Modern Control Systems

Matthew M. Peet
Arizona State University

Lecture 7: Canonical Forms and Stabilizability

Representation and Controllability

Question: Is the representation (A, B, C, D) of the system $y=G u$,

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+B u(t) \\
y(t) & =C x(t)+D u(t)
\end{aligned}
$$

unique?
Question: Do there exist $(\hat{A}, \hat{B}, \hat{C}, \hat{D})$ such that y and u also satisfy,

$$
\begin{aligned}
\dot{x}(t) & =\hat{A} x(t)+\hat{B} u(t) \\
y(t) & =\hat{C} x(t)+\hat{D} u(t)
\end{aligned}
$$

Answer: Of Course! Recall the similarity transform: $z(t)=T x(t)$ for any invertible T. Then y and u also satisfy,

$$
\begin{aligned}
\dot{z}(t) & =T \dot{x}(t)=T A x(t)+T B u(t) \\
& =T A T^{-1} z(t)+T B u(t) \\
y(t) & =C x(t)+D u(t) \\
& =C T^{-1} z(t)+D u(t)
\end{aligned}
$$

Representation and Controllability

Thus the pair $\left(T A T^{-1}, T B, C T^{-1}, D\right)$ is also a representation of the map $y=G u$.

- Furthermore $x(t) \rightarrow 0$ if and only if $z(t) \rightarrow 0$.
- So internal stability is unaffected.

Controllability is Unaffected:

$$
\begin{aligned}
& C\left(T A T^{-1}, T B\right) \\
& =\left[\begin{array}{lllll}
T B & T A T^{-1} T B & T A T^{-1} T A T^{-1} T B & \cdots & T A^{n-1} B
\end{array}\right] \\
& =T C(A, B)
\end{aligned}
$$

Invariant Subspaces

Definition 1.

A subspace, $W \subset X$, is Invariant under the operator $A: X \rightarrow X$ if $x \in W$ implies $A x \in W$.

For a linear operator, only subspaces can be invariant.

Proposition 1.

If W if A-invariant, then there exists an invertible T, such that

$$
\bar{A}=T A T^{-1}=\left[\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
0 & \bar{A}_{22}
\end{array}\right] \quad \text { and } \quad T W=\operatorname{Im}\left[\begin{array}{l}
I \\
0
\end{array}\right]
$$

That is, for any $x \in W, T x=\left[\begin{array}{c}\bar{x}_{1} \\ 0\end{array}\right]$, which is clearly \bar{A}-invariant.

Invariant Subspaces

Proposition 2.

$C_{A B}$ is A-invariant.

Proof.

The proof is direct. If $x \in C_{A B}$, there exists a z such that $x=C(A, B) z$. Now examine $A x=A C(A, B) z$.

$$
A \cdot C(A, B)=A\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]=\left[\begin{array}{llll}
A B & A^{2} B & \cdots & A^{n} B
\end{array}\right]
$$

But, by Cayley-Hamilton,
so we can write

$$
A^{n}=\sum_{i=0}^{n-1} a_{i} A^{i}
$$

$$
\begin{aligned}
& A x=A C(A, B) z=\left[\begin{array}{llll}
A B & A^{2} B & \cdots & A^{n} B
\end{array}\right] z \\
& =\left[\begin{array}{lll}
B & \cdots & A^{n-1} B
\end{array}\right]\left[\begin{array}{c}
z_{n} a_{0} \\
z_{1}+z_{n} a_{1} \\
\vdots \\
z_{n-1}+z_{n} a_{n-1}
\end{array}\right] \in C_{A B}
\end{aligned}
$$

Controllability Form

Since $C_{A B}$ is an invariant subspace of A, there exists an invertible T such that

$$
T A T^{-1}=\left[\begin{array}{cc}
\bar{A}_{11} & \bar{A}_{12} \\
0 & \bar{A}_{22}
\end{array}\right]
$$

and $T x=\left[\begin{array}{l}\bar{x} \\ 0\end{array}\right]$ for any $x \in C_{A B}$.

- Clearly $B \in C_{A B}$.
- Thus $T B=\left[\begin{array}{c}\bar{B}_{1} \\ 0\end{array}\right]$.

Definition 2.

The pair (A, B) is in Controllability Form when

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

and the pair $\left(A_{11}, B_{1}\right)$ is controllable.

Controllability Form

When a system is in controllability form, the dynamics have special structure

$$
\begin{aligned}
& \dot{x}_{1}(t)=A_{11} x_{1}(t)+A_{12} x_{2}(t)+B_{1} u(t) \\
& \dot{x}_{2}(t)=A_{22} x_{2}(t)
\end{aligned}
$$

The x_{2} dynamics are autonomous.

- Cannot be stabilized or controlled.

We can formulate a procedure for putting a system in Controllability Form

1. Find an orthonormal basis, $\left[\begin{array}{lll}v_{1} & \cdots & v_{r}\end{array}\right]$ for $C_{A B}$.

- Gramm-Schmidt on columns of $C(A, B)$

2. Complete the basis in $\mathbb{R}^{n}:\left[\begin{array}{lll}v_{r+1} & \cdots & v_{n}\end{array}\right]$.
3. Define $T=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$.
4. Construct $\bar{A}=T A T^{-1}$ and $\bar{B}=T B$

- Works for ANY invariant subspace.

Controllability Form

Example

Let

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Construct $C(A, B)=\left[\begin{array}{lll}B & A B & A^{2} B\end{array}\right]$.

$$
\begin{aligned}
A B & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \\
A^{2} B & =A(A B)=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Thus

$$
C(A, B)=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $\operatorname{rank} C(A, B)=2<n=3$ which means not controllable.

Controllability Form

Example Continued

Using Gramm-Schmidt, we can construct an orthonormal basis for $C_{A B}$

$$
C_{A B}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

Let $v_{3}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{T}$. Then

$$
T^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

So $T=I$, which is because the system is already in controllability form. We could also have used

$$
T^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \text { to get } T A T^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]=A
$$

Stabilizability

Stabilizability is weaker than controllability

Definition 3.

The pair (A, B) is stabilizable if for any $x(0)=x_{0}$, there exists a $u(t)$ such that $x(t)=\Gamma_{t} u$ satisfies

$$
\lim _{t \rightarrow \infty} x(t)=0
$$

- Again, no restriction on $u(t)$.
- Weaker than controllability
- Controllability: Can we drive the system to $x\left(T_{f}\right)=0$?
- Stabilizability: Only need to Approach $x=0$.
- Stabilizable if uncontrollable subspace is naturally stable.

Stabilizability

Consider the system in Controllability Form.

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] } & =\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u(t) \\
x(0) & =\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]
\end{aligned}
$$

Note that

$$
\dot{x}_{2}(t)=A_{22} x_{2}(t)
$$

and so, we can solve explicitly

$$
x_{2}(t)=e^{A_{22} t} x_{2}(0)
$$

Clearly A_{22} must be Hurwitz if (A, B) is stabilizable.

- Necessary and Sufficient

PBH Test

Lemma 4.

The pair (A, B) is stabilizable if and only if A_{22} is Hurwitz.
This is an test for stabilizability, but requires conversion to controllability form.

- A more direct test is the PBH test

Theorem 5 (PBH Test).

The pair (A, B) is

- Stabilizable if and only if $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$ for all $\lambda \in \mathbb{C}^{+}$
- Controllable if and only if $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$ for all $\lambda \in \mathbb{C}$

Note: We need only check the eigenvalues λ

- Condition implies $x^{T} B \neq 0$ for any left eigenvector of A.
- There is also a PBH test for observability/detectability (Coming Soon)

PBH Test

Proof: Controllable if and only if $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$ for all $\lambda \in \mathbb{C}$

Proof.

We will use proof by contrapositive. $(\neg 2 \Rightarrow \neg 1)$. Suppose $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]<n$.

- Thus $\operatorname{dim}\left(\operatorname{Im}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]\right)<n$
- There exists an x such that $x^{T}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=0$.
- Thus $\lambda x^{T}=x^{T} A$ and $x^{T} B=0$
- Thus $x^{T} A^{2}=\lambda x^{T} A=\lambda^{2} x^{T}$.
- Likewise $x^{T} A^{k}=\lambda^{k} x^{T}$.
- Thus

$$
\left.\begin{array}{rl}
x^{T} C(A, B)=x^{T}\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right] & =x^{T}\left[\begin{array}{lll}
B & \lambda B & \cdots
\end{array} \lambda^{n-1} B\right.
\end{array}\right]
$$

- Thus $\operatorname{dim}[\operatorname{lm} C(A, B)]<n$, which means Not Controllable. $(\neg 2 \Rightarrow \neg 1)$.
- We conclude that controllable implies rank $\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$.

PBH Test

Proof.

For the second part, we will also use proof by contrapositive. $(\neg 1 \Rightarrow \neg 2)$. Suppose (A, B) is not controllable. Then there exists an invertible T such that

$$
T A T^{-1}=\left[\begin{array}{cc}
\hat{A}_{11} & \hat{A}_{12} \\
0 & \hat{A}_{22}
\end{array}\right], \quad T B=\left[\begin{array}{c}
\hat{B}_{1} \\
0
\end{array}\right]
$$

Now let λ be an eigenvalue of \hat{A}_{22}^{T} with eigenvector \hat{x}. $\hat{A}_{22}^{T} \hat{x}=\lambda \hat{x}$. Thus $\hat{x}^{T} \hat{A}_{22}=\lambda \hat{x}^{T}$. Now define x as

Then

$$
x=T^{T}\left[\begin{array}{l}
0 \\
\hat{x}
\end{array}\right], \quad \text { then } \quad x^{T}=\left[\begin{array}{c}
0 \\
\hat{x}
\end{array}\right]^{T} T
$$

$$
\left.\left.\begin{array}{rl}
x^{T}\left[\begin{array}{lll}
\lambda I-A & B
\end{array}\right] & =x^{T} T^{-1}\left[\lambda T-T A T^{-1} T\right. \\
T B
\end{array}\right]\right)
$$

PBH Test

Proof.

$$
\begin{aligned}
x^{T}\left[\begin{array}{ll}
\lambda I-A & B
\end{array}\right] & \left.=\left[\begin{array}{l}
\lambda \\
0 \\
\hat{x}
\end{array}\right]^{T} T-\left[\begin{array}{c}
0 \\
\hat{x}
\end{array}\right]^{T}\left[\begin{array}{cc}
\hat{A}_{11} & \hat{A}_{12} \\
0 & \hat{A}_{22}
\end{array}\right] T\left[\begin{array}{c}
0 \\
\hat{x}
\end{array}\right]^{T}\left[\begin{array}{c}
\hat{B}_{1} \\
0
\end{array}\right]\right] \\
& =\left[\begin{array}{lll}
0 & \left.\lambda \hat{x}^{T}\right] T-\left[\begin{array}{ll}
0 & \hat{x}^{T} \hat{A}_{22}
\end{array}\right] T & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & \hat{x}^{T}\left[\lambda I-\hat{A}_{22}\right. & 0
\end{array}\right] T=0
\end{aligned}
$$

- Thus $x^{T}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=0$.
- Thus rank $\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]<n$.
- Finally $(\neg 1 \Rightarrow \neg 2)$.
- We conclude that $\operatorname{rank}\left[\begin{array}{ll}\lambda I-A & B\end{array}\right]=n$ implies controllability.

Single Input Controllability

Definition 6.

A Companion Matrix is any matrix of the form:

$$
A=\left[\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
& & 0 & 1 \\
-a_{0} & \cdots & & -a_{n-1}
\end{array}\right]
$$

A companion matrix has the convenient property that

$$
\operatorname{det}(s I-A)=\sum_{i=0}^{n-1} a_{i} s^{i}=a_{0}+a_{1} s+\cdots+a_{n-1} s^{n-1}+s^{n}
$$

Single Input Controllability

Theorem 7.

Suppose (A, B) is controllable. $B \in \mathbb{R}^{n \times 1}$. Then there exists an invertible T such that

$$
T A T^{-1}=\left[\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & & \\
& & 0 & 1 \\
-a_{0} & & & -a_{n-1}
\end{array}\right], \quad T B=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

This is Controllable Canonical Form

- Different from controllability form
- This is useful for reading off transfer functions

$$
G(s)=C(s I-A)^{-1} B+D
$$

which has a denominator

$$
\operatorname{det}(s I-A)=a_{0}+\cdots+a_{n-1} s^{n-1}
$$

