t}$']); hold off;
subplot(1,2,2); hold on;
[YY] = spline(tval,ZZ3,XX);
plot(XX,YY,'--o','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = e^{-t}$']);
[YY] = spline(tval,ZZ4,XX);
plot(XX,YY,'--x','MarkerIndices',1:90:length(XX),'LineWidth',2,'DisplayName',['$w(t) = 5\frac{\sin(\pi t)}{t}$']); hold off;

ax5 = subplot(1,2,1);
set(ax5,'XTick',tval(1:900:end));
lgd1 = legend('Interpreter','latex'); lgd1.FontSize = 10.5; 
lgd1.Location = 'northeast';
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$z(t)$','FontSize',15,'Interpreter','latex');
title('Closed loop $z(t) = \int_0^1 \mathbf{x}(t,s) ds$','Interpreter','latex','FontSize',15);
ax6 = subplot(1,2,2);
set(ax6,'XTick',tval(1:900:end));
lgd1 = legend('Interpreter','latex'); lgd1.FontSize = 10.5; 
lgd1.Location = 'southeast';
xlabel('$t$','FontSize',15,'Interpreter','latex');    ylabel('$u(t)$','FontSize',15,'Interpreter','latex');
title('Control effort $u(t)$','Interpreter','latex','FontSize',15);
%%%%%%%%%%%%%%%%%% End Code %%%%%%%%%%%%%%%%%%
echo off
%%
%%%%%%%%%%%%%%%%%% End Code %%%%%%%%%%%%%%%%%%
echo off