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Introduction to Attitude Dynamics and Control Systems
(ADCS)

In this Lecture we will cover:

• Mission Requirements

• Forms of Attitude Control

The Problem of Attitude Stabilization

• Actuators

• Sensors

• Controllers

Newton’s Laws:

• This time, we only care about Angular Momentum

• ∑
M⃗i =

d
dtH⃗

Next Lecture: Rotating Frames of Reference

• Equations of Motion in Body-Fixed Frame
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Orientation of a spacecraft

Let’s begin with some examples

Figure: Sputnik I Satellite

Orbit: 947 x 228, 65◦ inclination. Spin Stabilized. Two planes of symmetry.
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NASA Tracking and Data Relay Satellite (TDRS)
Communication relay between ground control and objects in orbit

There have been 13 TDRS missions.

• Enable continuous real-time communications between space and ground.
• GEO, TDRS-K is currently at Ω = 150◦ (Final Ω = 171◦).
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NASA Tracking and Data Relay Satellite (TDRS)

� Approximately 1 plane of symmetry

� TDRS-A was launched in 1983 (currently in graveyard orbit)

� TDRS-B was aboard the Challenger.

� Image is 3rd gen. TDRS (2011+)



Iridium Satellite Constellation. Launched 1992-1999
Satellite Telephone Service

Originally commercial, now pseudo-military. 66 active satellites.
Orbit: 780km, 75◦ inclination, 6 orbital planes.
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Iridium Satellite Constellation. Launched 1992-1999

� Approximately 1 plane of symmetry

� Operational in 1998

� Largest US bankruptcy in 1999 (originally to be de-orbited!)

� First Next-gen Iridium satellite launched in 2017.



Voyager I and II (1977)

Interplanetary Exploration

• Approximately 1 plane of
symmetry
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Voyager I and II (1977)

� Requires constant communication link with earth.

� 3-axis stabilized



Hubble Space Telescope (HST) - 1990

Orbit: 613 x 620, 28.5◦ inclination
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Hubble Space Telescope (HST) - 1990

� approximate radial symmetry

� 3-axis stabilized



NRO Reconnaissance Satellite
Advanced Orion/MENTOR

• Signals Intelligence

• Duration 1994-???

• L-32 is the largest satellite
ever launched with a dish
size of ∼= 100m

Figure: Orion/RIO (The Intercept,
2009)

Figure: Hypothetical Rendering
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NRO Reconnaissance Satellite

� Classified Top Secret

� Largest in the world quote is from Ben Carlson, NRO director

� Trumpet is in Molniya orbit 39000x1300, i = 64◦

� Advanced ORION is in GEO (so is PAN - whatever that does)

� Replaces Magnum Series

� 3-axis stabilized

� Single plane of symmetry

� Description of Spy Satellites included in the Snowden Leak


sigint_constellation.mp4
Media File (video/mp4)

http://spaceflight101.com/snowden-documents-reveal-mysterious-pan-satellite/


TACSAT I (1969-1972)

Military Tactical Communications
Satellite.

• Approximate radial symmetry

• Dual Spinner

Orbit: GEO, Ω = 107◦
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TACSAT I (1969-1972)

� Largest satellite at time of launch (25ft in length) - gunter’s space page

� Used for direct communication with battlefield commanders.

� Not to be confused with TacSat

TacSat:

� TacSat is to obtain on-battlefield live imaging.

� TacSat 1 planned launch in January 2004.

� TacSat 1 launch was repeatedly delayed

� TacSat 2 launch in Dec. 2006

� Tacsat 3 launch May, 2009, reentry April 2012

� Last scheduled Tacsat 1 launch was 2009. Canceled for being obsolete.

� Tacsat 4 launch Sept. 2011. 4 hr period, 7000 x 12,000 orbit. ω = 210,
i = 63.4



GPS Block IIR (2005-2009)

Orbit: 20,182km, 55◦ inclination. Single plane of symmetry
GPS constellation has 24 satellites in 6 planes.
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GPS Constellation

Figure: GPS Constellation is designed to have at least 4 satellites visible at any given
time anywhere in the world.
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ConstellationGPS.gif
Media File (image/gif)



Strela-3 Satellite Constellation (1985)

Russian Military
Communications

• 12 Satellites

• Gravity-Gradient
Stabilization

Note: 2009 Satellite Collision
between Strela 2M and Irridium
33

Orbit: 1440 x 1450, 82.5◦

inclination.
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Strela-3 Satellite Constellation (1985)

� Relative velocity at impact: 11.7 km/s

� Altitude at impact: 789 km

� Strela Satellite was dead as of 1995 and likely in a decaying orbit.



Starlink

Internet Communications

• 1584-12,000 Satellites

• Currently 7135 in orbit (5504 last year, 350
in April, 2020 - Orbit Data)

• Satellites weigh 500-600lb

• Altitudes are 525− 572km (6 spheres)

• Use Hall-Effect Thrusters (HET-Krypton)
for stationkeeping

• 3-axis stabilized (4 reaction wheels)

• star tracker for orientation

M. Peet Lecture 15: 13 / 45
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Starlink

� Around 250 orbital planes, currently

https://planet4589.org/space/con/star/planes.html


Viking I

Interplanetary Mission to Mars. Two planes of symmetry.
Mars Orbit: 320 x 56,000km, 39.3◦ inclination. e = .8822.
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Viking I

� Mars insertion on June 19, 1976.

� Operations terminated in 1980.

� Final Orbit designed to last until 2019

� Current Status: unknown

� Viking 2 orbiter developed ADCS propulsion leak and was shut down in
1978

� Second spacecraft to soft-land on Mars

� The first was the Soviet Mars 3, which lasted 20 seconds (due to a nasty
dust storm)



Attitude Stability

What can go wrong?

Figure: Tumbling Satellites are sometimes visible in the Night Sky
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tumbling_satellite.mp4
Media File (video/mp4)



Attitude Determination and Control System (ADCS)

Active attitude control is required for almost all satellite applications.

• Communication

• Reconnaissance (SIGINT)

• Navigation (GPS)

• Exceptions:
▶ LAGEOS
▶ ECHO I, II

Even Sputnik was spin-stabilized

Problem: Unlike aircraft, spacecraft cannot rely on aerodynamic forces to
provide stability.

• If a spacecraft is not attitude stabilized, small disturbances will cause it to
tumble.

Question: How to stabilize a satellite
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Attitude Determination and Control System (ADCS)
Actuators for Attitude Control

There are many varieties and methods for attitude control of spacecraft.

• 1-axis Stabilization
▶ Spin Stabilization (.1− 1◦)
▶ Also good for pre-insertion.

• 2-axis stabilization
▶ Gravity-Gradient Stabilization (5◦)
▶ Magnetic Torquers (5◦)

• 3-axis Stabilization
▶ Thrusters (.1− .5◦)
▶ Control-Moment Gyros (CMGs) (.001− 1◦)
▶ Momentum wheels (Reaction wheels) (.001− 1◦)

Lets go through a few of these.
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Attitude Determination and Control System (ADCS)

Sensors for Attitude Determination:
Rate Sensors:

� Gyroscopes

� Inertial Mass Units (IMUs)

� Other Inertial Navigation Systems
(INS)

Attitude Sensors:

� Horizon Sensor (IR earth horizon
sensor)

� Gyrocompass

� Sun Sensor

� Earth Sensor

� Star Tracker

� Magnetometer (Compass)

http://www.cubesatpointing.com/
https://www.cubesatshop.com/

http://www.cubesatpointing.com/
https://www.cubesatshop.com/


No Control (LAGEOS, ECHO)

Figure: LAGEOS Geodesy Satellite

Figure: ECHO II communication satellite
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Mechanisms for Attitude Control
Thrusters

Thrusters are grouped in pairs in order to provide pure moment
• no change in orbit.

• Thrusters are typically bang-bang
• Provide discrete units of angular momentum (spin up).

∆h = F∆x∆t
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Mechanisms for Attitude Control

� Space Shuttle used 6 paired Vernier thrusters.

Figure: Thrusters on MMU
Figure: Cold Gas Thruster



Mechanisms for Control
Thrusters

Thrusters may alter orientation and angular velocity.

• e.g. Through rotation matrices

Only two sets of thrusters are needed to achieve any orientation (Euler Angles).

1. Rotate about b̂3 until b̂1 lines in â2 − â1 plane.

2. Rotate about b̂1 until b̂2 lines in â2 − â1 plane.

3. Rotate about b̂3 until b̂1 = â1 and b̂2 = â2.

Usually better to have 3 sets of thrusters to minimize fuel

• Otherwise small changes can lead to big rotations.
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Mechanisms for Control
Reaction wheels (Momentum Exchange Device)

Thrusters are not very accurate: rarely used for tracking control.

Reaction wheels: A momentum exchange device uses torque to spin up a
wheel. An equal and opposite amount of torque is imparted to the spacecraft.
The resulting angular momentum of the wheel and craft are then equal in
magnitude and opposite in direction.
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Mechanisms for Control
Reaction wheels

Dynamics: Consider rotation about the x-axis.
• Let Jx be the moment of inertia of the Spacecraft about the x-axis.
• Let Ix be the moment of inertia of the flywheel.
• By conservation of angular momentum:

Ix(ωf + ωs) + Jxωs = 0

▶ ωs is the angular velocity of the the craft in inertial space.
▶ ωf is the angular velocity of flywheel w/r to the craft.
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Mechanisms for Control
Reaction wheels

Figure: Spacecraft rotation via 3-1-3 Euler Angles
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Euler2a.mpg
Media File (video/mpeg)



Mechanisms for Control
Reaction Wheels

So if the craft has some velocity ωs in the b̂1-direction and the reaction wheel is
aligned with this axis, we can null out the velocity by spinning up to

ωf = −Jxωs + Ixωs

Ix
= −Jx + Ix

Ix
ωs.

If we have reaction wheels in the b̂2 and b̂3 directions, we can create any angular
velocity vector.

• Flywheels can be use to correct for small deviations (Telescopes).
▶ However, accumulated momentum may cause the flywheels to spin too fast.
▶ Will need to eventually find a way to dump momentum.
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Mechanisms for Control
Control Moment Gyros (CMGs)

Control Moment Gyros are different from reaction wheels in that they have a
fixed rate of rotation (ωCMG)

• Thus the magnitude of the angular momentum vector, ∥h⃗∥ will be fixed.

• The direction of the angular momentum vector will vary, however.

Single Gimbal Control is achieved by rotation of the gyroscope through an
angle δ.

• This can only be used for 2-axis stabilization
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Single-Gimbal Control Moment Gyro

Figure: Effect of Single Control Moment Gyro
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CMG_simulator.mp4
Media File (video/mp4)



Dual-Gimbal Control Moment Gyro

Alternatively, a dual-gimbal CMG may be used

Suppose

• The initial angular momentum vector of the CMG is h̄

• The desired angular momentum vector of the spacecraft is h̄d

• The final position vector of the CMG is R3(θ3)R1(θ2)R3(θ1)h̄

By conservation of angular momentum

h̄ = h̄d +R3(θ3)R1(θ2)R3(θ1)h̄
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Dual-Gimbal Control Moment Gyro

If ω is rotation vector of the craft, Text is external torque

Ḣs + ω ×Hs = Text

and Hs is total angular momentum (To be derived in next lecture). Then if J
is the inertia tensor of the craft

Hs = Jω + h

where h is the CMG angular momentum. If u is the internal torque applied to
the CMG, then

Jω̇ + ω × Jω = u+ Text, ḣ+ ω × h = −u



Dual-Gimbal Control Moment Gyro

Definition 1.

Given h̄, the Momentum Envelope is set of solutions of

h̄d = (I −R3(θ3)R1(θ2)R3(θ1))h̄

for some set of Euler rotations, θ1, θ2, θ3.

Figure 2-3. Total angular momentum envelope of CMGs

2.3.2.1 External singularity

The gimbal angles for which the total angular momentum reaches the envelope of

Figure 2-3 become singular since the CMGs are unable to produce a torque outward

the envelope. This is because a CMG system changes only the direction but not the

magnitude of the angular momentum vector and therefore in external singularity the

CMG system experiences a maximum workspace and does not have additional angular

momentum for the singular direction. In other words, external/saturation singularities are

associated with the maximum projection of the total angular momentum along a certain

direction. The criteria for this type of singularity can be expressed as

rank (CT ) < 3, âWi
· u > 0 ∀i = 1, 2, 3, 4.

External singularities can be addressed in the design process since they can be easily

predicted from sizing of the CMG actuators and mission pro�le.

2.3.2.2 Internal singularity

Internal singularity is de�ned as a case where the total angular momentum vector

for any singular state is inside the angular momentum envelope as shown by Figure 2-3.

36

Figure: Momentum Envelope for a pyramidal 4-CMG array. Note the singularities.
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Dual-Gimbal Control Moment Gyro

The effect of the singularities is most easily understood as Gimbal Lock

• Two axes of the gyroscope align.
• Rotation about that axis requires no torque.

▶ Freely spinning.

M. Peet Lecture 15: 29 / 45



Dual-Gimbal Control Moment Gyro

The effect of the singularities is most easily understood as Gimbal Lock

• Two axes of the gyroscope align.
• Rotation about that axis requires no torque.

▶ Freely spinning.
2
0
2
5
-0
4
-2
2

Lecture 15

Dual-Gimbal Control Moment Gyro

Youtube video on Gimbal Lock (See minute 4:20)

https://www.youtube.com/watch?v=zc8b2Jo7mno


Control Moment Gyros on the International Space Station

Figure: The ISS has a 4-CMG array on the Z1-truss near the Unity node
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Control Moment Gyros on the International Space Station

Figure: ISS Z1 truss with 4-CMG array

Figure: Cutaway of ISS CMG

The CMGs are double-gimbal, so hardware orientation is not important.
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Control Moment Gyros on the International Space
Station

� CMGs are located on Z1 truss.

� CMGs launched with Z1 truss in Oct. 2001.

� Activated Feb 2001 (perviously thrusters were used for attitude)

� CMG1 failed June, 2002 - Replaced Aug, 2005

� Oct. 2006, CMG3 failed (sensor failure?) - replaced Aug. 2007

� Failure possibly due to large gimbal rates during desaturation. Bearing
failure.



Replacement of CMG on the International Space Station
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Control Moment Gyros on the International Space Station

Figure: Replacement of CMG on ISS in
2005 (STS-114)
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Mechanisms for Control
Gravity Gradient Stabilization

Gravitational attraction varies as

∥F∥ =
µm

r2

For very long spacecraft, lower section will feel additional gravitational
attraction.
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Mechanisms for Control
Gravity Gradient Stabilization

Figure: 3-DOF Gravity-Gradient Boom
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Gravity Gradient Stabilization
Salyut 6
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Gravity Gradient Stabilization
Salyut 6
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Gravity Gradient Stabilization

� Any spacecraft will tend to align it minimum moment of inertia axis with
the radial vector.

� An extreme case is the use of space tethers (65N on TSS-1R).

– Failure VERY common due to electrical discharge (TSS-1R),
dynamic instabilities.

� ONR TiPS was a successful 4km tether, with lifetime of 10 years.

� TSS-1R failed at 19.7km and produced 15lb force



Magnetic Torquers

In addition to gravity, the Magnetic Field of the earth can be used to provide
attitude control.
Idea: The earth has a magnetic field, B⃗e(x, y, z).

• the interaction of two magnets produces force

What if we put a magnet on the spacecraft?

• Turn it into a giant flying compass.
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Magnetic Torquers

Instead of using fixed magnets, we use electromagnets to create an arbitrary
magnetic dipole moment, M⃗ for the spacecraft.

Maxwell’s Equations lead us to

T⃗ = M⃗ × B⃗e

ThusTx

Ty

Tz

 =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

Mx

My

Mz


Unfortunately, 0 Bz −By

−Bz 0 Bx

By −Bx 0


is not invertible.

• Magnetic fields cannot rotate the spacecraft about a field-line.

• Pitch or Yaw forces - No Roll.

• Makes Control Difficult
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Magnetic Torquers

Note how we represent the cross-product as matrix multiplication:

M⃗ × B⃗e =

 0 Bz −By

−Bz 0 Bx

By −Bx 0

Mx

My

Mz





Magnetic Torquers

The magnetic dipole moment is created by torque-rods.

Unfortunately the magnitude of the torque is limited by:
• The magnitude of earth’s magnetic field is inversely proportional to radius.

∥Be∥ ∼= 7.96 · 1015Wb−m

r3

• The magnetic dipole of the torque rod (∥M∥ ∼= 10Am2 − 100Am2).
• The angle to the field line (α).

T = ∥M∥∥B∥ sinα
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Magnetic Torquers

In a 400km orbit with a 100A−m2 dipole at 30◦ field orientation, we can
obtain a torque of

T =
7.96 · 1015
67780003

· 100 · sin(30◦) = 1.28 · 10−3N −m

Magnetic Torque is not typically used for active attitude control.
• Used to dump angular momentum over time from

▶ Reaction Wheels
▶ CMGs

• Combined with momentum wheel for roll-control.
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Magnetic Torquers

Small Satellite ACDS kits:
http://www.cubesatpointing.com/
https://www.cubesatshop.com/

http://www.cubesatpointing.com/
https://www.cubesatshop.com/


Solar Sail Stabilization
Multi-Functional Transport Satellite (MTSAT)

Figure: Japanese Air-traffic Control/Navigation/Meteorology Satellite MTSAT

Solar sails can counteract disturbances.M. Peet Lecture 15: 41 / 45
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Solar Sail Stabilization

The rescue mission for the Kepler space telescope was based on combining solar

sail (the body) with 2 functioning reaction wheels.



Mechanisms for Control
Spin Stabilization

Historically, the most common form of stabilization have been spin stabilization.

Idea: Give the craft an angular momentum vector which is fixed in the
body-fixed axis.

• Think of rifles vs. muskets

Positives:

• By Newton’s second Law: A large angular momentum vector requires large
torques to change.

• Very little active maintenance required.

Negatives:

• Spin motion complicates communication, solar power, navigation, etc.

• Changing attitude after spin-up is very difficult.

• Angular momentum vector is not fixed in the body-axes!
▶ We will study this issue in more detail.
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Pioneer Venus Orbiter (1978-1992)

Mapping/Communication. Dual-Spin Stabilized. Orbit: Pericytherion: 181.6
km; Apocytherion: 66,630 km; inclination 105◦; 24hr period
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Pioneer Venus Orbiter (1978-1992)

� Launch May 20, 1978

� Orbit insertion Dec 4, 1978

� Antenna dish was despun to allow contact with earth

� Periapse temporarily raised to 2300km

� Re-entry on Oct 22, 1992

� Orbit change on arrival of Magellan (to observe southern hemisphere)



Mechanisms for Control
Spin Stabilization

Spin stabilization can decay.

Figure: Decay in Spin Control of Sputnik I Satellite

Cause: Atmospheric Motoring
• See Also Explorer 20 and Alouette 1 data
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Mechanisms for Control

� In Modern spacecraft, spin stabilization is typically used at separation
from upper stage.

� Spacecraft use yo-yo despin for transition to operational status.



Conclusion

In this lecture we have covered:

• Mission Requirements

• Forms of Attitude Control

Next Lecture:
Equations of Motion

• How to differentiate Vectors in Rotating Frames

• Derivation of the Nonlinear 6DOF Equations of Motion

Euler Angles

• Definition of Euler Angles

• Using Rotation Matrices to transform vectors

• Derivatives of the Euler angles
▶ Relationship to p-q-r in Body-Fixed Frame
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