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Lecture 10: Rendezvous and Targeting - Lambert’s Problem



Introduction

In this Lecture, you will learn:

Introduction to Lambert’s Problem

• The Rendezvous Problem

• The Targeting Problem
▶ Fixed-Time interception

• The Initial Orbit Determination (IOD) Problem

Solution to Lambert’s Problem

• Focus as a function of semi-major axis, a

• Time-of-Flight as a function of semi-major axis, a
▶ Fixed-Time interception

• Calculating ∆v.

Numerical Problem: Suppose we are in an equatorial parking orbit or radius r.
Given a target with position r⃗ and velocity v⃗, calculate the ∆v required to
intercept the target before it reaches the surface of the earth.
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Problems we Have Solved

Navigation using a series of:

• Transfer Orbits

• Perigee/Apogee Raising

• Perigee/Apogee Lowering

• Inclination/RAAN change

• Combined Maneuvers

Problems we have not addressed:

• Rendez-vous

• Fixed-Time Transfers

• Maneuvers not at apogee/perigee
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Problems we Have Solved

A Brief Note on Rendez-vous using Hohman transfer between circular orbits

� The transfer orbit can begin at any point in a circular orbit

� Need to calculate the relative phase between the vehicle and target at
which to begin the transfer orbit.

� Let θ0 denote the initial angle between the position vectors of the vehicle
and target at the beginning of the Hohman transfer.

� The target moves at angular velocity ḟ = nt =
2π

Ttarget
, which is the mean

motion.

� The vehicle moves through an angle of ∆f = π radians during the
transfer orbit

� The transfer orbit takes an amount of time Thohmann/2.

� The relative angle between vehicle and target at arrival is
θ0 + nt · Thohmann

2
− π.

� Thus the required relative phase at which to begin the transfer is

θ0+nt·
Thohmann

2
−π = 0 or θ0 = π−nt·

Thohmann

2
= π−π

Thohman

Ttarget
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The Problem with phasing

Problem: We have to wait.

Remember what happened to the Death star?
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The Problem with phasing

� The death star had to wait for about 100◦ of phase (or ∆t = 100
360

Tds)
before it was in range of the rebel base.

� The rebels solved Lambert’s problem and calculated an intercept
trajectory with TOF< ∆T = 100

360
Tds.



Asteroid Interception

Suppose that:

• Our time to intercept is limited.

• The target trajectory is known.

Problem: Design an orbit starting from r⃗0 which intersects the orbit of the
asteroid at the same time as the asteroid.

• Before the asteroid intersects the earth (when r(t) = 6378)
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Missile Defense

Problem: ICBM’s have re-entry speeds in excess of 8km/s (Mach 26).

• Patriot missiles can achieve max of Mach 5.

Objective: Intercept ballistic trajectory before
missile re-entry

• Before the missile intersects the
atmosphere

• When r(t) = 6378km+ ∼= 200km

Complications:

• Plane changes may be required.

• The required time-to-intercept may be
small.
▶ Hohman transfer is not possible
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The Targeting Problem
Step 1: Determine the orbit of the Target (IOD)

Step 1 can be accomplished one of two ways:
Method 1:

1. Given r⃗(t1) and v⃗(t1), find a, e, i, ωp,Ω and f(t1)
▶ we have covered this approach in Lecture 6.

2. Unfortunately, it is difficult to measure v⃗

Method 2:

1. Given two observations r⃗(t1) and r⃗(t2), find a, e, i, ωp,Ω and f(t0).
▶ Alternatively, find v⃗(t1) and v⃗(t2)

2. This is referred to as Lambert’s problem (the topic of this lecture)

Note: This is a boundary-value problem:

• We know some states at two points.

• In contrast to the initial value problem, where we know all states at the
initial time.

• Unlike initial-value problems, boundary-value problems cannot always be
solved.

M. Peet Lecture 10: Spacecraft Dynamics 7 / 30



Carl Friedrich Gauss (1777-1855)

The problem of orbit determination was originally solved by C. F. Gauss in 1801

Boring/Conservative/Grumpy (Monarchist).

One of the greatest mathematicians

• Professor of Astronomy in Göttingen

• Motto: “pauca sed matura” (few but ripe)

Discovered
• Gaussian Distributions

• Gauss’ Law (collaboration with Weber)

• Non-Euclidean Geometry (maybe)

• Least Squares (maybe)

Legendre published the first solution to the Least Squares problem in 1805
• In typical fashion, Carl Friedrich Gauss claimed to have solved the problem

in 1795 and published a more rigorous solution in 1809.

• This more rigorous solution first introduced the normal probability
distribution (or Gaussian distribution)
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Carl Friedrich Gauss (1777-1855)

� Gauss focused on simplification/distillation/perfection of existing ideas.

� Least-squares is also claimed by Legendre.

� Non-Euclidean geometries discovered in 1829 by Bolyai. Problem of
parallel lines. No hard evidence to support Gauss’ claim (1932). “To
praise it would amount to praising myself. For the entire content of the
work ... coincides almost exactly with my own meditations which have
occupied my mind for the past thirty or thirty-five years”

� Gauss (at 7) is the source of that story about the student who summed
up the numbers from 1 to 100.

� Wanted a heptadecagon inscribed on his tombstone (17-sided equilateral
polygon)

� pauca sed matura

� Disliked teaching, believing students robbed him of his time. He especially
hated when students took notes in class, saying they should listen instead.

� Kept a playlist of his favorite songs in a notebook.
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Carl Friedrich Gauss (1777-1855)

The story of orbit determination is a bit complicated.

� Lambert’s problem relies on the numerical solution of Lambert’s equation.

� Lambert proposed Lambert’s equation in 1761, but the proof was purely
geometric. He also proposed a series expansion for this equation.

� Lagrange actually proved Lambert’s equation.

� Gauss initally solved the 3 observation problem where we don’t have
range, only declination and right ascension. We won’t actually cover the
solution to this problem, as it is rather involved. However, this was the
original basis of the story of Gauss and Piazzi.

� Gauss’s method for solving Lambert’s equation followed shortly thereafter
in Theoria Motus.

� The first modern algorithms for solving Lambert’s problem only became
available in the late 1950’s.

� These algorithms are very touchy and ill-tempered, especially for
multi-revolution orbits and at the transition between elliptic and
hyperbolic orbits.



Discovery and Rediscovery of Ceres

The pseudo-planet Ceres was discovered by
G. Piazzi

• Observed 12 times between Jan. 1 and
Feb. 11, 1801

• Planet was then lost.

Complication:

• Observation was only declination and
right-ascension.

• Observations were only spread over 1%
of the orbit.
▶ No ranging info.

• For this case, three observations are
needed.

C. F. Gauss solved the orbit determination
problem and correctly predicted the
location. Gauss’ last rushed publication!

• Planet was re-found on Dec 31, 1801 in the correct location.
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The Targeting Problem
Step 2: Determine the desired position of the target

Once we have found the orbit of the target, we can determine where the target
will be at the desired time of impact, t2.

Procedure:

• The difference t2 − t1 is the Time
of Flight (TOF)

• Calculate
M(t2) = M(t1) + n(t2 − t1)

• Use M(t2) → E → f → r⃗(t2).
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The Targeting Problem
Step 3: Find the Intercept Trajectory (Lambert’s Problem)

For a given

• Initial Position, r⃗1
• Final Position, r⃗2
• Time of Flight, TOF

the transfer orbit is uniquely (not really)
determined.

Challenge: Find that orbit!!!

Difficulties:

• Where is the second focus?

• May require initial plane-change.

• May use LOTS of fuel.

Figure: For given P1 and P2 and TOF, the
transfer ellipse is uniquely determined.

On the Plus Side:

• We know the change in true
anomaly, ∆f ...

• For this geometry, TOF only
depends on a.
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The Targeting Problem
Step 4: Calculate the ∆v

Once we have found the transfer orbit,

• Calculate v⃗tr(t1) of the transfer
orbit.

• Calculate our current velocity,
v⃗(t1)

• Calculate ∆⃗v = v⃗tr(t1)− v⃗(t1)
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Lambert’s Problem - 2D Geometry

What do we know?

• Location of focus, F (Earth or Sun)

• Point r⃗(t1) on the orbit.

• Point r⃗(t2) on the orbit.

This is enough to determine the orbital plane

We also know the change in True Anomaly,

• f(t2)− f(t1) = θ OR f(t2)− f(t1) = 360◦ − θ

Q: Is this enough to determine the orbit?
A: No. Also need semi-major axis, a, or distant focus, F ′.
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Lambert’s Conjecture
Semi-major axis, a only depends on ∆t (TOF)

Recall, we are given ∆t
First: Calculate some lengths

• c = ∥r⃗2 − r⃗1∥ is the chord.

• s = c+r1+r2
2 is the semi-perimeter.

▶ NOT semiparameter.

Modern Formulation of Lambert’s Equation:

∆t =

√
a3

µ
(α− β − (sinα− sinβ))

where

sin
[α
2

]
=

√
s

2a
, sin

[
β

2

]
=

√
s− c

2a

Figure: Geometry of the Problem

Conclusion: We can express ∆t, solely as a function of a.

• But we are given ∆t and need to FIND a

• For now, assume we can solve for a given ∆t
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Lambert’s Conjecture

� That TOF only depends on a was Lambert’s conjecture! Only proved
rigorously the year (1776) before he died (1777, Tuberculosis?).

� Was originally a clerk is the iron mines. Then a tutor.

� Another problem: There are 2 solutions to the equation!
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Lambert’s Conjecture

� The semi-perimeter is half the perimeter of the triangle shown in the
figure.



How to use a to define the transfer orbit
Lets find the hidden Focus, F ′

Recall the defining property of an ellipse:

• At any point on an ellipse, the sum of the distances to the foci is always 2a

The value of a restricts possible locations of the
hidden focus.

• Focal Circle 1:

Circle of radius 2a− r1 about r⃗1.

• Focal Circle 2:

Circle of radius 2a− r2 about r⃗2.

The Intersection of these circles gives the two
possible locations of the hidden focus, F ′ or F ′′. Figure: Potential Locations of

Second Focus
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The Long Way and the Short Way

For a given a, the two potential foci F ′ and F ′′ correspond to the two solutions
to Lambert’s equation

• The Direct Way Corresponds to the small ∆t solution.
• The Indirect Way Corresponds to the large ∆t solution.

Figure: First arc of transfer times
Figure: Long way and short way

In addition, the direction of travel along each ellipse can be reversed to obtain
the Retrograde Path (Long Way around)
• A total of Four (4) possible transfers for a given value of semi-major axis, a.
• If we include multi-revolution orbits, an infinite number of transfers can be

obtained.
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The Long Way and the Short Way

Illustration of the multiple solutions of Lambert’s problem for multiple revolu-
tions.

Figure: Sito di Astronomia Teorica by Giuseppe Matarazzo

To get retrograde transfers, we adjust by each arc by the period: T (a)−∆t(a).



The “minimum energy” transfer
The smallest achievable a

Note the focal locations vary continuously as we change a.

• As we vary a, the set of foci points F ′ and F ′′ form a hyperbola.

• As a increases, the two possible foci get farther apart.

• At amin, The foci F ′ and F ′′ coincide.

This is the minimum energy transfer ellipse

Conclusions

• amin = r1+r2+c
4 = s

2 where c = ∥r⃗2 − r⃗1∥.
• The minimum energy transfer yields the

smallest a for which it is possible to have
the two points on the same orbit.

• Hidden focus for the minimum energy
transfer lies on the line between r⃗1 and r⃗2.

• This is NOT the Hohman transfer.

Figure: Potential Locations of
Second Focus for a given a
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The “minimum energy” transfer

� Minimum Energy means the orbit has minimum energy as per E = − µ
2a
.

The ∆v required is not necessarily minimized.

� That means you probably don’t want to use this transfer.

� At minimum energy orbit, F ′ = F ′′! ∆t the indirect way is the same as
∆t the direct way.



How to Determine a given ∆t?

Recall Lambert’s Equation:

∆t =

√
a3

µ
(α− β − (sinα− sinβ))

where
sin
[α
2

]
=

√
s

2a
, sin

[
β

2

]
=

√
s− c

2a

• c = ∥r⃗2 − r⃗1∥ is the chord.
• s = c+r1+r2

2 is the semi-perimeter.

Note the Similarity to using Kepler’s Equation:

∆t =

√
a3

µ
(E(t2)− E(t1)− e(sinE(t2)− sinE(t1)))

But the similarity is superficial

• Recall M(t2)−M(t1) = n∆t.

• No clear relationship between α and E(t1) or β and E(t2).

• Lambert’s Equation is much harder to solve than Kepler’s
equation.
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Solving Lambert’s Equation
Bisection

Problem: Given ∆t, find a:

∆t =

√
a3

µ
(α− β − (sinα− sinβ)) , sin

[α
2

]
=

√
s

2a
, sin

[
β

2

]
=

√
s− c

2a

There are several ways to solve
Lambert’s Equation

• Newton Iteration
▶ More Complicated than Kepler’s

Equation

• Series Expansion
▶ Probably the easiest...

• Bisection
▶ Relatively Slow, but easy to

understand
▶ Only works for monotone

functions.
Figure: Plot of ∆t vs. a using Lambert’s
Equation
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Solving Lambert’s Equation

� In the figure, am is the minimum energy transfer orbit. (Recall NOT
minimum ∆v).

� tm is the transfer time (TOF) obtained by plugging am into Lambert’s
equation.

� tp is the flight time of a parabolic orbit (corresponding to a = ∞)

� The function is monotone in the interval TOF ∈ [tp, tm]

� The other branch of the plot (TOF > tm) corresponds to use of the
distant focus F ′′.



Solving Lambert’s Equation via Bisection

Define g(a) =
√

a3

µ (α(a)− β(a)− (sinα(a)− sinβ(a))).

Root-Finding Problem:

Find a :

such that g(a) = ∆t

Bisection Algorithm:

1 Choose amin = s
2 = r1+r2+c

4

2 Choose amax >> amin

3 Set a = amax+amin

2

4 If g(a) > ∆t, set amin = a

5 If g(a) < ∆t, set amax = a

6 Goto 3

This is guaranteed to converge if g is
decreasing and if a solution exists.

• We assume solution is in
amin < a < amax.

F(x)

F(b )1

F(b )2

x
b 1

a1

F(a )1

F(a )2

F(a )3
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Solving Lambert’s Equation via Bisection

� By Elliptic solutions, we mean that we assume that the transfer orbit is
elliptic.

� Parabolic solutions are possible, but not covered by Lambert’s equations.

� We must check to make sure the solution is not parabolic before starting.



Bisection
Some Implementation Notes

Make Sure a Solution Exists!!
• First calculate the Minimum TOF (i.e. amax = ∞).

• Minimum TOF is a parabolic trajectory

∆tmin = ∆tp =

√
2

3

√
s3

µ

(
1−

(
s− c

s

) 3
2

)

▶ Can get there even faster by using a hyperbolic approach (Not Covered).

• We should also calculate the Maximum TOF (i.e. amin)

∆tmax =

√
a3min

µ
(αmax − βmax − (sinαmax − sinβmax))

where

sin
[αmax

2

]
=

√
s

2amin
, sin

[
βmax

2

]
=

√
s− c

2amin

• Can exceed ∆tmax with indirect transfer or long way around (Not Covered)
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Bisection

Figure: Note amin and tp restrict the arc of solutions considered and ensure the
function is monotonic.

The bisection method would need to be reversed to search for the upper arc

(indirect solution).



Calculating v⃗(t0) and v⃗(tf)

Once we have a, Easy to find v⃗(t1) and v⃗(t2).

v⃗(t1) = (B +A)u⃗c + (B −A)u⃗1, v⃗(t2) = (B +A)u⃗c − (B −A)u⃗2

where

A =

√
µ

4a
cot
(α
2

)
, B =

√
µ

4a
cot

(
β

2

)
and the unit vectors

• u⃗1 and u⃗2 point to positions 1 and 2.

u⃗1 =
r⃗(t1)

r1
, u⃗2 =

r⃗(t2)

r2

• u⃗c points from position 1 to 2.

u⃗c =
r⃗(t2)− r⃗(t1)

c
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where

A =

√
µ

4a
cot
(α
2

)
, B =

√
µ

4a
cot

(
β

2

)
and the unit vectors

• u⃗1 and u⃗2 point to positions 1 and 2.

u⃗1 =
r⃗(t1)

r1
, u⃗2 =

r⃗(t2)

r2

• u⃗c points from position 1 to 2.

u⃗c =
r⃗(t2)− r⃗(t1)

c
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Calculating v⃗(t0) and v⃗(tf )

If you just want eccentricity, you can use the formula:

p =
4a(s− r1)(s− r2)

c2
sin2

(
α+ β

2

)
and then

e =

√
1− p

a



Calculating ∆v

Once we have found the transfer orbit,

• Calculate v⃗tr(t1) of the transfer
orbit.

• Calculate our current velocity,
v⃗(t1)
▶ If a ground-launch, use rotation

of the earth.
▶ If in orbit, use orbital elements.

• Calculate ∆⃗v = v⃗tr(t1)− v⃗(t1)
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Numerical Example of Missile Targeting

Problem: Suppose that Brasil launches an ICBM at Bangkok, Thailand.
• We have an interceptor in the air with position and velocity

r⃗1 =
[
6045 3490 0

]
km v⃗1 =

[
−2.457 6.618 2.533

]
km/s.

• We have tracked the missile at
r⃗t(t1) =

[
12214.839 10249.467 2000

]
km heading

v⃗t(t1) =
[
−3.448 .924 0

]
km/s.

Question: Determine the ∆v required to intercept the missile before re-entry,
which occurs in 30 minutes.
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Numerical Example of Missile Targeting

� The figure shows both the path of the ICBM and the current (temporary)
orbit of the interceptor.

� The ∗ indicates the current positions of the ICBM and interceptor in their
respective orbits.



Numerical Example of Missile Targeting

The first step is to determine the position of the ICBM in t+ 30min.

Recall: To propagate an orbit in time:

1. Use r⃗t1 and v⃗t1 to find the orbital
elements, including M(t1).

2. Propagate Mean anomaly
M(t2) = M(t1) + n∆t where
∆t = 1800s.

3. Use M(t2) to find true anomaly,
f(t2).
▶ Requires iteration to solve

Kepler’s Equation.

4. Use the orbital elements, including
f(t2) to find r⃗(t2)
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Numerical Example of Missile Targeting

� This figure shows the position of the ICBM at the initial point and the
desired point of interception.



Numerical Example of Missile Targeting

The next step is to determine whether an intercept orbit is feasible using
TOF=30min.

Geometry of the Problem:

r1 = ∥r⃗1∥ = 6, 980km, r2 = ∥r⃗t(t2)∥ = 10, 520km,

c = ∥r⃗1 − r⃗t(t2)∥ = 6, 655km, s =
c+ r2 + r1

2
= 12, 078km

Minimum Flight Time: Using the formula, the minimum (parabolic) flight
time is

tmin = tp =

√
2

3

√
s3

µ

(
1−

(
s− c

s

) 3
2

)
= 11.55min

Thus we have more than enough time.

Maximum Flight Time: Geometry yields a minimum semi-major axis of

amin =
s

2
= 6, 039km

Plugging this into Lambert’s equation yields a maximum flight time of
tmax = 33.05min.
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Numerical Example of Missile Targeting

What remains is to solve Lambert’s equation:

∆t =

√
a3

µ
(α− β − (sinα− sinβ))

where

sin
[α
2

]
=

√
s

2a
, sin

[
β

2

]
=

√
s− c

2a

Choose amax = 2s and initialize our search using a ∈ [al, ah] = [amin, 2s].

1. a1 = al+ah

2 = 9, 085 - TOF = 16.52min - too low, decrease a

1.1 Set ah = a1

2. a2 = al+ah

2 = 7, 549 - TOF = 18.85min - too low, decrease a

2.1 Set ah = a2

3. a3 = al+ah

2 = 6, 794 - TOF = 21.36min - too low, decrease a

3.1 Set ah = a3

4. · · ·
K. ak = al+ah

2 = 6, 066 - TOF = 29.99

K.1 Close Enough!
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Numerical Example of Missile Targeting

� In this example, amax was chosen as 2s. However, this was just a guess
and if the TOF is near the parabolic flight time, a larger value should be
chosen.



Numerical Example of Missile Targeting

Now we need to calculate ∆v.

v⃗(t1) = (B +A)u⃗c + (B −A)u⃗1, v⃗(t2) = (B +A)u⃗c − (B −A)u⃗2

where

A =

√
µ

4a
cot
(α
2

)
= .2687, B =

√
µ

4a
cot

(
β

2

)
= 4.508

and the unit vectors

u⃗1 =

.866.5
0

 , u⃗2 =

 .377
.9138
.1501

 , u⃗c =

−.3117
.9201
.2373


which yields

v⃗t(t1) =
[
2.1827 6.515 1.1335

]
km/s

Calculating ∆v

∆v = v⃗t(t1)− v⃗ =
[
4.64 −.103 −1.40

]
km/s

For a total impulse of 4.847km/s.
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Numerical Example of Missile Targeting
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Numerical Example of Missile Targeting

� This figure shows the ICBM and the path of the intercept trajectory.



Summary

This Lecture you have learned:

Introduction to Lambert’s Problem

• The Rendezvous Problem

• The Targeting Problem
▶ Fixed-Time interception

Solution to Lambert’s Problem

• Focus as a function of semi-major axis, a

• Time-of-Flight as a function of semi-major axis, a
▶ Fixed-Time interception

• Calculating ∆v.

Next Lecture: Rocketry.
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