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Robust Control: Dealing with Uncertainty

The Known Unknowns

External Disturbances
® The most benign source of uncertainty.
¢ Finite Energy (Ls-norm bounded).
® H., optimal control minimizes the effect of these uncertainties.

o

® Vibrations, Wind, 60 Hz noise  ® Higher-Order Dynamics

u n, Yo M

poc  Ip Thensor

e Initial Conditions ® Nonlinearity (Saturation)
® Sensor Noise ® Delay
® Changes in Reference Signal ® Modeling Errors (Parametric vs. Structural)

® Model Reduction
® Logical Switching
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Modelling Uncertainty
A Set-Based Description
The describe uncertainty in the System (P).
® These can NOT be bounded apriori
The first step is to Quantify our uncertainty.
® How bad can it get?
We need to define the Set of possible Plants.
e P € P where P is a set of possible plants.
® P can describe either finite or infinite possible systems.
® How do we parameterize P
Original Problem:

uin [S(P. K.

Now we have to add a modifier:

i : < .
Jdoin v ISP K|l <7 For Al PeP
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Modelling Uncertainty

Parametric Uncertainty

There are Three Main Types of Parametric Uncertainty ‘lF
.. c . k F(t m
i) = Si(e) + Ly = L0
k = c
® Uncertainty in Parameters ¢, k,m —‘—+—
Multiplicative Uncertainty Additive Uncertainty
* m=mgo(l+ 1mdm) ® m =mg~+ Nmom
® ¢ =co(l4n:de) ® ¢=cy+ N
® k= ko(1+nkdx) ® k= ko + 1Koy
Where 4., d., 0. are bounded. Where 6., d., 0, are bounded.

Polytopic Uncertainty

m m m m; Ziéi:]"
c| € c|l :|c| = Zéi c |, 6 >0.
k k k i ki

T . .
where [mZ C kl] describe possible model parameters.
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Linear-Fractional Representation

The first step is to isolate the unknowns from the knowns

The known part is the Nominal System, M:

2= ) :

p q

The unknown part is the Uncertain System, ¢ = Ap
® For which we only know A € A. M

® How to parameterize the Set: A7
As for the feedback interconnection, we have 3 equations:
p = My1q + Mow, 2z = Ma1q + Maw, q=Ap

Solving for ¢,
q=Ap =AMy 1q+ AMw
= (I — AMH)*lAMlgw
Then S(M,A)

2 = Ma1q + Mayw = (May + Moy (I — AMyy) ™' AMyp) w
Recall that S(M, A) is called the Upper Star Product.
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Lecture 12

- Linear-Fractional Representation

Note the algebraic use of systems.
e A and M;; are subsystems, not matrices.
e This accounts for the lack of the time parameter, ¢, in the equations

Here we are using the 4-system representation of the nominal system. We can
also do this using the 9-matrix representation, but recall the CL system is very
complicated.



Linear-Fractional Representation

State-Space Formulation

The Nominal System, M:

x(t) A By By [z(t) A

p(t)| = |C2 Daa Da| |q(t)

Z(t) C1 Dlg D11 w(t) P q
S(M,A) is too complicated unless we o
Solving for ¢,

q(t) = A(Crx(t) + D11q(t) + Di2w(t))
q(t) = (I — ADH)ilA(Olfﬁ(t) + Dlgw(t))
= (I — ADH)_IACl.’E(t) + (I - ADll)_lADlg’w(t)

Finally, we get

#(t) = (A4 B1(I — AD1;) "' ACY))x(t) + (By + B1(I — ADq1) ' AD1o)w(t)
Z(t) = (Cz + D21(I - ADH)‘lACl)m(t) + (D22 + D21(I — ADn)_lADm)w(t)
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Lecture 12

- Linear-Fractional Representation

e We are representing the LFT as a state-space equivalent representation,
which may be easier to work with/understand - even though it involves
more equations.

e Here we treat A as a matrix and not a system.

The CL system is

S(M, A) = A+ Bi(I - ADn) 'AC: | Ba+ Bi(I — ADu) 'ADs,
’ | O + Doi (I — AD11)_1AC1 ‘ D23 + Doy (I — ADII)_lADIQ

Alternatively, we can write:

|:Acl Bcl A B2 :| + |:Bl

=8 = _ —1
Ccl Dcl:| o S(P,A) o |:CZ _D22 D21:| (I ADll) A [Cl D12:|



Linear-Fractional Representation for Matrices

There is an important point here: The LFT can be used for matrices
That is, if you have two equations:

o] - B S [s] e w0 v0

Then
2(t) = S(M, Ayw(t) = (Mag + Moy (I — AMyy) ' AMa) w(t)
Alternatively,
z(t)| _ [Min M| [w(t) 7
[pa)] B {Mzi M} L(t)} and - q(t) = Ap(t)
Becomes

2(t) = S(M, A)w(t) = (M11 + M2 AT — MQQA)71M21) w(t)

This works even if we replace z(t) with Eég] and w(t) with [Z]((?)]
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Linear-Fractional Representation

Nominal System (Upper Feedback Representation):

(t) Dy | [Ci Di) (1) (1) (t)
- (e 2] - ] - m )

Py =&, 52].Pn=[54] Pia=[cr pio], Py =D,
Closed-Loop: Representation of the Upper Feedback Interconnection with A
S(P,A)

[w)] = (P + Pu(I = APu) ™ AP) [i(éﬂ
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Apply the LFT to Parametric Uncertainty

Additive Uncertainty

Consider Additive Uncertainty: 4
P={P: P=FP+A AcA} » q
M
Nominal System: M Uncertain System: A

pl _ |0 I ||q q=A7p
z I My| |w
Solving for z, we get the Upper Star Product

z = (Maz + Moy (I — AMy1) " AMio)w

or z = (MO =+ A)’LU
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Apply the LFT to Parametric Uncertainty

Multiplicative Uncertainty

Consider Multiplicative Uncertainty:

P:={P:P=(I+A)P, AcA} 4
p q
M
Nominal System: M Uncertain System: A
p| _ |0 M| (q q=Ap
z 1 MO w
~——
M

Using the Upper Star Product we get
S(M,A) = Moy + Moy (I — AM;1) 'AMy = (I + A)M
thus
z=(I+ A)Myw
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Example of Parametric Uncertainty

e m=mo(l+ 9mom)
® ¢=co(14n:de)

® k= ko(1+nkdy)
Define 1 = y and x5 = my

] [0 m™Y [xy 0 . .
L-J = —k —c} LJ + [1} F Nominal System Dynamics
0 my'|0]-nn 0 O
A 32 Bl —ko —Cp 1 0 Nk TNe
1 0 0 0 0 O .
Cy | Dag | Doy | = — 9-matrix Plant
D D 0 my |0 -y 0 O
Lt kg 0 [0] 0 0 0
0 —co | 0 0 0 0
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Lecture 12

I—Example of Parametric Uncertainty

Note the states x1 = y and x2 = my were chose carefully so as to separate the
uncertain parameters.



Example of Parametric Uncertainty

o] [0 mgt] [x 0 —m 00 m
=L ] ]+ [ roe [ o

0 my! a] [m 000 = &
p(t) = [—ko 0 ] L:;(t)] + [ 0 0 o] q(t)

0 —c 0 00
z(t) = z1(t)

bm 0 0 i1 () z1(t)
q=Ap=|0 & O]p ia(t)| = (Pao+Por(I—AP11) ' APra) |22(t)

0 0 4, 2(t) F(t)
where

Py = [cA; 5222] ,Poy = [53211] ,Pio =[c1 pi2], P11 = Duy,
Questions:
® How to formulate the uncertainty matrix?
® What if the uncertainty is time-varying?
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Formulating the LFT representation

Recall the feedback representation has the form:

(1)
iy | = (Paz+ Por(I — AP;) 'AP)
F(t)
z(t)
What types of parametric uncertainty have this form? Let
Py = Z Ps 4, Py =[Pug -+ Pogl
Piaq P 0 0 o6l 0 0
Po=1 1|, Pu=| o9 . 0 A=1¢o9 . 0
Pia g, 0 0 P 0 0 0l
Then
Py + Py (I — AP1) 'AP, = ZPZZ,i + Po1,i(6;'T — Py1,) "t Pray;
Hence any Uncertainty can be represented
T xl(t)
i’g = (PQQ —+ P21 (I — APll)_lAplg) JZQ(t)
2(t) w(t)
In fact, ANY state-space system with rational uncertainty can be represented
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Lecture 12

I—Formulating the LFT representation

Recall any proper, rational transfer function G‘(s) has a representation as
G(s)=C(sI—A)'B+D

For each d;, if we can find a G/(; '), we can construct the corresponding LFT.



Formulating the LFT

Consider the Example From Gu, Petkoz, Konstantinov

State-Space Systems can be -;B
represented in Block-Diagram
Form. e.g.

¥
= Az + Bu
y=Cx+ Du
b tcitke=F  a(s) L ps)
mi + cx + kx = z(s) = ———F(s
ms2 4+cs+ k

Lets consider how to do this problem in General with Block Diagrams.
Step 1: Isolate all the uncertain parameters:
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Formulating the LFT

Step 2: Rewrite all the uncertain blocks as LFTs

For the m Term:
1 1 1 1 -
— = = — — — (14 06m) b = S(Myy, O
— 1
where M, = [ hm ”}0}
.
For the ¢o(1 + n.d.) and ko(1 + n,d;) Terms:
¢ = coll+nde) = S(M,d) M, = [0 "0]
e  Co
- 0 ko
k=ko(L+mdy) = S(My,bc) My = 3
Mk Ro
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Formulating the LFT

Step 3: Write down all your equations!
=
u . : M, X I X J‘ X
J’CE ]uc
Ve
yk[ Ok juk

Vi

Sg

Setx1 =x, xo =&, 2 = x1 SO & = Io.
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Formulating the LFT

i,’l = T2
) 1 u X
To = *nmum‘i’i(wfvc*vk) -
mo
1
Ym = —NmUm + 7(10 — Ve — ’Uk)
mo
Ye = CoT2
yr = kox1
I i
Ve = Nele + C0Z2, Vi = Nruk + ko1
Mk ‘;
Z =1 Vi
Um = 5mym, Ue = 6cyC7 Uk = 5kyk
Eliminating v. and v, we get
i (1 1 0 0 0 (1) 1
B _ ko _co | _ _Me  _mp | _1_
Z2 m% moo TIm mq mg mg X2 ) 0 0
Ym —Fo <o —MNm  — Tl — Ak L Um i
— mo mo mo mo | mg u=|0 d Oy
Ye 0 Co 0 0 0 0 Ue 0 O 5
Yk ko 0 0 0 0 0 U, ¢
z 1 0 0 0 O 0 w
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Structured Uncertainty

In the previous example, A has Structure

om 0 0
gq=10 d Ofp
0 0 6.

Of course, ||A|| < 1, but it is also diagonal.

® To ignore this structure leads to conservative Results

® \We will return to this issue in the next lecture.

M. Peet
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Nonlinearity (Structural Error in Model)

Absolute Stability Problems

The Rayleigh Equation:

i—21-a’)j+y=u

Nominal System: P Uncertain Systézm: A
:'v(t):[Qf —01] x(tH[—?OCﬂ q<t)+[(1)] iy 10 = ()0 =)

p(t) =1 0]=(t)

y(t) =10 1]x(t)
® A is NOT norm-bounded. ( ( )3 £ Kp(t) for any K)
* However, (p,q) = [ p(t) = [p(t)*dt > 0.
® Does Th|s HeIp?
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Unmodelled States

Model Reduction

Missing States

Ti| _ A A |21 n By w
T Ag1 Ao |2 By

Problem: If we don’t model the states xg, then Ao, Aoy, Ass, By and Oy are
all unknown.
Model of Uncertainty: Put all the unknowns is an interconnected system.

#1(t) = Anzi(t) + p(t) + Bro(?) ig(t) = Agomi(t) + [A21 Bl q(t)
q(t) = {O} x1(t) + [?] w(t) p(t) = Arawo(1)

Question: How to model A if it is unknown?
® Since A is state-space (and stable), A € H.
® Which means [[A| z(z,) = [|Alla.. is bounded.
e Can we assume || A|lg, <17 < .17
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Time-Varying Uncertainty?

Gain Scheduling and Logical Switching

Several Operating Points:

Table 11.2 Parameter Values at the Seven Operating Points

Time (s) 4 t 5 ty ts to t
a(t) 1.593 1.485 1.269 1130 0.896 0.559 0.398
ﬂ; (03] 0.285 0.192 0.147 0118 0.069 0.055 0.043
ax(t) 260.559 | 266.415 196.737 | 137.385 | 129.201 66.338 | 51.003
az(t) 185.488 | 182.532 | 176.932 | 160.894 138.591 78.404 | 53.840
ag(t)y 1.506 1.295 1.169 1.130 1.061 0.599 0.421
as(t) 0.298 0.243 0217 0.191 0.165 0.105 0.078
by(t) 1.655 1.502 1.269 1130 0.896 0.559 0.398
b’IHI 0.295 0.195 0.147 0118 0.069 0.055 0.043
by(t) 39.988 | —24.627 | —31.452 | —41.425 | —68.165 | —21.448 | —9.635
byty 159.974 | 170.532 | 182.030 | 184.093 | 154.608 89.853 | 59.587
by(t) 0.771 0.652 0.680 0.691 0.709 0.360 0.243
\bs;n 0.254 0.191 0.188 0.182 0.162 0.102 0.072
Dynamics:

&(t) = Ax(t) + Bu(t)
If x(t) <3 : wu(t) = Kiz(t)
If x(t) >3 : u(t) = Kax(t)
There can be an array of gains.

M. Peet

In Gain Scheduling, the controller
switches depending on operating point.

&

L L L L L L L
2 44s 1195 1955 230s 280s  350s  400s t

The dynamics switch with the state.
® This is called a Hybrid System

® Technically, it is not uncertain,
since model is defined
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Delayed Systems

Infinite Unmodelled States

&(t) = Azx(t) + Ayz(t — 7) + Bu(t)

Nominal System: P Uncertain System: A
#(t) = Ax(t) + Aq(t) + Bu(t) q(t) =p(t —1)
p(t) = x(t)

In the Frequency Domain:
y(t) = =(t)

—TS8

q(s) = e"""p(s)

Hence A(s) = e~ 7%
* [Alln. =1
® Can use Small-gain.
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Alternatives to the LFT

Additive Affine Time-Varying Interval and Polytopic Uncertainty

® Time-Varying Uncertainty can cause problems
® Because dealing with Structured Uncertainty is difficult, we often look for

alternative representations.
Consider the following form of time-varying uncertainty

#(1) = (Ag + AA))a(t)

where
AA(t) = A161() + -+ + Apdy(t)
where 4(t) lies in either the intervals
8i(t) € [6;,67]

177

or the simplex

i(t) e{a: Zai:17ai20}

For convenience, we denote this Convex Hull as

= {ZAzaz % 20, Zai: 1}
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Alternatives to the LFT

Additive Affine Time-Varying Interval and Polytopic Uncertainty

For example,
1

(s)

Define 1 = y and x5 = my
I N 0 m~! 1 0
-1 e ] =)
Then if m € [m~,m*], c€ [c7,c"], k € [k, k], then

i [ L L
m+7m_

¢ ¢~ ¢t
m mt m—

Note: This doesn’t always work!
® e.g. if in addition there were a ¢ coefficient (appearing w/o 1/m).
® Need a change of parameters which becomes affine in the parameters.
® Then you are stuck with the LFT.

M. Peet Lecture 12: 24 / 26



Discrete-Time Case

All frameworks are readily adapted to the Discrete-Time Case:

LFT Framework:
{xk+1:| _ S(R 2) {xk}
Zk Wi

Additive or Polytopic Framework:
Trt1 = (AO + AAk)l'k + (Bo + ABk)uk

where
AAk = Al(sl,k R Ak(SK,k

where d;, lies in either the intervals

Sik €[67,6;]

(A

or the simplex
O € {a : Zaizl,aiz()}
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Types of Uncertainty

To Summarize, we have many choices for our uncertainty Set, A
® Unstructured, Dynamic, norm-bounded:

A ={A e L(Ls) : [|Allmg, <1}
Structured, Static, norm-bounded:
A = {diag(dy, - ,0Kx, A1, - AN) : 6] <1, 5(A;) < 1}

Structured, Dynamic, norm-bounded:

A = {diag(A1, Ay, ---) € L(L2) : ||Aillr. <1}
® Unstructured, Parametric, norm-bounded:

A:={AeR™" : |A| <1}

Parametric, PolytopiC'

={AeR™" : A= Z%HZ, a; >0, Zal =1}

® Parametric, Interval:

{ZA(S €6 ,5;1}

Each of these can be Time-Varying or Time-Invariant!
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