Lecture 16: H_∞ and Summary of Linear Analysis
So far we know:

- The Fourier Transform, ϕ maps $L_2(-\infty, \infty)$ to \hat{L}_2.
- The Laplace Transform, Λ maps $L_2[0, \infty)$ to H_2.
- A Transfer Function is any element $\hat{G} \in \hat{L}_\infty$.
- A Transfer function defines a multiplication operator $M_{\hat{G}}$ which maps \hat{L}_2 to \hat{L}_2.
- Any Linear, Time-Invariant System $G : L_2 \rightarrow L_2$ can be represented by a transfer function as $\phi^{-1}M_{\hat{G}}\phi$ for some $\hat{G} \in \hat{L}_\infty$.

Question: How do we represent Causal Systems, which map $H_2 \rightarrow H_2$?
The Space H_∞

Definition 1.

A function $\hat{G} : \mathbb{C}^+ \rightarrow \mathbb{C}^{n \times m}$ is in H_∞ if

1. $\hat{G}(s)$ is analytic on the CRHP, \mathbb{C}^+.
2. \(\lim_{\sigma \to 0^+} \hat{G}(\sigma + \omega) = \hat{G}(\omega) \)
3. \(\sup_{s \in \mathbb{C}^+} \bar{\sigma}(\hat{G}(s)) < \infty \)

- Similar to \hat{L}_∞, but analytic.
- Elements of \hat{L}_∞ with an analytic continuation to the right half-plane.
- A Banach Space with norm

\[
\|\hat{G}\|_{H_\infty} = \text{ess sup}_{\omega \in \mathbb{R}} \bar{\sigma}(\hat{G}(\omega))
\]
The Space H_{∞}

For any analytic functions, \hat{u} and \hat{G}, the function

$$\hat{y}(s) = \hat{G}(s)\hat{u}(s)$$

is analytic. Thus if $\hat{G} \in H_{\infty}$,

- \hat{G} is analytic on CRHP
- $M_{\hat{G}} : H_2 \rightarrow H_2$.
- $G = \Lambda^{-1} M_{\hat{G}} \Lambda$ maps $L_2[0, \infty) \rightarrow L_2[0, \infty)$.
- $G = \Lambda^{-1} M_{\hat{G}} \Lambda$ is causal, LTI.
Indeed, this is necessary and sufficient.

Theorem 2.

*G is a Causal, Linear, Time-Invariant Operator on \(L_2 \) if and only if there exists some \(\hat{G} \in H_\infty \) such that \(G = \Lambda^{-1} M \hat{G} \Lambda \).

\[
(\Lambda G u)(\omega) = \hat{G}(\omega) \hat{u}(\omega)
\]

Conclusion: \(H_\infty \) provides a complete parameterization of the Banach space of causal bounded linear time-invariant operators with

\[
\|G\|_{\mathcal{L}(L_2[0,\infty))} = \|\Lambda^{-1} M \hat{G} \Lambda\|_{\mathcal{L}(L_2[0,\infty))} = \|\hat{G}\|_{H_\infty}
\]

Optimal Control is an attempt to minimize the \(H_\infty \) norm of the closed-loop transfer function.
Example of H_∞

Example:

\[
\hat{G}(i\omega) = \frac{e^{-i\omega\tau} - 1}{i\omega}
\]

which has

\[
\|\hat{G}\|_{H_\infty} = \tau
\]

which defines the system

\[
y(t) = \int_0^t (u(s - \tau) - u(s)) \, ds
\]

Question: How to parameterize H_∞?
Rational Transfer Functions

The space of bounded analytic functions, H_∞, is infinite-dimensional.

• this makes it hard to design optimal controllers.

We often restrict ourselves to state-space systems and state-space controllers.

Definition 3.

The space of rational functions is defined as

\[R := \left\{ \frac{p(s)}{q(s)} : p, q \text{ are polynomials} \right\} \]

We define the following rational subspaces.

\[RH_2 = R \cap H_2 \]
\[R\hat{L}_2 = R \cap \hat{L}_2 \]
\[RH_\infty = R \cap H_\infty \]

Note that RH_2, $R\hat{L}_2$ and RH_∞ are not complete spaces.
Rational Transfer Functions

For rational transfer functions, the set of bounded LTI systems are precisely those with no unstable poles.

Definition 4.

- A rational function \(r(s) = \frac{p(s)}{q(s)} \) is **Proper** if the degree of \(p \) is less than or equal to the degree of \(q \).
- A rational function \(r(s) = \frac{p(s)}{q(s)} \) is **Strictly Proper** if the degree of \(p \) is less than the degree of \(q \).

Proposition 1.

1. \(\hat{G} \in R\hat{L}_\infty \) if and only if \(\hat{G} \) is proper with no poles (roots of \(q(s) \)) on the imaginary axis.
2. \(\hat{G} \in RH_\infty \) if and only if \(\hat{G} \) is proper with no poles on the closed right half-plane.
State-Space Systems

Recall a State-space

\[
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\]

Theorem 5.

- For any stable state-space system, \(G \), there exists some \(\hat{G} \in RH_\infty \) such that
 \[
 G = \Lambda^{-1} M \hat{G} \Lambda
 \]

- For any \(\hat{G} \in RH_\infty \), the operator \(G = \Lambda^{-1} M \hat{G} \Lambda \) can be represented in state-space for some \(A, B, C \) and \(D \) where \(A \) is Hurwitz.

For state-space system, \((A, B, C, D) \),

\[
\hat{G}(s) = C(sI - A)^{-1}B + D
\]

State-Space is NOT Unique

- For a given Causal LTI system \(G \) with transfer function, \(\hat{G} \in RH_\infty \), there may be many state-space representations.
Definition 6.

Two state-space representations, \((A, B, C, D)\) and \((\hat{A}, \hat{B}, \hat{C}, \hat{D})\) are Equivalent if
\[
C(sI - A)^{-1} B + D = \hat{C}(sI - \hat{A})^{-1} \hat{B} + \hat{D}
\]

Definition 7.

A representation, \((A, B, C, D)\) is Minimal if it is controllable and observable.

Lemma 8.

Any transfer function \(\hat{G} \in RH_\infty\) has a minimal state-space representation.

We are skipping the section on minimality.
 - We will, however, return to the question of Grammians.