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Attitude Dynamics

In this Lecture we will cover:
Non-Axisymmetric rotation

® Linearized Equations of Motion Case j— :
® Stability

Energy Dissipation —

® The effect on stability of rotation ' w. .
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Review: Euler Equations
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Axisymmetric Case: [, = I,

® w, =0-w, is fixed

® Equations naturally become linear.

® Allows us to solve these linear equations explicitly
Non-axisymmetric Case{]x £1,.

® We will have to rely on linear approximation
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Linearization of the Euler Equations

Linearization allows us to consider small deviations about an equilibrium
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® We need to define the equilibrium
CASE: Stability of Spin about a principle axis.

®* Nominal motion is ;
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Linearization of the Euler Equations

Now consider small disturbances to this equilibrium
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Linearization of the Euler Equations

Now because we have assumed that\Aw is small, anroducts of the form Aw,Aw, = O
are very small indeed. Using this observation, we make the following —
Approximations: / -

AwzAwy =0, Aw,Aw, =0, Aw,Aw, =0

This yields the following set of linearized equations:
—_— o
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Linearization of the Euler Equations
Lo fed=in

Thus the evolution of small disturbances is governed by a set of linear equations.
. -1,
Awg(t) 0 — = [Awg(t)

"'||L { IA@(t)] = [_I;In 0 _[éiy_(t)}
léﬂ’wzﬁ)—:‘B (s2(0) =

® The third equation Aw, = 0 implies Aw /= constant.

® The first two equations combine to yield
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If we take the Laplace transform of this equation, we get
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Stability Analysis

From Y /
szA(Dz(s) = (L = 1Iy) (I — Z)n

we get the transfer function
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or if you prefer, the characteristic equation LHP R"ﬁo

(L= L)(L-L) ,_
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A(s)=s LI,

The roots of this characteristic equation are Moty Wil
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Review Stability Analysis

Consider a differential equation with characteristic equation, A(s):
Recall that the roots of the characteristic equation tell us about the behaviour
of the variable Aw,.

® The roots may be real, imaginary, or a mixture: s =a + In

There are Three Cases: Rup

1. [Instability:] If |Real(s) = a > 0 for any root of A(s), then small
disturbances will grow overtime” _, yp

2. [Stability:] If Real(s) = a < 0 for all roots of A(s), then small disturbances
will vanish over time.

3. [Neutral Stability:] If Real(s) = a = 0 for any root of A(s), then small
disturbances will persist-but-witi ot grow. ;A uoe i R #P
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Stability of Torque-free Spin

2 ([z — Iy)(la: — Iz) 2
A(s) =s LI, n

Now recall the roots of A(s) for the torque-free spaceraft spinning about the 2 |
axis with angular velocity n.

® The roots of A(s) are -
20 40

- \/ U= L)L =L) o0 Nedal
LI, -
o Lo Skl

We can break down our stability analysis into three cases:

EASE ll: Spin about the major axis (IZ_E_I_,; and I, >__I_y_)
1. In this case (I, — I,) > 0 and (I, — I,) < 0.

2. Then the roots are purely imaginary

3. 5 = b where b = %an is real.

e S Juble

M. Peet Lecture 17: 10 / 21



Stability of Torque-free Spin

20 2o 40
s — 4 (Iz — Iy)(Iz - IZ)TL(
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CASE 2: Spin about the minor axis (I, < I, and I, < I)).

1. In this case (I, — I,) <0 and (I, — I,) > 0.
2. The roots are also purely imaginary

3. ‘;:@Where b=

\/ 7(Iz_1§3(li“_l‘”)n2 is real.
CASE 3: Spin about

IS

I,)>0.

(Iy<Iz<Ixorx<Iz<Iy)./—
1. In this case (I, — I,,))(1 —
s >

2. The roots are real2® vranile

3. s = +a where a ‘/%nz > 0 is real.

4. One of the roots has positive real part - UNSTABLE

Thus spin about an intermediate axis is always unstable (small deviatiéas Wik
eventually get big!)
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Polhodes

|r z\‘j‘ﬂr .ivﬂJ-L le

This effect can be visualized using Polhodes.
® Positions of the axis of rotation, &

® For fixed energy, lines are of constant angular momentum h.
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Instability of the intermediate axis

Figure: A Deck of Cards on Figure: Simulated Ellipsoid  Figure: A Textbook on the
the ISS (Garriott) ISS (Petit)
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Richard_GarriottBlog.mp4
Media File (video/mp4)


Poinsot_polhode.mp4
Media File (video/mp4)


petit_rotation.mov
Media File (video/quicktime)


Destabilization caused by Energy Dissipation

Summary:

|
® Spin about intermediate axis - Unstable

I|
® Spin about major or minor axis - Neutral Stability

\

What about Disturbances?
® Fuel Sloshing

® Flexible Structures

® Heat dissipation
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Problem: n

® Newton's Second Law predicts Conservation of Momentum
® |t says nothing about Kinetic Energy!!!

Question: What is the effect of losses in Kinetic Energy?

M. Peet
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Lecture 17

L Destabilization caused by Energy Dissipation

Spacecraft depicted is Explorer 1

First American satellite

Based on missile technology (no separation from rocket motor)
Launched January 31, 1958

Initially spin about minor axis.

Quickly started precessing and decayed to spin about major axis
Energy Dissipation from long flexible antennae

Prompted development of Euler equations.




Destabilization caused by Energy Dissipation

Question: How to relate energy drain 7' < 0 to changes in &?
Consider the expression for Kinetic Energy:

-

. . 3 y,
Meanwhile, the total angular momentum is Tﬁ = %_ Te /
h? = I2w? + 12w2 + I2w?

Consider the Axisymmetric Case fI = I} ]Then

| o =1, (W2 +w )+w2I
W = B o) 4 12

the second equatlon implies

h? — I2w?
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We substitute w —1— w — A I{z Yz into the expressior/for T to get
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L Destabilization caused by Energy Dissipation

R I
2T = — L(1--=

e T may decrease, but h is invariant

° l[&),cy""-land w, may change as T' decreases.

S——

e The expression only include w., however.

Destabilization caused by Energy Dissipation
Ques i<t 5




Destabilization caused by Energy Dissipation

Now consider the angle (6) by which & dlfFers from z.

<"
h .Iz ZL
cosf = 5 s
l—guz. = ||Ir\ (.0.59
We would like to express T" in terms of 6.

We solve this equation for w, to get w, = Iﬂ cosf.

Combining with the equation for T', we get
. // / I
2T = A Iz (cos 9)( Iw)
TL 6T orl

Taking the time-derivativg, we find
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L Destabilization caused by Energy Dissipation

Recall 6 is the angle the angular momentum vector makes with the body-fixed
axis.

o hand & are expressed in body-fixed coordinates.



Destabilization caused by Energy Dissipation

. h? ) 1, .
T = I—cosﬁsm@(j— - 1)6

z

T

or

There are two cases Cose 1- o
1. CASE 1: If ][, > .} then 7' < 0 implies that § > 0. T RSy Taly
> Spin Axis % is UNSTABLE 1L. h,>

2. CASE 2: If]l, < L) then T < 0 implies that § < 0
» Spin Axis 2 is STABLE ﬁl-'rn wt .CF 2 od }: FA
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Polhodes

" Tn.'r"‘

‘P‘nl T i =
The effect of energy dissipation/can also be visualized using Polhodes.

® Each line has constant

® Rotation proceeds from large T to small 7.
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Polhodes

Lecture 17

I—Polhodes

e Polhode represents intersection of energy and inertia ellipsoids.

e Poinsot’s construction: Take the inertia ellipsoid, hold the center a fixed
distance from an inkpad and where it rolls forms one of the lines.



Major Axis Rule

Theorem 1 (Major Axis Rule).

1. Spin about theWe
2. Spin about any other axis is unstable

ovell saf

,4,, T

p Teo 1740 _or T <O

Conclusion:

® Spacecraft must be fat! éwh ’“‘5 5 L""’,J
Problem: o 1‘ be

e Rockets are thin. E,«J ole

Solution: Dual Spinners

Sfinm

(olisf)

Boosl,
( Diseed)

® Only a fat slice of the spacecraft is spun up

e Allows nutation dampers to stabilize the spin axis.
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Dual Spinners (General Case)

A De-spun section can increase the stability about a minor axis.

ks ky

U'J/‘s](nu‘

® hy = I,w, is angular momentum of
spinning section

® v is angular speed of body about the 2-axis

Directionally and Statically Stable.

Directionally Siable; Statically Unstable
but Gyricaly Stabilzed

Figure: Stability Regions for
Dual-Spinner
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L-Dual Spinners (General Case)

Alternately, we can redefine k1, k3
1—Fk
1— ks

1— ks
1-Fk

kin = k1 + Qpo

kon := ko + Qpo

e Stable iff k1pksn > 0. With energy dissipation: if k15, > 0 and ksp, > 0

e (0 > 0 if body and wheel spinning in same direction.

e = is an energy damping term

|I
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Attitude Dynamics

In this Lecture we have covered:
Non-Axisymmetric rotation

® Linearized Equations of Motion
® Stability

Energy Dissipation
® The effect on stability of rotation
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