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Representation and Controllability

Question: Is the representation (A,B,C,D) of the system y = Gu,

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

unique?

Question: Do there exist (Â, B̂, Ĉ, D̂) such that y and u also satisfy,

ẋ(t) = Âx(t) + B̂u(t)

y(t) = Ĉx(t) + D̂u(t)

Answer: Of Course! Recall the similarity transform: z(t) = Tx(t) for any
invertible T . Then y and u also satisfy,

ż(t) = T ẋ(t) = TAx(t) + TBu(t)

= TAT−1z(t) + TBu(t)

y(t) = Cx(t) +Du(t)

= CT−1z(t) +Du(t)
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Representation and Controllability

Thus the pair (TAT−1, TB,CT−1, D) is also a representation of the map
y = Gu.

• Furthermore x(t)→ 0 if and only if z(t)→ 0.

• So internal stability is unaffected.

Controllability is Unaffected:

C(TAT−1, TB)

=
[
TB TAT−1TB TAT−1TAT−1TB · · · TAn−1B

]
= TC(A,B)
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Invariant Subspaces

Definition 1.

A subspace, W ⊂ X, is Invariant under the operator A : X → X if x ∈W
implies Ax ∈W .

For a linear operator, only subspaces can be invariant.

Proposition 1.

If W if A-invariant, then there exists an invertible T , such that

Ā = TAT−1 =

[
Ā11 Ā12

0 Ā22

]
and TW = Im

[
I
0

]

That is, for any x ∈W , Tx =

[
x̄1
0

]
, which is clearly Ā-invariant.
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Invariant Subspaces

Proposition 2.

CAB is A-invariant.

Proof.

The proof is direct. If x ∈ CAB , there exists a z such that x = C(A,B)z. Now
examine Ax = AC(A,B)z.

A · C(A,B) = A
[
B AB · · · An−1B

]
=
[
AB A2B · · · AnB

]
But, by Cayley-Hamilton,

An =

n−1∑
i=0

aiA
i

so we can write

Ax = AC(A,B)z =
[
AB A2B · · · AnB

]
z

=
[
B · · · An−1B

]


zna0
z1 + zna1

...
zn−1 + znan−1

 ∈ CAB
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Controllability Form

Since CAB is an invariant subspace of A, there exists an invertible T such that

TAT−1 =

[
Ā11 Ā12

0 Ā22

]

and Tx =

[
x̄
0

]
for any x ∈ CAB .

• Clearly B ∈ CAB .

• Thus TB =

[
B̄1

0

]
.

Definition 2.

The pair (A,B) is in Controllability Form when

A =

[
A11 A12

0 A22

]
and B =

[
B1

0

]
,

and the pair (A11, B1) is controllable.
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Controllability Form

When a system is in controllability form, the dynamics have special structure

ẋ1(t) = A11x1(t) +A12x2(t) +B1u(t)

ẋ2(t) = A22x2(t)

The x2 dynamics are autonomous.

• Cannot be stabilized or controlled.

We can formulate a procedure for putting a system in Controllability Form

1. Find an orthonormal basis,
[
v1 · · · vr

]
for CAB .

I Gramm-Schmidt on columns of C(A,B)

2. Complete the basis in Rn:
[
vr+1 · · · vn

]
.

3. Define T =
[
v1 · · · vn

]
.

4. Construct Ā = TAT−1 and B̄ = TB
I Works for ANY invariant subspace.
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Controllability Form
Example

Let

A =

 1 −1 0
−1 1 0
0 0 −1

 and B =

1
0
0


Construct C(A,B) =

[
B AB A2B

]
.

AB =

 1 −1 0
−1 1 0
0 0 −1

1
0
0

 =

 1
−1
0

 ,
A2B = A(AB) =

 1 −1 0
−1 1 0
0 0 −1

 1
−1
0

 =

0
0
0


Thus

C(A,B) =

1 1 0
0 −1 0
0 0 0


Thus rankC(A,B) = 2 < n = 3 which means not controllable.

M. Peet Lecture 7: Controllability 8 / 17



Controllability Form
Example Continued

Using Gramm-Schmidt, we can construct an orthonormal basis for CAB

CAB = span


1

0
0

 ,
 1
−1
0

 = span


1

0
0

 ,
0

1
0

 = span {v1, v2}

Let v3 =
[
0 0 1

]T
. Then

T−1 =

1 0 0
0 1 0
0 0 1

 = I

So T = I, which is because the system is already in controllability form. We
could also have used

T−1 =

0 1 0
1 0 0
0 0 1

 to get TAT−1 =

 1 −1 0
−1 1 0
0 0 −1

 = A
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Stabilizability

Stabilizability is weaker than controllability

Definition 3.

The pair (A,B) is stabilizable if for any x(0) = x0, there exists a u(t) such that
x(t) = Γtu satisfies

lim
t→∞

x(t) = 0

• Again, no restriction on u(t).

• Weaker than controllability
I Controllability: Can we drive the system to x(Tf ) = 0?
I Stabilizability: Only need to Approach x = 0.

• Stabilizable if uncontrollable subspace is naturally stable.
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Stabilizability

Consider the system in Controllability Form.[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

0 A22

] [
x1(t)
x2(t)

]
+

[
B1

0

]
u(t)

x(0) =

[
x1(0)
x2(0)

]
Note that

ẋ2(t) = A22x2(t)

and so, we can solve explicitly

x2(t) = eA22tx2(0)

Clearly A22 must be Hurwitz if (A,B) is stabilizable.

• Necessary and Sufficient
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PBH Test

Lemma 4.

The pair (A,B) is stabilizable if and only if A22 is Hurwitz.

This is an test for stabilizability, but requires conversion to controllability form.

• A more direct test is the PBH test

Theorem 5 (PBH Test).

The pair (A,B) is

• Stabilizable if and only if rank
[
λI −A B

]
= n for all λ ∈ C+

• Controllable if and only if rank
[
λI −A B

]
= n for all λ ∈ C

Note: We need only check the eigenvalues λ

• Condition implies xTB 6= 0 for any left eigenvector of A.

• There is also a PBH test for observability/detectability (Coming Soon)
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PBH Test

Proof: Controllable if and only if rank
[
λI −A B

]
= n for all λ ∈ C

Proof.

We will use proof by contrapositive. (¬2⇒ ¬1). Suppose
rank

[
λI −A B

]
< n.

• Thus dim
(
Im
[
λI −A B

])
< n

• There exists an x such that xT
[
λI −A B

]
= 0.

• Thus λxT = xTA and xTB = 0

• Thus xTA2 = λxTA = λ2xT .

• Likewise xTAk = λkxT .

• Thus

xTC(A,B) = xT
[
B AB · · · An−1B

]
= xT

[
B λB · · · λn−1B

]
=
[
0 · · · 0

]
• Thus dim[ImC(A,B)] < n, which means Not Controllable. (¬2⇒ ¬1).

• We conclude that controllable implies rank
[
λI −A B

]
= n.
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PBH Test

Proof.

For the second part, we will also use proof by contrapositive. (¬1⇒ ¬2).
Suppose (A,B) is not controllable. Then there exists an invertible T such that

TAT−1 =

[
Â11 Â12

0 Â22

]
, TB =

[
B̂1

0

]
Now let λ be an eigenvalue of ÂT

22 with eigenvector x̂. ÂT
22x̂ = λx̂. Thus

x̂T Â22 = λx̂T . Now define x as

x = TT

[
0
x̂

]
, then xT =

[
0
x̂

]T
T

Then

xT
[
λI −A B

]
= xTT−1

[
λT − TAT−1T TB

]
=

[
0
x̂

]T
TT−1

[
λT −

[
Â11 Â12

0 Â22

]
T

[
B̂1

0

]]
=

[
λ

[
0
x̂

]T
T −

[
0
x̂

]T [
Â11 Â12

0 Â22

]
T

[
0
x̂

]T [
B̂1

0

]]
M. Peet Lecture 7: Controllability 14 / 17



PBH Test

Proof.

xT
[
λI −A B

]
=

[
λ

[
0
x̂

]T
T −

[
0
x̂

]T [
Â11 Â12

0 Â22

]
T

[
0
x̂

]T [
B̂1

0

]]
=
[[

0 λx̂T
]
T −

[
0 x̂T Â22

]
T 0

]
=
[
0 x̂T

[
λI − Â22

]
0
]
T = 0

• Thus xT
[
λI −A B

]
= 0.

• Thus rank
[
λI −A B

]
< n.

• Finally (¬1⇒ ¬2).

• We conclude that rank
[
λI −A B

]
= n implies controllability.
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Single Input Controllability

Definition 6.

A Companion Matrix is any matrix of the form:

A =


0 1 0

. . .
. . .

0 1
−a0 · · · −an−1


A companion matrix has the convenient property that

det(sI −A) =

n−1∑
i=0

ais
i = a0 + a1s+ · · ·+ an−1s

n−1 + sn
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Single Input Controllability

Theorem 7.

Suppose (A,B) is controllable. B ∈ Rn×1. Then there exists an invertible T
such that

TAT−1 =


0 1 0

. . .

0 1
−a0 −an−1

 , TB =


0
...
0
1


This is Controllable Canonical Form

• Different from controllability form

• This is useful for reading off transfer functions

G(s) = C(sI −A)−1B +D

which has a denominator

det(sI −A) = a0 + · · ·+ an−1s
n−1
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