Modern Control Systems

Matthew M. Peet
Arizona State University

Lecture 09: Observability
Observability

For Static Full-State Feedback, we assume knowledge of the **Full-State**.

- In reality, we only have measurements

\[y_m(t) = C_m x(t) \]

- How to implement our controllers?

Consider a system with no input:

\[
\begin{align*}
\dot{x}(t) &= Ax(t), & x(0) &= x_0 \\
y(t) &= Cx(t)
\end{align*}
\]

Definition 1.

The pair \((A, C)\) is **Observable** on \([0, T]\) if, given \(y(t)\) for \(t \in [0, T]\), we can find \(x_0\).
Let $\mathcal{F}(\mathbb{R}^{p_1}, \mathbb{R}^{p_2})$ be the space of functions which map $f : \mathbb{R}^{p_1} \to \mathbb{R}^{p_2}$.

Definition 2.

Given (C, A), the flow map, $\Psi_T : \mathbb{R}^p \rightarrow \mathcal{F}(\mathbb{R}, \mathbb{R}^p)$ is

$$
\Psi_T : x_0 \mapsto C e^{At} x_0 \quad t \in [0, T]
$$

So $y = \Psi_T x_0$ implies $y(t) = C e^{At} x_0$.

Proposition 1.

The pair (C, A) is observable if and only if Ψ_T is invertible

$$
\ker \Psi_T = 0
$$
Theorem 3.

\[\ker \Psi_T = \ker C \cap \ker CA \cap \ker CA^2 \cap \cdots \cap \ker CA^{n-1} = \ker \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \]

Proof.

Similar to the Controllability proof: \(R_t = \text{image } C(A, B) \)

Definition 4.

The matrix \(O(C, A) \) is called the **Observability Matrix**

\[O(C, A) = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \]
Definition 5.
The Unobservable Subspace is $N_{CA} = \ker \Psi_T = \ker O(C, A)$.

Theorem 6.
N_{AB} is A-invariant.
Duality

The Controllability and Observability matrices are related

\[
O(C, A) = C(A^T, C^T)^T \\
C(A, B) = O(B^T, A^T)^T
\]

For this reason, the study of controllability and observability are related.

\[
\ker O(C, A) = [\text{image } C(A^T, C^T)]^\perp \\
\text{image } C(A, B) = [\ker O(B^T, A^T)]^\perp
\]

We can investigate observability of \((C, A)\) by studying controllability of \((A^T, C^T)\)

- \((C, A)\) is observable if \(\text{image } C(A^T, C^T) = \mathbb{R}^n\)
Definition 7.

For pair \((C, A)\), the **Observability Grammian** is defined as

\[
Y = \int_0^\infty e^{ATs} CT Ce^{As} ds
\]

The following seminal result is not surprising:

Theorem 8.

For a given pair \((C, A)\), the following are equivalent.

- \(\ker Y = 0\)
- \(\ker \Psi_T = 0\)
- \(\ker O(C, A) = 0\)

If the state is observable, then it is observable arbitrarily fast.
There are several other results which fall out directly.

Theorem 9 (PBH Test).

\((C, A)\) is observable if and only if

\[
\text{rank} \begin{bmatrix} A - \lambda I \\ C \end{bmatrix} = n
\]

for all \(\lambda \in \mathbb{C}\).

- Again, we can consider only eigenvalues \(\lambda\).
- No equivalent to Stabilizability?
Observability Form

Theorem 10.

For any pair \((C, A)\), there exists an invertible \(T\) such that

\[
TAT^{-1} = \begin{bmatrix}
\tilde{A}_{11} & 0 \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{bmatrix} \quad CT^{-1} = \begin{bmatrix}
\tilde{C}_1 & 0
\end{bmatrix}
\]

where the pair \((\tilde{C}_1, \tilde{A}_{11})\) is observable.

Invariant Subspace Form

- What is the invariant subspace?

Dissecting the equations (and dropping the tilde), we have

\[
\begin{align*}
\dot{x}_1(t) &= A_{11}x_1(t) \\
\dot{x}_2(t) &= A_{21}x_1(t) + A_{22}x_2(t) \\
y(t) &= Cx_1(t)
\end{align*}
\]

Then we can solve for the output:

\[
y(t) = Ce^{A_{11}t}x_1(0)
\]

The initial condition \(x_2(0)\) does not affect the output in any way!

- \(x_2(0) \in \ker \Psi_T\).
- No way to back out \(x_2(0)\).
Detectability

The equivalent to stabilizability

Definition 11.

The pair \((C, A)\) is detectable if, when in observability form, \(\tilde{A}_{22}\) is Hurwitz.

All unstable states are observable

Theorem 12 (PBH for detectability).

Suppose \((C, A)\) has observability form

\[
TAT^{-1} = \begin{bmatrix}
\tilde{A}_{11} & 0 \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{bmatrix} \quad CT^{-1} = \begin{bmatrix}
\tilde{C}_1 & 0
\end{bmatrix}
\]

Then \(A_{22}\) is Hurwitz if and only if

\[
\text{rank} \begin{bmatrix}
A - \lambda I \\
C
\end{bmatrix} = n
\]

for all \(\lambda \in \mathbb{C}^+\).
Observers

Suppose we have designed a controller

\[u(t) = Fx(t) \]

but we can only measure \(y(t) = Cx(t) \)!

Question: How to find \(x(t) \)?

- If \((C, A)\) observable, then we can observe \(y(t) \) on \(t \in [t, t + T] \).
 - But by then its too late!
 - we need \(x(t) \) in *real time!*
Definition 13.

An Observer, is an Artificial Dynamical System whose output tracks $x(t)$.

Suppose we want to observe the following system

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Lets assume the system is state-space

- What are our inputs and output?
- What is the dimension of the system?
Observers

Inputs: $u(t)$ and $y(t)$.

Outputs: Estimate of the state: $\hat{x}(t)$.

Assume the observer has the same dimension as the system

\[
\dot{z}(t) = Mz(t) + Ny(t) + Pu(t) \\
\hat{x}(t) = Qz(t) + Ry(t) + Su(t)
\]

We want $\lim_{t \to 0} e(t) = \lim_{t \to 0} x(t) - \hat{x}(t) = 0$

- for any u, $z(0)$, and $x(0)$.
- We would also like internal stability, etc.
Observers

System:
\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\]

Observer:
\[
\dot{z}(t) = Mz(t) + Ny(t) + Pu(t) \\
\hat{x}(t) = Qz(t) + Ry(t) + Su(t)
\]

What are the dynamics of \(x - \hat{x} \)?
\[
\dot{e}(t) = \dot{x}(t) - \dot{\hat{x}}(t) \\
= Ax(t) + Bu(t) - Q\dot{z}(t) + R\dot{y}(t) + S\dot{u}(t) \\
= Ax(t) + Bu(t) - Q(Mz(t) + Ny(t) + Pu(t)) + R(C\dot{x}(t) + D\dot{u}(t)) + S\dot{u}(t) \\
= Ax(t) + Bu(t) - QMz(t) - QN(Cx(t) + Du(t)) - QPu(t) \\
\hspace{2cm} + RC(Ax(t) + Bu(t)) + (S + RD)\dot{u}(t) \\
= (A + RCA - QNC)e(t) + (AQ + RCAAQ - QNCQ - QM)z(t) + (A + RCA - QNC)Ry(t) + (B + RCB - QP - QND)u(t) + (S + RD)\dot{u}(t)
\]

Designing an observer requires that these dynamics are Hurwitz.
Luenberger Observers

Initially, we consider a special class of observers, parameterized by the matrix L

\[
\dot{z}(t) = (A + LC)z(t) - Ly(t) + (B + LD)u(t) \tag{1}
\]

\[
\hat{x}(t) = z(t) \tag{2}
\]

In the general formulation, this corresponds to

\[
M = A + LC; \quad N = -L; \quad P = B + LD;
\]

\[Q = I; \quad R = 0; \quad S = 0;\]

So in this case $z(t) = \hat{x}(t)$ and $(A + RCA - QNC) = QM = A + LC$.

Furthermore $(A + RCA - QNC)R = 0$ and

\[AQ + RCAQ - QNCQ - QM = 0.\]

Thus the criterion for convergence is $A + LC$ Hurwitz.

\textbf{Question} Can we choose L such that $A + LC$ is Hurwitz?

Similar to choosing $A + BF$.

If turns out that controllability and detectability are useful

Theorem 14.

The eigenvalues of \(A + LC \) are freely assignable through \(L \) if and only if \((C, A)\) is observable.

If we only need \(A + LC \) Hurwitz, then the test is easier.

- We only need detectability

Theorem 15.

An observer exists if and only if \((C, A)\) is detectable

Note: Theorem applies to ANY observer, not just Luenberger observers.
Theorem 16.

An observer exists if and only if \((C, A)\) is detectable

Proof.

We begin with \(1) \Rightarrow 2\). We use proof by contradiction. We show \(\neg 2) \Rightarrow \neg 1)\).

- Suppose \((C, A)\) is not detectable. We will show that for some initial conditions \(x(0)\) and \(z(0)\), The observer will not converge

\[
\dot{z}(t) = Mz(t) + Ny(t) + Pu(t)
\]

\[
\hat{x}(t) = Qz(t) + Ry(t) + Su(t)
\]

- Convert the system to obervability form where \(A_{22}\) is not Hurwitz.

\[
\dot{x}_1(t) = A_{11}x_1(t)
\]

\[
\dot{x}_2(t) = A_{21}x_1(t) + A_{22}x_2(t)
\]

\[
y(t) = Cx_1(t)
\]
Proof.

- Choose \(x_1(0) = 0 \) and \(x_2(0) \) to be an eigenvector of \(A_{22} \) with associated eigenvalue \(\lambda \) having positive real part.

- Then \(x_1(t) = e^{A_{11}t}x_1(0) = 0 \) for all \(t > 0 \).

- Then
 \[
 \dot{x}_2(t) = A_{21}x_1(t) + A_{22}x_2(t) = A_{22}x_2(t).
 \]

 Hence \(x_2(t) = e^{A_{22}t}x_2(0) = x_2(0)e^{\lambda t} \). Thus \(\lim_{t \to \infty} x_2(t) = \infty \).

- However, \(y(t) = Cx_1(t) = 0 \) for all \(t > 0 \).

- For any observer, choose \(z(0) = 0 \) and \(u(t) = 0 \). Then
 \[
 \dot{z}(t) = Mz(t) + Ny(t) + Pu(t) = Mz(t)
 \]

 Hence \(z(t) = e^{Mt}z(0) = 0 \) for all \(t > 0 \) and \(\hat{x}(t) = 0 \) for all \(t > 0 \).

- We conclude that \(\lim_{t \to \infty} e(t) = \lim_{t \to \infty} x(t) - \hat{x}(t) = \infty \).
Theorem 17.
An observer exists if and only if (C, A) is detectable

Proof.

Next we prove that $2) \Rightarrow 1)$. We do this directly by constructing the observer.

- If (C, A) is detectable, then there exists a L such that $A + LC$ is Hurwitz.
- Choose the Luenberger observer
 \[\dot{z}(t) = (A + LC)z(t) - Ly(t) + (B + LD)u(t) \]
 \[\hat{x}(t) = z(t) \]

- Referencing previous slide, $A + RCA - QNC = QM = A + LC$ and $B + RCB - QP - QND = 0$ and $S + RD = 0$

- Then the error dynamics become
 \[\dot{e}(t) = \dot{x}(t) - \dot{\hat{x}}(t) = (A + LC)e(t) \]

- Which has solution \(\lim_{t \to \infty} e^{(A+LC)t}e(0) = 0 \).
- Thus the observer converges.
\[\dot{z}(t) = (A + LC)z(t) - Ly(t) + (B + LD)u(t) \] \hspace{1cm} (3)

\[\hat{x}(t) = z(t) \] \hspace{1cm} (4)

Theorem 18.

The eigenvalues of \(A + LC \) are freely assignable through \(L \) if and only if \((C, A) \) is observable.

Theorem 19.

An observer exists if and only if \((C, A) \) is detectable.
Question: How to compute L?

- The eigenvalues of $A + LC$ and $(A + LC)^T = A^T + C^T L^T$ are the same.
- This is the same problem as controller design!

Answer: Choose a vector of eigenvalues E.

- $L = \text{place}(A^T, C^T, E)^T$

So now we know how to design an Luenberger observer.

- Also called an estimator

The error dynamics will be dictated by the eigenvalues of $A + LC$.

- For fast convergence, chose very negative eigenvalues.
- generally a good idea for the observer to converge faster than the plant.
Observer-Based Controllers

Summary: What do we know?
• How to design a controller which uses the full state.
• How to design an observer which converges to the full state.

Question: Is the combined system stable?
• We know the error dynamics converge.
• Let's look at the coupled dynamics.

Proposition 2.

The system defined by

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t) \\
u(t) &= F\hat{x}(t) \\
\dot{\hat{x}}(t) &= (A + LC + BF + LDF) \hat{x}(t) - Ly(t)
\end{align*}
\]

has eigenvalues equal to that of \(A + LC \) and \(A + BF \).

Note we have reduced the dependence on \(u(t) \).
Observer-Based Controllers

The proof is relatively easy

Proof.

The state dynamics are

\[\dot{x}(t) = Ax(t) + BF\hat{x}(t) \]

Rewrite the estimation dynamics as

\[\dot{x}(t) = (A + LC + BF + LDF') \hat{x}(t) - Ly(t) \]

\[\quad = (A + LC') \hat{x}(t) + (B + LD) F\hat{x}(t) - LCx(t) - LDu(t) \]

\[\quad = (A + LC') \hat{x}(t) + (B + LD) u(t) - LCx(t) - LDu(t) \]

\[\quad = (A + LC') \hat{x}(t) + Bu(t) - LCx(t) \]

\[\quad = (A + LC + BF) \hat{x}(t) - LCx(t) \]

In state-space form, we get

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{\hat{x}}(t)
\end{bmatrix}
= \begin{bmatrix}
A & BF \\
-LC & A + LC + BF
\end{bmatrix}
\begin{bmatrix}
x(t) \\
\hat{x}(t)
\end{bmatrix}
\]
Observer-Based Controllers

Proof.

\[
\begin{bmatrix}
\dot{x}(t) \\
\dot{\hat{x}}(t)
\end{bmatrix} = \begin{bmatrix} A & BF \\
-LC & A + LC + BF
\end{bmatrix} \begin{bmatrix} x(t) \\
\hat{x}(t)
\end{bmatrix}
\]

Use the similarity transform \(T = T^{-1} = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \).

\[
T\bar{A}T^{-1} = \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} \begin{bmatrix} A & BF \\
-LC & A + LC + BF \end{bmatrix} \begin{bmatrix} I & 0 \\ I & -I \end{bmatrix} = \begin{bmatrix} A + BF & -BF \\ A + BF & -(A + LC + BF) \end{bmatrix}
\]

which has eigenvalues \(A + LC \) and \(A + BF \).