dpvar: A new class for polynomial variables in MATLAB

Sachin Shivakumar * Declan Jagt | Matthew Peet *

September 21, 2021

Contents
1 Introduction 2
2 Notation 2
3 Class definitions 3
3.1 polynomial class object L 3
3.2 dpvar class object: modification of polynomial class object 4
4 Operations involving dpvar objects in MATLAB 5
4.1 Auxiliary operationso 5
4.1.1 degmat _kron product Lo 5
4.1.2 dpvar2poly Conversion of dpvar to polynomial 6
4.1.3 Conversion of polynomial object todpvar 7
4.1.4 Bshape Reshape a pvar to compatible format 8
4.1.5 commonbases e 8
4.1.6 COmMPIeSS e 9
4.2 mtimes Multiplication by pvar matrix Lo L Lo 10
4.3 subs Substitution 10
4.4 transpose Transpose of dpvar L 11
4.5 int Integral of dpvar L 11
4.6 plus for dpvar objects L 12
4.7 horzcat and vertcat e 12
4.8 subsref/SUbSAsgn i e 13
4.9 Jacobianm 13

*Arizona State University
f Arizona State University
tArizona State University

1 Introduction

SOSTOOLS is a toolbox designed for parsing and solving of polynomial sum-of-squares optimization prob-
lems in MATLAB. A polynomial sum-of-squares optimization problem is typically solved by following the
steps:

e Define symbolic independent variables (typically of type polynomial or sym in MATLAB).

e Define polynomials with unknown coefficients as decision variables (decision variables are of same
type as above)

e Define equality or inequality constraints on the polynomials involving decision variables.
e Declare an objective function.

e Convert the constraints and objective function (from SOSTOOLS format) to parameters compatible
with an SDP solver.

e Solve the optimization problem by calling the specified SDP solver.
e Convert solver output back to SOSTOOLS format (or other user-friendly formats).

While computationally solving an SOS problem, in most cases, the first 5 steps take a significant amount
of computation time in comparison to the solution step where the actual SDP is solved. The reason behind
this is the highlighted in the 2"? bullet above.

Specifying decision variables and storing them along with independent symbolic variables in a single
structure complicates many operations such as indexed access, multiplication, addition, etc., and artificially
inflates time taken during search or sorting operations. Moreover, while decision variables will always appear
linearly in the polynomial, never to be multiplied, differentiated, etc., the implementation of polynomial
objects in SOSTOOLS up to version 3.04 fails to fully exploit the benefits of this linearity.

With SOSTOOLS 4.0, we reduce computational complexity and memory requirements by introducing a
new MATLAB class of objects: the dpvar. Objects of this class are different from polynomial and syms
objects, in the sense that decision variables and independent variables are now stored under separate fields
(see 3.2). As aresult, operations on dpvar objects are significantly less computationally demanding than the
same operations on polynomial and syms objects, allowing for much more efficient parsing of polynomial
optimization problems then in previous versions of SOSTOOLS.

This manual presents an overview of how the dpvar object is implemented in MATLAB, along with some
basic operations that may be performed on dpvar objects.

2 Notation

Throughtout this document, unless explicitly stated, the symbols listed in this section will have the meaning
as defined below.

e Typeset font (Example: text) - denotes code in MATLAB compatible syntax

e For any MATLAB variable var, var(i,j) denotes the (i,7)*"-element. Further, : is used to denote
all elements along a particular dimension. For example, var(:,j) corresponds to the vector of with
all rows and j*" column of the variable var

o +, x, /, " etc., stand for standard MATLAB operators with canonical meaning
e R stands for the set of real numbers

e For any MATLAB variable P, the symbol ‘" is used to represent the access of a MATLAB field. For
example P.T is used to refer to the field T" under P that is stored in a MATLAB structure/class.

3 Class definitions

In this section, we introduce the existing class polynomial along with the new class dpvar to highlight
differences between the two classes.

3.1 polynomial class object

Syntax:

pvar s t; %creates independent polynomial variables

C = polynomial(coeff, degmat, [s;t], matdim); Jconstruct using polynomial structure

Currently, a polynomial class object has the four properties. For any [m,n] dimensional polynomial
object with p independent polynomial variables and a monomial set of length z (with various degrees of p)
has the properties

e coeff: sparse matrix of size [z, (m*n)]
e matdim: array [m,n]
e varname: a cell-string of size [p 1]
e degmat: a matrix of size [z p]
Given these properties, the polynomial can be reconstructed in two ways:
1. First, using elementwise exponential and elementwise multiplication, get the monomial vector
Z(p) = varname(l)degmat(:’l). Kok varname(p)deg’“at(:’p).

Note that varname(i)®€2t(:%) is a [z,1]-dimensional matrix (z-dimensional vector). Then Z(p) is a
vector of dimension z, with each element a monomial in the variables varname.

2. Then, get the polynomial in linear-indexed vector (m*n dimensional ROW vector) using the formula
P(p) = Z(p)T * coeff.

Use reshape (P,m,n) to reshape P(p) to get the matrix of size [m,n].

Alternatively, we can first reshape the coefficient matrix, and then multiply with the monomials. In
particular, for a matrix pvar of size m X n, the coefficient matrix is structured as

[bl e an o bm(nfl)Jrl T bmn}
= I:bl,l e bm 1 b1,2 e bm,2 e bl,n e bm,n})

)

where each b; is a z-dimensional column vector. Constructing the monomial vector Z(p) as in the previous
approach, we may than reconstruct the polynomial itself as

B
bir e bz:;(n—l)—o—l
bg .
Plp)=| . : (In © Z(p)),
b T
or, alternatively,
B
bl e bm(n—1)+1
- by -
P(p)=Un®Z(p)" | .
by - Bonn

As an example, the polynomial

_ 1 3d1$1 5d1$%
f«d,$)<— 2d2$2 4d2x1 6d2$1$2
may be stored as a polynomial object P, by assigning it the field values

P.varname = {‘d_1’;‘d_2’;‘x_17;‘x_2’};
P.dim = [2,3];

P.degmat = [0,0,0,0; 0,1,0,1; 1,0,1,0; 0,1,1,0; 1,0,2,0; 0,1,1,1];
P.coeff = [1,0,0,0,0,0; 0,2,0,0,0,0; 0,0,3,0,0,0,0;
0,0,0,4,0,0; 0,0,0,0,5,0; 0,0,0,0,0,0,6];

Note that, since coeff and degmat will be stored as sparse objects, all the zeros in their expressions will not
be stored.

3.2 dpvar class object: modification of polynomial class object

Syntax:

pvar p-1 p2 ... pm; %creates independent polynomial variables
dvarnames = [‘coeff 0’,...,‘coeff n’]; Ycreates array of strings with decision variables

C = dpvar(coeff, degmat, [p-1, ..., pom], dvarnames, matdim); Jconstruct using dpvar structure

Let us now introduce a new class dpvar, with an additional property that stores the list of decision
variables. Let us define a polynomial with decision variables d and polynomial variables p as

D(p;d) = (I, ® Z(d))" C(I, ® Z(p))
Z(d)TCnZ(P) Z(d)Tcan(P)

Z(A ConZ(p) - Z(d)T Conn Z(p)

where [is an identity matrix and A(p) is a polynomial class object of dimensions [(d+1)#*m,n]. Unique
property of decision variables is that their highest degree is always 1, integration and differentiation is never
performed with respect to decision variables, and decision variables should not be multiplied with each other.
In MATLAB, the dpvar class has the properties

e C: Sparse matrix of size [((d+1)*m) ,z*n], describing the coefficient matrix C.
e matdim: array [m,n], describing the matrix dimensions of the polynomial
e varname: a cell-string of size [p 1], describing the independent variable names
e degmat: a matrix of size [z pl, describing the degrees of variables p in monomial vector Z(p)
e dvarname: a cell-string of size [d 1], describing the decision variable names
As an example, the polynomial

1 3d1$1 5d1$%

F%d’lﬁ - 2d2$2 4d2x1 6d2$1$2

with decision variables d, may be stored as a dpvar object P, by assigning it the field values

P.varname = {‘x_1’;‘x_2"};
P.dvarname = {‘d_1’;‘d_2’};

P.dim = [2,3];

P.degmat = [0,0; 1,0; 0,1; 2,0; 1,1];

1;
Note that, since C and degmat will be stored as sparse objects, all the zeros in their expressions will not
be stored.
From now on, ‘sparse matrix operations’ is used as an umbrella term to represent operations such as

addition, multiplication, factorization, etc. Sparse matrix operations depend linearly on number of non-zero
elements, number of rows, and number of columns but not on product of number of rows and columns.

Remark 1. Some benefits, that are outright evident by adopting dpvar class representation instead of
polynomial class representation are listed below.

1. Size of degmat reduces significantly.

2. Given a polynomial with decision variables, both number of non-zero elements and total size of coeff
and C remain the same. However, the number of rows and columns are different.

3. Since sparse matriz operations are linearly dependent on number of rows and columns, complexity of
sparse matriz operations on the two representations will be different.

4. In general, [m,n] is fized and m<<z<<d. Hence, sparse matriz operations complexity may not change
significantly. However, since m<z, dpvar representation is slightly better.

5. Concatenation and addition operations are likely of same complexity as in polynomial representation.

4 Operations involving dpvar objects in MATLAB

We now go over some operations on dpvar class objects while mathematically describing the implementation
of each operation in MATLAB.

4.1 Auxiliary operations

Auxiliary operation, are operations, on dpvar class objects, that are frequently used to warrant a function,
however, are seldom of any direct use to any user. Such functions are described in this section for the sake
of completion and user knowledge. These functions are unlikely to be used by users directly while solving
polynomial SOS optimization problems.

4.1.1 degmat_kron product

Given two monomials Z1(p) € RY and Zz(p) € R2, a commonly required operation is to find (I;,, ®
Z1(p))(Ip ® Z2(p)) which is equivalently written as

Z1(p) Zs(p)
(1op ® Z1(p))(Ip ® Z2(p)) =
Z3(p)

L l1lapXlap lapxp

Z1(p) ® Z(p)

L l1lapXp

In MATLAB, each row of ‘degmat’ stores degrees of one monomial. Then
n;
Zi= H varname (j) degmat (.)
j=1

where the product ‘[[¢ and exponent are performed elementwise. When ‘varname’ is same for Z; and Zs,
the kronecker product can be performed by adding rows of degmat.
To perform kronecker product between ‘dmat1’ and ‘dmat?2’,

1. Add every row of ‘dmat2’ to i*" row of ‘dmat1’ and stack them vertically as shown below.
dmat1(1,:) +dmat2(:,:)

dmat1(2,:) +dmat2(:,:)
2. dmat_new = .

dmatl(end,:) + dmat2(:,:)
3. Then, find unique rows in dmat new. [dmat uni, ., IA] = unique(dmat_new,’rows’,’stable’);
4. Find a matrix A.ompine such that, dnat_new = Acombine*dmat_uni;.

5. Using MATLAB ‘unique’ function, the index of rows of dmat new found in dmat_uni is stored in IA. Then
Acombine(i, IA(i)) = 1; % i goes from 1 to length(IA).

In mtimes, step 2 of the above list is performed in rowwisesum (function name used for the degmat_kron
operation) and step 5 in combine_degmat.

4.1.2 dpvar2poly Conversion of dpvar to polynomial

Syntax:

polyVar = dpvar2poly(dpVar); Yreturns a polnomial object
Inputs:

1. dpVar : A dpvar class object with fields shown in Section 3.2
Outputs:

1. polyVar : A polynomial class object with fields shown in Section 3.1

Let D be a dpvar class object of the form shown below. We split the coefficient matrix of the dpvar into
block matrices, where each C;; € RUE@HDXL 59

Z()T Cn Cio - Cigzn
D(p;d) = (I, ® Z(d))"C(I, ® Z(p)) = : Lo C | In® Z(p))
Z(d)T Cm,l Cm,2 e Cm,zn
[Z2d)TCh Z(d)TCs - Z(d)TChan
= : : : (In® Z(p))
_Z(d)TCm,l Z(d)TC’m’g S Z(d)TCm’Zn
[Chzd) CfZ(d) --- Cf.,Z(d)
= : : : (In® Z(p))
_Cgl,lz(d) C?;zﬂz(d) e C7€z7znZ(d)
= o | (e ® Z(d)(In @ Z(p) = Crew(In @ Znew(p, d)).
_Orjr;,l O;I):L,Q T C%,zn

To obtain the polynomial object, construct the degmat (combine is not needed since the intersection of the
sets p and d is a null set) and then rearrange C,,¢,, into the shape z(d + 1) x mn.
To rearrange Cl,eq, construct a block matrix structure

Cip -+ Cin
Om,l o Cm,n
where C;; € R#(@+1) | Then, set
_CLl -
C’m,l
Ch,2
Onew = :
Cm,Q
Cman

The required coefficient for polynomial is CL,,,.

4.1.3 Conversion of polynomial object to dpvar

Syntax:

dpVar = poly2dpvar(polyVar); %returns a dpvar object

Inputs:

1. polyVar : A polynomial class object with fields shown in Section 3.1
Outputs:

1. dpVar : A dpvar class object with fields shown in Section 3.2

Suppose P(p;d) is a polynomial of dimension m x n with decision variables d and polynomial variables
p. Assuming d have degrees either 0 or 1 exclusively and there are no products of decision variables in d,
we can convert P into a dpvar as shown below.

1. Let P(p;d).coef f = B, P(p;d).matdim = [m,n] and P(p;d).degmat = D = Z(p;d).
2. First, reshape B using Bshape to get C. C = Bshape(B, P(p; d).matdim, length(D)).

3. Then P(p;d) = C(I, ® Z(p;d)).

4. Split (I, ® Z(p;d)) = E(1zn ® Z(d))(I, ® Z(p)) where E is some row permutation matrix. E can be
found using intersect or ismember function in Matlab.

5. Then

P(p;d) = C(In © Z(p;d)) = (C © E)(In @ Z(d))(In © Z(p))
Ci Ciz -+ Cign
=1 o | L@ Z(d) (I © Z(p))
Cm,l Cm.,2 T Cm,zn

[OLZ(d) CiZ(d) - Ch.Z(d)

= : : : (In ® Z(p))
CmaZ(d) CpnpZ(d) -+ CpnZ(d)
[z(d)"Cl, zZd)"Cl, - Z(d)TCT,,

= : : : (In ® Z(p))
Z(d)'Chy Z(d)Chy o Z(A)TC L

4.1.4 Bshape Reshape a pvar to compatible format

Syntax:
B = Bshape(polyVar); Yreturns a sparse matrix

Inputs:
1. polyVar : A polynomial class object with fields shown in Section 3.1

Outputs:

= (In ® Z(d)")Crew(In @ Z(p)).

1. B : A sparse matrix of coefficients used to build the polynomial polyVar that is reshaped as described

below

Recall that, for a matrix pvar of size n X p, the coefficient matrix is structured as

[b1 cbn o bpgpet)p1 e b”p}
Z[bl,l "'bn,l b1,2 bn,2 bl,p

bnp)

If Z(p) is the monomials corresponding to degmat, then the polynomial itself is

B
blT bz;(pfl)+1
b2T
Plp)=| . - | U@ Z(0)
A oL,
Alternatively,
B
by bn(p—1)+1
r |02
Pp)=I.®Z(p)" | . :
by, bup

4.1.5 common_bases

Syntax:
[E,F] = common_bases(E,F); %dpvars E and F with same monomials

Inputs:

and varnames

1. E, F: Two dpvar class objects with (possibly) different monomials, dvarnames, and varnames

Outputs:

1. E, F: Same two dpvar class objects with (now unified) same monomials, dvarnames, and varnames

Given two dpvar objects A and B of same matrix dimensions, where
A= (I @ Zaa(da)")Ca(ln ® Zya(pa))) »
B = ((Im ® Zap(dp)")Cs(Ip ® Z,5(pB))),

‘common_bases’ is frequently used in many binary operations (such as addition, concatenation, etc.) on A
and B.

This function is used to find a common monomial sets Z; and Z, in common variables d,, and p, such
that

A= ((Im ® Zd(dp)T)CpA(In ® Zp(pp))))
B=(In® Za(dy)")Cpp (I ® Zy(pp))) -
The common basis sets are obtained by following the steps shown below.

1. Find the union d, = d4 Udp and p, = pa U pp using matlab union function.

Note: the Z4(d,) = E)lxm} where nt is size of the set d,.
ntxnt

2. Find Z,(pp): first add zero columns to degmat Z, 4 (and Z,p) corresponding to variables in set pg — pa
(set pa — pp for Z,p).

3. Rearrange columns of extended degmats of Z,4 and Z,p to have variable names in the same order.
4. Find row-wise union on extended degmats using matlab function to get degmat corresponding to Z,(p,).

5. Extend C4 by introducing zero rows/columns corresponding to missing variables in set d, — da/pp — pa
to obtain Cp4.

6. Repeat previous step for Cp.

4.1.6 compress

Syntax:
E = compress(E); %returns a dpvar object with minimal monomial and varname set

Inputs:

1. E: A dpvar class object

Outputs:

1. E : Same dpvar class object with reduced varnames, dvarnames, and monomials

This function is used to reduce the size of a dpvar degmat by eliminating rows and columns with all zero
coefficients. This is performed in three stages listed below.

1. First identify all zero columns in degmat. Remove the any such column and the variable corresponding
to that column number in varname.

2. Remove all zero rows in degmat, then remove all the columns in C matrix corresponding to the discarded
row numbers in degmat. Note each i, j-block matrix in C has a column corresponding to discarded rows.

3. Find dvarnames with all zero coefficients in C matrix and remove rows corresponding to those dvarnames.
Reduce the dvarname set.

4.2 mtimes Multiplication by pvar matrix

Syntax:
A*B Yreturns product of a dpvar and polynomial object
Let

D(p;d) P(p) = (I ® Z(d))" C(In @ Z1(p)) * B(I, @ Z2(p))

where Z(d) € R, Z;(p) € R%, P(p) € R™¥P and D(p;d) € R™*". Then C € Rlamxhn and B € Rn*{p,
First, split C into [ym X n block matrix and B into n X lap as

Cn Cia e Cin Bii -+ Bip
c=| i i f. o B=|ol
C’ldm,l C4ldm,,2 e Cldm,n Bn,l e Bn,lgp
Then,
C11Z:1(p) Ci2Zi(p) -+ CinZi(p)
C(Z1(p) @1y) = : : :
Cium1Z1(p) Ciym2Z1(p) -+ CiraimnZi1(p)
Therefore,

D(p;d) * P(p) = (Im ® Z(d))" C(® Z1(p)) * B(I, ® Zx(p))

C11Z:1(p) Ci2Z1(p) -+ CinZi(p) Bi1 -+ Biip
= (Im ® Z(d))" : : : Lot | (@ Za(p))
[Clam1Z1(p) Clym2Z1(p) -+ ClammZ1(p)] [Bna -+ Bniap
[(i CuBi)Zi(p) - (71 C1iBip) Z1(p)
= (Im®Z(d))T (IP®Z2(p))
(> im1 Clam,iBi)Zi(p) -+ (3272 Cram,iBistap) Z1(p)

1
= (I ® Z(d))" Crew(Iop ® Z1(p)) (I, ® Z2(p))

where

>y CuBi,l) e (2 Cl,z‘Bz',lap)
Cnew - ’

(Zz 1Cldmz 11) (Zz 1Cldmz llzp)

4.3 subs Substitution

Syntax:

A_sub = subs(A, vars, vars_b); Y%returns dpvar A with vars substituted by vars_b
Inputs:

1. A: A dpvar class object

2. vars : An array of polynomial variables to be substituted

10

3. vars_b: An array of polynomial variables (or constants) to be substituted (must be of same length as
vars)

Outputs:
1. A_sub: A dpvar class object (same as A but vars replaced by vars_b)
Substitution is valid only for independent variables. Define subs(Z(p),p = a) = AZ5(p). Then
subs(D(d;p),p = a) = (I, ® Z(d))T C(I,, ® subs(Z(p),p = a))

= (Im ® Z(d))" C(I, ® AZ(p))
= (In ® Z(d))"C(L, ® A)(In ® Z2(p)).

If S=subs(Z,p,a), then A=S.coeff’.

4.4 transpose Transpose of dpvar
Syntax:

A’ Yreturns transpose of A, also use A.’

Transpose of a matrix valued dpvar, with monomials Z;(d) € R and Z,(p) € R is computed using
the following formulae.

D(d;p)" = (I, ® Z1(d))"C(I,, @ Zz(p)))T = (In ® Zo(p))" C* (I ® Z1(d))"
= (In ® Za2(p))" D(In ® Z1(d))

[Zo(p)' D11 Z1(d) Za(p)'D12Zi(d) -+ Za(p)'DimZ:i(d)]
| Zo(p)" Dy Z1(d) Za(p)"DpoZi(d) -+ Za(p)" Dy Z1(d)
Zl (d)TDiTlZQ(p) Al (d)TDEZZ(p) A (d)TDi]:?nZQ(p)
| Z1(d)" DY 1 Z2(p) Zi(d)T DYy Za(p) -+ Zi(d)" DY, Za(p) |
o, »bf, --- Df,
=(n® Zy(d)" | : L [(I ® Za(p))
Dy, DY, --- DI,

where D;; € R4 is a block matrix and Z»(p)T D;;Z1(d) is has a scalar dimension for all i, j.

4.5 int Integral of dpvar

Syntax:

Aint = int(A,var,LL,UL); %returns definite integral of A w.r.t. var from LL to UL
Inputs:

1. A: A dpvar class object

2. var : A polynomial variable, the variable of integration

3. LL, UL : Real numbers (or scalar polynomial variables) corresponding to lower and upper limits of the
integral

Outputs:

11

1. Aint : A dpvar class object

Integration is for only independent variables.

int(Z(p),p,a,b) = (I, ® Z(d))TC(I,, @ int(Z(p),p, a,b))
= (In ® Z(d))"C(In ® AZ(p))
= (Im ® Z(d))" C(In ® A)(In ® Z2(p)).
If S=int(Z,p,a,b), then A=S.coeff’.

4.6 plus for dpvar objects
Syntax:
A+B Yreturns sum of dpvar objects
Given two dpvar objects A and B of same matrix dimensions, where

A= ((Im ® Zaa(da)")Ca(In ® Zya(pa))),
B = ((Imn ® Zap(dp)")Cp(Is ® Zpp(pB)))
addition is performed as described by the following steps.
1. Find the unions d, = d4 Udp and p, = pa U pp.
Find the monomial set Zg(dp) such that Zg = Zg4(da) U Z,5(dB).

Similarly, find Z,(p,) = Zpa(pa) U Zps(pB)-

W= LN

Introduce zero rows and columns in C'4 and Cp, respectively, such that
A= ((Im ® Zd(dp)T)CpA(In ® Zp(pp))))
B = ((Im ® Za(dyp)")Cop(In @ Zy(pp))) -
5. Then required addition of dpvars A and B is simply given by
A+ B = ((Im ® Za(dp)")(Cpa + Cpp) (In @ Zy(pp))) -

4.7 horzcat and vertcat
Syntax:

[A,Bl%returns horizontal concatenation of dpvar objects

[A;BlY%returns vertical concatenation of dpvar objects
Given two dpvar objects A and B with compatible dimensions, where

A= ((InL ® ZdA(dA))TCA(In ® ZpA(pA))) 5
B = ((Imn ® Zap(dg))"Cs(Iz ® Zy5(pp)))

concatenation is performed as described by the following steps.
1. Repeat steps 1-4 from previous section
2. Then required horizontal concatenation of dpvars A and B is simply given by

[A B] = ((Im ® Zd(dp)T) [CPA CpB] (I2n ® Zp(pp))) .

3. Similarly, vertical concatenation is given by

5] = (e 2™ 22| 10 2400).

12

4.8 subsref/subsasgn

subsref is used to access rows and columns of a dpvar A using subscripts. For example, i to k rows and j
to [columns of A are accessed by using the command A(i:k,j:1).
Syntax:

A(rows,cols) Y%returns rows and cols of A specified by the indices

A.prop %returns the specified property ‘prop’ of A

Since subsref indexing only deals with coefficients (degmats, dvarnames and varnames potentially remain
the same), first generate indices of A.C that correspond to rows and columns specified by the subscripts.
The formula is given by

idxrows = (i-1)*(nd+1)+1 : kx(nd+1)
idxcols = (j-1)*(ndeg)+1l : 1x(ndeg)

where nd is number of dvarnames and ndeg is number of rows of degmat. Then required rows and columns
are extracted from A.C matrix using the command C(idxrows, idxcols).
Syntax:

A(rows,cols) =B; %reassigns rows and cols of A specified by the indices by B

A.prop = B; Jreassigns the specified property ‘prop’ of A by B

subsasgn works in the same way as subsref except at the last stage where instead of extracting the values
from A.C(idxrows, idxcols), new values are assigned at specified index locations.

4.9 jacobian

SYNTAX:

J = jacobian(A);

Inputs:

1. A: A dpvar class object

Outputs:

1. J: A dpvar class object that represents the jacobian of A

This function will be used to find Jacobian matrix from a dpvar object.
For py C p, jacobian is found using

J(A(p; d), pa) = ((Im © Z(d)")Ca(In @ J(Zy(p), pa)))
= (Im ® Z(d)")Ca(Is ® DZp(p))) = ((Im ® Z(d)")(Ca(Ia ® D))(1a ® Zy(p)))

for some differentiation matrix D.

NOTE: A minor variation of the jacobian is the diff () function which takes vars as an input whereas
Jacobian is calculated by using all varnames.
SYNTAX:

J = diff (A, vars);
Inputs:
1. A : A dpvar class object

2. vars : polynomial variables with respect to which the differentiation is performed
Outputs:

1. J: A dpvar class object that represents the partial differentiation of A with respect to vars

13

