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Attitude Dynamics

In this Lecture we will cover:
Non-Axisymmetric rotation

• Linearized Equations of Motion

• Stability

Energy Dissipation

• The effect on stability of rotation
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Review: Euler Equations

ω̇x = −Iz − Iy
Ix

ωy(t)ωz(t)

ω̇y = −Ix − Iz
Iy

ωx(t)ωz(t)

ω̇z = −Iy − Ix
Iz

ωx(t)ωy(t)

Axisymmetric Case: Ix = Iy
• ω̇z = 0 - ωz is fixed

• Equations naturally become linear.

• Allows us to solve these linear equations explicitly

Non-axisymmetric Case Ix 6= Iy.

• We will have to rely on linear approximation
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Linearization of the Euler Equations

Linearization allows us to consider small deviations about an equilibrium.

• We need to define the equilibrium

CASE: Stability of Spin about a principle axis.

• Nominal motion is

ω0(t) =

ωx,0(t)
ωy,0(t)
ωz,0(t)

 =

0
0
n


• This is an equilibrium because

ω̇x,0(t) = −Iz − Iy
Ix

ωy,0(t)ωz,0(t) = 0

ω̇y,0(t) = −Ix − Iz
Iy

ωx,0(t)ωz,0(t) = 0

ω̇z,0(t) = −Iy − Ix
Iz

ωx,0(t)ωy,0(t) = 0
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Linearization of the Euler Equations

Now consider small disturbances to this equilibrium

ω(t) = ω0 + ∆ω(t)

Then ∆ω(t) = ω(t)− ω0 and

∆ω̇(t) = ω̇(t)− 0 =

−
Iz−Iy
Ix

ωy(t)ωz(t)

− Ix−Iz
Iy

ωx(t)ωz(t)

− Iy−Ix
Iz

ωx(t)ωy(t)


=

−
Iz−Iy
Ix

(ωy,0 + ∆ωy(t))(ωz,0 + ∆ωz(t))

− Ix−Iz
Iy

(ωx,0 + ∆ωx(t))(ωz,0 + ∆ωz(t))

− Iy−Ix
Iz

(ωx,0 + ∆ωx(t))(ωy,0 + ∆ωy(t))


=

−
Iz−Iy
Ix

∆ωy(t)(n+ ∆ωz(t))

− Ix−Iz
Iy

∆ωx(t)(n+ ∆ωz(t))

− Iy−Ix
Iz

∆ωx(t)∆ωy(t)


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Linearization of the Euler Equations

Now because we have assumed that ∆ω is small, products of the form ∆ωx∆ωy

are very small indeed. Using this observation, we make the following
Approximations:

∆ωx∆ωy = 0, ∆ωx∆ωz = 0, ∆ωz∆ωy = 0

This yields the following set of linearized equations:

∆ω̇(t) =

−
Iz−Iy
Ix

∆ωy(t)(n+ ∆ωz(t))

− Ix−Iz
Iy

∆ωx(t)(n+ ∆ωz(t))

− Iy−Ix
Iz

∆ωx(t)∆ωy(t)


=

−
Iz−Iy
Ix

n∆ωy(t)

− Ix−Iz
Iy

n∆ωx(t)

0


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Linearization of the Euler Equations

Thus the evolution of small disturbances is governed by a set of linear equations.[
∆ω̇x(t)
∆ω̇y(t)

]
=

[
0 − Iz−Iy

Ix
n

− Ix−Iz
Iy

n 0

] [
∆ωx(t)
∆ωy(t)

]
∆ω̇z(t) = 0

• The third equation ∆ω̇z = 0 implies ∆ωz = constant.

• The first two equations combine to yield

∆ω̈x(t) = −Iz − Iy
Ix

n∆ω̇y(t)

=
Iz − Iy
Ix

Ix − Iz
Iy

n2∆ωx(t)

If we take the Laplace transform of this equation, we get

s2∆ω̂x(s) =
(Iz − Iy)(Ix − Iz)

IxIy
n2∆ω̂x(s)
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Stability Analysis

From

s2∆ω̂x(s) =
(Iz − Iy)(Ix − Iz)

IxIy
n2∆ω̂x(s)

we get the transfer function

Ĝ(s) =
1

s2 − (Iz−Iy)(Ix−Iz)
IxIy

n2
=

1

λ(s)

or if you prefer, the characteristic equation

λ(s) = s2 − (Iz − Iy)(Ix − Iz)

IxIy
n2

The roots of this characteristic equation are

s = ±

√
(Iz − Iy)(Ix − Iz)

IxIy
n2
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Review Stability Analysis

Consider a differential equation with characteristic equation, λ(s):

Recall that the roots of the characteristic equation tell us about the behaviour
of the variable ∆ωx.

• The roots may be real, imaginary, or a mixture: s = a+ bı

There are Three Cases:

1. [Instability:] If Real(s) = a > 0 for any root of λ(s), then small
disturbances will grow over time.

2. [Stability:] If Real(s) = a < 0 for all roots of λ(s), then small disturbances
will vanish over time.

3. [Neutral Stability:] If Real(s) = a = 0 for any root of λ(s), then small
disturbances will persist, but will not grow.
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Stability of Torque-free Spin

λ(s) = s2 − (Iz − Iy)(Ix − Iz)

IxIy
n2

Now recall the roots of λ(s) for the torque-free spaceraft spinning about the ẑ
axis with angular velocity n.

• The roots of λ(s) are

s = ±

√
(Iz − Iy)(Ix − Iz)

IxIy
n2

We can break down our stability analysis into three cases:

CASE 1: Spin about the major axis (Iz > Ix and Iz > Iy).

1. In this case (Iz − Iy) > 0 and (Ix − Iz) < 0.

2. Then the roots are purely imaginary

3. s = ±ıb where b =
√

(Iz−Iy)(Iz−Ix)
IxIy

n2 is real.
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Stability of Torque-free Spin

s = ±

√
(Iz − Iy)(Ix − Iz)

IxIy
n2

CASE 2: Spin about the minor axis (Iz < Ix and Iz < Iy).

1. In this case (Iz − Iy) < 0 and (Ix − Iz) > 0.

2. The roots are also purely imaginary

3. s = ±ıb where b =
√

(Iz−Iy)(Iz−Ix)
IxIy

n2 is real.

CASE 3: Spin about the intermediate axis (Iy < Iz < Ix or Ix < Iz < Iy).

1. In this case (Iz − Iy)(Ix − Iz) > 0.

2. The roots are real

3. s = ±a where a =
√

(Iz−Iy)(Ix−Iz)
IxIy

n2 > 0 is real.

4. One of the roots has positive real part - UNSTABLE

Thus spin about an intermediate axis is always unstable (small deviations will
eventually get big!)
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Polhodes

This effect can be visualized using Polhodes.

• Positions of the axis of rotation, ~ω

• For fixed energy, lines are of constant angular momentum ~h.
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Instability of the intermediate axis

Figure: A Deck of Cards on
the ISS (Garriott)

Figure: Simulated Ellipsoid Figure: A Textbook on the
ISS (Petit)
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Richard_GarriottBlog.mp4
Media File (video/mp4)


Poinsot_polhode.mp4
Media File (video/mp4)


petit_rotation.mov
Media File (video/quicktime)



Destabilization caused by Energy Dissipation

Summary:

• Spin about intermediate axis - Unstable

• Spin about major or minor axis - Neutral Stability

What about Disturbances?

• Fuel Sloshing

• Flexible Structures

• Heat dissipation

Problem:

• Newton’s Second Law predicts Conservation of Momentum

• It says nothing about Kinetic Energy!!!

Question: What is the effect of losses in Kinetic Energy?
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Destabilization caused by Energy Dissipation

Summary:

• Spin about intermediate axis - Unstable

• Spin about major or minor axis - Neutral Stability

What about Disturbances?
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• Heat dissipation
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• Newton’s Second Law predicts Conservation of Momentum

• It says nothing about Kinetic Energy!!!
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Lecture 17

Destabilization caused by Energy Dissipation

Spacecraft depicted is Explorer 1

� First American satellite

� Based on missile technology (no separation from rocket motor)

� Launched January 31, 1958

� Initially spin about minor axis.

� Quickly started precessing and decayed to spin about major axis

� Energy Dissipation from long flexible antennae

� Prompted development of Euler equations.



Destabilization caused by Energy Dissipation

Question: How to relate energy drain Ṫ < 0 to changes in ~ω?

Consider the expression for Kinetic Energy:

2T = ω2
xIx + ω2

yIy + ω2
zIz

Meanwhile, the total angular momentum is

h2 = I2xω
2
x + I2yω

2
y + I2zω

2
z

Consider the Axisymmetric Case: Ix = Iy. Then

2T = Ix(ω2
x + ω2

y) + ω2
zIz

h2 = I2x(ω2
x + ω2

y) + I2zω
2
z

the second equation implies

ω2
x + ω2

y =
h2 − I2zω2

z

I2x

We substitute ω2
x + ω2

y =
h2−I2

zω
2
z

I2
x

into the expression for T to get

2T =
h2 − I2zω2

z

Ix
+ ω2

zIz =
h2

Ix
+ ω2

zIz

(
1− Iz

Ix

)
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Destabilization caused by Energy Dissipation

Question: How to relate energy drain Ṫ < 0 to changes in ~ω?

Consider the expression for Kinetic Energy:

2T = ω2
xIx + ω2

yIy + ω2
zIz

Meanwhile, the total angular momentum is

h2 = I2xω
2
x + I2yω

2
y + I2zω

2
z

Consider the Axisymmetric Case: Ix = Iy. Then

2T = Ix(ω2
x + ω2

y) + ω2
zIz

h2 = I2x(ω2
x + ω2

y) + I2zω
2
z

the second equation implies

ω2
x + ω2

y =
h2 − I2zω2

z

I2x

We substitute ω2
x + ω2

y =
h2−I2

zω
2
z

I2
x

into the expression for T to get

2T =
h2 − I2zω2

z

Ix
+ ω2

zIz =
h2

Ix
+ ω2

zIz

(
1− Iz

Ix

)2
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Destabilization caused by Energy Dissipation

2T =
h2

Ix
+ ω2

zIz

(
1 − Iz

Ix

)

� T may decrease, but h is invariant

� ωxy and ωz may change as T decreases.

� The expression only include ωz, however.



Destabilization caused by Energy Dissipation

Now consider the angle (θ) by which ~h differs from ẑ.

cos θ =
hz
h

=
Izωz

h

We would like to express T in terms of θ.

We solve this equation for ωz to get ωz = h
Iz

cos θ.
Combining with the equation for T , we get

2T =
h2

Ix
+
h2

Iz
cos2 θ

(
1− Iz

Ix

)
Taking the time-derivative, we find

Ṫ = − h2

2Iz
2 cos θ sin θ

(
1− Iz

Ix

)
θ̇

=
h2

2Iz
2 cos θ sin θ

(
Iz
Ix
− 1

)
θ̇
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Destabilization caused by Energy Dissipation

Now consider the angle (θ) by which ~h differs from ẑ.

cos θ =
hz
h

=
Izωz

h

We would like to express T in terms of θ.

We solve this equation for ωz to get ωz = h
Iz

cos θ.
Combining with the equation for T , we get

2T =
h2

Ix
+
h2

Iz
cos2 θ

(
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Ix

)
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Ṫ = − h2

2Iz
2 cos θ sin θ
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Ix

)
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2Iz
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)
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Destabilization caused by Energy Dissipation

Recall θ is the angle the angular momentum vector makes with the body-fixed
axis.

�
~h and ~ω are expressed in body-fixed coordinates.



Destabilization caused by Energy Dissipation

Ṫ =
h2

Iz
cos θ sin θ

(
Iz
Ix
− 1

)
θ̇

or

θ̇ =
IzIx

h2 cos θ sin θ

(
Iz − Ix

) Ṫ
Recall that θ is the angle by which ~h differs from ẑ

• Initially, θ = 0 - spin aligned with ẑ axis.

There are two cases

1. CASE 1: If Ix > Iz, then Ṫ < 0 implies that θ̇ > 0.
I Spin Axis ẑ is UNSTABLE

2. CASE 2: If Ix < Iz, then Ṫ < 0 implies that θ̇ < 0
I Spin Axis ẑ is STABLE
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Polhodes

The effect of energy dissipation can also be visualized using Polhodes.

• Each line has constant h2

T .

• Rotation proceeds from large T to small T .
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Polhodes

The effect of energy dissipation can also be visualized using Polhodes.

• Each line has constant h2

T .

• Rotation proceeds from large T to small T .
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Polhodes

� Polhode represents intersection of energy and inertia ellipsoids.

� Poinsot’s construction: Take the inertia ellipsoid, hold the center a fixed
distance from an inkpad and where it rolls forms one of the lines.



Major Axis Rule

Theorem 1 (Major Axis Rule).

1. Spin about the major axis is stable

2. Spin about any other axis is unstable

Conclusion:

• Spacecraft must be fat!

Problem:

• Rockets are thin.

Solution: Dual Spinners

• Only a fat slice of the spacecraft is spun up

• Allows nutation dampers to stabilize the spin axis.
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Dual Spinners (General Case)

A De-spun section can increase the stability about a minor axis.

k1 =
I2 − I3
I3

, k3 =
I2 − I1
I3

,

Ω̂po :=
Ωpo

ν
, Ωpo =

hs√
I1I3

• hs = Isωs is angular momentum of
spinning section

• ν is angular speed of body about the 2-axis

Figure: Stability Regions for
Dual-Spinner
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Dual Spinners (General Case)

A De-spun section can increase the stability about a minor axis.

k1 =
I2 − I3
I3

, k3 =
I2 − I1
I3

,

Ω̂po :=
Ωpo

ν
, Ωpo =

hs√
I1I3

• hs = Isωs is angular momentum of
spinning section

• ν is angular speed of body about the 2-axis

Figure: Stability Regions for
Dual-Spinner
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Dual Spinners (General Case)

Alternately, we can redefine k1, k3

k1h := k1 + Ω̂po

√
1 − k1
1 − k3

k2h := k2 + Ω̂po

√
1 − k3
1 − k1

− Ξ

� Stable iff k1hk3h > 0. With energy dissipation: if k1h > 0 and k3h > 0

� Ω̂po > 0 if body and wheel spinning in same direction.

� Ξ is an energy damping term



Attitude Dynamics

In this Lecture we have covered:
Non-Axisymmetric rotation

• Linearized Equations of Motion

• Stability

Energy Dissipation

• The effect on stability of rotation
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